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Metamodeling of Deteriorating Reusable Articles in a Closed Loop Supply Chain 
 

E, Glennane, J. Geraghty 
School of Mechanical & Manufacturing Engineering, Dublin City University, Dublin 9, Ireland 

 
Abstract

In this paper I present a closed loop supply chain for a reusable, deteriorating tool. The tool is used in a manufacturing process on an 

item in a linear supply chain. A model is created for the linear item supply chain and the tools closed loop supply chain to analyse the 

interactions between them and various input parameters so that output responses of the system can be modelled. Three approaches are 

taken to model the system, a brute force factorial design, a modified version of a Latin hypercube space filling design, and a fast 

flexible space filling design. It is found that all three methods can describe responses that require only a few inputs well but cannot 

accurately predict more complex responses without all of the relevant factors. Space filling designs should be used if more factors are 

needed as they minimise the total amount of simulations needed to produce an accurate model. 

 

Keywords: Reusable Articles, Deteriorating Article, Closed Loop Supply Chain, ExtendSim, Space Filling Design, Metamodeling. 

 

Introduction 

Improving efficiency of supply chains, implementing reverse 

supply chains and remanufacturing are all topics of research 

that are becoming more important as the world’s resources 

become scarcer. The desire for companies to embrace this 

movement has been driven by environmental, social, and 

financial motivations as more research proves the efficacy of 

implementing such systems[1].  

 

In this paper, I present a supply chain that produces two items, 

one high and one low quality, using the same deteriorating 

tool. The company running the supply chain wants to know 

how well it is running. To do this a simulated version of the 

item processing supply chain as well as the tool supply chain 

is created. The company currently orders new tools to 

replenish the supply of tools for each line as they are needed 

but random ordering times can be costly, and less dependable 

when trying to meet production targets. Instead, an ordering 

policy for purchasing new tools according to a schedule 

should be created that aims to meet production targets at a 

high percentage of the time. To create an ordering policy that 

will meet its targets and can be adjusted according to multiple 

input factors is the ultimate goal for the company.  

 

ExtendSim, a program for modelling discrete event, 

continuous, agent based, discrete rate and mixed mode 

processes, was used to create and run the simulations. All 

simulations were conducted on a desktop computer with 32gb 

of RAM, an ASUS Strix GTX 970 Graphics Card, and an Intel 

Core i5-9600K CPU @ 3.7GHz. Design-Expert, a statistical 

software package was used to design the experimental 

scenarios. Microsoft Excel, JMP (another statistical software 

analysis package) and Design Expert were used to analyse the 

results of the simulations. In the final iteration of the model, 

each simulation took 5-7 seconds to complete and over eight 

thousand simulations were conducted for a total computational 

time of roughly 13.3 hours. On a higher specification CPU this 

time may be reduced. 

 

Objectives 

The main objective of the paper is to analyse and compare 

multiple metamodeling methods applied to a closed loop 

supply chain (CLSC) that included a reusable article. A 

sufficiently accurate metamodel of a CLSC could aid in the 

decision making process and allow a company to predict the 

outcome of choosing certain production parameters or the 

effect of setting certain ordering policies without having to 

simulate each individual scenario which could number in the 

1000’s or 10’000s and could take hours or days to run for 

more complex supply chains. 

 

The objective of the metamodeling methods is to minimise the 

number of simulations needed to produce an accurate 

metamodel. As a system becomes more complex, the 

computational time needed to complete a single run increases 

exponentially hence the need to minimise the total number of 

simulations. Within each metamodel, the goal is to minimise 

and maximise certain responses such as the time an item spent 

queueing or the time between new tool orders, respectively. 

 

Literature Review 

Closed Loop Supply Chains are a key component of this 

study. While the items being processed by the model are not in 

a closed loop, the tools used to process the items can be 

classed as a reusable product[2] and also a deteriorating 

product[3] inside a closed loop supply chain. S.Singh et al.[4] 

explored a mathematical approach to a very similar problem in 

which remanufacturing of a pair of deteriorating items of two 

different qualities was integrated into a closed loop supply 

chain. This paper will be taking a simulation based approach. 

 

Metamodeling has become an important tool for operational 

efficiency in many different types of industries, from design of 

vegetative filter strips[5] to satellite visibility prediction[6] 

and more. With the goal of simulating how a complex system 

reacts to inputs accurately and quickly, metamodeling, if 

conducted correctly, can output a simple model of a system, 

and remove the need to conduct further simulations. The Latin 
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Hypercube design has been shown to work with this type of 

model, one that includes random demand while minimising 

system outages[7]. Factorial designs are useful and quick at 

examining models with multiple independent variables[8] 

however the total amount of simulations can increase 

significantly as a model becomes more complex. 

 

Model Development 

With the goal of examining how a reusable article interacts 

with a supply chain, model development began in ExtendSim 

with the linear, forward supply chains for the items.  

 

 
Figure 1 – Item Supply Chain First Iteration 

 
The model as a whole changed many times throughout the 

course of model development as more about the interactions 

between certain aspects of the model were understood. The 

mechanisms by which the tool returned to the supply chain for 

use changed multiple times over the course of the model 

development but always kept to a similar pattern. 

 

 
Figure 2 - High Quality Tool Queuing First Iteration 

 
The tool would be kept in a queue until an item entered the 

queue. The tool and item would leave the queue together, the 

item would be processed while the tool waited in another 

queue for the item to finish processing. Once the item was 

finished being processed it was again, released from the 

second queue with the tool, at which point the item would exit 

the supply chain, having been processed, while the tool was 

redirected to be artificially deteriorated. Depending on the 

numerical value for the tool’s quality post degradation, the 

tool would then be sent back to its original queue to wait for 

another item, be sent to an identical queue to be used in a 

lower quality production line or discarded entirely. 

 

The problems with this original model stem from the lack of 

flexibility in the blocks used to simulate the queue, so other 

methods of tool simulation had to be explored. 

 

One of the factors that was initially chosen to be explored in 

more detail was the use of an operator i.e. a simulated worker. 

However, in the preliminary testing phase, based on the 

number of operators assigned at the beginning, problems were 

encountered where operators would be duplicated based on 

certain actions within ExtendSim at random. It was decided 

after a few weeks of testing to keep the number of operators 

equal to the number of machines in the system for all further 

simulations. In this scenario, the duplications did not occur but 

the effect of having more or less operators than machines 

could not be explored. 

 

The first factor implemented into the model was the Initial 

Number of Tools supplied by the system at the beginning of 

each run. This was accomplished using a set block to send the 

set number of items into the system at initialisation according 

to the run criteria. 

 

The model went through three major iterations, being finalised 

once all of the factors chosen could be input from a database 

into the system correctly and the responses of the system were 

calculated and input into a database correctly. All versions of 

the models are available in the detailed set of appendices 

alongside this document. 

 
Figure 3 - Finalised Item Supply Chain 

 
The final iteration of the model builds utilised Queue 

Matching and Unbatching blocks in ExtendSim to achieve the 

necessary flexibility for programming the factors and 

recording the required responses in the model.  

 

Item creation was a factor that seemed to have the most effect 

on the responses in the system and was one of the hardest 

areas to balance so that all factors and responses could be 

measured adequately. Process Time for the Machine was set to 

a lognormal distribution with a mean of 1 and a standard 

deviation of 0.1 while the distribution for the “Create” Block 

was an exponential distribution that was varied over the 

simulations between a mean of 1.1 and 1.25. The Lognormal 

distribution has been shown to model activity time[9] in real 

scenarios while the Exponential distribution has been shown 

to model interarrival times in processes such as the one in this 

model[10] in industry settings. 

 

One of these responses is measured by the “Information 

Block” directly after the “Queue Matching” block labelled 

“HQ Tool Item” in Figure 3. The “avg CT” output of the 

information block measures the average time that an item 

spends waiting in the queue before it is assigned a tool and can 

be processed. 
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Figure 4 - Tool Creation and Return 

 
The number of tools currently in the system was tracked using 

a “Sensor" block. With the sensor block located just after tool 

creation, it is able to track how many items have entered the 

supply chain, while the “hq exit” variable tracks the number of 

tools that have left this specific supply chain. When the 

number tracked by the sensor incremented below the limit set 

by the user or by the scenario criteria, a signal would be sent 

to purchase new tools for the system. 

 

 
Figure 5 - Tool Degradation 

 
When each tool is detached from a processed item, it goes 

through the degradation and return process. The “Get” and 

“Set” blocks, accompanied by math and equation blocks, 

simulate the degradation of the tool by incrementing the 

condition variable of each individual tool that passes through 

by a certain amount. Once a tool is degraded, its new 

condition variable is checked, and the tool is either returned to 

its original pool of tools or sent to the low quality production 

line. For example, if a slightly used tool entered the “Get” 

block with a value of 0.62 and was degraded by 0.05 to a 

value of 0.57, and the cut-off point for high quality tools was 

0.6, then the tool would be sent on the downward path to be 

used in the lower quality production chain. This is the action 

that would cause the sensor block to increment its score 

downwards by one. One of the criteria that was chosen as an 

important variable was the cut-off point at which a tool was 

demoted to the other supply line or discarded altogether.  

 

Another factor that could have been implemented into the 

model but was not, is the amount by which a tool is degraded 

every time it is used. For both supply chains, each time a tool 

was sent down the degradation line, the unique condition 

value attached to the tool was degraded according to a 

lognormal distribution with a mean of 0.1 and a standard 

deviation of 0.1. With an initial quality level of 1, a HQ cut-

off value of 0.6 and a LQ cut-off value of 0.2, the average tool 

would be used four times on each production line before being 

scrapped. 

 
Figure 6 - New Tool Creation 

Creating new tools for the system is the area that took the 

greatest number of iterations to complete fully before it 

behaved in a way that could be analysed correctly and easily. 

The sensor block is in constant communication with this area 

of the system. Whenever its reading for “number of items 

currently in the area” goes below a threshold as set by the 

user/scenario, a signal is sent to send new tools into the supply 

chain to be used. Using another sensor block, an information 

block and an “Unbatching” block, the system, when it senses 

this signal it opens the gate for a single tool to be allowed 

through. These single tools passed through the information 

block which measures the average amount of time between 

each of the orders (The second response for the system), then 

passes through the “Unbatching” block, splitting the tool into 

multiple tools according to a variable set by the user/scenario. 

This factor of the number of tools the individual tool is split 

into is referred to as the Batch Size. 

 

The number of factors added to the model was initially eight, 

however this was further reduced to six to reduce the total 

amount of simulations for the “brute force” method of 

metamodeling in Design Expert and the two factors that were 

cut did not seem to have a major effect on any of the responses 

after some preliminary testing. The original eight factors being 

Initial number of High Quality Tools, Initial number of Low 

Quality Tools, Low Inventory Limit, High Quality Tool Cut-

off Point, Low Quality Tool Cut-off Point, Batch Size, Mean 

High Quality Items, and Mean Low Quality Items. The Initial 

number of tools for both high and low quality tools had little 

to no effect on any response, so it was amalgamated into a 

single factor labelled “Initial Tools”. The same process was 

conducted with the Mean High and Low Quality Items as 

preliminary testing revealed that while the mean high quality 

item variable had a large effect on all of the model, the low 

quality item variable had little to no effect on any of the 

model. Figure 7 is an example of some of the runs conducted 
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and their respective factors in a database that the model refers 

to for each run. 

 

 
Figure 7 - Factor Database Example 

 
The limits of each of the factors were decided based on human 

observation of the model, considering the response of the 

system. 

Table 1 - Factor Limits 

Factor Limits Low High 

Init Tools 4 15 

Low Inventory Limit 0 4 

HQ Tool Cut-off 0.3 0.6 

LQ Tool Cut-off 0 0.2 

Batch Size 1 6 

Item Mean 1.1 1.25 

 

Choosing responses for the system to conduct the sensitivity 

analysis with was very limited as no cost variable was 

associated with any stage of the cycle. Four responses were 

chosen to be analysed in the final iteration of the model, two 

for each product line, High and Low Quality production lines. 

The first, “Time Between Orders” measured the average time 

between orders for a new batch of tools entering a product 

line. This response did not have a set goal such as 

minimisation or maximisation as, in the context of an industry 

setting, as long as you can predict what the average time 

between orders will be, you can set up an ordering policy in 

advance that will meet the needs of the system a high 

percentage of the time. 

 

The second response measured was “Item Queue Time” which 

output the average time that an item spent waiting for a tool 

before being able to be processed. The goal for this response is 

to minimise, as the shorter time the item spends waiting for a 

tool, the shorter total lead time the item will have, meaning 

more items can be processed in the same amount of time. 

While this response also helps a company estimate how long 

an item might spend waiting, it can also act as a performance 

indicator for a particular ordering policy or supply chain setup. 

Longer wait times for items may indicate that the ordering 

policy for tools has to be adjusted to meet demand. 

 

 

Metamodeling 

With the limits for the factors chosen and the responses ready 

to calculate, the metamodeling could begin. In total, two 

iterations of metamodeling occurred. The first included both 

the high and low quality initial tool limits while the second 

iteration only included a set “Initial Tools” limit which was 

used by both the high and low quality supply lines. The first 

iteration also had both high and low quality item means but 

that was also changed to just one item mean for the second 

iteration as discussed previously.  

 

The reduction of the number of factors included in the model 

reduced the number of simulations required for the Design 

Expert metamodel significantly. As the design expert model is 

a factorial one, the number of simulations required by the 

model is equal to two to the power of the number of factors. 

With eight factors, 256 simulations have to be run to create 

that model. However, to reduce any outlier and randomness in 

the model, it was decided that ten repetitions of each scenario 

had to be run and have the results averaged. In total 2560 

simulations had to be run for this model to be created. The 

reduction of the number of factors from eight to six reduced 

the total number of simulations needed from 2560 to just 640, 

a reduction of 75%. 

 

This adjustment of the number of factors also had an effect on 

both of the JMP space filling metamodel designs. Both space 

filling designs had the number of simulations required lowered 

from 800 to 600 (These numbers include 10 repetitions of 

each scenario). A reduction of 25%. 

 

The first metamodel created in JMP was a Latin hypercube 

based design. This type of design has been shown to produce 

accurate metamodels and assist in the decision making process 

when multiple variables and responses are taken into 

account[11]. One problem that was encountered in this path 

was that the Latin Hypercube generator in JMP only allowed 

continuous values for each of its factors. While testing this 

data in ExtendSim, many problems occurred with duplication 

of items and tools when a factor such as batch size had a non-

integer value attached, so changes to the Latin Hypercube 

Model had to be made. Each of the factors that required only 

integer values had its generated results rounded to the nearest 

integer, simulating that the data was actually categorical. 

Table 2 depicts the data types required for each factor to avoid 

errors in ExtendSim. 
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Table 2 - Factor Data Types Required in ExtendSim 

Factor Data Type 

Initial Tools Categorical 

Low Inventory Limit Categorical 

HQ Tool Cut-off Continuous 

LQ Tool Cut-off Continuous 

Batch Size Categorical 

Item Mean Continuous 

 

While this may have compromised the integrity of the 

metamodeling method, the other option was to not use the 

method altogether. This modified approach did not contain 

any of the duplication errors and the results produced were 

error free in initial testing. I refer to this method from here on 

as the Rounded Latin Hypercube (RLHC) method. 

 

The Fast Flexible Filling Design (FFFD) in JMP allowed for 

categorical data alongside continuous data so no cleaning of 

the input factors for the simulations was required. This was 

chosen alongside RLHC for comparison. 

 

The first iteration of each of the metamodeling methods used 

an item creation mean range of 0.8-1.4 with an exponential 

distribution pattern however it was observed in the results that 

as the mean tended towards 1, the wait time for the tools 

increased almost exponentially and all interactions of the other 

factors were completely overshadowed by the mean. In the 

second iteration, this range was refined to 1.1-1.25 so that the 

other factors could be analysed alongside the mean item time. 

 

Simulation Setup 

Databases were created in ExtendSim so that any number or 

combination of runs could be setup to simulate back to back. 

Once a metamodel was created in JMP or Design Expert, it 

was exported to Excel for adjustment if necessary. The run 

specifications were then duplicated nine times within Excel 

and then pasted into the database in ExtendSim. The amount 

of runs that ExtendSim conducted was always equal to the 

number of rows in the factors database so once the run button 

was pressed, ExtendSim ran all the simulations required, 640 

for Design Expert, and 600 for both JMP models in the final 

iteration. The data recorded in each run was written into 

another database for the responses of the system at the end of 

each run. At the end of a full set of runs, the output would be a 

second database with the same number of rows as the number 

of runs/simulations. This data was exported to excel where 

each of the ten duplicated runs were average. The averaged 

results could then be exported back into Design Expert and 

JMP as needed and analysing of the results were conducted. 

 

Results 

The aim of using the metamodels is to create an accurate 

model of the system while minimising the amount of 

computation needed to make it accurate. As each of the three 

methods needed roughly the same amount of simulation time 

(600-640 runs each) to complete their models in the final 

iteration, we can say they all perform the same in this aspect. 

The way in which they must be compared is then by the 

accuracy of their models for each of the responses. 

 

Comparison of the R-squared values for each of the models 

for each of the responses was conducted and tabulated in 

Table 3. An R-squared value above 0.90 is deemed to be 

accurate and can be classified as successfully emulating the 

simulation, provided it is not disqualified in the validation 

stage. 

Table 3 - R-Squared Results 

R-Squared Values FFFD 

Predicted 

RLHC 

Predicted 

DE 

Predicted 

HQ Time Between 

Orders 

0.9214 0.9342 0.9948 

LQ Time Between 

Orders 

0.4526 0.5797 0.9624 

HQ Item Queue 

Time 

0.9214 0.9342 0.9081 

LQ Item Queue 

Time 

0.4526 0.5797 0.8865 

 

All three methods seem to predict the high quality time 

between orders and the high quality item queue time very well 

but only the design expert method has a high R-squared value 

for the low quality production line. 

 

Table 4 - Metamodel Validation  
Simulated 

Results 

FFFD 

Predicted 

RLHC 

Predicted 

DE 

Predicted 

HQ 

Time 

Between 

Orders 

28.84 29.09 28.86 29.70 

LQ 

Time 

Between 

Orders 

201.70 116.99 294.97 43.50 

HQ Item 

Queue 

Time 

0.95 1.18 1.18 1.71 

LQ Item 

Queue 

Time 

0.41 0.52 0.48 0.43 

 

Validation of the models was conducted by taking a random 

model scenario and running it ten times to get an average 

result and comparing each of the model’s predictions to the 

averaged result of the simulation. The ten simulations were 

run with the following factors: Initial Tools = 10, Low 

inventory Limit = 2, HQ Tool Cut-off = 0.45, LQ Tool Cut-off 

= 0, Batch Size = 4, Item Mean = 1.175. In Design Expert, the 

confirmation tab allows the user to input numbers for each 
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factor and will output the expected responses. In JMP, a 

profiler was constructed using a partial least squared 

regression method for both JMP models that allowed the user 

to input values for the factors and receive estimated responses. 

 

Discussion 

Modelling the HQ time between orders seemed to be the one 

area that all three models successfully completed, all yielding 

R-squared values greater than 0.9 as well as all having 

accurate (<5% error) estimations in comparison to the 

averaged simulation results. The other three responses were 

not as close in estimation except for the Design Expert model 

in predicting the low quality queue time response. This 

estimation only yielding an error of 3.6% in comparison to the 

simulations while the RLHC and FFFD responded with errors 

of 15.4% and 25.6% respectively. 

 

Estimating the low quality time between orders was the worst 

predicted response for all models with the best model (FFFD) 

yielding a value 42% lower than the simulated value while the 

RLHC and Design Expert Model estimated +46% and -78% of 

the simulated value. Even though the Design Expert model 

had an R-squared value that indicates that is has produced an 

accurate model, the predicted value is very far off the 

simulated result. The same phenomenon occurred with the 

design expert model for predicting the high quality item queue 

time with an R-squared value of 0.9081 yet the estimate is 

79.7% greater than the simulated value. The RLHC and FFFD 

both yielded values ~24% greater than the measured value for 

high quality item queue time. 

 

The models producing good results for “HQ time between 

orders” in comparison to the other three responses may be due 

to the number of variables that influence the results. For 

example, the high quality item line only takes item inputs from 

one area and new tool inputs from one area, whereas the low 

quality line takes item inputs from one area but takes new tool 

inputs from two areas, one being controlled by an ordering 

policy while the other is semi-random inputs of tools from the 

high quality line. Figure 8 illustrates this type of occurrence in 

the lower quality line as a group of tools all get demoted to the 

lower line in a small time frame, resulting in a huge number of 

tools and a large time frame for the tools to diminish again. 

 

 
Figure 8 - Tool Tracking Mid-Simulation 

 

This type of influx into the low quality line is something that 

none of the models consider. I believe, that if another factor 

were added to the models that represented this behaviour in 

the system, the results could be more accurate. 

 

The RLHC model for the low quality responses was poor. 

With an R-squared value of 0.5797 for both LQ responses, 

some important factor is clearly missing. While some factors 

such as initial tools, low inventory limit and batch size had 

little to no effect on each response, factors such as mean items 

and HQ/LQ tool cut-off had a significant impact. 

 

 
Figure 9 - LQ Response Analysis for RLHC 

 
I think there are a few areas of the model that could be looked 

at to address this issue, the first being the rate at which tools 

leave the high quality area and enter the low quality area. A 

linear rate of addition of tools to the LQ tool supply could be 

an example of a factor that could be incorporated into the 

model specifically for the low quality responses. 

 

 
Figure 10 - Linear rate of demotion of HQ Tools 

 
A similar approach could be applied to the FFFD metamodel 

as well, as it shares similar R-squared values and similar 

results. 

 

Randomness in the ExtendSim simulation may also be a 

contributing factor to the lack of accuracy of the metamodels. 

While repetition of simulations was conducted for each model, 

outliers still seemed to have an effect on the responses chosen 

for the system. Item generation, Item process time, and the 

rate of tool degradation were all influenced by random 

numbers while also being three areas of the model with a huge 

influence on results. While only the mean item generation was 

included as a factor in each of the models, adding these three 

areas of randomness as factors to the models could produce 

more accurate results in the metamodeling process. 
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Equations to calculate each of the responses for each of the 

metamodeling methods based on the input factors provided 

were created. In this paper, I will only be listing the three 

equations for each “HQ Time Between Orders” as they were 

the most accurate out of the twelve results. The remaining 

equations can be found in the appendices for this paper. 

Table 5 - Design Expert HQ Time Between Orders 

Equation 

Multiplier Factor 

-0.082 Intercept + 

0.089 *HQ Tool Cut-off + 

4.54 *Batch Size + 

0.03 *Mean Items + 

-10.17 *HQ Tool Cut-off *Batch 
Size + 

6.35 *Batch Size *Mean Items 

Table 6 - RLHC HQ Time Between Orders Equation 

Multiplier Factor 

-8.13 Intercept + 

-0.036 *Initial Tools + 

-0.045 *Low Inventory Limit + 

-38.79 *HQ Tool Cut-off + 

7.16 *Batch Size + 

22.34 *Mean Items 
Table 7 - FFFD HQ Time Between Orders Equation 

Multiplier Factor 

-13.69 Intercept 

24.86 *Mean Items + 

7.41 *Batch Size + 

-37.46 *HQ Tool Cut-off + 

0.051 *Initial Tools + 

0.14 *Low Inventory Limit 
Conclusions 

All three models, Design Expert, RLHC, and FFFD, 

accurately predict the response with the least amount of input: 

High Quality Time between Orders. However, the more 

complex responses of the system are not accurately captured 

in any of the three models. One of the reasons for this may be 

the lack of relevant factors analysed by the simulation. 

Another reason could be that there is too much unaccounted 

randomness in the system for the models to accurately predict 

the more complex performance indicators. The use of space 

filling designs such as RLHC and FFFD perform well with 

high numbers of factors and should be explored further. The 

Design Expert model performs well but the number of 

simulations required increases exponentially with the number 

of factors present. 

Further Work 

Only two types of space filling designs for metamodel creation 

were explored in this paper, a modified version of the Latin 

Hypercube and JMPs Fast Flexible Filing Design. Both 

methods are one-shot, non-sequential designs so sequential 

methods[12] may be able to create accurate models with even 

lower numbers of simulations required. 
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