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a  b  s  t  r  a  c  t

Integrated  sites  are  tightly  interconnected  networks  of large-scale  chemical  processes.  Given  the large-
scale  network  structure  of these  sites, disruptions  in  any of its  nodes,  or  individual  chemical  processes,
can  propagate  and  disrupt  the  operation  of the  whole  network.  Random  process  failures  that  reduce  or
shut down  production  capacity  are  among  the  most  common  disruptions.  The  impact  of  such disruptive
events  can  be  mitigated  by  adding  parallel  units  and/or  intermediate  storage.  In  this  paper,  we address  the
design  of  large-scale,  integrated  sites  considering  random  process  failures.  In  a  previous  work  (Terrazas-
Moreno et  al., 2010),  we  proposed  a novel  mixed-integer  linear  programming  (MILP)  model  to  maximize
the  average  production  capacity  of an  integrated  site  while  minimizing  the  required  capital  investment.
The  present  work  deals  with  the solution  of large-scale  problem  instances  for  which  a  strategy  is  proposed
that consists  of  two elements.  On  one  hand,  we use Benders  decomposition  to  overcome  the  combinatorial
complexity  of  the  MILP  model.  On  the  other  hand,  we  exploit  discrete-rate  simulation  tools  to  obtain  a
relevant  reduced  sample  of failure  scenarios  or states.  We  first illustrate  this  strategy  in a small  example.
Next,  we  address  an industrial  case  study  where  we  use  a detailed  simulation  model  to assess  the  quality
of  the  design  obtained  from  the  MILP  model.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The optimal design and operation of integrated production
networks is a current and future opportunity in the chemical pro-
cess industry. For instance, The Dow Chemical Company owns
Texas Operations, an integrated site that manufactures 21% of the
company’s products sold globally (Wassick, 2009). BASF’s site in
Ludwigshafen is another example of a large integrated produc-
tion system with over 200 production plants (BASF, 2010). Both
of these sites began as smaller manufacturing facilities and grew in
capacity and complexity over many decades. In contrast with the
gradual integration of these heritage sites, recent strategic initia-
tives require the grassroots design of very large integrated process
networks. The joint venture between Saudi Aramco and The Dow
Chemical Company to construct and operate a world-scale chem-
ical and plastic production complex in Saudi Arabia is an example
of such an initiative (Dow, 2007).

These integrated sites feature different interconnected process
networks. A failure event that reduces the production rate of any
of the processes can propagate throughout the network. Some
events are planned, for example, preventive maintenance of major
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plant components; the remaining failure events occur at random,
requiring corrective maintenance. The focus of this work is on the
second type of events, namely, failure modes that decrease pro-
duction capacity and that occur at random times with random
repair durations. The industrial significance of this problem is illus-
trated in a paper by Miller, Owens, and Deans (2006) from The Dow
Chemical Company. These authors explain the benefit of designing
reliability into manufacturing systems and illustrate the scope of
the involvement of Reliability–Availability–Maintainability (RAM)
teams during the design of large-scale manufacturing systems. A
note on terminology; availability is the ratio of uptime to total time
or the fraction of time the unit is producing product, reliability is
the probability of a unit or piece of equipment being in an up state
at a particular time.

To study these stochastic failures, computer simulations are
commonly used to test the effect of design alternatives in the avail-
ability or effective capacity of integrated systems. This approach
is applicable to an integrated chemical facility. As expected for
an integrated system, the increasing number of design degrees of
freedom and the increasing number of stochastic inputs quickly
increases the difficulty and time to search the design space,
requiring more computing and modeling resources. In addi-
tion, the successful ranking and selection of options is often
challenging to do cleanly when the search space is large. We
believe that mathematical programming techniques can be used in
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conjunction with process simulation tools to provide an efficient
tool for improving the design of integrated sites by significantly
reducing the design space. This new space can be then thoroughly
explored and validated via simulation. Additional opportunities for
applying optimization to the solution of the design, planning, and
scheduling of integrated sites can be found in Wassick (2009).

In our previous work (Terrazas-Moreno, Grossmann, Wassick,
& Bury, 2010), we proposed a mixed-integer linear programming
(MILP) model for the optimal design of integrated sites subject to
random failures and random supply and demand. The optimiza-
tion criteria were the maximization of the probability of meeting
customer demands and the minimization of capital investment. To
be a practical and useful tool for design teams, this challenging
model must be solved efficiently. A literature review of optimiza-
tion approaches for related problems, which includes the works
by Davies and Swartz (2008),  Pistikopoulos, Thomaidis, Melin,
and Ierapetritou (1996),  Pistikopoulos, Vassiliados, Arvela, and
Papageorgiou (2001),  and Straub and Grossmann (1990, 1993),  can
be found in that paper.

In the present paper, we propose a novel algorithm based on
Benders decomposition (BD) (Benders, 1962) to solve large-scale
instances of the MILP model mentioned above. There is rich lit-
erature on the application of BD to the design of process systems
under uncertainty. Most of these applications model uncertainty
using a stochastic programming (SP) representation and apply vari-
ations of the BD algorithm. The standard decomposition technique
is referred to as L-shaped decomposition (Van Slyke & Wets, 1969)
in the stochastic programming literature. Straub and Grossmann
(1993) proposed a nonlinear programming (NLP) model for max-
imizing the feasible operating region of a network with uncertain
process parameters and used Generalized Benders Decomposition
(GBD) (Geoffrion, 1972) to solve this problem. A similar approach
was proposed by Pistikopoulos (1995) and applied by Ierapetritou,
Acevedo, and Pistikopoulos (1996) and Acevedo and Pistikopoulos
(1998) as a general algorithmic technique for solving a class of prob-
lems defined as process design and operations under uncertainty.
More recently, Liu, Fan, and Ordonez (2009) addressed the design of
reliable transportation networks subject to unpredictable natural
disasters using Generalized Benders Decomposition (GBD).

The work by Santoso, Ahmed, Goetschalckx, and Shapiro (2005)
is related to the model and algorithm we present in this paper,
although they deal with exogenous uncertainties as opposed to
endogenous uncertainties in our case. The paper by Santoso et al.
(2005) proposes a two-stage stochastic programming (SP) model to
optimize the design of a supply chain network under uncertainty.
The authors consider in their MILP model uncertainty in parame-
ters such as processing cost, raw material supply, finished product
demand, and processing capacity of manufacturing facilities. These
uncertain parameters are discretized in order to build scenarios
with different combinations of parameter values. The resulting
number of scenarios can be huge for realistic problem instances.
The paper proposed an algorithm based on BD where the 1st stage
network design variables are considered complicating. An interest-
ing feature of this paper is that Benders decomposition is enhanced
with convergence accelerating techniques based on three ideas. The
first is adding constraints besides the usual dual cuts to the mas-
ter problem that can be derived as strengthened dual cuts or from
constraints expressed in terms of variables in the master problem
that were redundant and not included in the full space model. The
second idea is a heuristic for finding good feasible solutions. The
third is a trust region algorithm that prevents the master problem
from oscillating wildly in the first iterations.

All of the implementations of BD and GBD mentioned above cor-
respond to SP problems with exogenous uncertainties. That is, the
stochastic process is independent of design decisions (Jonsbraten,
Wets, & Woodruff, 1998). If we exclude exogenous uncertainties

like demand and raw material supply, then the source of remain-
ing uncertainties are random process failures, which are dependent
on design decisions. This implicitly assumes that when a unit is
“up” that it operates at the design rates. The number and selec-
tion of parallel processing units in the network are not known
a priori, i.e., they are decision variables. Since the only processes
where random failures can occur are those that are selected from
the superstructure, the realizations of uncertainties are also a func-
tion of the decision variables. This type of uncertainty, defined
as endogenous, significantly increases the complexity of the prob-
lem as well as the computational resources required for solving it.
This paper proposes a novel implementation of Benders decompo-
sition for two-stage stochastic programming (SP) problems with
endogenous uncertainties. The technique we propose partly over-
comes the combinatorial explosion in problem size that occurs with
non-anticipativity constraints required in this type of problems
(Jonsbraten, Wets, & Woodruff, 1998).

In the following sections, we present the problem of optimal
design of integrated sites and its representation as a two-stage
MILP stochastic programming problem. Some important proper-
ties of the problem are given, and the decomposition approach
that exploits these properties is presented. Finally, we test the
methodology with two numerical examples, one of them being an
industrial case study. As part of the solution of this case study, we
analyze a scenario reduction technique, and we  report the results
of simulating the operation of the Pareto-optimal designs with a
commercial simulation tool, ExtendSim® (Imagine That Inc., 2010).

2. Problem statement

In this section, we describe the problem of optimal design of
highly available integrated sites.

The following list of given data, degrees of freedom, optimiza-
tion criteria, and assumptions is reproduced with minor changes
from Terrazas-Moreno et al. (2010).

Given are:

• The superstructure of an integrated site with allowable parallel
production units in each plant and intermediate storage tanks.

• A set of materials that the plants consume and produce.
• Mass balance coefficients for all units in the superstructure.
• The maximum capacity that can be assigned to each unit in the

integrated site.
• Maximum supply of raw materials and maximum demand of

finished products.
• Number of failure modes, production rate loss as a result of each

failure, and the time between failure (TBF) and time to repair
(TTR) per failure mode, either as probability distributions or mean
values (MTBF and MTTR, respectively).

• A cost function that relates design decisions with capital invest-
ment.

The problem is to determine:

• The number of production units for each plant.
• The capacity of each unit.
• Sizes of intermediate storage between plants.
• For each state, material flows between plants and rate of accu-

mulation or depletion of material in storage.

The objective is to determine the set of Pareto-optimal solutions
that:

• Maximize the average production rate at which the integrated
site supplies chemicals to an external market.
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• Minimize the capital investment.

An interesting aspect of our approach is the development of a
set of discrete states that correspond to all possible combinations
of failure modes in the integrated site and a set of frequency and
duration equations that allows us to calculate the mean residence
time mrt  and frequency of encounters fr of all possible states in the
system, based only on the knowledge of the MTTR and MTTF of the
units in the superstructure (Billinton & Allan, 1992).

The following assumptions and simplifications are made:

1. Random failures are independent events.
2. The cost function is represented by piece-wise linear approxi-

mations.
3. The production units in the plants are dedicated single product

continuous processes.

Multiple failures in real integrated systems can be causally
related. If this is the case, our first assumption will result in inaccu-
rate statistical information of the discrete states described above.
In practice, this is rare except at the equipment component level,
which is at a level of detail finer than the failures considered
in this work. Consequently, most reliability simulation is carried
out assuming independent failure modes. In this sense, the inde-
pendence assumption made in this work will not add any more
inaccuracy than what is regularly used in industrial simulations.
Statistically uncorrelated events allow us to determine discrete
state probabilities, residence times, frequency, etc. using standard
frequency and duration calculations (Billinton & Allan, 1992). Using
a piecewise linear approximation of the objective function pre-
serves linearity in the problem. The number of piecewise functions
can be increased or decreased depending on the level of precision
required in cost calculations. Finally, the third assumption limits
the applicability of the approach to systems that can be modeled
as continuous dedicated plants. Multiproduct plants would require
scheduling considerations and a system of multiple storage tanks.

3. Overview of solution strategy

The solution approach we use in this paper integrates simula-
tion and optimization tools. The simulation is built as a discrete
rate model in ExtendSim software (Imagine That Inc., 2010). In a
discrete rate model, flow rates and tank levels are updated only
when needed, by an internal linear programming (LP) solver at each
discrete event. In our problem, events are failures and repairs that
change the rate of flow of materials among plants and changes in
tank level status (e.g. full, empty, high, low). The optimization step
involves a mixed-integer stochastic programming representation
of the integrated site and exploits state-of-the-art computational
technology for solving mixed-integer programs. The main idea of
stochastic programming (SP) is to build a set of scenarios that con-
sists of discrete realizations of uncertainties in the problem, and
then optimizing the expected value of the objective criterion over
all possible scenarios. In our problem, the scenarios correspond to
the discrete failure states.

Combining the two technologies (simulation and optimization)
exploits their complementary advantages. Discrete rate simulation
is able to represent the operation of the integrated site in great
detail. In fact, these types of models have been used at The Dow
Chemical Company to simulate real manufacturing systems and
validate them against actual operating data. Each simulation run,
however, requires that design variables be fixed. Searching for an
optimal design requires enumeration techniques that are time con-
suming and provide no guarantee of finding the optimal solution.
By building and solving mixed-integer linear programming (MILP)

Fig. 1. Summary of solution strategy using simulation and optimization tools.

models, one can find a guaranteed optimal solution using state-
of-the-art MILP solvers such as CPLEX (ILOG, 2011). MILP models,
however, are equation-oriented: the objective function and opera-
tional constraints have to be expressed in algebraic terms. In order
to do so, the modeler is required to make certain simplifications of
real systems. We  use optimization to find a set of Pareto-optimal
designs using an algebraic model of the system and simulation to
evaluate in more detail the performance of these candidate designs.
If the number of scenarios (discrete states) used in the optimization
model is impractically large, as is the case in when there is a large
number of possible failure modes, we  also use the simulation model
to generate a sample of the most representative scenarios. Finally,
we determine some sensitivity analysis derived from the optimal
solution to provide guidelines for fine-tuning the design using the
simulation model. Fig. 1 summarizes the solution process described
above.

The following sections describe in more detail each of the ele-
ments in the simulation and optimization solution approach. First,
we develop the MILP model of the integrated sites and explain
how the resulting formulation corresponds to a two-stage stochas-
tic programming (SP) problem with endogenous uncertainties.
The SP formulation relies on constructing a set of failure scenar-
ios that can be impractically large for the problem at hand. To
overcome the computational complexity involved in solving large
instances of the problem, we  propose a novel decomposition algo-
rithm based on Benders decomposition. Next, we describe the
discrete-rate model used to simulate the integrated site. Finally,
we present two case studies: an academic example and an indus-
trial case study. The first example is meant to illustrate the results
of the optimization approach. Since the number of failure modes
is small, we  can enumerate all discrete failure states, and there is
no need for a simulation model to obtain a representative sample
of states. We  use this small example to introduce the methodology
for sensitivity analysis. Since the industrial case study is signifi-
cantly larger, it requires the simulation–optimization–simulation
sequence depicted in Fig. 1. We  use this example to explain the
methodology for constructing a sample of failure states.

An important note to keep in mind is that in the SP representa-
tion, the discrete states that correspond to combinations of failure
modes are called scenarios. For our purposes, the terms states
and scenarios are equivalent, but the latter is used in some of the
remaining sections in order to be consistent with the SP literature.

4. Mixed-integer linear programming model

The starting point for the mathematical model of the inte-
grated site is a superstructure that corresponds to a network of
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Fig. 2. Building block for plant j in the integrated site.

processes and storage tanks. Each of the nodes in the network has
the structure shown in Fig. 2. The variables are described in the
nomenclature section in Appendix A.

In previous work (Terrazas-Moreno et al., 2010), a mixed-
integer linear programming (MILP) formulation for solving this
problem was proposed in which exogenous uncertainties in sup-
ply and demand were also included. The most important features of
the formulation are: (i) a superstructure that contains all potential
parallel units and storage tanks in all plants in the process network,
(ii) a state-space representation of the integrated site where each
discrete state corresponds to a combination of simultaneous failure
modes, and (iii) a model of intermediate storage, based on the con-
cept of random walks (Heyman & Sobel, 1982), to determine the
average and variance of the levels of material in the storage tanks
as a function of the network design. The transitions between states
(random process failures and repairs) follow the behavior of a con-
tinuous time Markov chain (Heyman & Sobel, 1982). This approach
allows the calculation of the mean and variance of the time spent in
each state, the frequency of visits to each of them, and the proba-
bilities of finding the integrated site in any state using statistical
information from historical reliability data of existing processes
that resemble the ones postulated in the superstructure.

All of the above elements are integrated in an MILP formula-
tion that maximizes the expected stochastic flexibility [E(SF)] of
finished products and minimizes the capital investment required
by the network design (Terrazas-Moreno et al., 2010). The bi-
criterion optimization problem is solved using the !-constrained
method (Ehrgott, 2005). The degrees of freedom are the selection
of units from the superstructure, the size and location of interme-
diate storage tanks, and the production capacity of the plants. An
important difference between our previous paper and the present
one is that here we maximize average production rate instead of
expected stochastic flexibility (Straub & Grossmann, 1990). The
system resides during a portion of the operating horizon in states
where some of the components are affected by failure modes that
temporarily decrease production rate. Maximizing average produc-
tion rate over a long operating time involves designing the system
so that the effect of random failures is minimized and, therefore, has
a similar effect on the system design as the objective of maximizing
E(SF). Computation of E(SF) relies on the criterion of whether or not
the system can match the demand rate in each of the discrete fail-
ure states and fails to capture the difference between a state where
the production rate is slightly less than the demand rate from one
where the entire system is shut down. The objective of maximiz-
ing long-term average production rate better matches industrial
design criteria than the maximization of E(SF). Appendix of this
paper contains the complete mathematical formulation. Details of

the model and a description of each of the constraints can be found
in Terrazas-Moreno et al. (2010).

5. Stochastic programming representation

We  model the problem of optimal design of an integrated site
(IS) as a two-stage stochastic mixed-integer linear program. The
vector of first stage design decisions d includes binary variables
to represent the selection of production units from a superstruc-
ture and continuous variables, such as production unit capacities
and storage tank sizes. Stage two  decisions only involve continuous
variables. A number of failure modes contained in a set L can occur
in the production units of the superstructure at random times. This
fact introduces endogenous uncertainty to the operation of the IS.
Furthermore, this uncertainty is of a discrete nature (whether or
not failure ℓ ∈ L occurs) and can be modeled using a parameter yℓ

that is 0 if failure ℓ occurs and 1 otherwise. The probability of a
failure ℓ occurring at any point in time is probℓ. We  define a vector
y = {yℓ} where ℓ = 1, . . .,  |L|; this vector has zeros in the positions cor-
responding to failures occurring simultaneously at any given time
in the IS. There is a finite number of possible 0–1 combinations for
the vector y. Each of these combinations defines a scenario in set
S. Therefore, each scenario s ∈ S corresponds to an instance of the
vector y, and it can be represented as ys = {yℓ

s }, ℓ = 1, . . .,  |L|. Assum-
ing independent probabilities of failures, the probability associated
with each scenario is ps =

∏
ℓ:yℓ

s =0probℓ
∏

ℓ:yℓ
s =1(1 − probℓ). The

second stage variables xs ∈ ℜ q are used to model material flows in
the integrated site (IS) for each scenario s ∈ S.

Remark
Set S contains all possible failure scenarios in the superstructure,

but each flowsheet selection defines a subset of relevant scenarios.
The scenarios in S can be aggregated – several scenarios can be
projected into a single one – to derive any relevant subset for any
possible flowsheet selection.

The following mixed-integer linear programming (MILP) prob-
lem is the deterministic equivalent of the stochastic optimal design
problem. It also corresponds to a compact representation of the
model presented in Appendix A. In the MILP model below, the
variables xs represents the vector of second-stage decision vari-
ables defined in the model in Appendix A. These variables are
flowj,j′,n,s, f P

j,n,s, f B
j,n,s, f IN

j,n,s, f OUT
j,n,s , psm,s, ıs

j,n. The variable d
is a vector of first-stage design variables that corresponds to the
following variables in Appendix A: invj,n, sd̃j,n, vj,n, pcm, zm.

Max
∑

s ∈ S

pscT
s xs − penT sl (1a)
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s.t.

A1
s xs + B1

s d ≤ c1 ∀s ∈ S (1b)

A2
s xs ≤ diag(B2

s d(e − ys)T ) ∀s ∈ S (1c)
∑

s ∈ S

Fsxs + Gd − sl ≤ h (1d)

C3d ≤ Capital (1e)
[

B(d)s,s′

xs = xs′

]
∨

[
¬B(d)s,s′

xs ≥ 0
xs′ ≥ 0

]
∀s ∈ S, s′ ∈ S, s′ < s, (s, s′) ∈ NA (D1)

d ∈ D, xs ∈ ℜq, sl ∈ ℜ+, where D = {d|di = 0, 1,

i = 1, i = 1, . . . , p, di ∈ ℜr
+, i = p + 1, . . . , r}

B(d)s,s′ = {True, False} ∀(s, s′) ∈ S2

(1h)

The objective function (1a) represents the maximization of the
average flow of product to external consumers. The coefficient
penT penalizes the slack variables sl that are introduced in con-
straint (1d) for guaranteeing feasibility of the subproblems and
accelerating the convergence of our implementation of Benders
decomposition. The penalty term is large enough to enforce the
slack variable to become equal to zero at the optimal solution. In
the examples we solve in this paper, we use a value of 10 for the
penalty term. Constraints (1b) and (1c) represent the mass bal-
ances in the superstructure. Constraint (1c) imposes reductions on
the production rates of the plants in the integrated site, accord-
ing to the active failure modes in state s; it will have terms of
the form: psm,s ≤ pcm[1 − (1 − ys

ℓ)(rcℓ)] (refer to constraint (A11) in
Appendix A). The notation diag(X) corresponds to the diagonal ele-
ments of the matrix X; and e is a unitary vector. Constraint (1d) is a
compact representation of the intermediate storage model we  pro-
posed in previous work (Terrazas-Moreno et al., 2010). Constraint
(1e) corresponds to the !-constraint for the bi-criterion optimiza-
tion problem since it restricts the cost of a flowsheet with design
variables d to be less than or equal to the maximum available invest-
ment, Capital.  Disjunction (D1) establishes a relationship between
the operating variables of scenario s and s′. The Boolean variable
B(d)s,s′ is true if scenarios s and s′ are indistinguishable in the flow-
sheet defined by d. It is important to notice that (D1) is not defined
for every possible pair (s′,s), but only for those pairs that fulfill two
conditions: (a) by symmetry of the constraint set, the first con-
dition is s′ < s; (b) that pair (s′,s) should belong to set NA,  which
is made up of all pairs that differ in the value of exactly one ele-
ment of the vector ys. These properties are explained in detail by
Goel and Grossmann (2006).  We  can represent (D1) using inequal-
ity constraints and a binary variable ˛s,s′ (d) in (1f) and (1g) (Raman
& Grossmann, 1994), which yields the following MILP problem:

Max
∑

s ∈ S

pscT
s xs − penT sl

s.t.

A1
s xs + B1

s d ≤ c1 ∀s ∈ S

A2
s xs ≤ diag(B2

s d(e − ys)T ) ∀s ∈ S

∑

s

Fsxs + Gd − sl ≤ h (1d′)

C3d ≤ Capital

xs ≤ xs′ + M˛s,s′ (d) ∀s ∈ S, s′ ∈ S, s′ < s, (s, s′) ∈ NA (1f)

xs ≥ xs′ − M˛s,s′ (d) ∀s ∈ S, s′ ∈ S, s′ < s, (s, s′) ∈ NA (1g)

d ∈ D, xs ∈ ℜq
+, sl ∈ ℜ+ where D = {d|di = 0, 1 ,

i = 1, . . . , p, di ∈ ℜr , i = p + 1, . . . , r}

˛s,s′ (d) = 0, 1 ∀(s, s′) ∈ S × S

(1h′)

Inequalities (1f) and (1g) are non-anticipativity constraints,
where the constant M is a large number that renders these inequal-
ities to be redundant for ˛s,s′ (d) = 1. The term ˛s,s′ (d) is a function
of the integrated site flowsheet and is defined as follows:

˛s,s′ (d) =

⎧
⎪⎨

⎪⎩

0 if scenarios s and s′ are indistinguishable in

the network topology defined by d

1 otherwise

For instance, if design d does not include unit m from the super-
structure, then states s′,s that differ only on whether or not unit
m has failed are considered indistinguishable. The explicit function
for ˛s,s′ (d) is as follows:

˛s,s′ (d) =
∑

m ∈ M

∑

ℓ ∈ Lm

zm"s,s′

ℓ ∀j ∈ J, s ∈ S, s′ ∈ S, s > s′, (s, s′) ∈ NA

(1i)

where "s,s′

ℓ is a problem parameter that can be derived from the
vector ys

ℓ. The vector ys
ℓ is a fixed parameter defined in a previous

section to be 1 if failure ℓ does not occur as part of state s, and 0
otherwise. Let the parameter "s,s′

ℓ be defined as below.

"s,s′

ℓ = max{ys
ℓ − ys′

ℓ , (1 − ys
ℓ) − (1 − ys′

ℓ )} ∀ℓ ∈ L,

s ∈ S, s′ ∈ S, s > s′(s, s′) ∈ NA (1j)

In Eq. (1j) "s,s′

ℓ is set to one if states s and s′ are distinguishable
with respect to failure ℓ; that is, if the failure occurs in one state
and not in the other.

Remarks

1. The state space S usually has high dimensionality, so that the
number of constraints defined by ∀s ∈ S, s′ ∈ S, s′ < s, (s, s′) ∈ NA
can become computationally intractable.

2. For a fixed design d̂, constraints (1f) and (1g) can be solved
outside of the optimization problem (1). In this case, we can
aggregate all indistinguishable scenarios a priori, and generate
a reduced set SB.

3. Problem (1) with fixed d̂ and a reduced set SB of scenarios
corresponds to a linear programming (LP) problem. Since this
LP problem excludes constraints (1f) and (1g), it results in a
decrease of orders of magnitude in the number of constraints
when compared against the full two-stage MILP stochastic prob-
lem.

6. Decomposition algorithm

6.1. Basic idea

The algorithm we propose in this section results in a significant
reduction of the number of non-anticipativity (NA) constraints that
are initially considered in problem (1). This algorithm can be used
(as we  do in our numerical examples) with other existing modeling
techniques to reduce the number of NA constraints as in Goel and
Grossmann (2006).  NA constraints are required only because the
optimal design is a degree of freedom. The failure scenarios are
built considering all units in the superstructure,  but not necessarily
all of these units will be part of the optimal network topology. When
two or more failure scenarios are different only with respect to a
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Fig. 3. Scenario tree representation of failure scenarios.

failure in units that are not part of the network, a non-anticipativity
constraint has to be activated to make those scenarios identical.

Figs. 3 and 4 illustrate this point for a three unit example.
The basic idea of the algorithm is to iteratively solve for the

design (flowsheet) in a problem with only a few scenarios, and
then solve the rest of the problem in a reduced space where only
scenarios relevant to the fixed flowsheet are considered. Since only
failures relevant to installed units are considered in the second step,
there is no need for NA constraints. We  use the basic concept of Ben-
ders decomposition to obtain the flowsheet in the master problem
and to solve the rest of the scenarios in the subproblem. Our contri-
bution to the method is that the subproblem is solved in a reduced
space where there is a limited number of scenarios and no (or only
very few) non-anticipativity constraints.

Definitions
According to what we have defined so far in the paper, we  have

the following sets:

L = {ℓ : ℓ is a failure mode in the superstructure}

S = {s : s represents a combination of failure modes in L}

ys = {ys
ℓ : ys

ℓ = 0 for active failure mode, 1 otherwise,

ℓ = 1, . . . , |L|}

We now include the following definitions

L̄k ⊆ L is a subset of failures relevant to a network

topology k

Sk
B = {s : s represent a combination of failure modes in L⃗k}

SM = {s : subset of failure modes for master problem}, SM ⊆ S

SC
M:=Complement of SM

Finally, we  define a subset of the Cartesian product as:

FNk = {(s′, s) : ys′
ℓ = ys

ℓ, ∀ℓ ∈ L̄k} ⊆ S × Sk
B

1

2
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2

Design A

11

Design B

1
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3
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Unit 1
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Unit 3 D U DU D U UD

Equalit y co nstra ints li nk sc enari os 
that are  iden tical  for a give desi gn

D
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Unit  1
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Fig. 4. NA constraints are required since flowsheet structure is a degree of freedom.
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Fig. 5. Function FNk .

The pair (s′,s) represents all the duplets in the Cartesian prod-
uct (S × Sk

B). For each of these duplets there is a corresponding pair
ys′

, ys. Recall that ys is a vector with as many elements as failure
modes ℓ ∈ L, and that ys′

ℓ is a vector with as many elements as fail-
ure modes in ℓ ∈ Lk, where |Lk| ≤ |L| since there are more failures
in the units of the superstructure that in the units corresponding
to a particular topology k, which is conformed of a subset of the
units in the superstructure. If for failures relevant to topology k,
that is ℓ ∈ Lk ys′

ℓ = ys
ℓ, scenarios s′ and s are equivalent with respect

to failures relevant to topology k. That is, looking only at the units in
topology k, scenarios s′ and s, have the same combination of active
failure modes. If this condition is met, (s′,s) are members of FNk.

In fact, FNk defines a function FNk : S → Sk
B that maps between

the sets S and Sk
B, since for every element s′ ∈ S there is only one

corresponding element in s ∈ Sk
B. This relationship operates in the

following way: taking any element in s′ ∈ S we look for the element
s ∈ Sk

B such that (s′, s) ∈ FNk.
The function FNk : S → Sk

B can be used to project the different
scenarios in S that are identical with respect to the failures in Lk
onto one scenario in Sk

B. This use of FNk is illustrated in Fig. 5.

7. Properties of the reduced set Sk
B

In the above section, SM represents the failure modes considered
in the master problem, while Sk

B was defined as a set of scenar-
ios that include all the relevant failure mode combinations for a
fixed network topology k. The main idea behind the decomposition
approach presented in this paper is to solve the Benders subprob-
lem in the reduced space of Sk

B. For instance, let the superstructure
of an integrated site have two units. Each unit has one failure mode,

10
l1

0294.0=ksp02.0=ksp

k
BS

Fig. 7. Reduced scenarios in Sk
B and their probabilities pk

s for fixed unit 1.

so L = {ℓ 1, ℓ 2}. Each vector ys = {yℓ1s , yℓ2s } describes a scenario s ∈ S
where S = {{1,1},{1,0},{0,1},{0,0}}. Recall that a 0 in the vector ys
denotes the occurrence of a failure in scenario s. Assuming the prob-
ability of failure is small, the Benders algorithm is set up so that
SM = {{1,1}}  and its complement SC

M = {{1, 0}, {0, 1}, {0, 0}}. If in a
given iteration the flowsheet obtained from the solution of the mas-
ter problem includes only one unit, we would define the reduced
set L̄k = {ℓ1}, so that Sk

B = {{1}, {0}}. In this case scenario {1} in Sk
B is

the projection of {1,0} from S onto Sk
B. Scenario {0} is the projection

of {0,1},{0,0}.
An important property that we require of Sk

B is that the sum
of the probabilities of the scenarios in the reduced set must be
equal to the summation of the probabilities in the original set, i.e.,∑

s ∈ Sk
B
pk

s =
∑

s ∈ SC
M

ps. We  illustrate how to compute the probabili-

ties ps, ∀s ∈ Sk
B in order to satisfy this condition using the example

of a two-unit superstructure. There is one failure mode per unit in
each of the two units, where probℓ1 = 0.02 and probℓ2 = 0.03. Fig. 6
shows the combinations of failure modes for scenarios in S and their
corresponding probabilities. It also shows the partitioning of S into
SM and SC

M .
Once more, assume that at a given iteration of the Benders algo-

rithm only unit 1 is chosen from the superstructure, and we wish
to solve the subproblem in the projected space Sk

B. There are two
states in Sk

B: {1} and {0} corresponding to the functional and failed
states of unit 1. The first of these, {1}, is the projection of {1,0}; the
second, {0}, is the projection of {0,1},{0,0}. The probabilities of the
reduced states {1} and {0} are equal to the sum of the probabilities
of the projected states {1,0} and {0,1},{0,0}. The probability of the
state {1} is equal to the probability of {1,0}, and the probability of
{0} is the sum of the probabilities of {0,1},{0,0}. Fig. 7 shows the
reduced scenarios and their corresponding probabilities for fixed
unit 1. It can be verified that each of the probabilities in the sce-
narios in Fig. 7 correspond to the addition of probabilities of the
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p = 0.0 294p = 0.0 006

p = 0.0 194
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Fig. 6. Scenarios and their partitioning in illustrative example.
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first and second column of Fig. 6(a), considering only the states in
SC

M . We  label the probability in the reduced space as pk
s . In general,

pk
s′ =
∑

s ∈ Aps, where A = {s : yℓ
s = yℓ

s′ ∀l ∈ L̄, s ∈ SC
M}.

7.1. Proposed algorithm

Step 1
Define a maximum number of iterations Kmax and the tolerance

of the problem ε. Set the counter K = 1, and the initial value for the
lower bound LB = −∞.

Select SM as the set of scenarios with largest probability ps (i.e.
ps ≥ $ , where $ is threshold value).

Step 2
Solve the master problem (M)  as defined below:

Max  Constant + ε% (M1)

s.t.

% ≤
∑

s ∈ SM

pscT
s xs +

∑

s ∈ S̄k
B

(uk
1s(c

1 − B1k

s d) + uk
2sdiag(B2k

s d(e − ys)T ))

+ vk(h − Gd −
∑

s ∈ SM

Fsxs) +
∑

s ∈ Sk
B

∑

s′:s′ ∈ SM, (s,s′) ∈ FNk∩NA

wk
s,s′ xs′ ,

K /= 1, k = 1, . . . , K − 1 (M2)

% ≥ LB + ε (M3)

% ≤
∑

s ∈ SM

pscT
s xs +

∑

s/∈SM

pscT
s xUB

s (M4)

A1
s xs + B1

s d ≤ c1 ∀s ∈ SM (M5)

A2
s xs ≤ diag(B2

s d(e − ys)T ) ∀s ∈ SM (M6)
∑

s ∈ SM

Fsxs + Gd ≤ h −
∑

s ∈ SM

FsxL0
s (M7)

C3d ≤ Capital (M8)

xs ≤ xs′ + M˛s,s′ (d) ∀s ∈ SM, s′ ∈ SM, s′ < s, (s, s′) ∈ NA (M9)

xs ≥ xs′ − M˛s,s′ (d) ∀s ∈ SM, s′ ∈ SM, s′ < s, (s, s′) ∈ NA (M10)

d ∈ D, xs ∈ ℜq
+, sl ∈ ℜ+ where D = {d|di = 0, 1 ,

i = 1, . . . , p, di ∈ ℜr , i = p + 1, . . . , r}

˛s,s′ = 0, 1 ∀(s, s′) ∈ S × S

(M11)

where uk
1s, uk

2s, vk, and wk
s are dual variables arising in the

subproblems defined in Step 4.
The master problem (M)  is the bottleneck of the decomposition

algorithm. To speed up the convergence of (M), we have set it up as
a feasibility problem instead of a rigorous optimization problem.
The value of the constant term in the objective function (M1) is
of the same order of magnitude as the optimal solution to the full
space problem. This value is easy to calculate since it is possible to
know the productivity if no failures were present in the integrated
site. Then we solve (M)  using a loose tolerance in the MILP solver.
The tolerance that we refer to here is the gap between the upper
and lower bounds of the branch and bound method used to solve
the MILP. It is not to be confused with the tolerance defined for the
Benders decomposition algorithm. For instance, if the tolerance of
the Benders decomposition, which is ε in the nomenclature of this
paper, is set to 2%, we can allow a gap of 5% for the branch and
bound method. In (M1) the term Constant is much larger than the
term ε%,  so that (M)  will converge once a feasible solution is found.
Although, as we have just said “the term ε% is comparatively small”,

keeping it is important since it improves the quality of the feasible
solution found. Eqs. (M2) and (M3) constrain the variable % to be
less than the dominant Benders cut but greater than a valid lower
bound plus the convergence tolerance ε. Constraint (M4) has been
added to enforce a valid upper bound on the objective function
of the master problem. Note that the cardinalities of the sets of
constraints (M9) and (M10) are much smaller than the cardinalities
of (1f) and (1g). The solution to this problem yields the optimal
values of the decision variables of the master problem at iteration
k: d̂k and x̂k

s ∀s ∈ SM .
Termination criterion: Constraints (M5)–(M11) can always be

trivially satisfied by not installing any unit from the superstructure
and setting to zero the internal flows within the integrated site.
The only possibility for (M)  to be infeasible is if % cannot satisfy
constraints (M2)–(M4).  This is the case only if the upper bounds
for % set by constraints (M2) and (M4) are lower than the lower
bound set by constraint (M3). Therefore, the algorithm is terminated
as soon as (M) is infeasible, which in turn guarantees that the lower
bound LB is within ε-tolerance of the optimal solution to the full
space problem.

Step 3
Select the sets L̄k and Sk

B as defined above. Use the function FNk

to compute the coefficients in the reduced space of Sk
B:

pk
s =

∑

s′:s′ ∈ SC
M

, (s′,s) ∈ FNk

ps′ ∀s ∈ Sk
B

The calculation of this coefficient has been explained in the pre-
vious section.Step 4

Solve the subproblem (B) of the Benders decomposition using
the reduced scenario set Sk

B.

Max
∑

s ∈ Sk
B

pk
s cT

s xk
s +
∑

s ∈ SM

pscT
s x̂k

s − penT sl (B1)

s.t.

A1
s xs ≤ c1 − B1

s d̂k ∀s ∈ Sk
B (B2)

A2
s xs ≤ diag(B2

s d̂k(e − ys)T ) ∀s ∈ Sk
B (B3)

∑

s ∈ Sk
B

Fsxs − sl ≤ h − Gd̂k −
∑

s ∈ SM

Fsx̂k
s (B4)

xs = x̂k
s′ ∀s ∈ Sk

B, s′ ∈ SM, (s, s′) ∈ FNk ∩ NA (B5)

xs ∈ ℜq
+, sl ∈ ℜ+

q (B6)

The non-negative slack variables sl in (B4) ensure feasibility of
the subproblem. A special note must be made regarding constraint
(B5). The reduced set Sk

B is introduced in order to eliminate the need
for non-anticipativity constraints (1f) and (1g) among the scenarios
in SC

M , but there are still indistinguishable pairs of scenarios (s,s′)
where s belongs to SC

M and s′ to SM. The claim is that the set of
constraints in (B5) is of significantly smaller cardinality than (1f)
and (1g).

After solving subproblem (B), we construct the Benders cut using
the objective function of the dual of (B):

% ≤
∑

s ∈ SM

pscT
s xs +

∑

s ∈ S̄k
B

(uk
1s(e − B1k

s d) + uk
2sdiag(B2k

s dyT
s ))

+ vk

(
h − Gd −

∑

s ∈ SM

Fsxs

)
+
∑

s ∈ Sk
B

∑

s′:s′ ∈ SM, (s,s′) ∈ FNk∩NA

wk
s,s′ xs′

where uk
1s, uk

2s, vk, and wk are the optimal dual multipliers of
constraints (B2)–(B5) at iteration k.
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Fig. 8. Simulation logic for unplanned downtimes.

The value of the lower bound (LB) is updated if the optimal value
of (B) is greater than the incumbent LB.

If  K = Kmax, the algorithm stops. Otherwise, set K = K + 1, and go
to Step 2.

8. Discrete rate simulation model

The simulation begins with the generation of discrete items,
each representing a unique failure mode. Each plant in the inte-
grated site has one or more failure modes. For each failure mode,
we look up which plant is impacted by the failure. We then look
up the number of parallel units for that plant and the produc-
tion rate per unit. These parameters are assigned to the failure
mode as attributes so the look-up is necessary only once at the
beginning. Each item is unbatched to N items, where N = number
of parallel units. The underlying assumption is that if multiple
parallel units exist in a plant, these units fail independently of
each other. For each failure mode, its time between failure (TBF)
and time to repair (TTR) are calculated from distributions devel-
oped from available data. All failure modes wait for failure start,
for the duration corresponding to their respective TBF. Then they
wait in a queue, and each is released only when the affected
unit/train is running (no ongoing failure or turnaround). When
a failure mode is released from this queue, the rate and sta-
tus of the affected unit is updated. All failure modes wait for
repair to finish, for the duration corresponding to their respec-
tive TTR or less (only if the repair is pre-empted by a simulation
logic that synchronizes certain maintenance activities). After the
repair is finished for a given failure mode, the rate and sta-
tus of the affected unit/train are restored. The TBF and TTR are
recalculated, and the process is repeated. Fig. 8 summarizes the
simulation logic for modeling unplanned downtimes resulting from
failures.

A failure mode can result in the rate of zero for a complete shut-
down or between zero and maximum unit capacity for rate loss. If
there is an ongoing failure at a unit such that the current rate is zero,
the above mentioned queue prevents any further failure modes for
that unit to be activated, the assumption being that a down plant
cannot fail any more. If there is an ongoing failure at a unit such
that the current rate is not zero, then additional failure is possible.
During the simulation, multiple failure modes can be in progress at
the same time. The lowest rate of all failure modes in progress is
chosen as the rate of a particular unit. The existence of more than
one parallel unit per plant is accounted for in the updating of this
rate input, depending on the status of all units. For example, if one
unit is up and the other is down, then the rate input would be half
the plant capacity.

Fig. 9. Integrated Site for the production of C from A.

9. Application to the design of integrated sites (IS)

9.1. Illustrative example

We use the small example shown in Fig. 9 that was  presented
in our previous work (Terrazas-Moreno et al., 2010) to illustrate
the proposed algorithm. The model and process data required to
solve this example are available in Appendix A. We solve the full
space version of the problem and then decompose it using the pro-
posed algorithm for different values of capital investment in order
to obtain a set of Pareto-optimal solutions. All results were obtained
using the MILP solver CPLEX version 12.1, running on GAMS 23.3,
with a 2.8 GHz Intel Pentium 4 processor and 2.5 GB RAM.

The Pareto-optimal solutions are shown in Fig. 10.  Two specific
network structures are shown for the Pareto-optimal points A and
B in Fig. 11.

The network in Fig. 11(a) is designed to operate relying on pro-
cess 3 and a large storage tank. In fact, 2.25 tons is the upper bound
we set for the volume of the storage tank after plant 3. The network
configuration that corresponds to point B in Fig. 10 belongs to a sec-
tion of the optimal Pareto set where only marginal improvements in
average production rate are achieved at the expense of large addi-
tional investment. Thus, the large spare capacities, the redundant
units, and the relatively large storage tank in Fig. 11(b).

Tables 1 and 2 contain the problem sizes and the results that cor-
respond to the full space model and to the decomposition strategy.
Fig. 12 shows the convergence of the decomposition algorithm in
14 iterations for one value of capital investment (Capital = $60 MM).
The lower bound before iteration 4 is a large negative number as
a result of the slack variable in the objective function and Eq. (B4)
having a large value. Without the slack variable the subproblem
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Fig. 10. Pareto-set of optimal solutions for Example 1. (a) Configuration A. (b) Con-
figuration B.

Table 1
Statistics of illustrative example.

Discrete variables Cont. variables Constraints

Full space 4 1557 1670
Master problema 4 502 370
Subproblemb 0 265 177

a Master problem at iteration 1.
b Subproblem at iteration 1 for 13 MM USD of capital investment.

Table 2
Results of illustrative example.

Capital investment (MM  USD) Optimal solution (ton/day)

Full space Sub problem (2% tolerance)

13 2.61 2.59
15 4.35 4.33
20 6.10 5.99
30 6.10 6.09
40 6.25 6.25
50 6.76 6.71
60 6.77 6.77
70 6.92 6.92
80 6.92 6.92
90 6.92 6.92
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Fig. 12. Iterations of master problem and sub problem in the illustrative example
for $60 MM of investment.

would have been infeasible. It is interesting to notice that, even for
this small example made up of 4 processing units, the number of
constraints in the full space model is significantly larger than the
sum of the constraints in the master problem and subproblem (see
Table 1). This is a consequence of the reduction in the number of
non-anticipativity constraints in (1f) and (1g), and in the number
of scenarios in the subproblem. Table 2 shows the results obtained
by the full space and Benders decomposition methods for different
values of capacity investments. The example is so small that each
Pareto-optimal solution can be obtained in a fraction of a second
of CPU time either using the decomposition algorithm or directly
solving the full space model.

9.1.1. Sensitivity analysis
The Pareto-optimal solution that corresponds to point A in

Fig. 10 represents an inflection point in the Pareto-optimal front.
Due to the fact that further marginal increments in average pro-
duction rate require large sums of extra capital investment, an
industrial design team would be interested in understanding the
factors that limit the performance of this design. For example,
it could be more cost effective trying to improve the reliability

Fig. 11. Network configurations for two  Pareto-optimal solutions.
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characteristics of key components in the design, rather than adding
parallel production trains or increasing the capacity of existing
ones. It could also be the case that small changes in the volume
of storage tanks or capacity of production units can yield signif-
icant improvements in average production rate. This information
can be very useful with the optimization–simulation approach pro-
posed in this paper. These teams could use it to search efficiently
the design space around one or more Pareto-optimal solutions with
discrete-rate simulation. The sensitivity analysis described below
has the objective of providing this type of information to such a
design team, so that it can be used as a guideline to fine-tune the
design in a cost-effective way.

The first step to carry out the sensitivity analysis is to fix the
selection of units in the superstructure to that in the Pareto-optimal
point of interest. We  then construct the set of scenarios relevant
to this selection in the same manner as when setting up the sub-
problem in the decomposition algorithm. Using this collection of
scenarios as set S, and with a fixed selection of units (fixed zm),
we solve the full space problem described in Appendix A (Eqs.
(A1)–(A22)) with the following two additional constraints.

pc∗
m ≤ pcm ≤ pc∗

m ∀m ∈ M (S1)

v∗
j,n ≤ vj,n ≤ v∗

j,n ∀j ∈ J, n ∈ N (S2)

where pc∗
m and v∗

j,n are the capacity of unit m and the volume of the
tank for product n after plant j in the Pareto-optimal design being
analyzed. Any solver for LP problems, such as CPLEX, provides the
reduced costs at the optimal solution. The reduced costs, which are
the dual variables at the active bounds, correspond to the deriva-
tives of the objective function with respect to perturbations on the
right-hand sides of each of the constraints in the optimization for-
mulation (Chvatal, 1983). By reading reduced costs of constraints
(S1) and (S2), we obtain the values of the following derivatives:

∂(Average Production Rate)
∂(pc∗

m)
∀m ∈ M (S3)

and

∂(Average Production Rate)
∂(v∗

j,n)
∀j ∈ J, n ∈ N (S4)

These derivatives show the sensitivity of the optimal solution
for marginal increments in the design variables. In this way, the
relative magnitudes of the sensitivities can be used as guidelines
for fine-tuning the design using simulation tools.

Next, we are interested in finding the derivatives of the objective
function with respect to the probabilities of each failure mode, that
is,

∂(Average Production Rate)
∂(pℓ)

∀ℓ ∈ L (S5)

This information can be used to determine key failure modes and
look for ways to improve the reliability characteristics of the corre-
sponding components in the design. The probabilities of being in an
operational state with respect to failure ℓ, pℓ, do not appear explic-
itly in the MILP model defined by Eqs. (A1)–(A22).  However, the
probability of each failures scenario (discrete state), probs, which is
a function of the probabilities of independent failure modes, does
appear in constraints (A1), (A12) and (A13). Note that we assume
that vrtsfrs = probs in constraint (A13),  which is true when failures
follow exponential distributions but an approximation in any other
case. Knowing this, we carry out the following computations where
APR stands for average production rate:

∂(APR)
∂(pℓ)

=
∑

s ∈ S

∂(APR)
∂(probs)

∂(probs)
∂(pℓ)

, (S6)

Table 3
Sensitivity analysis of design corresponding to $20 MM.a

∂(APR)/∂(v∗
3,C ) ∼0

∂(APR)/∂(pc∗
3) ∼0

∂(APR)/∂(p3) 6.98

a This design only includes unit 3 from the superstructure.

where

∂(APR)
∂(probs)

=
∑

j ∈ J

∑

n ∈ N

[
∂(APR)

∂(A12j,n)
∂(A12j,n)
∂(probs)

+ ∂(APR)
∂(A13j,n)

∂(A13j,n)
∂(probs)

]

+ ∂(A1)
∂(probs)

(S7)

and

∂(probs)
∂(pℓ)

=
∏

ℓ′:{ys
ℓ
=1}, ℓ′ /=  ℓ

pℓ′

∏

ℓ′:{ys
ℓ
=0}

(1 − pℓ′ ) if ys
ℓ = 1 (S8)

or

∂(probs)
∂(pℓ)

=
∏

ℓ′:{ys
ℓ
=1}

pℓ′

∏

ℓ′:{ys
ℓ
=0}, ℓ′ /=  ℓ

(1 − pℓ′ ) if ys
ℓ = 0 (S9)

In Eq. (S7), A12 and A13 stand for the right-hand sides of Eqs.
(A12) and (A13) in Appendix A, and A1 corresponds to the objective
function. The values (∂(APR)/(∂(A12j,n)) and (∂(APR)/(∂(A13j,n)) are
the dual variables of the corresponding constraints, and they are
obtained from the output of an LP solver. The partial derivatives
(∂(A12j,n)/(∂(probs)), (∂(A13j,n)/(∂(probs)) and (∂(A1)/(∂(probs)) are
obtained analytically from constraints (A12) and (A13) and the
objective function (A1). Finally, Eqs. (S8) and (S9) are the result of
differentiating the function probs =

∏
ℓ:{ys

ℓ
=1}pℓ′

∏
ℓ:{ys

ℓ
=0}(1 − pℓ′ )

that determines the probability of each failure state as a combi-
nation of the probabilities of the independent failure modes.

Table 3 contains the results of the sensitivity analysis of the
design labeled as A in Fig. 10.  Note: Design A only involves plant
3.

The results in Table 3 indicate that marginal changes in the
design variables around their optimal values have little effect on
the objective function. In fact, this is consistent with the small
slope after point A in Fig. 10.  In contrast, increasing the probabil-
ity of being in an operational state of plant 3 has a large potential
impact on the average production rate. To give the value of the
derivative (∂(APR)/(∂(p3)) a more tangible meaning, we can cal-
culate the effect of a 5% increase in the ratio of MTBF over MTTR
for plant 3. After some algebraic manipulation of the expression
p3 = (MTBF3/(MTBF3 + MTTR3)) we  get:

'APR (5% increase in MTTF/MTTR)

=
[ 1.05

1 + 0.05pℓ
− 1
]

∂(APR)
∂(p3)

= 0.044

Thus, an increase of 5% on the mentioned availability could
result in the design corresponding to $20 MM going from
6.095 mass/h to 6.139 mass/h. This option would be preferred over
increasing the capital investment from $20 MM to over $30 MM.

10. Large-scale example

This section describes the computational results of the proposed
algorithm for solving an industrial-sized process network. Fig. 13
shows the 9 processing plants that constitute this network. Each
of the plants in this integrated site represents the production of a
chemical that can be shipped to external markets or used as raw
material in a downstream process. In the latter case, the integrated
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Fig. 13. Industrial integrated site in large-scale example.

site could be part of a very large chemical production site made up of
several “smaller” integrated sites. In this example we use a concave
cost function (the common six-tenths rule (Biegler, Grossmann, &
Westerberg, 1997) for capturing the effect of different processing
capacities on the capital investment required by processing units.
We  use a piece-wise linear approximation in order to keep the
linearity of the model.

Each of the 9 plants that constitute the integrated site is modeled
as a continuous process with one or several inputs and one output.
We postulate a superstructure with two parallel production units in
each plant and a storage tank after each plant except after plants 5
and 9, where the corresponding product cannot be stored. Each unit
in the superstructure is subjected to different partial (decreased
capacity) and total random failure modes. The distribution of the
failure times is exponential, while the repair times follow a normal
distribution. The total number of failures in the superstructure is
198.

Solving this industrial case study with the formulation in
Appendix A using the decomposition framework presents two main
challenges. One of them is the dimensionality: the resulting space
for the units in the superstructure consists of 2198 discrete states
(scenarios). Even with the decomposition algorithm, we are not
able to handle this problem size. The second challenge is that the
normal distribution of the repair times causes the variance of the
residence time in each state to be different than that calculated
assuming an exponential distribution. As indicated in our previ-
ous work (Terrazas-Moreno et al., 2010), the asymptotic values of
the probabilities of the states and the mean residence time can be
obtained analytically for any type of distribution as long as we have
the mean failure and repair times. Unfortunately, this is not the case
for the variance of the residence times. We  overcome these two
challenges by building a discrete event simulation model that we
can use to collect a sample of scenarios. This technique is basically
a Monte Carlo sampling procedure.

10.1. Sampling of scenarios and validation of designs using the
discrete event simulation model

One use of the simulation model is to build a sample of sce-
narios for our problem. As the simulation runs, it generates a list of
items (failures) and their attributes (time between failures and time
to repair). It also registers a generation time for each of the items
(failures). Scenarios (states) in the problem at hand are described
by a set of failures occurring simultaneously in the integrated site.
From the list of items mentioned above, we can construct a list of
scenarios or states and their durations. Appendix B contains the
details of the methodology to construct the list of scenarios from
the list of failure items created in discrete event simulation. Since

the scenarios are generated randomly, we can consider the method
as a Monte Carlo sampling. The number of scenarios is finite, and a
few of them are highly more likely than the rest, so we  can expect
many repetitions of the same scenario as we  sample. The sampling
method allows us to calculate probabilities as well as mean and
variance of residence time in each scenario. The size of the sample
can be determined by the desired level of accuracy in the solution
to our two-stage stochastic programming problem. The variance
estimator of the solution to a stochastic programming problem is
given by Shapiro and Homem-de-Mello (2000):

S(n) =

√∑n
s=1(E[obj] − objs)

2

n − 1
(2)

where n is the number of scenarios and obj is the objective value.
Let z˛/2 be the normal standard deviate (corresponding to a normal
distribution with zero-mean and unitary standard deviation) for
a confidence interval of 1 − ˛. In other words, Pr(z  ≤ z˛/2) = 1 − ˛/2,
for z ∼ N(0, 1). For a confidence interval of 95%, z˛/2 = 1.96. To obtain
the exact number of scenarios we  follow the steps in You, Wassick,
and Grossmann (2009):

(1) Obtain a sample for one year of operation to approximate S(n).
(2) Define z˛/2 and a desired interval H so that the solution to

the stochastic programming problem is within an interval of
[objsample − H, objsample + H] with confidence of 1 − ˛.

(3) Determine the size of the sample as:

N =
[

z˛/2S(n)
H

]2

(3)

For H = 2.5 mass/h (recall that the objective function is the
expected throughput of the integrated site) and a confidence
level of 95% we  need a sample size of 2878 scenarios. We  found
that by simulating 10 years of plant operation we can construct
this sample. Intuitively, one would expect that excluding sce-
narios that are not relevant after 10 years of plant has a minimal
effect on the optimal design of the integrated site.

10.2. Numerical result

We simulated 10 year of operation of the integrated site and
obtained a sample of 2973 scenarios. The statistics corresponding to
the 10 most frequently encountered scenarios are shown in Table 4.

Table 4 contains some valuable information. For instance, from
the first row we know that the integrated site will operate without
any active failure mode around 23% of the time and that a failure
will occur approximately every 28 h. Another important piece of
information is that 4 out of the remaining 9 most common failure
scenarios are due to some failure mode in plant 8.

After obtaining the sample of failure scenarios, we  attempted to
solve the problem in full space of 2973 scenarios (without decom-
position) and using the proposed decomposition algorithm in a
workstation with a 2.40 GHz Intel Core2 Quad CPU processor and
8 GB RAM. The results were obtained with the MILP solver CPLEX
12.1.0 running in GAMS 23.3.

The set of Pareto-optimal solutions in Fig. 14 was  obtained first
by solving the full space model which required 31 h. In contrast,
using the decomposition algorithm with a 2% convergence toler-
ance, the Pareto curve can be obtained in 9 h. Table 5 shows the
comparison in terms of CPU times for both approaches. An impor-
tant note is that the solution times in the table do not include the
time GAMS required to generate the model, which was nearly as
long as the solution time for the full space model and not more than
a few minutes with the decomposition algorithm. Table 6 shows
the problem sizes of the decomposed and full space formulations.
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Table  4
Statistics of most probable failure scenarios.

Scenario Probability Mean residence time (h) Frequency of visits (1/(h × 103)) Plants in failure mode

1 0.231 28 8.0 None
2 0.022  23 0.9 Plant 8
3 0.020  20 1.0 Plant 8
4  0.020 25 0.8 Plant 8
5  0.019 27 0.7 Plant 2
6  0.013 18 0.7 Plant 2
7  0.012 21 0.6 Plant 5
8 0.010  25 0.4 Pant 9
9 0.009  21 0.4 Plant 8

10 0.008  28 0.3 Plant 9

Table 5
Performances of decomposition algorithm and full space solution using sample of scenarios.

Capital investment (k USD) Full space Decomposition algorithm

Solution (mass/h) CPU time (s) Upper bound (mass/h) Lower bound (mass/h) CPU time (s)

$100,000 5.20 1,052 5.26 5.16 1,324
$150,000 46.83 4,980 47.28 46.35 6,431
$200,000 62.12 15,376 62.52 61.29 3,817
$220,000 68.30 23,271 69.27 67.91 3,813
$240,000 70.77 12,645 71.66 70.26 4,277
$260,000 72.31 21,611 72.97 71.54 3,308
$280,000 73.27 18,082 72.95 71.52 5,109
$300,000 73.97 15,245 74.92 73.46 3,080

Total  31.18 h Total 8.66 h

Finally, Table 7 shows the details of three of the Pareto optimal
network configurations in Fig. 14.

10.3. Sensitivity analysis

We carry out a sensitivity analysis around the design corre-
sponding to $220 MM,  following the same procedure outlined in
Example 1. The analysis predicts that there is no marginal benefit
in increasing the size of the storage tanks and that the design fine-
tuning should focus on small increases on the capacity of plants 1

Table 6
Problem size corresponding to industrial case study.

Discrete variables Cont. variables Constraints

Full space 144 4,753,154 1,864,942
Master problema 144 599,136 203,574
Subproblem 0 4,183,206 877,194

a Master problem at iteration 1.

Table  7
Optimal designs for different capital investments using a random sample of scenarios.

Plant 200 MM USD
Average Production Rate
61.29 mass/h

220 MM USD
Average Production Rate
67.91 mass/h

Production units Capacity per unit (ton/h) Storage size (ton) Production units Capacity per unit (ton/h) Storage size (ton)

1 1 74.8 – 1 88.2 –
2  1 77.1 – 1 87.8 –
3  1 58.7 – 1 64.4 3750
4  1 37.5 – 1 42.8 –
5  1 121.7 – 1 126.4 –
6  1 105.23 – 1 154.1 –
7  1 86.0 – 1 117.6 446
8  1 28.4 – 1 42.4 9
9  1 44.1 – 1 67.6 –

Plant  260 MM USD
Average Production Rate
71.62 mass/h

Production units Capacity per unit (ton/h) Storage size (ton)

1 2 73.9 –
2  1 96.9 –
3 1  76.3 3750.0
4  1 42.8 3210.0
5  1 135.91 –
6 1  137.7 –
7  1 111.0 7770.0
8 1  42.4 93
9 2  52.0 –
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Fig. 14. Pareto-optimal solutions for Example 2 using a random sample of 2973
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Fig. 15. Comparison of simulation results vs. optimization results for some Pareto-
optimal designs.

and 9. The sensitivity analysis with respect to probabilities in failure
modes revealed that improving by 5% the ratio of MTBF over MTTR
of one of the failure modes in either plant 2 or plant 8 could increase
the average production rate from 68 ton/h to close to 70 ton/h. This
is consistent with the data in Table 4 where it can be seen that the
most frequent failure modes occur in plant 8 and plant 2.

10.4. Simulation of the Pareto-optimal designs

We  use the same simulation model previously used for obtain-
ing the sample of failure modes to evaluate the performance of the
Pareto-optimal designs from the MILP optimization model. As we
have indicated before, the simulation model is able to reproduce
the real system to a greater extent than the optimization model,
given the simplifications that have to be assumed to develop the
MILP model. Therefore, simulating the design obtained in the opti-
mization step allows us to observe the average production rate
(objective function of the optimization model) of the integrated
site under more realistic assumptions than those incorporated in
the constraints of the MILP model. Since we perform three simula-
tions per configuration, we report average and standard deviation
for each metric. Fig. 15 shows the Pareto-optimal curve obtained
through optimization and the corresponding performance fixing
the network configuration and capacities in simulation runs. The
error bars above and below the points that correspond to simu-
lation are set to one standard deviation obtained when running

each point three times. As can be seen, the agreement between the
optimization and simulation models is very good.

11. Conclusions

In this paper, we  have addressed the problem of integrated site
design under uncertainty as a two-stage MILP stochastic program-
ming with endogenous uncertainties. In order to overcome the
exponential growth in the number of scenarios required for mod-
eling uncertainty, we proposed a decomposition algorithm based
on Benders decomposition. Our main contribution is to exploit the
problem structure in a way  that allows the solution of Benders
subproblems in a reduced space. The result is that the number of
scenarios required is much smaller than with the full space prob-
lem. One of the main advantages of the proposed method is that the
decomposed model requires significantly fewer non-anticipativity
constraints.

The solution approach was tested in two  case studies, one of
them being an industrial processing network in which Monte Carlo
Sampling was  used to reduce the number of states. In the second
case study, the decomposition algorithm reduces the solution time
for the complete Pareto-set from 31 to 9 h. The integration with
discrete rate simulation for validating/refining results increases
the likelihood that the algorithmic method presented here will be
accepted as a computational tool in an industrial setting.
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