
Resource-aware Business Process Simulation: An

Approach Based on Workflow Resource Patterns and

ExtendSim

⇤

ABSTRACT
Simulation of business processes is one of the widely-used
approaches supporting organization’s decisions and planning
changes. One of the limitations of existing process-aware
simulation approaches is the poor support for the resource
perspective. Without proper modeling of human resource
behavior as well as constraints on that behavior, the results
of the simulation studies will be incorrect and misleading.

This paper is taking a first step towards a resource-aware
business process simulation. We are building on the well-
known workflow resource patterns and model them in pro-
cess simulation models. First contribution is that we refine
the relationship among those patterns to modularize their
realization in either a simulation or an enactment environ-
ment. Second contribution is realization of those patterns in
ExtendSim, a general purpose simulation tool. We evaluate
our approach on a sample scenario and report the results
compared to resource-ignorant approaches.

CCS Concepts
•Computer systems organization ! Embedded sys-

tems; Redundancy; Robotics; •Networks ! Network reli-
ability;

Keywords
Business process simulation; workflow resources patterns;
Resources perspective; ExtendSim

⇤(Produces the permission block, and copyright informa-
tion). For use with SIG-ALTERNATE.CLS. Supported by
ACM.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permis-
sions@acm.org.
SAC 2018,April 09-13, 2018, Pau, France

c�2016 ACM. ISBN 978-1-4503-5191-1/18/04. . . $15.00
DOI: DOI:http://dx.doi.org/10.1145/2851613.2851735

1. INTRODUCTION
Business process simulation (BPS) involves performing sim-
ulation experiments based on accurate models, reflecting the
business process behavior, with respect to performance met-
rics such as cycle time, cost and resources utilization [3, 25].
Simulation of business process is essential to help organiza-
tions plan their needs, not just from IT-infrastructure, but
also from resources and manpower. In order to have an e↵ec-
tive process simulation, business experts, who are not nec-
essarily simulation language fluent must be able to prepare
and run simulations. This, in our view, can be achieved by
making complexities of simulation models as transparent as
possible to the user. Simulation setup should be integrated
with process modeling tools and running in the backend in
the same way currently soundness, e.g. Signavio 1. In a
simulation view, the user has to specify all necessary pa-
rameters, e.g., activities execution times, cases arrival rate,
etc. Moreover, the user has to be able to specify the di↵er-
ent resources with their properties and distribution among
roles as well as constraints on resource selection and assign-
ment to perform activities. All these data have to be merged
and transformed into a simulation model of some target lan-
guage, run and results are reported back to the user on the
process view. This operation is iterative by nature where
the user can change any of the simulation parameters, the
process model, resources etc and rerun the simulation.

There are several challenges to realize this view. The first
challenge is to e↵ectively enforce resource selection and as-
signment constraints in simulation models. The second chal-
lenge is to find realistic simulation parameters for the model.
The third challenge is to find a simulation tool that would
require the least e↵ort of modeling as well as providing rich
reports. The fourth challenge is to make the translation
from process models, e.g. XML files of process definitions
to the simulation language as transparent as possible.

The second challenge has been partially addressed in litera-
ture [12] where process logs can be used to obtain realistic
values for parameters like task durations, case arrival rate,
branching probability etc. Also the challenge has been ad-
dressed in [16] where event logs were used to discover knowl-
edge about human resources assignment to activities. The
third challenge has also been partially addressed by the ap-
proaches in [2, 1] where process-specific simulation tools are
built rather than building upon readily available general pur-

1https://www.signavio.com/

pose simulation tools. Respectively, the fourth challenge is
waived out in such case. The few approaches available for
business process-aware simulation, e.g.[2, 1] provide primi-
tive or no support for modeling the resource perspective in
their simulation models. In most of the cases, human re-
sources are represented as number of items within a specific
role. Without proper modeling of resource activities, simu-
lation results are misleading and ine↵ective. Thus, the first
challenge is still out standing. That is, proper modeling of
human resources selection and assignment to tasks. It is
obvious that without proper modeling of the perspective,
simulation results are misleading.

The contributions in this paper addresses the first challenge.
We take a first step towards human-resource-aware process
simulation. We provide a systematic approach that uses the
well-known workflow resource patterns [13] to model con-
straint on resource availability, selection and assignment at
process simulation time. The first contribution in this pa-
per is refining both intra and interrelationships among those
resource patterns. This helps modularize the modeling and
realization of those patterns. The second contribution is to
model those patterns in a general purpose simulation tool,
ExtendSim [5]. Then, we compare the resource-aware sim-
ulation models with other process simulation tools and dif-
ferent what-if scenarios.

The rest of the paper is organized as the following: Section 2
revisits the workflow patterns and further refines their rela-
tionships in order to modularize their use in simulation or
process execution. Section 3 shows how resource patterns
are modeled in ExtendSim. Evaluation of our approach and
comparison with related approaches are given in Section 4.
Section 5 discusses the related work. Section 6 concludes
the paper with an outlook on future work.

2. REVISITING RESOURCES PATTERNS
According to [13], resources patterns are categorized into
seven groups: creation patterns for resources selection dur-
ing design time, push patterns for allocating work items to
resources, pull patterns where resources can pick work items,
detour patterns specifying work items delegation among re-
sources, auto-start patterns where work items are triggered
by specific event, visibility pattern determining resources
visibility for work items and multiple-resource patterns which
are concerned with tasks that require more than one resource
working on it concurrently.

Following a divide-and-concur approach, in this paper, we
are concerned with the first two groups, namely the cre-
ation and push patterns. We believe that building simula-
tion models where those patterns can be employed is a first
step towards getting more accurate simulation results. Pull,
detour and multiple-resource patterns are currently out of
scope and subject for future research. Visibility patterns
are purely related to process enactment and building of pro-
cess execution engines, similar to implementation of work
item lists. Thus they are not considered for process simu-
lation. Similarly, auto-start patterns are not considered for
resource-aware simulation as they are related to automatic
tasks.

Creation patterns are concerned with which resource are el-

igible? whereas push patterns are concerned with How to
pick one of the eligible resources?. Creation patterns lend
themselves to resource selection at design time. That is out
of the of all available resources R, a creation pattern cp is
responsible for finding set Rcp ✓ R which represents the
candidate resources where any of them is capable of exe-
cuting the respective task t. Rcp can be either specified
by properties that each resource r � Rcp must possess in
order to be able to execute t or it can be specified by ex-
plicitly enumerating its members. On the other hand, push
patterns are more on the execution or simulation time as-
signment of a work item wi to a resource r � Rcp where wi
is the instance of task t within a specific process instance.
So, the enforcement of a push pattern should result in at
most one specific resource being assigned to the work item
whereas enforcement of a creation pattern results in a set
of candidate resources Rcp. Note that Rcp might be empty
in case of none of the available resources possesses sufficient
capabilities to perform t.

It is helpful to study the relationships between patterns to
build a minimal set of constructs that can be reused in the
related patterns. Previous studies [13] about such relation-
ships introduced a simple ”related to” relationship between
pairs of patterns either across or within the same pattern
category. Another study [15], presented a process mining
approach based on resource-aware the textual Declarative
Process Intermediate Language (DPIL) to model organiza-
tional (resources) perspective.

Here, we refine these relationships between creation and
push patterns using complement-perspective where push pat-
terns complement creation patterns. For instance, if the cre-
ation pattern Direct Distribution is specified, then it does
not make sense to allow Random Allocation as a push pat-
tern as the resource set is already a singleton. Rather, Dis-
tribution by O↵er Single Resource or Early Distribution are
much more suitable. Table 1 summarizes these complements
relationships.

2.1 Creation Patterns Intra Relationships
The intra-relationships among creation patterns are sum-
marized in Figure 1. They are: the is-a relationship, the
complements relationship, the opposite to relationship to in-
dicate that patterns are the opposite or negation of each
other, precautions have to take place when those opposite
patterns are applied on an overlapping set of tasks. We
have three patterns at the top of the hierarchy: Role-based
Distribution, Authorization and Retain Familiar. The other
creation patterns are seen as special cases of one of those
patterns as follows:

Direct distribution can be modeled as role-based distribu-
tion by making sure that only one resource is a member of
the role. Deferred distribution is a special case of role-
based distribution through specifying the role at design time
but the actual members will be resolved at run (simulation)
time. However, the resolution logic at runtime has to be
specified in the simulation model. this can fall back to other
distribution patterns. Capability-based distribution is a
special case of role-based as a virtual role can collect as
members all resources that possess those capabilities. The
capability constraints are evaluated against the whole set

Table 1: Complement relation between creation and push patterns

Creation Patterns Complement (used with) Push Patterns
Direct Distribution Distribution by O↵er - Single Resource

Distribution by Allocation - Single Resource
Early Distribution

Role-based Distribution Distribution by O↵er - Multiple Resources
Organizational Distribution Random Allocation

Round Robin Allocation
Shortest Queue

Deferred Distribution Late Distribution
Authorization Distribution by O↵er - Multiple Resources

Random Allocation
Round Robin Allocation
Shortest Queue

Separation of Duties Distribution by O↵er - Single Resource
Distribution by O↵er - Multiple Resources
Distribution by Allocation - Single Resource
Random Allocation
Round Robin Allocation
Shortest Queue

Case Handling Distribution by Allocation - Single Resource
Retain Familiar Distribution by Allocation - Single Resource
Capability-based Distribution Distribution by O↵er - Multiple Resources
History-based Distribution Random Allocation

Round Robin Allocation
Shortest Queue

Figure 1: Creation patterns Intra-relationships

of resources and matching individuals are added to the vir-
tual role. This step can take place either before running the
simulation, in the form of preparing simulation data or can
be done as one of the initialization steps of the simulation
model. In the latter case, the selection logic is part of the
simulation model and is run prior to the very first task in
the process. History-based distribution is a special case
of capability-based distribution where we can add a property
Number of completed items along with its value to the set
of capabilities to look for. The value shall be supplied as
part of the simulation parameters. Organizational dis-
tribution is special case of role-based distribution because
we can simulate the organizational position as a role. Au-
thorization pattern according to [14] touches both design-

and run-time aspects of accessibility of a resource to a work
item. Looking from the design time perspective, authoriza-
tion adds a security framework that complements the work
item distribution to resources. That is why in Figure 1 we
put it as complementary to both role-based distribution and
retain familiar patterns as it is possible to use it to refine the
allocation. From the runtime perspective authorization is
concerned with the actions a resource can take with respect
to work items in his list like starting, suspending, delegat-
ing etc. For simulation purposes, we are concerned with the
design time perspective and we model it in the same way
we model the role-based distribution pattern. Separation
of duties pattern is considered as a special case of the au-
thorization pattern. Our argument here is that separation
of duty states that the performer of task B cannot be the
same performer of task A within the same case. In that
sense, at runtime performer of task A in a given case is not
authorized to perform task B for the same case. Separation
of duties is also considered opposite to retain familiar pat-
tern where in retain familiar the resource is executing the
whole case while in separation of duties resource is allowed
to execute part of the case depending on some specification.
Thus, it is a contradiction to have both patterns applied on
the same process model. Case handling pattern is a spe-
cial case of retain familiar where all work items of the case
are distributed to the same resource.

2.2 Push Patterns Intra Relationships
Push patterns consists of nine patterns subdivided into three
sets as in Figure 2. The work distribution set is concerned
with the o↵ering of work task to a single or multiple re-

Figure 2: Push patterns Categorization

sources and allocating a task to a single resource. The re-
source selection set identifies a suitable resource when many
possible candidates are available and allocate work item
based on random allocation, round robin or shortest queue
which is complement to be used with work distribution set.
Finally the time distribution set spots the time of task dis-
tribution to an appropriate resource. The early distribution
indicates the ability of resource to view future work list.
This is irrelevant to simulation similar to the visibility re-
source patterns [22], distribution on enablement is the de-
fault distribution mechanism for resources over tasks while
late distribution would lead to blocking the running simula-
tion experiment as task would wait for the required resource
undefined time period accordingly early and late distribution
patterns were excluded from our modeling demonstration.

3. EXTENDSIM
ExtendSim [5, 17] is a powerful, general-purpose simulation
tool for developing dynamic models representing current or
proposed real-life business processes using building blocks
allowing the adjustment of assumptions to arrive at an opti-
mum simulation experiment. We chose ExtendSim for sev-
eral reasons, 1) a general-purpose simulation tool 2) exten-
sible to compose new constructs or to tweak the behavior of
existing ones, to fit resource-awareness simulation needs 3)
able to communicate with third-party applications as the ul-
timate goal is to make the simulation runs transparently to
the end user. However, the realization of the resource pat-
terns and their relationships as discussed in Section 2 can be
produced in other (general) purpose simulation tools, prob-
ably with varying degrees of e↵orts.

Figure 3 describes ExtendSim constructs that we used to
model resource patterns.

3.1 Patterns Representation in ExtendSim
In this section, we show how the creation and push patterns
are modeled in ExtendSim. Namely, we discuss in details
the role-based distribution, separation of duties and retain
familiar creation patterns, cf. Figure 1. We also discuss
changes needed in those models to address patterns specifi-
cations such as handling resource capabilities in capability-

based distribution. For each general pattern, we show an ex-
cerpt of the ExtendSim model and explain how work items
(cases) flow in and how they are (batched) bound to and
(unbatched) unbound from a resource. Before discussing
patterns modeling, Section 3.1.1 describes how resource el-
ements, pools, items are prepared in a simulation run.

3.1.1 Resources Preparation

Out of the box, ExtendSim supports both direct allocation
and role-based allocation by means of resource items or re-
source pools constructs. Resources are generally represented
as numbers and there is no built-in means to distinguish re-
sources. This is a limitation when it comes to modeling
patterns like capability or history-based distribution.

Our approach to model resources assumes that we have a
single resource item where each resource is annotated with
relevant properties for the simulation. At minimum, each
resource is annotated with 1) the role he is assigned in the
organization, 2) identifier, this is assigned at the beginning
of the simulation run, 3) his workload, as the number of
items assigned to the resource and awaiting execution. The
resource identifier is relevant for patterns like retain famil-
iar, case handling and separation of duty. The workload
property is relevant for implementing shortest queue push
patterns.

Other properties could be, e.g., years of experience, certifi-
cates, number of completed cases with respect to the sim-
ulation model in hand, etc. Our main assumption here is
that each resource is a member of at most one role.

During the resources-preparation step as in Figure 4, each
ExtendSim model must contain a number of resource items
constructs equivalent to the number of roles involved in the
simulation. Then, the first part of the ExtendSim model is
to distribute those resources from the single source to the re-
spective resource item. ExtendSim has a so-called database
construct in which, relational tables can be built, linked
and later-on queried by other elements in a model. We use
this feature to define all relevant resources along with their
properties in the database. To read the resources from the
database and distribute them among resource items, an ini-
tial resource item block is added and the total number of
resources is specified. Next, a read block is used to read the
required records from the database. The initial (left most)
resource item block is actually redundant but it is a limita-
tion by ExtendSim2. Each read record from the database is
passed to an equation block where the routing logic to the
respective resource item block is implemented, based on the
resource’s role. Actual routing takes place following select
item out block which finally places the resource in its respec-
tive pool. One can think of the equation block as the place
to set values for properties and the select item out block as
an if, else if, else block.

Based on our discussion of resource patterns in Section 2,
recall that creation patterns are concerned with selecting el-
igible resources for the respective work item (task), whereas

2Read block in ExtendSim needs a trigger to access records
in the database. So, we make the resource item as input so
that there will be as many reads from the database as the
number specified in the resource item block.

Figure 3: ExtendSim building blocks

Figure 4: Template of preparing resources for o↵er-
ing and execution in ExtendSim

push patterns are concerned with assigning the work item
to exactly one of those candidates. Thus, it is crucial to
reflect that in the simulation. That is, a resource eligibil-
ity to execute a work item should not be a↵ected by the
situation where this resource might be busy executing other
work items. Thus, the resource pools are duplicated for each
separate role. One pool is used for resource selection while
the other is used for assignment. However, such duplication
in resource preparation step is not a↵ecting simulation time
as these steps occur before cases arrival (starting simulation
model). The default selection of resources in ExtendSim is
based on round robin push pattern.

3.1.2 Modeling Creation and Push Patterns

Role-based distribution with Push Patterns. The
role-based creation pattern is modeled with four push pat-
terns. The first modeled push pattern is distribution by o↵er
to multiple resources as shown in Figure 5.

Figure 5: Template to model role-based o↵ering to

multiple resources in ExtendSim

Cases(work items) arrive at arrival queue block. The work
item is o↵ered to a resource using a batch block and the
workload value of the resource is retrieved from database
using read block. If the resource accepts the work item then
an equation block is used to increase the resource’s work-

load by one and updates the database record using write
block. Also, the work item executer property is set to the
resource’s identifier and is saved in the database. After that
the resource is unbatched from the work item to make him
available for resource selection (other creation patterns) for
other tasks. If the resource rejects the o↵ered work item, it
is sent back to the waiting queue to be o↵ered to another
resource.

By default, o↵ering work items occur by round robin push
pattern. But it is applicable to randomly select resources or
select based on resource working queue(pick resource with
shortest queue, i.e., least workload). For random selection of
a resource, we specify a uniform integer distribution for re-
sources priority and select from the resources waiting queue
based on that priority and the shortest queue pattern is
modeled using the queue tool value block and workload at-
tribute is defined for all resources specifying the length of
the work items queue for every resource.

As mentioned in Section 2.2, o↵ering work items is based
on distribution on enablement push pattern, thus o↵ering
logic is run when the execution of work items is enabled.
The execution of work items is shown in Figure 6. Work
items are selected from the waiting queue and the executer
ID is determined to select the appropriate resource from the
execution resource items. If the executer is unavailable the
work item is sent to the unavailable resource waiting queue.
There, the work item waits for a specific time interval before
being entered to execution again. This repeats until even-
tually the designated resource is available or the simulation
run ends. After task execution, the workload of the exe-
cuter is decreased by one and all relevant database records
are updated. This execution logic is independent from how
the resource was selected, i.e., the creation pattern imple-
mented.

Modeling special cases of role-based distribution, e.g. orga-
nizational distribution, capability-based , etc., see Figure 1, is
realized by changing the body of the equation block labeled
implement selection logic in Figure 5. For instance, organi-
zational based distribution is implemented by matching on
the organizational position property.

Figure 6: Template to model work items execution

in ExtendSim

Retain familiar with Push Patterns. Retain familiar
is an n-ary pattern that needs to check the assignment of
resources over a set of tasks. Essentially, execution needs to
remember the resource who executed the first task in that
group within a case and make sure that all other tasks in
the same case are assigned to the same resource that is why
this pattern is complemented with distribution by allocation-
single resource push pattern. Figure 7 shows how to model
retain familiar allocation to single resource in ExtendSim.
The read block is used to retrieve the required resource ID
who undertook a preceding work item.. the queue and write
block are used to allocate the work item to required resource.

Figure 7: Retain familiar distribution pattern in Ex-

tendSim

Case handling distribution is a special case of retain familiar
pattern, the model segment of matching the resource iden-
tifier is thus repeated before every task in the model.

Separation of duties is opposite to retain familiar pat-
tern. Thus, it can be modeled in the same way as in 7
for distribution by allocation-single resource where the only
di↵erence is the body of the equation block which changes
from equality to inequality check. Modeling other comple-
ment push patterns with separation of duties is similar to
role based o↵ering in 5 with changing the selection equation
to inequality.

Authorization distribution can be viewed from three an-
gles. The first is related to privileges that a resource needs
to possess in order to be able to execute a task. The sec-
ond view is with respect to what a resource can do with a
running task such as suspend, restart, abort etc. the third
view is with respect to how many work items a resource can
activate concurrently.

Resource privileges can be checked in the same way role-
based distribution is implemented. That is, extra attributes
are added to the resource and are checked in the respective
equation block. The second view is related to the concept
of a task lifecycle model. That is, the di↵erent states a task
instance can assume during a running case. In our model, we
have a simple lifecycle model which assumes that tasks will
be completed if activated. Our focus in this paper is more
on modeling resource selection. However, such extension is
possible based on [6]. The third view is more related to pull
patterns and is out of scope.

4. EVALUATION

Figure 8: Car maintenance process modeled in

BPMN

In this section we evaluate the correctness of our approach
through two methods. The first method is to compare our
approach with Bizagi Modeler [2] and BIMP 3 through BIMP
online simulator 4. The reason for choosing Bizagi and
Signavio among other BPS tools is that both are process-
specific simulation tools. Both tools are limited with respect
to resource-awareness. They basically support role based
distribution. However, the main purpose of this comparison
is a notion of validity check for our work. That is for the
simple case of role based distribution, our approach gives
similar or close results to those tools.

The second method of evaluation is building a simulation
model where several constraints are enforced and di↵erent
what-if scenarios are examined with respect to the num-
ber of resources in each role and where patterns other than
role-based distribution are considered. In the latter method,
we run the simulation model on ExtendSim alone as Bizagi
and signavio do not support resource allocation beyond role-
based distribution. The creation patterns for the second
evaluation method are role based, separation of duties, re-
tain familiar and capability based distribution. Push pat-
terns modeled are distribution by o↵er-multiple resources,
distribution by allocation-single resource and shortest queue.
Due to space limitations, several details have been omitted.
Yet, they can be found through this link: https://db.tt/
3fANDbKVr2

4.1 Comparison with BizagiModeler and BIMP
We modeled the process in Figure 8 with our approach in
ExtendSim, Bizagi and BIMP. The purpose of this compari-
son is to check the accuracy of the modeling of our modeling
approach and not comparing the functionality of the tools.
Only role-based distribution is modeled in that example. We
have fixed all simulation parameters for all implementations.

The designed model is simulated for 8 hours with case arrival
interval of 10 minutes and total number of process insances
equals 49. The processing time of each task is constant. We
chose constant time so we can compare results of the simula-
tion on Bizagi Modeler, ExtendSim and BIMP. The model is
explaining a car maintenance center including the adminis-
tration , car maintenance and accounting tasks. For each of
the three roles, cf. Figure 8, we assigned 3 admins, costing

3https://www.signavio.com/
4http://bimp.cs.ut.ee/

$20/hr each, 6 maintenance engineers, costing $50/hr each,
and 3 accountants, costing $30/hr each.

Results. We compared the number of cases arrived, num-
ber of cases completed, the average execution time of each
task, resource utilization and total cost in Figure 9. The
number of started and completed instances are the same
in Bizagi and ExtendSim models. BIMP forces adding the
total number of process instance to complete as input pa-
rameter in addition to the desired simulation run length.
Thus the number of started instances equals the competed
instances. That leads to a variation in the simulation results
specially the total waiting time as shown in Figure 9. The

Figure 9: Comparing total waiting time(m) in

Bizagi, ExtendSim and BIMP

minimum, maximum and average processing time are iden-
tical as tasks are assigned constant execution time. There
were deviations in the results of total time due the number of
instances completed per task in the BIMP models. Resource
utilization and cost in both ExtendSim and Bizagi models
are the same for admins and accountants roles while mainte-
nance engineer results have a small deviation between Bizagi
and ExtendSim models due to the number of completed in-
stances in each. BIMP shows di↵erent results for resources
utlilzation and total cost due to the number of completed
tasks. Overall, results are almost identical for ExtendSim
and Bizagi models. We interpret that as an indicator of the
correctness of our modeling approach. All detailed results
can be found following the link indicated above.

4.2 What If Scenarios
Here, we extend the model in Figure 8 by enforcing role
based, retain familiar, capability-based and separation of
duties patterns. The model was run 5 times with di↵erent
number of resources.

The first run contains 4 resources (1 admin, 1 maint. eng.
and 2 accountants), the second run contains 6 resources (2
for each role), the third run contains 12 resources (4 for each
role), the fourth run contains 24 resources (8 of each role)
and the fifth run contains 32 resources (8 admins, 8 accoun-
tants and 16 maint. eng.). We used two accountants in
the first run because tasks depending on accountants initi-
ate separation of duties pattern that requires minimum two
resources. If the number of used resources are less than
minimum (one resource) the model will stop running. For

the fifth run, we increased only the maintenance engineer re-
source as the, other two resources (admins and accountants)
were able to handle all started instances with no waiting
time.

Role based distribution pattern is modeled on admin and ac-
countant resources and tasks receive car and receive & record
payments. Retain familiar pattern is applied on tasks record
car information and assign car to MainEngineer. Capability-
based pattern is applied on maintenance engineer resources
and tasks Fix mechanical issues and car maintenance. Sep-
aration of duties is enforced on accountant resources and
the two tasks receive & record payments and revise payment
records.

Figure 10: Completed cases with total waiting

time(m)

Figure 10 compares the total number of resources in each run
with total waiting time, number of started and completed
instances respectively. The total waiting time decreases as
number of resources used increases until waiting time reaches
zero minutes at a total number of 24 resources. Analogously,
the number of completed instances increases as number of
resources increases as well. We can see that at a total num-
ber of 24 resources the maximum of 32 cases can be handled
a day. This is true as increasing the number of resources to
32 did not contribute any gain in the number of completed
instances.

Figure 11: Roles with di↵erent capacities vs. started

and completed cases

In Figure 11, the di↵erent resources’ roles are compared re-
lating the number of started and completed instances.

Analyzing the above graphs leads to configuring the opti-
mal number of resources required to reduce the waiting cost
without utilizing insufficient number of resources.

5. RELATEDWORK
Several approaches, e.g.[18, 4, 10], discuss the need for busi-
ness process simulation tools as integral part of business pro-
cess management.

[19, 21] discuss the limitations of business process simu-
lation usage in reality and categorize the risks of current
simulation settings. These pitfalls were further extended
and refined in [20]. Amongst such risks is the inadequate
modeling of resource behavior and availability. Our work
is contributing to the avoidance of this risk by means of
pattern-based enforcement of resource behavior constraints.
Moreover, in [21], the authors use CPN tools by example
to address the pitfalls identified where they only addressed
modeling of resource availability without constraining re-
source allocation as we discuss in this paper.

A simulation environment based on YAWL workflow tool
and CPN tools was discussed in [25] allowing experiment
to start from an intermediate stage rather than empty ex-
ecution state. Resources were only examined related to
availability, utilization and count. A hybrid approach for
business process modeling and simulation with limited re-
sources modeling related to concurrency aspects was ad-
dressed in [23]. The approach examined concurrent execu-
tion of tasks through resources multitasking to avoid block-
ing resources for long time. Our work can be seen as com-
plementary to both approaches. However, the concurrent
execution by human resources is of very limited use espe-
cially when it comes to knowledge intensive tasks.

The work in [9] discusses supporting business process simu-
lation model construction by using event logs. They provide
means to extract Resources behavior from logs. Modeling
resource behavior is suppoerted by roles, schedules, handling
procedures, resources unavailability and grouping resources
based on similar activities handling. Yet, constraints on re-
source behavior was not identified by the authors. Thus, our
work complements theirs in that regard.

A survey on business process simulation tools was conducted
in [7]. Amongst the evaluation criteria was the ability to
model the resources perspective. Amongst the evaluated
tools were Arena and CPN tools. The study results indi-
cated that CPN tools provides better support for resources
representation than Arena. However, both require quite an
e↵ort to model resources behavior in a way that might be
inaccessible to business process experts, see our discussion
about tool selection in Section 3.

[24] presents L-Sim, a Java based simulation engine to simu-
late BPMN diagrams. L-Sim provides resources capabilities
such as assigning human and non-human resources to tasks,
the ability to pick tasks based on FIFO or priorities, pre-
empt resources, specifying multiple resources to the same
task and specifying alternative available resource. Again,
constraints on resources behavior is not supported. How-

ever, L-Sim support a subset of pull and push patterns. OX-
ProS - an Open and Extensible Process Simulator for BPMN
was discussed in [3], the tool converts BPMN to Colored
Petri-Nets (CPN). The tool supports modeling role-based
and chained execution distribution in workflow resources
patterns. Other resource patterns were left for future work.
A blueprint architecture was proposed in [8] for a business
process simulation engine that focuses on BPMN models.
Resources modeling was only concerned with resource avail-
ability.

In [11], modeling separation of duty constraints for BPEL4People
was discussed. The focus was on an executable language
rather than on simulation purposes. Yet, the paper dis-
cusses variants of separation of duty constraints which form
interesting future directions to model those variants at sim-
ulation time.

6. CONCLUSION AND FUTUREWORK
We have taken a first step towards resource-aware process
simulation by modeling workflow resource creation and push
patterns in ExtendSim. We have evaluated our approach
against other process-specific simulation tools and showed
that results are similar for commonly supported scenarios.
Moreover, we evaluated di↵erent what-if scenarios that were
guided by the total number of completed cases in the simu-
lation run.

So far, resources were modeled as passive elements. In the
future, we aim at modeling pull workflow patterns in which
resources can actively select what work items to execute.
Moreover, we aim at supporting complex task lifecycles where
a work item can be delegated, canceled, failed etc.

7. REFERENCES
[1] BIMP. BIMP [Computer software], 2017.
[2] Bizagi. Bizagi Modeler [Computer software], version

3.1.0.011 edition, 2016.
[3] L. Garcia-Banuelos and M. Dumas. Towards an open

and extensible business process simulation engine. In
CPN Workshop, 2009.

[4] V. Hlupic and S. Robinson. Business process
modelling and analysis using discrete-event simulation.
In Winter Simulation Conference, pages 1363–1370.
IEEE Computer Society Press, 1998.

[5] Imagine That Inc. ExtendSim [Computer Software],
version 8 edition, 2010.

[6] M. Jansen-Vullers, R. IJpelaar, and M. Loosschilder.
Workflow patterns modelled in arena. Technical
report, Eindhoven University of Technology, 2006.

[7] M. Jansen-Vullers and M. Netjes. Business process
simulation–a tool survey. In Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN
Tools, volume 38, pages 1–20, 2006.

[8] S. Krumnow, M. Weidlich, and R. Molle. Architecture
blueprint for a business process simulation engine. In
EMISA, volume 172, pages 9–23, 2010.

[9] N. Martin, B. Depaire, and A. Caris. The use of
process mining in business process simulation model
construction. Business & Information Systems
Engineering, 58(1):73–87, 2016.

[10] B. Mathew and R. Mansharamani. Simulating
business processes-a review of tools and techniques.
International Journal of Modeling and Optimization,
2(4):417, 2012.

[11] J. Mendling, K. Ploesser, and M. Strembeck.
Specifying separation of duty constraints in
bpel4people processes. In BIS, pages 273–284.
Springer, 2008.

[12] J. Nakatumba, M. Westergaard, and W. M. P. van der
Aalst. Generating event logs with workload-dependent
speeds from simulation models. In CAiSE Workshops,
volume 112 of LNBIP, pages 383–397. Springer, 2012.

[13] N. Russell, W. M. van der Aalst, A. H. Ter Hofstede,
and D. Edmond. Workflow resource patterns:
Identification, representation and tool support. In
CAISE, volume 3520 of LNCS, pages 216–232.
Springer, 2005.

[14] N. Russell, W. M. van van der Aalst, and A. H. M. ter
Hofstede. Workflow Patterns: The Definitive Guide.
The MIT Press, 2016.

[15] S. Schonig, C. Cabanillas, S. Jablonski, and
J. Mendling. Mining the organisational perspective in
agile business processes. In International Conference
on Enterprise, Business-Process and Information
Systems Modeling, volume 214 of LNBIP, pages 37–52.
Springer, 2015.

[16] S. Schonig, C. Cabanillas, S. Jablonski, and
J. Mendling. A framework for efficiently mining the
organisational perspective of business processes.
Decision Support Systems, 89:87–97, 2016.

[17] J. Strickland. Discrete event simulation using
ExtendSim 8. Lulu. com, 2013.

[18] K. Tumay. Business process simulation. In Winter
Simulation, pages 93–98. IEEE Computer Society,
1996.

[19] W. M. van der Aalst. Business process simulation
revisited. In Workshop on Enterprise and
Organizational Modeling and Simulation, pages 1–14.
Springer, 2010.

[20] W. M. Van Der Aalst. Business process simulation
survival guide. In Handbook on Business Process
Management 1, pages 337–370. Springer, 2015.

[21] W. M. Van der Aalst, J. Nakatumba, A. Rozinat, and
N. Russell. Business process simulation. In Handbook
on Business Process Management 1, pages 313–338.
Springer Berlin Heidelberg, 2010.

[22] W. M. Van der Aalst, M. Weske, and D. Grunbauer.
Case handling: a new paradigm for business process
support. Data & Knowledge Engineering,
53(2):129–162, 2005.

[23] O. Vasilecas, A. Smaižys, and A. Rima. Business
process modelling and simulation: hybrid method for
concurrency aspect modelling. Baltic Journal of
Modern Computing, 1(3-4):228–243, 2013.

[24] A. Waller, M. Clark, and L. Enstone. L-sim:
Simulating bpmn diagrams with a purpose built
engine. In Winter Simulation Conference, pages
591–597. IEEE, 2006.

[25] M. T. Wynn, M. Dumas, C. J. Fidge, A. H.
Ter Hofstede, and W. M. Van Der Aalst. Business

process simulation for operational decision support. In
BPM, pages 66–77. Springer, 2007.

