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Abstract

Routing to Develop Expertise in Customer Contact Centers

by

Geoffrey S. Ryder

A call center often serves as the principal or only point of contact between a company and its customers,

and the cost of staffing the center with suitably skilled agents is a large proportion of its operating

costs. In this environment, the efficiency and quality with which agents handle customer encounters

determines the economic productivity of the call center. This research describes the performance of

routing policies for inbound call center traffic that trade off two conflicting objectives: minimizing the

waiting time for customers, and specialized on-the-job skill acquisition by agents that improves the

customer experience.

Empirical results for agent productivity trends are derived from individual summary data for

2.7 million calls taken over the course of 2007 by a financial service call center. This unique data set

describes both service time and service quality for 178 separate types of inquiries, regarding diverse

subjects such as credit card billing, tax advice, and sales of investment products. Service quality is

measured independently of an agents own assessment by recording the resolution status of each call:

does the record show this customer finds it necessary to call again about the same issue, or has this

problem been resolved successfully?

Observations from this data show that the notion of expertise may be characterized by convex

functions of cumulative production. Analytical results are then obtained for utility functions of the

agents expertise: the customers utility, encouraging specialized expertise; and the supervisors utility,

encouraging an even distribution of expertise among agents.

These utility functions guide the development of nonlinear programs that set expertise tar-

gets, in the form of work assignments, for call center staff who are observed to have varying abilities.



Routing rules to implement these work assignments are then analyzed, using simulations of call center

operations in the presence of stochastically varying customer arrival and departure times. The research

describes how well-targeted priority rules achieve higher levels of service experienced by customers,

with minimal effects on the time spent waiting to be served.
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1.1. Expertise in a Call Center Setting

A major influence on a customer’s satisfaction at a call center is the knowledge level of

the agent who takes their call. Knowledge management, in particular maintaining or increasing the

cumulative knowledge of the agents, is therefore a key issue for ensuring service quality. This is

especially true when the call center operates within dynamic markets, and agents are required to keep

pace with changes.

For the operational management, on the other hand, the knowledge of the employees is

1



Figure 1.1: Empirical Examples of Improving Performance. Examples of cumulative average per-
formance improving with experience, from the empirical study of Chapter 4. Left: an agent gets faster
and decreases her average handle time from 8 minutes to 5 minutes, a 40% improvement, after han-
dling about 560 calls over five months. Right: a different agent improves his cumulative average first
call resolution rate from 40% to 80% after taking about 560 calls over six months.

usually treated as exogenous to the service delivery process. Knowledge is considered to be a given

and fixed resource, and is treated as such for routing and call assignments. This makes sense when all

training happens off-line, but does not account for the case where knowledge and expertise are actually

gained on-the-job through the service process itself; and empirical data shows that agents learn by

doing—see Figure 1.1.

If it is assumed that learning-on-the-job takes place, then the operational rules have an im-

pact on knowledge, and knowledge is therefore an endogenous rather than an exogenous variable. In

particular, routing policies determine which agents work on which jobs, and thus may have a major

impact on the learning of the agents and their expertise level attained. This thesis examines how rout-

ing might influence the knowledge, how changing knowledge levels will affect customer experience,

and how knowledge management and routing can be treated together.

Chapter 4 describes a new set of empirical performance data from a financial service contact

center. The conclusions drawn from the data drive the theoretical approaches taken in other chapters.

A key observation is the fact that agents are not busy all the time—only part of an agent’s work day is

spent in direct contact with customers. Figure 1.2 shows the pattern for a typical agent.

There are several reasons for this, including the helpful effects of automated customer sup-

2



Figure 1.2: Agent Utilization. Plot of one agent’s utilization rate over a two-month interval. Points with different
horizontal coordinates represent different days, with different mean utilization values (different %-busy values).
Each day is represented by two points, a dot(.) for mean call handle time on the left, and a star (*) for mean
call resolution rate on the right. On a typical day, this agent spends less than 50% of his total work time directly
engaged in customer encounters.

port systems, and management’s desire to maintain a staffing level sufficient to provide responsive

service even during unpredictable peaks in demand. In this system, management has taken the de-

cision to staff for the quality regime described in Gans et al. [2003], page 100: “Waiting costs of

customers dominate the cost of capacity, and the optimal staffing policy uses an asymptotically fixed

utilization rate.” Chapter 5 duplicates this policy in its simulations of call center agents, where a fixed

utilization rate drives the choices for the other parameters. Note that agents remain productive, even

when not directly interfacing with customers: they research customer inquiries, file reports, update

automated help systems, attend staff meetings or training sessions, and so on. Time “not busy” is not

wasted time.

For my research, these utilization levels point to the study of stochastic models where service

time and customer waiting time are still important, and must be considered—but in which there is also

some flexibility to route calls in ways that optimize other objectives besides waiting time. Here, the

additional objective is the distribution of knowledge among agents. As shown in Pinker and Shumsky

[2000], large systems tend to have more flexibility in routing different kinds of work to their agents.

Some of the most interesting trade-offs between expertise development and responsive service occur

in small to medium sized call centers, and so they will be my primary emphasis.

3



1.2. Thesis Outline

1.2.1 Chapter Organization

Chapters 2 through 5 each investigate a different aspect of expertise development through

on-the-job learning among contact center agents. Taken together, these chapters provide a set of tools

with which contact centers can incorporate expertise-driven productivity changes into capacity and

quality management plans—a subject of fundamental interest in the field of knowledge management

for service enterprises. The chapters are organized along the row and column dimensions of Table 1.1.

Agent performance metrics define the rows, and the way in which experience drives expertise defines

the columns in this scheme.

Contact center management aims to provide high quality service in an efficient way. But what

do these concepts mean in a concrete sense? To answer this, the first dimension defines metrics used to

evaluate performance. Froehle [2006] reported recent survey results for contact center customers, and

characterized their expectations of the agents who helped them. The principal qualities requested were

preparedness, avoiding wasted time; subject matter knowledge; and thoroughness. In Table 1.1, the

total time taken by an agent to handle a customer encounter, orH , measures preparedness or efficiency.

H captures the temporal effect of improved expertise on service quality—the greater the expertise, the

less time needed to provide service.

The metrics in the next row express knowledge and thoroughness that accrue with experi-

ence, independent of improvements in handle time. The quantity X is used in Chapter 3 to represent

an agent’s increased store of knowledge following a service encounter. The first call resolution rate

R measures the proportion of customers for whom an agent completes the customer’s business at the

time of first inquiry.

The three metrics H , X , and R are similar in that they increase in experience, and their

rates of growth diminish as experience accrues. They are modeled here by bounded concave or convex

functions in recent or in cumulative production. But these metrics also differ in ways that call for

4



Expertise from Recent Experience Expertise from Cumulative Experience

Performance Metric

Chapter 2 Chapter 4

Dynamic programming analysis Empirical observations of faster

of trends in call handle time (H) call handle times (H) with increasing

Call Handle Time H for a small queueing system experience.

in the presence of learning and

forgetting effects. Chapter 5

Designs and simulates optimal work

assignments under learning. Applies

customer’s and supervisor’s utility

functions created in Ch. 3 to promote

improvements in call handle times (H)

over groups of agents.

Chapter 3 Chapter 4

General Expertise X , Defines utility functions in Empirical observations of improving

First Call Resolution agent expertise (X). These functions changes in first call resolution rates (R)

Rate R are useful as metrics for with increasing experience.

evaluating the distribution of

expertise among a group of agents.

Table 1.1: Thesis Chapter Organization. Chapters 2, 3, 4, and 5 together develop a toolkit of methods
for making on-the-job expertise development an endogenous factor in the process of managing a call
center.

5



special treatment.

• Learning-based improvements in the mean handle time H require analytically intractable mod-

ifications to standard queueing system models (Chapter 2), forcing such improvements to be

modeled in randomized simulations (Chapter 5).

• Learning-based improvement in the mean first call resolution rate R enhances the customer

experience and the firm’s reputation, and in this thesis a higher rate R is desirable. Chapter 4

studies empirical trends in metrics that include R. A potential benefit of improving R that is not

modeled here is any reduction in future traffic to the call center–when an agent often satisfies a

customer on the first inquiry, fewer repeat visits may be needed.

• Chapter 3 presents a model of improving expertise that is compatible with the Markovian as-

sumptions for M/M/1 queues. As such, it assumes the mean handle time H is constant. It also

assumes the mean arrival rate is constant, and so ignores traffic fluctuations due to changes in

the resolution rate R. A new quantity X is therefore introduced to represent the increase in

knowledge with experience, and X is independent of metrics H and R.

Models of how expertise drives experience define the columns of Table 1.1. Both learning

and forgetting have been measured in industrial settings, where learning curves contribute to improved

productivity, but production breaks are then seen to relinquish some of those gains. Chapters 2 and 3

incorporate both learning and forgetting trends in new experimental models of agent expertise levels.

Chapters 4 and 5 adopt a simpler model that uses only learning with cumulative production, without

forgetting due to absences or breaks. The simpler model was found to be reasonable for both modeling

agent learning trends from new empirical data, and for building optimal work assignments for groups

of agents. Expanding on the ouline of Table 1.1, the motivation and modeling choices for each chapter

follow.

Chapter 1: Introduction—an overview of research on call centers and agent productivity, placing these

topics in the context of recent related results.

6



Chapter 2: Motivation. How do learning and forgetting mechanisms that drive expertise development

affect the results of stochastic models of service operations? A Markov decision process

model can explore this problem by obtaining steady-state results from dynamic program,

showing that if learning and forgetting affect the mean call handle time, then the optimal

policy for routing work to an agent will change. Model. The dynamic programming

solver computes the optimal policy to follow for each state in a discrete Markov chain,

and its performance is compared to the performance of four simple heuristic policies that

might be used if the optimal policy were unknown. To evaluate performance, a transition

matrix p = [pij ] is constructed in such a way that it is an irreducible, aperiodic Markov

chain with all states positive recurrent, and so it has a stationary distribution ~π defining

the steady-state probability of being in each state. The dynamic programming solver finds

this distribution. Based on ~π, the mean learning state value `~π, mean queue backlog

(qx~π + qy~π), and total cost for all states in the system C~π are computed for each policy.∑N
i=1 π(i) = 1, so ~π serves as a means of weighting the values of `(i), q(i), and C(i)

according to the steady state likelihood of the system being in state i. (See page 25.)

Chapter 3: Motivation. How may the idea of expertise in service quality be captured for individuals,

and for groups of agents? Here expertise is quantified as a continuous, monotonically in-

creasing, concave function of the departure rate of customers served by an agent. Steady

state agent expertise levels may be predicted for stochastic Markovian service systems

where the mean service time is constant. Utility functions in agent expertise levels are

useful as optimization objective functions—they allow the inclusion of on-the-job learn-

ing trends into the design of contact center routing rules. Model. Consider an agent

who serves an M/M/1 queue of customers on a first-come, first-serve basis. A unitless

value of expertse X , with 0 ≤ X ≤ 1, increases with cumulative production n and

decreases proportionally to time absent. These dynamics are modeled by the concave
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function X(tn−1 + τn) = (X(tn−1) +α(1−X(tn−1))e−βτn , where τn is the difference

between two departure times from a server; α is a learning rate, and β is a forgetting rate.

A proportion p, 0 ≤ p ≤ 1 of the call center’s customer arrival rate λ is routed to the agent.

The steady-state value of the agent’s expertise then becomes X∞(pλ) = pλα
β+pλα ; by in-

creasing or decreasing p, management increases or decreases X∞(pλ). Utility functions

in steady-state expertise of multiple agents are defined: Uc, the customer’s utility, and Us,

the supervisor’s utility; and in preparation for applications in Chapter 5 their convexity

properties are explored. (See page 48.)

Chapter 4: Motivation. Do empirical observations show that agent performance improves with expe-

rience? Yes—statistical analysis of call-by-call data from a financial service contact center

yields significant productivity trends, and suggest that expertise does improve with expe-

rience. Many individual agents demonstrate on-the-job learning, and specific task types

demonstrate significant performance improvement with cumulative production over large

groups of agents. Model. A data set of call-by-call records of one contact center for all of

2007 containing about 2.7 million calls, 1000 agents, and 178 call types yields trends in

handle time performance( H), first call resolution performance (R), and performance on

the combined metric µ-R = R/H . A set of standard clustering and regression tests show

that cumulative production is more significant than tenure for predicting improvement, for

this data; and 40% of all customer calls belong to a call type for which performance is

better for high-volume agents than for low-volume agents, significant at the 95% level.

(See page 75.)

Chapter 5: Motivation. How may expertise-building strategies be developed that optimize the distri-

bution of skills among a workforce of agents? Approaches developed in prior chapters are

brought together to modify work assignments to contact center agents in order to max-

imize operational quality and efficiency. This chapter describes a nonlinear program to
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identify optimal work assignments, and a queueing system simulator that identifies the

best routing rules to realize the optimal targets in contact centers. Model. A constrained

nonlinear optimization program is presented to set routing targets of calls to agents in

a system with I agents and K call types; and with a cumulative production log-linear

learning model with learning exponent bik and starting handle time Hik for every agent-

type pairing ik. Both the customer’s utility Uc and the supervisor’s utility Us are used

as objectives to generate routing targets in separate trials, and their results compared. In

discrete-event simulations, these targets are implemented with lower to higher degrees of

fidelity by five types of routing rules: no-priority (NP), priority-no-idle-constant (PNI-C),

priority-no-idle-swap (PNI-Swap), priority-with-idle-constant (PNI-C), and priority-with-

idle-swap (PWI-Swap). The best rule to use changes depending on system conditions; and

a trade-off exists between maximizing the expected value of expertise seen by a customer,

and the time customers must spend waiting in queues for service. (See page 105.)

Chapter 6: The last chapter summarizes key results, and identifies avenues for future work in this

area.

1.2.2 Contributions and Publications

Selected topics from this thesis have appeared before in the various journal papers, competi-

tive and invited conference talks, and conference proceedings shown in Table 1.2.

1.3. Literature Review: Research on Agent Productivity in Call

Centers

A key paper that helps establish this area of research is by Pinker and Shumsky [2000]. They

analyze a Markov chain system model of learning and turnover that includes two types of specialist
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Date Venue Subject

October, 2005 IASTED Computer and Clustering, Ch. 4;

Communication Networks Conference Optimization, Ch. 5

October, 2006 Applied Probability Section Dynamic Program/MDP,

INFORMS Annual Meeting, Cincinnati Chapter 2

October, 2007 Frontiers in Service Conference MDP, Ch. 2;

San Francisco, CA and Simulation, Ch. 5

November, 2007 Service Science Session SA25 MDP, Ch. 2;

INFORMS Annual Conference, Seattle Simulation, Ch. 5

November, 2007 Service Science Session WA27 Empirical Data, Ch. 4;

INFORMS Annual Conference, Seattle Simulation, Ch. 5

June, 2008 Ryder, Ross, and Musacchio. Article in MDP, Ch. 2

the Intl. Journal of Operational Research (IJOR)

June 2008 MSOM Conference/Annual Meeting Asymptotic

University of Maryland Expertise, Ch. 3

October, 2008 Service Science Session WB15 Asymp. Expt., Ch. 3;

INFORMS Annual Conference, Washington D.C. Empirical Data, Ch. 4

In preparation Journal submission Asymp. Expt, Ch. 3;

Empirical Data, Ch. 4;

Optim. and Simulation, Ch. 5

In preparation Article on clustering of performance Empirical Data, Ch. 4

trends among agents

Table 1.2: List of Publications. Conference proceedings and a journal publication where selections of
material related to this thesis have appeared.
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workers, and a set of cross-trained or flexible workers that can perform either task. Each workers

service quality improves with tenure, though specialists always provide the highest service quality. The

optimal staffing arrangement, giving both high agent utilization and high average expertise, turns out

to include a mix of specialists and flexible agents. They also specify how the staffing solution changed

along the dimensions of arrival load and expertise development rate (or learning rate). High learning

rates favor more specialists in large systems, and a precise, optimal mix of flexible and specialized

agents in small systems. By contrast, low learning rates favor a staff mix with more flexible agents—

the content of the work is simple enough that it can be mastered quickly, so agents can take on more

tasks. The authors recommend the use of forgetting models in future work, and we build on their work

here by exploring potential forgetting effects.

Gans and Zhou [2002] model learning and turnover effects using a Markov decision process,

and demonstrate that the optimal hiring policy for each state of a firms agent roster is a “hire-up-to”

policy similar to the “order-up-to” policies from the supply chain management literature. Whitt [2006]

explores ways to characterize the employee retention distribution for call center agent populations.

Improved retention results in a higher average expertise of agents in the center, because expertise

improves with tenure. Among other findings, decreasing distributions such as the negative exponential

are noted to be reasonable first approximations to real retention distributions. This is because in general

employees are most likely to leave within a short time of starting, and the probability of leaving then

decreases as tenure grows.

We share a key assumption with these three previous papers: we assume service quality,

denoted here by variable X , improves with tenure; or more precisely with cumulative production. But

we do not specify precisely what improved quality means to the customer. This allows us to reason

about the relationship of routing rules and expertise in a general way that can be adapted to fit specific

cases. In an application of our results to call center agent data, X may stand for the handle time of

a call, which should decrease with expertise; or to the first call resolution rate (FCR), which should

increase with experience. See de Vericourt and Zhou [2005] for a discussion of the FCR metric.
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If SERVQUAL-type survey data is available, X may represent a measure of customer satisfaction

(Parasuraman et al. [1988]). Froehle [2006] conducts a statistical analysis of such data, and finds that

agent preparedness, subject matter knowledge, and thoroughness are most important to customers’

perceptions of service—three qualities that can be expected to increase with experience. Froehle also

describes the alternatives modern agents have for communicating with customers, such as email and

instant messaging. The customer call center is now rightly termed a customer contact center as well.

We will use the terms interchangeably.

Our work has been guided by results in the literature from several areas of service operations

research. For more on learning and turnover in call centers, see Bordoloi [2004]. (Zohar et al. [2002]

show that learning by customers impacts operations as well.) For an in-depth background on call

center planning and operations, see Aksin et al. [2007], Brown et al. [2002], Cleveland and Mayben

[2000], Gans and Zhou [2003], Gans et al. [2003], Hasija et al. [2005], Iravani et al. [2007], and Koole

[1997]. Due to the inherent complexity of call center operational models, high quality simulations are

becoming important (Mehrotra and Fama [2003], Avramidis and L’Ecuyer [2005]).

For related results on learning and forgetting at work, Shafer et al. [2001] present a detailed

study of empirical learning and forgetting data in an industrial application with worker service times

roughly equivalent to call handle times in a call center. Badiru [1992] presents a survey of applied

learning models, and Nembhard and Osothsilp [2001] do the same for forgetting models. Sikstrom

and Jaber [2002] explore new ways of measuring the impact of production breaks on productivity.

Sayin and Karabati [2007] develop a detailed optimization model for solving a rostering problem with

learning and forgetting effects in a corporate setting involving several departments. A similar problem

is explored by Eitzen et al. [2004], who note that forgetting effects require that worker skill levels be

maintained through repetition in work assignments.

We do not discuss the details behind learning and forgetting effects here, but there is a body

of work from the behavioral sciences that supports our operational models. See especially Globerson

and Levin (1987), Howick and Eden (2007), and Schilling et al. (2003). Behavioral scientists see new
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opportunities opening up now for joint work with those in the operations field, in order to apply the

growing catalog of behavioral results to service operations (Bodreau et al. 2003).

There is a growing set of work describing call center outsourcing contracts, and the compet-

itive milieu faced by call center operators—see for example Aksin et al. [2008], Hasija et al. [2008],

Ren and Zhou [2008], Shumsky and Pinker [2003]. Reflecting this reality, the ultimate goal of this

research is to provide new avenues for productivity growth in call center operations, so that savvy op-

erators may drive more profitable and lower cost service contracts, such as described in Reis [1991].

Although in practice measuring and acting on learning curves requires care, productivity gains have

contributed to business success in a variety of settings (Ghemawat [1985]).
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CHAPTER

TWO

Expertise Predicted by Dynamic Programming

Chapter One: Managing On-The-Job Expertise Development in Contact Centers, page 1

Chapter Two: Expertise Predicted by Dynamic Programming, page 14

Chapter Three: Utility Functions in Agent Expertise, page 36

Chapter Four: Empirical Measurements of Agent Expertise, page 61

Chapter Five: Planning and Simulation of Expertise Development, page 81

Chapter Six: Conclusions, and Recommendations for Future Research, page 124

In this chapter, we consider the impact of changing service rates in a small queueing system.

The mean service rate is usually considered fixed in these kinds of stochastic models, so loosening

this restriction changes the nature of the optimal control policy. Here we model changes in the mean

as driven by learning and forgetting mechanisms, and apply dynamic programming to evaluate five

policies for directing service in the system. The queueing performance—keeping queue lengths short,

so as to provide prompt service to all customers—is computed for the optimal policy, and then that

performance is compared to the performance of four simple heuristic policies that might be used if the

optimal policy were unknown.
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The table of chapter topics below shows how this study fits among the problems explored

in other chapters. While this dynamic programming approach provides valuable insight and exact

results for small systems, it is difficult to scale up, and so is probably not viable as a means to examine

larger systems. Chapter 5 offers an alternative in the form of a two-step, optimization/simulation

approach that is feasible for both small- and large-scale problems. For more context see also the full

thesis outline, the motivations behind each chapter, and the separate chapter models that are described

starting on page 5 in Chapter 1.

1

Performance Metric Expertise from Recent Experience Expertise from Cumulative Experience

Chapter 2 Chapter 4, Chapter 5

Dynamic programming analysis

of trends in call handle time (H)

Call Handle Time H for a small queueing system

in the presence of learning and

forgetting effects.

Chapter 3 (X) Chapter 4 (R)

General Expertise X ,

First Call Resolution

Rate R

2.1. Scenario: Learning Effects and the Optimal Work Assign-

ment

2.1.1 The Effect of Work Allocation on Skill Development

Consider the situation where a customer service manager must assign tasks to one of her

subordinates. The assignment must take into account the customers’ needs and the agent’s skill at
1Our analysis here has also been published in the Inderscience journal The International Journal of Services and Operations

Management (Ryder et al. [2008])—see http://www.inderscience.com and select this journal title, Volume 4, Issue 6, and 2008.
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handling them. In response to customer demand, she assigns the agent to process two classes of

incoming jobs, as in Figure 2.1. Customers who cannot immediately enter service join the queue with

other customers who share the same type of problem to be solved.

The managers of a service facility might often use a queueing model to assign jobs to agents,

and these models typically assume that an agent’s mean service time is static. In reality, the agent’s

skill fluctuates due to his experiences over time. For the purpose of this chapter, we equate his mean

service rate with his skill level and investigate the impact of such experience-based fluctuations on the

agent’s performance over a time span of weeks to months.

As a concrete example, suppose companyABC sells a new nanotechnology chemical sensor

to customers in two different industries. The company sells a bundled product containing the sensor

hardware, cabling, software driver, and a data acquisition program. A service engineer (the agent) at

the company’s customer support centre handles incoming calls regarding this product.

Calls of type x come from equipment suppliers to medical diagnostic labs, which use the

sensor to characterise patient fluid and tissue samples. Calls of type y come from biotechnology

factories, which use the product as part of a control loop within the fragile manufacturing process for

genetically engineered cancer drugs.

If the agent takes calls of type x exclusively, he will become very familiar with the medical

users’ situation: how often the sensor must be replaced for different uses, how the interface program

can be used and customised, and what operating settings give the most accurate results. Over time, his

knowledge of these matters accumulates and he becomes a medical customer support specialist.

However, type y callers face a much different situation, with higher volumes of different ma-

terial flowing by their sensors, higher interference from surrounding equipment, and so on. Experience

relevant to type x jobs is not transferable; separate experience with type y jobs is indispensable in order

to be proficient at helping those customers.

Depending on the allocation of time and experience, the agent’s ability to advise customers

on these matters will fluctuate in both speed and quality. Here, we assume a constant unchanging
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quality, and focus on the cost impact of the improvement in the speed of answering.

New service tools, new organizational arrangements, and learning effects may all drive

changes in his mean service rate. Here we assume all changes are caused by the latter. There is a

considerable literature describing the phenomenon of learning curves; among those are recent empir-

ical results describing the effects of learning and forgetting on the job. They make clear that learning

and forgetting effects seen in human performance data may play a key role over the short and medium

terms; since the job categories themselves keep changing in modern dynamic service environments,

learning effects may play important roles over long term time horizons as well.

We develop a simple stochastic model that accommodates such on-the-job learning and for-

getting results, and in this paper we present conclusions drawn from our experiments with it that

suggest how to assign agents to tasks in ways that improve system performance. A good assignment

policy must resolve the following question: with respect to the backlog in the queues, the agent’s skill

levels, and potential experience-based changes in his skills, from which queue should the agent select

his next job?

2.1.2 Operations Research Motivation for the Markov Decision Process Model:

Learning and Forgetting Dynamics

Researchers and practitioners have recently highlighted the potential of applying a more fine-

grained approach to stochastic learning models. Aksin et al. [2007], Bodreau et al. [2003] and Dietrich

and Harrison [2006] examine areas of overlap between operations research (OR) and behavioural sci-

ence, and call for more investigation of the effects of learning and forgetting. The phenomenon of

improved performance through learning is observed in many settings, in both individuals and in or-

ganizations (Aksin et al. [2007], Mazzola and McCardle [1997], Reis [1991], Schilling et al. [2003]).

Shafer et al. [2001] derived a learning curve model from empirical observations of manufacturing

workers that includes both learning and forgetting. Thompson [2007] and Zamiska et al. [2007] con-
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tribute new insights into how forgetting mechanisms do or do not manifest themselves, and support the

idea that an agent’s proficiency in a task drops when that task is neglected.

Several recent papers are notable for their inclusion of agent learning in the analysis of

systems. Eitzen et al. [2004] and Sayin and Karabati [2007] consider worker skill development and

maintenance as important factors when optimising staffing schedule assignments. Misra et al. [2004]

explored the impact of experience effects on the structure of a sales force; Tucker et al. [2007] studied

team learning in hospital intensive care units. Whitt [2006] develops analytical means to describe the

distribution of performance over a population of agents as their experience increases.

The approach of Gans and Zhou [2002] is similar to ours in that they use a Markov decision

process model to explore the effects of learning in a service organization. In their model, employees

have a probability of learning and increasing their skill at each decision epoch, and at the same time

a probability of leaving the firm due to turnover. As future research they recommended exploring

ways to model stochastic learning effects more precisely, as they may significantly affect the firm’s

performance. In our model each epoch represents a single customer departure (a single job completed)

in a queueing model, so we examine the issue at the level of the routing decision. We do not consider

turnover.

Hasija et al. [2005], Iravani et al. [2007], Wallace and Whitt [2005], Hopp et al. [2007] and

Pinker and Shumsky [2000] evaluate the tradeoffs involved in cross-training workers. In our paper

the single service agent is servicing two queues, each with a different job type, requiring two distinct

learning curves; in that respect we are also observing the effects of cross-training.

We would like to know the costs that result from the agent’s choice of which job class to

serve next. We investigate that choice by formulating the problem as a Markov decision process which

can be solved using a dynamic programming solver (Bertsekas [1995], George and Harrison [2002],

Mazzola and McCardle [1997]). The solver computes each state’s cost, which is the sum of the holding

costs of both queues for that state plus its cost-to-go to other states, and the agent’s best choice may

change from one state to the next.
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Figure 2.1: One Server, Two Queues. The optimal service policy is sought for the one server, two queue case in the presence
of stochastic learning (increasing service rate) and forgetting (decreasing service rate).

The customers in one queue are of a different type than customers in the other, so they can be

thought of as two separate job classes with different service rates. The system consists of two parallel

Markovian FCFS queues with exponentially distributed service and interarrival times. In addition to

learning while serving, an agent has a chance of forgetting skills learned for one queue during time

periods spent serving the other queue. This behaviour is a simplified version of the recency effect

discussed in Nembhard and Osothsilp [2001], and Shafer et al. [2001]. Following Hampshire et al.

[2006], the extended Kendall notation M/Mt/1/K can be used to describe queues with changing

service times such as these. Caro and Gallien [2007] use multiple coupled dynamic programs that

include approximation methods for switching costs and other hard-to-model phenomena; that may be

a path to expanding upon the results we report here in future work.

If our model did not incorporate learning and forgetting, the optimal policy would be given

by the well-known µc rule (Baras et al. [1985], Harrison [1975], Koole [1997], Mandelbaum and

Stolyar [2004], Ryokov and Lembert [1967]), which says it is optimal to serve the queue for which the

product of the service rate µ and the queue occupancy cost c is a maximum. We find that the µc rule

is in fact not the best rule to follow for this problem when the parameters corresponding to learning

curve effects are significant.
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Figure 2.2: Longest Queue First Time Series. Time series sample for the stationary policy LQF, or ”serve the Longest
Queue First.” Note that the LQF rule does not respond to changes in the service rate.

2.2. Model Formulation and Analysis

2.2.1 Adding Learning Effects to the Model

Gans and Zhou [2002]’s call centre learning study considers three levels of agent perfor-

mance: baseline, a 40% improved service rate, and an 80% improved service rate. Following this we

assign the vector of improving service rates for µx and µy to be m · [1, 1.4, 1.8], where the base service

rate is m ≈ 0.25 jobs per minute.

Shafer et al. [2001] provides a wealth of data, in particular the average learning and forgetting

rates for a group of workers conducting a detailed assembly line operation. The testing station workers

incurred forgetting effects during interruptions in their work assignments, although they did not switch

between two different tasks, as we assume here. In order to incur forgetting losses in our Markov

chain model with three learning curve states, forgetting transitions incur a performance penalty by

pushing the agent back to less proficient states. We then analyse performance using metrics based on

the long-run steady state distribution of the chain.

Their average worker might achieve his highest learning curve state after completing 1,000

jobs, while others learned much faster. Our learning curve has three states, and we allow the mean jump
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Figure 2.3: SMax Time Series. Time series sample for the stationary policy SMax, or ”serve the job class for which the agent
is fastest.” Here long stretches of time can occur where the other job class is not served.

rate from a slower service rate to a faster one to range from ( 1
500 ·m) up to ( 1

2 ·m). So with regard to

the data from the product testing study, we are focusing on workers with above average learning rates.

We use various values for the forgetting rate that are within the range suggested by the study, with our

default forgetting rate being one-third of the learning rate.

2.2.2 Policy Definitions and Time Series Examples

We analyse five policies that could be used to direct the agent’s work.

1. Serve the longest queue first, or the LQF policy, Figure 2.2.

2. Serve the job class that the agent is most skilled (fastest) at handling, or SMax, Figure 2.3.

This could be considered a policy of specialisation in Pinker and Shumsky [2000]. Note that

such a policy is preferred in many settings. In policies for managing priority queues, this is

the shortest processing time rule, or SPT (Gross and Harris [1998], Schrage and Miller [1966],

Tezcan [2006]).

3. Serve the job class that the agent is slowest at handling, or SMin, Figure 2.4. This could be

considered a policy of cross-training.
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Figure 2.4: SMin Time Series. Time series sample for the stationary policy SMin, or ”serve the job class for which the agent
is slowest.” It is the reverse of SMax. This policy accrues a higher cost than others, but maximises the average capacity of the
system.

4. Serve the job class specified by the µc rule, Figure 2.5.

5. Serve the job class specified by the dynamically optimal cost service rule, or Opt, Figure 2.6.

Opt is the only one of the five for which policy iteration is used to alter the policy choice at each

state according to the step-by-step value iteration results from the dynamic program.

2.2.3 Dynamic Programming for Optimization

The dynamic programming solver computes the optimal policy to follow for each state in

a discrete Markov chain. As a Markov decision process (MDP), a decision maker acts to minimize

the expected cost of the present value at time zero of the stream of costs incurred. Assumptions made

during the design of the solver include:

• Advancing in skill does not depend on how long the agent has been in a state, but only if the last

job served was relevant to this learning curve. Therefore learning and forgetting are memoryless

state transitions, which together with the queueing processes form a four-dimensional Markov

chain.

• The agent attends one of the two queues at all times, with no breaks or server vacations.
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Figure 2.5: µ-c Time Series. Time series sample for the stationary policy µ-c, or the µ-c rule: serve the job class for which
the product of the queue length and service rate is a maximum. It is similar to but more flexible than LQF in permitting some
jobs to accumulate in one queue while the other is served.

• There is a finite number of states and an infinite planning horizon. Discount factor β (where

0 < β < 1) discounts the future cost of visiting other states.

• i denotes one of the states, where each i is an index number for a uniquely valued tuple {qx, qy, `x, `y}.

Here qx is the number of customers in the first queue, qy is the number of customers in the sec-

ond queue, `x is the learning state (specifying a service rate µx) of the server for type x jobs,

and `y is the learning state of the server for type y jobs.

• The number of valid transitions and their relative probabilities are determined by the policy u

adopted for that state, u ∈ {ux, uy, utie}. Under utie, ties in the DP solver are resolved by

including transition probabilities for serving both queues and renormalizing.

• The static cost is the sum of the number of customers waiting in the two queues at each state.

The holding cost of the backlogs is assumed to be $1 per waiting job per unit time. Customers

to not balk or renege. Arrivals to full queues are turned away, and a one-time penalty M = $100

is charged to the system to represent the impact of dropping a customer. The number of waiting

positions in the two buffers is Kx = Ky = 9.
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Figure 2.6: Optimal Policy Time Series. Representative time series sample for the optimal policy, as computed by the
dynamic program using a combination of value and policy iteration.

• J(i, u) is Bellman’s equation, the cost functional equation for state i and policy u. The dynamic

program iterates until |(Jk(i, u) − Jk−1(i, u))| < ε, for every state i and policy u, and reports

the final value vector ~J∗ for each of the five policies.

The process of uniformisation is used to convert the continuous time queueing problem to

discrete time. Five exponential processes govern state transitions, and the components of the uniformi-

sation constant ν are the largest values of those processes found among all of the model states. Let

a ’*’ next to a parameter denote its largest value anywhere in the model. The five parameters are:

λx, the arrival rate to x; λy , the arrival rate to y; µ, the departure rate from one of the queues (not

both); φ, the learning rate; and ψ, the forgetting rate. Then the fastest exponential race transition out

of any state is ν = λ∗x + λ∗y + µ∗ + φ∗ + ψ∗. In the experiments the arrival rates for both queues

are fixed and equal to each other, so λx = λy = λ∗x = λ∗y . For each individual state, we have

νi(u) = λx + λy + µi(u) + φi(u) + ψi(u).

2.2.4 Structure of the Transition Matrix p(u)

Consider Figure 2.7, which illustrates the state transition “serve queue x” for ux in the model

state Jk(qx, qy, `x, `y, ux). The diagram shows three of the waiting positions, plus empty, for four
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Figure 2.7: MDP State Transitions. Joint model state J(qx, qy , `x, `y , ux), with qx = 2, qy = 2, `x = 2, and `y = 2.
The probabilistic transitions under the policy ”serve queue one”, ux, are shown. Learning, service, and an arrival are possible for
queue x, while forgetting and an arrival are possible for queue y. Self-transitions at each queue are also possible. The activities
of the two queues are considered to be independent.

queue states on each side, and it shows three learning states for each job type. Learning, service, and

an arrival are possible for queue x, while forgetting and an arrival are possible for queue y. Self-

transitions at each queue are also allowed due to uniformisation. The activities of the two queues are

considered independent. Bellman’s equation then becomes

Jk(qx, qy, `x, `y, u) =
1

β + ν

[
qx(i) + qy(i) + (ν − νi(u)) · Jk−1(qx, qy, `x, `y, u∗)

]
+

1
β + ν

vi(u) · (∑
j

pij(u)J(j))

 .
Here qx(i) and qy(i) are the fixed queue holding costs in state i. To minimize the right-hand

side of this equation we seek a policy in each state such that the cost of the policy-dependent terms is

a minimum. In the cost-to-go term, the transition probabilities pij take the form
(

λx

λx+λy+µx+φx+ψy

)
.

This particular pij value is for an arrival of type x, for a policy ”serve queue x”; the other pijs are

similar but with the appropriate value in the numerator.

2.2.5 Steady State Measures

The transition matrix p = [pij ] is constructed in such a way that it is an ergodic Markov

chain, and so it has a stationary distribution ~π defining the steady-state probability of being in each

state. The dynamic programming solver finds this distribution.

Based on ~π, the mean learning state value `~π, mean queue backlog (qx~π + qy~π), and total
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Figure 2.8: C~π for Five Policies. Plot of the steady state total costC~π values from Table 2.3 for all five policies. Section 2.2.5
defines C~π as C~π =

PN
i=1 π(i) · J∗(i); it represents the steady-state cost of state i’s queue backlog, and the discounted cost

of state i’s neighboring states.

Figure 2.9: C~π , Varying Forgetting. Plot of the combined steady state cost C~π vs. the arrival rate into the system, using the
optimal dynamic policy Opt, while varying the forgetting rate ψ. Increased forgetting increases the holding costs in the queue
through lower average service rates. The learning rate for all cases is set to high.
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cost for all states in the system C~π are computed.
∑N
i=1 π(i) = 1, so ~π serves as a means of weighting

the values of `(i), q(i), and C(i) according to the steady state likelihood of the system being in state i.

Recall that the fixed cost portion of each state’s cost is the sum of the two queue backlogs;

(qx~π+ qy~π) =
∑N
i=1 π(i) · [qx(i)+ qy(i)]. C~π includes this fixed cost, and also includes the cost-to-go

to neighbours at each state, with penalties if applicable: C~π =
∑N
i=1 π(i) · J∗(i). So the performance

metric (qx~π + qy~π) is a part of the metric C~π, and typically C~π will be roughly twice as large.

Note that in the cases we consider here, the learning, forgetting, and service mechanisms

affect each job class equally. Thus the steady state metrics that describe experimental outcomes in the

next section are symmetric in job classes x and y. In the following sections the terms long run, steady

state, ~π-weighted, and mean are equivalent.

Each experiment is considered an exact computation for a hypothetical agent who has those

characteristics. Truncation error from limiting the number of DP solver iterations is approximately

1e-9 for the value function J in each state, and roundoff error incurred computing ~π is near 1e-16 for

each state.

2.3. Experimental Results

2.3.1 Experimental Parameters

Simulation inputs are a specific, unchanging dynamic programming reward structure, Ta-

ble 2.1, combined with specific values of learning parameters that are allowed to vary, Table 2.2. The

experiments we present have three learning curve states and ten queue states (including empty) for two

job classes.

Note that the learning rate φ varies from ( 1
500 ·m) up to ( 1

2 ·m) in these experiments. The

agent therefore steps up the learning curve roughly at rate φ
m , or from once every 500 to once every

two jobs completed. Unless stated otherwise, the forgetting rate is ψ = φ
3 . The value φ = 1

500 ·m is

referred to as a moderate learning rate case; φ = 1
32 is high learning; and φ = 1

2 is very high learning.
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Table 2.1: Chapter 2 Fixed Simulation Parameters. Parameter settings for all simulation runs, which
define the fixed reward structure.

Parameter Value

Number of service agents 1

Number of job (queue) types 2

Number of queue buffer states K = Kx = Ky 9

Number of learning curve states 3

Discount factor β 0.1

Total # of dynamic programming states N 1800

Minimum service rate m 0.25 departures per minute

Improving service rates µx, µy [m 1.4m 1.8m]

Server utilisation is computed as the fraction λx+λy

E[µ] . Here the expected service rate E[µ] is

the service rate at the mean learning curve state for this trial, as weighted by the stationary distribution

~π.

2.3.2 The Character of the Five Policies

Table 2.3 gives metrics for evaluating the performance of the five policies. The first row

under each utilisation value gives the mean queue length in steady state, qx~π + qy~π . Performance

on this measure usually (but not always) matches the total simulation cost weighted by the stationary

distribution, C~π = ~π · ~J∗, shown on the fifth row. The second row gives the long run service rate µ~π;

this is the long run system capacity. Because of the symmetry in the characteristics of job classes x

and y, we have µx~π = µy~π . The third and fourth rows measure the impact of buffer overflow on the

system. Define o~π = λ~πover, where ~πover contains the values of the stationary distribution for states

with one or both buffers full. Co~π measures the contribution of those full buffer states towards the total

cost C~π. Figure 2.8 shows plots of the C~π values from Table 2.3.
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Table 2.2: Variable Simulation Parameters. Learning and forgetting parameters that were varied in
simulations.

Learning Symbol or Sample

Parameter Abbreviation Value (m = 0.25 jobs per minute)

Arrival rate λx, λy 0.4 ·m to 0.75 ·m, or 50% to 100% capacity

Moderate learning rate φx, φy
1

500
·m

High learning rate φx, φy
1
32
·m

Very high learning rate φx, φy
1
2
·m

Default forgetting rate ψx, ψy (φ/3) ·m

Each of the five policies does well on at least one of the metrics. LQF is the best at mini-

mizing the costs due to buffer overflow. SMax is best at minimizing the mean queue backlogs. SMin

is best at maximizing the system’s long run capacity. µ-c is similar to LQF, but trades off some of the

ability to minimize overflow for a lower total cost, C~π, than LQF. Finally, Opt uses the advantage of

policy iteration to achieve the lowest total cost among all of them.

In Table 2.3, with the learning rate set to moderate, the characteristics of the five policies

start to become significant, giving performance differences of between 0.5% to 10% on the various

metrics. This is roughly at the level of the average learner case from Shafer et al. [2001]. At higher

learning rates these policy differences are even more pronounced.

2.3.2.1 Learning and Forgetting Effects

The fundamental dynamic driving the results is that increased learning decreases the holding

costs in the queue by achieving higher average service rates. Figure 2.9 illustrates this by showing a

plot of the long run cost C~π against the arrival rate into the system, using the optimal cost policy Opt.

Note that if forgetting is absent, learning pushes the service rates to their maxima for every policy in

steady state. That trivial result does not occur when forgetting effects are present, and Figure 2.9 shows
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Table 2.3: Table of Policy Comparisons. Comparison of policies by different ~π-weighted measures,
which are defined in Section 2.2.5. Data is for a moderate learning rate; ψ = φ/3; and the system faces
arrival rates into both buffers that give 75%, 90%, and 100% server utilisation. The best two policies
by each metric are shown in bold. Trends seen here are accentuated at high and very high learning
rates.

75% utilisation

Units LQF SMax SMin µ-c Opt

qx~π + qy~π jobs 2.83 2.44 2.67 2.73 2.48

µx~π , µy~π jobs/min 1.62 1.62 1.62 1.62 1.62

(ox~π + oy~π) ∗ 1000 jobs/min 1.30 2.52 3.93 1.51 2.25

Co~π cost 0.76 1.16 1.76 0.82 1.07

C~π cost 5.59 5.19 5.96 5.43 5.19

90% utilisation

Units LQF SMax SMin µ-c Opt

qx~π + qy~π jobs 4.75 3.84 4.22 4.54 3.96

µ~π , µy~π jobs/min 1.64 1.63 1.65 1.64 1.63

(ox~π + oy~π) ∗ 1000 jobs/min 5.85 9.06 11.87 6.48 8.05

Co~π cost 2.32 3.19 3.95 2.43 2.88

C~π cost 9.57 8.76 9.74 9.26 8.73

100% utilisation

Units LQF SMax SMin µ-c Opt

qx~π + qy~π jobs 6.63 5.23 5.58 6.33 5.26

µ~π , µy~π jobs/min 1.65 1.64 1.66 1.64 1.64

(ox~π + oy~π) ∗ 1000 jobs/min 12.79 17.83 21.13 14.09 17.51

Co~π cost 4.89 5.42 6.50 4.91 5.34

C~π cost 12.97 11.48 12.51 12.47 11.45
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Figure 2.10: Policy Results Over Queue States. Side-by-side comparison of policies by observing queue service rules for
the same subset of states. Each of the five squares represents the state of queue x on the horizontal and queue y on the vertical
axis. The policy in question serves x if an x appears, y if a dot appears, and serves either if an equals sign appears. All five
plots show the same unbalanced learning curve state: µx = 1.8m, µy = 1.4m, and x has a service rate advantage. Here
Opt behaves like SMax, except at the border where Opt reacts to the overflow penalty. For balanced learning curve states with
µx = µy (not shown), all policies look like LQF.

how increasing the forgetting rate ψ increases the cost.

While forgetting can occur in any state, learning-based service rate improvement is not al-

lowed when the system is empty. Higher arrival and utilisation rates thus benefit the agent by giving

him a chance to practice his skills and ascend the experience curve.

2.3.2.2 Overflow Penalty Effects

When a customer arrives to a full buffer, she is turned away and denied service. This event

triggers a cost penalty ofM = $100. The penalty’s effect increases if λx and λy are large in proportion

to the other rates. For instance, if queue x is full, the penalty becomes
(

λx·M
λx+λy+µx+φx+ψy

)
. Its impact

on C~π is further adjusted by how often the state is visited and the mean length of each visit (from ~π, ν

and ν(i)).

Figure 2.10 illustrates the effect of the buffer overflow penalty over the five policies. Only

Opt is able to react to the increased cost in full buffer states and reduce its cost by choosing a different

queue. This is reflected in Table 2.3 where o~π, Co~π , and C~π are consistently greater for SMax as

compared to Opt. This is noticeable at higher values of φ as well. For instance, at a high learning rate

and 75% utilisation, SMax incurred a 1.5% higher cost C~π than Opt.
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Table 2.4: ~π Over Learning States. Values of the stationary distribution ~π for policies SMax, SMin, and µ-c. They are
organized according to the probability mass found at each learning curve state. Subscript 1 indicates the lowest service rate, and
subscript 3 the highest. The optimal policy follows the SMax pattern below closely; LQF follows the µ-c pattern closely. The
system utilization was set to 90% of capacity, φ was very high, and φ was set equal to ψ. When φ = 1

3
ψ, similar distributions

are obtained, but with a skew toward the northeast corners because the forgetting rate is smaller.

SMax SMin µ-c

y3 0.24 0.08 0.05 y3 0.05 0.09 0.14 y3 0.17 0.09 0.07

y2 0.09 0.06 0.08 y2 0.11 0.16 0.09 y2 0.11 0.08 0.09

y1 0.09 0.09 0.24 y1 0.20 0.11 0.05 y1 0.11 0.11 0.17

x1 x2 x3 x1 x2 x3 x1 x2 x3

2.3.2.3 Approximating the Optimal Policy

The dynamic optimal cost policy Opt is found at each state by a combination of value and

policy iteration in the DP solver. Opt finds the globally optimal policy within a reasonable time for

policies of this size, balancing the different costs in the best possible combination.

For all the learning parameter ranges we study, the (static) policy SMax turns out to be a

very good approximation to Opt for the purpose of minimizing the total cost. However, SMax does not

respond well to cost changes at boundaries (Figure 2.10). Section 2.3.2.5 describes cases where µ-c is

closer to Opt by the metric C~π.

2.3.2.4 Specialisation Versus Cross-Training

Figure 2.11 and Table 2.4 give more insight into the difference between SMax and SMin, or

the difference between specialising and cross-training.

On the left side of Figure 2.11, SMin gives up to a 5% improvement over SMax in long run

system capacity µ~π as the learning rate is varied, for a system at 100% utilisation. The forgetting rate

is held constant at ψ = 1
12 · m, or one-sixth times the very high learning rate. While SMin was the

best policy for boosting µ~π over the long run, LQF never differed by more than 3% from SMin by this

metric; LQF itself can be considered a good cross-training policy. In fact LQF may be preferred in
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Figure 2.11: Long Run System Capacity, Backlog. Left: plot of long run system capacity µ~π (note that µx~π = µy~π) at
100% utilisation, showing a metric for which SMin is superior to SMax. Right: plot of long run system backlog (qx~π + qy~π)
at 100% utilisation, showing a metric for which SMax is superior to SMin. Learning is swept from high to very high rates.
Forgetting is held constant at ψ = φvh/6, where φvh is the very high learning rate.

practice since it does not require an estimate of the agent’s skill level.

The right side of Figure 2.11 shows the system steady state backlog, (qx~π + qy~π), a metric

for which policy SMax performs better. SMin generates a 25% to 40% worse value for the backlog,

a metric for which the trends are usually aligned with the total system cost C~π. Here ψ is held at the

same value as on the left.

SMax generates a centrifugal trend in service rate improvement that discourages a balanced

skill set, while SMin promotes balanced skills. These trends are evident in the steady state distributions

~π for those policies, which are described in Table 2.4. In all our experiments SMax performed better

than the other policies as a means of minimizing (qx~π + qy~π).

2.3.2.5 Performance Penalties from Service Level Agreements

Up to now we have used a simple holding cost for the queue that is linearly increasing in

the size of the backlog, and in fact is equal to the size of the backlog in dollars per minute. But

organizations such as call centres may be contractually obligated to provide a certain service level,

with financial penalties for nonperformance. These penalties will be assessed by observing if customer
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waiting times are too long.

For this example consider queue backlogs to be proxies for customer waiting times. Then

a cost penalty is assessed whenever the queue length goes beyond a threshold. In Table 2.5, our two

buffers are each segmented into low cost states (from zero to threshold Kth) and high cost states (from

Kth + 1 to K). An additional fixed cost penalty M = $25 per minute is assessed for being in each of

the high cost states. The learning rate is set to high, and utilisation is 75%. In all cases policy Opt has

the lowest cost C~π, and we would like to know which of the simpler policies best approximates this

cost. With these parameters and no thresholds, we found that this was SMax.

When the threshold Kth is low, and most of the queue states accrue penalty costs, then all

the policies suffer about equally. When the threshold is four fifths or more of the buffer size, µ-c and

LQF have lower costs than SMax. Yet note that SMax still gives the lowest mean steady state queue

length q~π.

The problem for SMax is that the agent leaves one queue alone for long periods, and the

unattended job class slips into penalty-accruing states often during his absences. The more equitable

policies µ-c and LQF reduce these absences – visible in the time series of Figure 2.2 and Figure 2.3 –

and so perform better than SMax here. This example demonstrates that the best steady state cost C~π

may not agree with the lowest mean steady state backlog (qx~π + qy~π); C~π is a better measure of the

impact of server absences when those absences are costly.

The act of reducing the buffer sizes will produce a similar result to the imposition of perfor-

mance penalties described above; µ-c and LQF become more attractive. On the other hand, preliminary

data indicate that SMax retains its superiority in runs with larger buffer sizes.

2.4. Conclusions from the MDP Model

In summary, we have examined a model of one agent serving two parallel queues, each

queue holding a separate and unrelated type of customer. We seek the best policy to follow, or in
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Table 2.5: Effects of Service Level Agreements. The best simple policy by the total cost metric C~π may not agree with that
given by the sum of the backlogs (qx~π + qy~π) when the server is absent for long stretches of time while away serving the other
job class.

Kth Lowest (qx~π + qy~π) Lowest C~π Second Lowest C~π

4 SMax SMax µ-c

5 SMax µ-c SMax

6 SMax µ-c SMax

7 SMax µ-c LQF

other words which of the two should be served, for each combination of queue states. These queue

states impute holding costs for the service system in proportion to the sum of the queue occupancies

and penalties for missed jobs. An additional factor in this model is that the agent may increase his

service rate through learning-by-doing, and decrease his service rate through forgetting when ignoring

a job class. The choice of which to serve thus affects future performance, and makes the policy choice

more complicated. We found that policies SMax and µ-c were the best approximations to the optimal

cost policy in terms of their steady state cost in different situations. SMin maximized the steady state

capacity of the system, and LQF minimized the costs due to buffer overflow.

Here we only study job classes with symmetric learning curves. Issues of asymmetric learn-

ing curves and class priorities will lead to different outcomes, due to the inherent nonlinear behaviours

in queueing systems. Switching costs in real-world queueing systems are another factor that is com-

plicated to model. There also exist analytical results in applications of queueing theory that could

be adapted to investigate the properties of our model in future work (see Fischer and Meier-Hellstern

[1993], Grassmann [2003], Meier-Hellstern [1987], Nunez-Queija [1998], Rossiter [1987], and Iravani

et al. [2007]). Finally, we would like to scale up to larger systems, with more agents and job classes.

Because our dynamic program suffers from the curse of dimensionality when modeling large systems,

we explore a more scalable nonlinear programming approach to setting optimal job routing targets in

Chapter 5, together with discrete-event simulations to find good routing rules to achieve those targets.
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A myopic rule for skill-based routing would consider an agent’s skill level to be fixed, as

determined by formal training or certification. However, the routing rule itself has an impact on skill

levels: through on-the-job learning, the development of the agents’ expertise depends on the calls they

take. In this chapter we develop new tools that allow us to reason qualitatively about the process of

acquiring on-the-job expertise by call center agents. First, we show how to link routing decisions

to expertise level outcomes. By including forgetting and agent turnover effects along with learning-

based improvement, we place natural limits on the asymptotic level of an agent’s expertise, and obtain

steady-state expressions that may be used to analyze stochastic models of expertise development.

Denoting an agent’s expertise by the dimensionless quantity X , 0 ≤ X ≤ 1, we then define

utility functions that depend on expertise, and show how polices of evenly shared routing and extreme

specialized routing affect them. Two of these utility functions will be developed further in Chapter

5, which shows a scalable approach for optimizing distributions of expertise in call centers. The first

function is the expected value of expertise seen by a customer, which we call the customer’s utility, or

Uc. The second is the sum of expertise in the system, which we call the supervisor’s utility, or Us. Both

functions would seem to be worth maximizing, but we see that optimizing the value of one may mean

sacrificing the value of the other. Section 3.4 provides a basic analysis of their convexity properties in

preparation for further development as optimization program objectives.

The table of chapter topics above shows how this work fits among the problems explored in

other chapters. For more context, also see the full thesis outline, the motivations behind each chapter,

and the separate chapter models that are described starting on page 5 in Chapter 1.

3.1. Modeling the Asymptotic Value of Expertise

Consider the evolution of expertise in an agent answering calls to a call center. Let the

expertise X(t) of the agent at time t be on a scale 0 ≤ X(t) ≤ 1, where X(t) = 0 indicates a

novice, and X(t) = 1 corresponds to an expert. Define the average time between completed jobs to be
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τd, including the receiving and processing of a job, followed by some time until the next job arrives.

Denote the mean steady state departure rate of customers from the system by λ, so that λ = 1/τd.

In Section 3.2 we develop a model that takes advantage of the reversibility property of M/M/1 queues

to equate λ to both the mean steady state arrival rate of jobs to an agent as well as departures from

an agent. We assume that the agent learns while processing the job (on-the-job), thus increasing his

expertise level X(t), and forgets while not processing, leading to a decrease of X(t).

First, consider the learning dynamic. The agent’s expertise by processing one job increases

through

X(tn) 7→ X(tn−1) + α(1−X(tn−1)) (3.1)

where α is a learning parameter, and improvements in expertise are recorded at the instant of each

customer departure time tn. Then the experience gain is proportional to (1−X(tn−1)), and so becomes

geometrically smaller as X(tn) approaches expert status. In the absence of forgetting, an agent will

move from novice to roughly half of her maximum possible level by completing 1/α jobs. Figure 3.1

illustrates this accrual of expertise for an agent responsible for a single queue of customers desiring

service.

Here expertise is increasing in an agent’s relevant cumulative production. We define this as

the index n of the n-th departure handled by the agent. Of course, a true accounting of the knowledge-

building process for a person working as a call center agent would involve a complex nonlinear func-

tion. Fortunately, empirical studies justify a simpler model of concave increasing expertise functions

with different parameters for each agent and task type (Badiru [1991], Shafer et al. [2001]). Our styl-

ized expertise model develops as a concave increasing function of cumulative production by awarding

an expertise increase proportional to the proximity of current expertise X(tn) to a long-run expected

expertise value X∞.

Suppose that skills need to be maintained through reinforcement; in the absence of work to

occupy an agent, forgetting ultimately reduces the expertise of the agent to zero (novice level). Thus

expertise depends on recent production, as illustrated in Figure 3.2. We assume that forgetting occurs
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Figure 3.1: Expertise Accrues With Cumulative Production. Plot of expertise development for a single
agent responsible for a queue of customers. The plot on the right illustrates Relation (3.1). Here, the agent’s ex-
pertise develops according to the irregular stair-step plot, with an increase recorded at the instant of each customer
departure tn. The amount of this increase diminishes as the production record grows, and is bounded above by
the dotted line, which represents a perfect expertise value of one. The dotted line also represents the asymptotic
limit of the learning-only model (a model without forgetting).

Figure 3.2: Expertise Accrues with Recent Production. As Figure 3.1, but for a single agent responsible
for a queue of customers under both learning and forgetting mechanisms. The plot on the right illustrates Equa-
tion (3.2). Here, the agent’s expertise develops according to the irregular stair-step plot, with an increase recorded
at the instant of each customer departure tn, and a slow but steady drop in expertise in the gaps between departure
times. We refer to the asymptotic limit as X∞. The arrival rate pλ is under management’s control, as defined in
Equation (3.3).

at a continuous rate β, so that for a period of length τn = tn − tn−1, the expertise is discounted by

e−βτn . This is one type of function among several that have been used to fit the measured effects of

forgetting (Nembhard and Osothsilp [2001]); we apply it here for its simplicity and tractability. Taking

learning events and continuous forgetting together, we get:

X(tn−1 + τn) = (X(tn−1) + α(1−X(tn−1))e−βτn . (3.2)

Learning is designed to be a geometrically decreasing concave function of time, and the

forgetting exponential function is convex in time for positive τn, which holds for the cases we consider.

From prior studies of learning and forgetting rates, and our own observations of call center data, we
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Figure 3.3: Long-Run Expertise as a Continuous Function of the Arrival Rate. The long-run value of expertise. The
key advantage of our formulation: expertise becomes a continuous function of the routing proportion p. Here α = 2e − 3,
β = 8e− 4, µ = 10, λ = 1, and p = 0.5.

expect a reasonable range of interest for parameter α to be between 1e-4 and 0.1. We take β ≤ α, so

that forgetting happens at a slower rate than learning.

A key issue still remains at this point: what processes govern the customer arrival and service

rates? As we noted in Chapter 2, decisions by individual customers about when to call often appear

random to the agent. Empirical studies show that customer arrivals to contact centers are well mod-

eled by nonhomogeneous Poisson processes; and over specific time intervals an analytically tractable

homogeneous Poisson process can be a good model (Cleveland and Mayben [2000], page 58; Brown

et al. [2002], page 39; Gans et al. [2003], pages 125–126). In some call centers the service time may

also be acceptably modeled by an exponential distribution, although that is not always the case (Gans

et al. [2003], page 127; Mehrotra and Fama [2003], page 138). In this Chapter, we will take both the

arrival and service processes to be Poisson. These are not the best distributional assumptions for every

facility, but they are very useful as theoretical approximations that allow values of agent expertise to

be computed with the aid of steady-state results for Markovian queueing models. Section 3.2 provides

an expression for X∞ as a steady-state expected value under Markovian assumptions (Equation (3.8),

page 46).
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Figure 3.3 depicts the evolution of our expertise equations over time: on-the-job experience

grows through serving a sequence of customers. The left-hand plot of Figure 3.3 depicts this trend. A

longer interdeparture time will incur more forgetting, a short one less, but over many customer visits

the variations average out and X(tn) settles to a long-run expertise level X∞. The right-hand plot

shows the range of X∞ for this agent. In this example, the long-run value of expertise maps from

the red line on the left plot to the red cross on the right. The position of the cross depends on the

agent’s learning and forgetting characteristics, and on the arrival rate of customers that management

sees fit to sent to this agent for service. This illustrates a key feature of our expertise formulation: we

establish a link between the rate of jobs completed by agent and his expertise level. Management can

take advantage of this linkage to design routing rules that optimize the distribution of expertise among

the workforce.

Consider a random process model of an agent’s work in which the steady state average rate

of departures (λ) equals the steady state average rate of arrivals. Section 3.2 below will give a precise

description of such a model. Accepting that premise for the moment, in Figure 3.3 we let λ be the rate

of Poisson arrivals coming into the entire contact center, which may employ many agents. Let the rate

to any single agent be a thinned Poisson stream of arrivals, with a mean arrival rate that a will be a

fixed fraction of λ. Let this fraction of λ arriving at a single agent be denoted by p, with 0 ≤ p ≤ 1.

Note that τn in Equation 3.2 is the time between two departures; here assume the agent is a server in

an M/M/1 system in equilibrium, so that τn ∼ Exp(pλ). Then we may modify the definition of the

expected interdeparture time to be

E[τn] = τd =
(

1
pλ

)
. (3.3)

Management controls the proportion p for each agent through routing rules, hence control-

ling the intensity of on-the-job learning experiences, and ultimately the agent’s expertise level. We

will show the expected long-run value of the agent’s expertise is X∞(pλ). Where the value of λ is

understood to be a certain value, we can just write X∞(p). Note that although X(tn) was a function

of discrete departure times tn, X∞(pλ) may be a continuous function of a continuous real variable p,
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and is thus convenient for analysis.

With this definition of p, the left side of the example in Figure 3.3 shows X(tn) increasing

as customers are served, until the steady state value X∞(pλ) is reached—the horizontal line at about

0.63. The right side shows the value of X∞(pλ) as the routing proportion p to this agent is swept from

zero to one.

Now we would like to estimate expertise levels for agents where the operating environment

is modeled by a stochastic queueing system. In the next section we derive an explicit link between the

level of asymptotic expertise and the arrivals to an agent pλ when those arrivals are Poisson.

3.2. Expected Value of Expertise When Arrivals and Service are

Exponentially Distributed

Here we apply the assumption underlying the most commonly used system capacity model:

we let interarrival times be exponentially distributed, ∼ Exp(λ); and we let service times be ∼ Exp(µ).

We determine the expected value of expertise—which is also the asymptotic value of expertise—as a

function of these random variables, the agent’s learning and forgetting characteristics, and manage-

ment’s assigned routing proportion p.

3.2.1 Definitions

Consider the situation where an agent provides service to customers one at a time. We

observe each customer leaving the agent at the moment their service encounter is completed.

Definition 3.2.1. Definition of departure times tn.

Let departure time tn denote the moment in time when the nth customer leaves following

service. Here tn is a positive real number, tn ≥ 0; and t1 < t2 < ... < tn. �

Definition 3.2.2. Definition of the learning rate α.
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Let 0 < α < 1 be known as the learning rate. �

Definition 3.2.3. Definition of the forgetting rate β.

Let 0 ≤ β ≤ α be known as the forgetting rate. �

Definition 3.2.4. Definition of the forgetting factor θn.

Let τn = tn − t(n−1) be the difference between successive departure times. Then let the

forgetting factor be the quantity θn = e(−βτn).

Note that 0 ≤ θn ≤ 1. The forgetting factor θn will take values close to one when the

product of τn and β is small, and forgetting is not significant. �

Definition 3.2.5. Definition of the routing proportion p.

Here 0 ≤ p ≤ 1 is a parameter that acts to thin a Poisson process. In other words, assume

we are given N ∼ Poisson(λ); then let M ∼ Binomial(N, p), so that M ∼ Poisson(pλ). Therefore

λ ≥ pλ, and we know that Poisson process M is characterized by a slower rate pλ that is a proportion

of the original rate λ. In our models p is a control parameter, and we will refer to it as the routing

proportion.

Definition 3.2.6. Definition of expertise X(tn) that increases due to learning, and decreases due to

forgetting.

LetX(tn) be known as the expertise of the agent. This expertise function maps the sequence

of discrete departure time differences to a sequence of expertise values between zero and one, R+ →

[0, 1], according to the following definition.

Xn = [Xn−1 + α(1−Xn−1)] θn. (3.4)
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3.2.2 The Asymptotic Value of Expertise

Here we find the long-run expected value of expertise, or the asymptotic value of expertise,

for an agent who serves an M/M/1 queue of customers on a first-come, first-serve basis. We take

expertise to develop according to Equation (3.4) with learning and forgetting mechanisms.

We will need the following three results to find the asymptotic value of expertise. First,

Lemma 3.2.7 and Lemma 3.2.8 show that the time sequence of departing customers has a convenient

analytical description.

Lemma 3.2.7. In an M/M/1 queueing system with arrival rate pλ and service rate µ, where (pλ)/µ <

1, the sequence of departures is a Poisson process with rate pλ.

Proof. This is known as the reversibility property of the M/M/1 queue. See for example Durrett [1999],

page 184. Note that we define the arrival rate to this queue as a thinned Poisson process, pλ, implying

that a stable percentage p of a greater traffic stream is directed to this queue for service by this agent.

Lemma 3.2.8. In the system of Lemma 3.2.7, the interval between successive departure times is an

exponential distribution with parameter pλ.

Proof. The proof examines the conditional expectation of the last departure time as it depends on the

next-to-last time, and shows they are statistically independent, leading to an exponential distribution

for the time between the two events. For the full details see Stirzaker [2003], page 366. This fact is

known as the independent increments property of the Poisson process.

Now we know that τn ∼ Exp(pλ), which allows the derivation of a closed-form expression

for the expected value of the forgetting factor. (Recall our concise representation for the forgetting

factor, θn = e(−βτn).)

Lemma 3.2.9. When τn ∼ Exp(pλ), then E[θn] = pλ
β+pλ .
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Proof.

E[e−βτn ] = E[θn] =
∫ +∞

τn=−∞
e−βτnpλe−pλτndτn

=
−pλ
β + pλ

∫ +∞

τn=0

e−τn(β+pλ) · (−1) · (β + pλ)dτn

=
pλ

β + pλ
. (3.5)

Now we can state the main result.

Theorem 3.2.10. The long-run expected value of expertise, X∞ = limn→∞E[Xn], is given by

pλα
β+pλα .

Proof. We start with difference equation for expertise based on departure times, Xn, and work to find

its expected value in the long run, limn→∞E[Xn].

Xn = [Xn−1 + α(1−Xn−1)] θn

Xn = Xn−1(1− α)θn + αθn

Note that by the independent increments property of the Poisson process, θn andXn−1 are statistically

independent, so that E[θnXn−1] = E[θn]E[Xn−1]. Also, since values of τn are i.i.d. exponential

random variables, we know by the monotone convergence theorem for random variables (Stirzaker

[2003], page 201) that E[θn] = E[θ].

E[Xn] = (1− α)E[θ]E[Xn−1] + αE[θ]

By defining constants K1 = (1 − α)E[θ], and K2 = αE[θ], we may write E[Xn] as a

first-order difference equation.

E[Xn] = K1E[Xn−1] +K2.

See Elaydi [2005], page 17 for a discussion of solutions for this class of equations. Using
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the closed-form solution for our difference equation, we can find limn→∞E[Xn]:

E[Xn] =
K2

1−K1
(1−Kn

1 ) (3.6)

lim
n→∞

E[Xn] =
K2

1−K1
.

lim
n→∞

E[Xn] =
αEθ

1− Eθ + αEθ
=

α

Eθ−1 + α− 1
(3.7)

Substituting pλ
β+pλ for E[θ] from Lemma 3.2.9 gives the result.

X∞ = lim
n→∞

E[Xn] =
pλα

β + pλα
(3.8)

Remark. Substituting for K1 and K2 in Equation (3.6) gives a closed-form solution for transient

expertise levels as well:

E[Xn] =
pλα

β + pλα
·
(

1−
[
(1− α) ·

(
pλ

β + pλ

)]n )
. (3.9)

To review, Equation (3.8) gives the asymptotic value of expertise when the arrival and service

events are Poisson processes—the interarrival time between customers has a negative exponential dis-

tribution with rate pλ. We expect the routing proportion 0 ≤ p ≤ 1 to be fixed and under management’s

control. Note that expertise tends towards the maximum value 1 when pλα� β.

3.2.3 Embedding Expertise Development in Queueing Models—Some Limita-

tions

Contact centers employ a large workforce of agents. To use Equation (3.8) and (3.9) for

such multi-agent systems, we must turn to a model like that on the left of Figure 3.4, where each

agent is responsible for service to a separate M/M/1/∞ queue. Yet in practice contact centers assign

multiple agents to the same queue to keep waiting times low. To model waiting times accurately, we
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Figure 3.4: A Queue Modeling Problem. Left: an analytically tractable arrangement where each agent handles her own
M/M/1 queue, used here in Chapter 3. Right: a more realistic model where agents share responsibility for a single queue. But
because of the difficulty of finding analytical results for priority M/M/c systems, we turn to randomized simulations in Chapter
5 to investigate this model.

must turn to the M/M/c system on the right (Cleveland [2000], pages 89–90), or to related models

such as M/G/c—in that case the general service time distribution G is often taken to be the lognormal

distribution, following empirical results (Gans et al. [2003], page 127).

M/M/c systems are the most tractable of the family of multi-server queueing system models.

But as with all the others, it is difficult to compute and write down expressions for steady state results

where routing proportions p are different for every agent; further, the mean service time must remain

stationary (Gross and Harris[1999], page 156). But in conflict with this requirement, in Chapter 4

we will see that mean service times may change with the experience our agents. For these reasons,

we turn to randomized discrete-event simulations in Chapter 5 to generate results for different routing

rules. In this light, the analytical results of Section 3.2 are best used to develop intuition—the concave

increasing, bounded nature of the model follows the empirical data of Chapter 4 and other sources—

and in Section 3.3 we will apply this intuition when designing utility functions in expertise levels of

agents.

Note that forgetting occurs at the instant of departure, so in this model the degradation of

expertise occurs even during the service time interval 1/µ—whereas expertise is expected to be im-

proving by an amount α · (1 −Xn−1) during the service time. Thus it may be argued that forgetting

should be modeled as only occurring when an agent is idle.

Unfortunately, forgetting based on idle times greatly complicates the derivation of an analyti-

cal result similar to Theorem 3.2.10. When interarrival times Ta and service times Ts are exponentially
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distributed, the idle time is given by the difference function g(Ta, Ts) = Ta − Ts. But the distribution

function of this difference is a mixed random variable, and the independent increments property fails

to hold.

Empirical studies suggest that in a call center context, the duration of a call is in minutes; but

the time it takes for the forgetting factor to significantly impact the process of expertise development is

a matter of tens of hours, days, or even weeks. In that case—in empirical data we have observed—the

forgetting rate β takes a very small value, and the forgetting process can reasonably be approximated

by a constant process whether the agent is utilized or not. The service time duration is insignificant

compared to the time needed for forgetting effects to be noticed the data. Therefore the current defi-

nition 3.2.4 for the forgetting factor is a very good approximation to a forgetting model based on idle

times.

3.3. Expertise Utility Functions of the Customer and the Firm

3.3.1 The Customer’s Utility Uc, and the Supervisor’s Utility Us

Figure 3.5: Customer’s Utility, Two Agents. The customer’s utility function Uc for the two agent case. Note the convex
shape, with two optimal solutions residing at extreme values of the routing proportion p: p = 0, or p = 1. The vertical lines
represent possible system constraints that limit the maximum utilization of an agent. Note that with the constraints, extreme
points are still optimal, but the extreme values have been reduced.

The observation of a correlation between arrival rates and expertise leads to the natural ques-

tion of how a call center should route calls to different agents. Consider the situation where all incom-
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Figure 3.6: Supervisor’s Utility, Two Agents. The supervisor’s utility function Us for the two agent case. Note the concave
shape, with the optimal solution residing at the value where the routing proportions are equal: p1 = p2 = 0.5. The vertical
lines represent possible system constraints that limit the maximum utilization of an agent. Note that with the constraints, the
middle or even routing point is still optimal, and its value has been unaffected.

ing jobs are divided between two agents, A1 and A2. Take λ to be the arrival rate of all jobs into the

system. Parameter p1 is the fraction of jobs routed to A1, and (1− p1) is the fraction routed to A2.

We see that the value of p1 chosen by our decision rule thus determines the two asymptotic

expertise levels of the agents—and we can introduce the notation X1(p1) and X2(p1) to denote the

dependence of asymptotic expertise on p1. Given this situation, we would like to know how one might

select the ideal value for p1. Here we consider the multiple M/M/1 system model of the left side of

Figure 3.4, and asymptotic expertise given by Equation (3.8), page 46.

Customers and shift supervisors have different objectives with respect to knowledge of the

agents. Customers may prefer to have the maximum available service expertise; we will call a utility

function that maximizes this objective the customer’s utility, or Uc. This is a function of agent expertise

as determined by the routing policy, so we will indicate that dependence using the notation Uc(p).

Management, particularly those in charge of shift staffing, are on the other hand also inter-

ested in the overall knowledge and expertise available within the company. For example, having more

than one trained agent mitigates the risk of one agent leaving (and taking their expertise with them).

We refer to a utility function that maximizes the experience available as the supervisor’s utility, or

Us(p). Having agents with similar knowledge level leads to quality assurance whereby each customer

receives equivalent service, which might be desirable. This argument also favors Us(p).
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Figures 3.5 and 3.6 illustrate the trade-off between customer and supervisor perspectives.

We let the customer’s utility be Uc(p1) = E[X], where E[·] denotes the expectation value; following

the notation used in the figure, this is

Uc(p1) = E[X] = p1X1(p1) + (1− p1)X2(p1) (3.10)

Let the supervisor’s utility be

Us(p1) =
I∑
i=1

xi(pi) = x1(p1) + x2(p1) (3.11)

corresponding to the total knowledge of all the agents.

On the left of Figure 3.5 we see the asymptotic expertise attained by each of the two agents

over the range of p1. Here the forgetting rate for all pairs of curves is β = 0.001, and the learning rates

from the top pair to the bottom pair are α = 0.011, 0.002, and 0.0008—consider these fast, medium,

and slow learning cases, respectively. The curve for the first agent grows with p1, similar to the right

side plot of Figure 3.3. As expected, the asymptotic expertise curve for agent 2 decreases in p1. The

right-hand plot shows the resulting customer’s utility.

The left-hand side of Figure 3.6 repeats the two-agent expertise plot for reference, and the

right-hand plot shows the supervisor’s utility. Compare the plots of Uc and Us, and note that the

maximum of the supervisor’s utility Us is a minimum of the customer’s utility Uc. Further, note that if

the firm chooses solely to increase the utility function for the customer, it destroys its own cumulative

expertise.

In Figures 3.5 and 3.6 blue lines indicate the effect of hypothetical system capacity con-

straints. That is, to keep customers from waiting too long, both agents have to pitch in and take some

calls—the blue lines show the limit of what management will accept in the form of unbalanced rout-

ing assignments. The customer’s utility Uc increases as the routing becomes unbalanced; therefore,

capacity constraints reduce the center’s ability to pursue specialized routing and boost Uc. This

is a fundamental trade-off in the design of routing rules to develop specialized expertise.
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Figure 3.7: A Utility Function Including Variance. The brand manager’s utility Ub rewards a high expected value of
expertise E[X], and penalizes variance in expertise. Ub is the solid red curve with two minima at the right.

Figure 3.8: Capacity Constraints Affect Ub If capacity constraints are tight (left), Ub behaves like the supervisor’s utility.
If they are loose (left), Ub behaves like the customer’s utility.

3.3.2 Incorporating Variance: the Brand Manager’s Utility

A third utility function in asymptotic expertise that may be of interest to contact centers we

describe as the brand manager’s utility, or Ub. This is named for the person directly charged with

maintaining the center’s reputation for service quality. We make the simplifying assumption that the

service quality level for a call is equivalent to the expertise level of the agent answering the call.

The brand manager wants both a high customer utility value—a high value of the expected
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value of expertise—and a low value for the variance of that expertise. For our two-agent example:

E[X] = p1X(p1) + p2X(p2), p2 = 1− p1

V ar[X] =
2∑
i=1

pi · (xi(pi)− E[X])2 (3.12)

Ub(p1) = E[X]−Kb ·
√
V ar[X] (3.13)

Equation (3.12) is a standard expression for variance, with Bernoulli random variable pi

selecting one of two agents for each call in steady state, as shown on the left side of Figure 3.4. (This

variance is different from the variance of the underlying Poisson stream of arrivals.) Equation (3.13)

defines the brand manager’s utility. To keep consistent units we take the square root of the variance,

and multiply it by the manager’s choice of a weighting factor, Kb.

Figures 3.7 and 3.8 illustrate the behavior of Ub for our two-agent example, and how system

capacity constraints affect it; this case is more complicated than that of Uc and Us. First, the left side

of Figure 3.7 shows plots of E[X] and Kb ·
√
V ar[X] separately as p1 is swept from 0 to 1, with

Kb = 1. The right side plots the resulting values of Ub as a dark red solid line, and adds two capacity

constraints that limit the allowable choices of p1.

The left side of Figure 3.8 shows that, with these same capacity constraints, the optimal

choice of p1 is 0.5—exactly in the center, at the point that optimizes Us. But on the right side of

Figure 3.8, we see that if the capacity constraints are loosened, the optimal value of p1 becomes an

extreme point—a solution that optimizes Uc. Thus the brand manager’s utility may behave like Uc or

Us, depending on whether the capacity constraints are loose or tight.

3.4. Maximizing Utilities Uc and Us in the Many-Agent Case

The following sections characterize policies for expertise development in multi-agent sys-

tems using convexity arguments. The main tools for proving results are the properties of strictly convex

and strictly concave functions; see Boyd and Vandenberghe [2004], pages 70–71, or Bertsekas [2003],
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pages 29–35 for a discussion of these properties.

3.4.1 Extreme Routing Optimizes the Customer’s Utility

Consider a service system that is staffed by a number of agents, I , each having the same

mean service rate µ. Let customers arrive to the system at a fixed rate, λ. Customers are all of the same

type, and are not divided into priority classes—every customer receives the same treatment as all other

customers with respect to service time and service quality, once he has entered service.

In this system, learning/forgetting curves for expertise development exist for every agent,

as defined below. Each agent’s curve, defining her potential to learn (improve expertise) and forget

(reduce expertise) is the same as that of every other agent.

Definition 3.4.1. Definition of the routing proportion pi.

For each agent i, let pi be the proportion of customers routed to i, so that agent i handles an

arrival rate of piλ. Let 0 ≤ pi ≤ 1, so that
∑I
i=1 pi = 1. �

Definition 3.4.2. Definition of agent expertise, X(pi).

Let the asymptotic expertise value ofX of each agent i be a concave function of the customer

traffic piλ that is routed to that agent, so we write X(piλ). In our system λ is a constant value, while

pi may differ among agents. We write X(pi) to reflect the fact that asymptotic expertise varies among

agents according to the independent variable pi. Let 0 ≤ X(pi) ≤ 1, and assume the first and second

derivatives of X(pi) with respect to pi exist. 1 �

Theorem 3.4.3. For the system described above, if pX(p) is strictly convex in p, then the expected

value of expertise seen by the customer in steady state, E[X] =
∑I
i piX(pi), is always increased by

shifting work from an agent with less expertise to an agent with more expertise.

1A more descriptive notation for the quantity of expertise is X(α, β, piλ, µ), indicating the dependence of X on four
parameters: the learning rate parameter α; the forgetting rate parameter β; the mean arrival rate of customers to this agent, piλ;
and the mean service rate µ. But in this system, α, β, and µ are fixed values that are the same for all agents, so we suppress
them in the notation for expertise.
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Proof. Let g(pi) = pi ·X(pi). Then the expected value of expertise seen by an arriving customer in

this system’s steady state, E[Xs], is given by

E[Xs] = p1 ·X(p1) + p2 ·X(p2) + ...+ pnX(pn). (3.14)

= g(p1) + ...+ g(pn) (3.15)

Consider two agents i and j who receive nonzero routing proportions pi and pj , with pj ≥ pi.

Now, perturb the system to a new state using the routing rule to remove a small proportion of arrivals

ε = ∆p from agent i’s assignment, and add those arrivals to agent j’s assignment. The new expected

value of expertise E[Xnew] becomes

E[Xnew] = g(p1) + ...+ g(pi − ε) + g(pj + ε) + ...+ pnX(pn) (3.16)

Now we can analyze the difference ∆E = E[Xnew]− E[Xs]. If this difference is positive,

the expected value of expertise increased due to the perturbation. We construct a first-order approxi-

mation to ∆E as follows:

g(pi − ε) ≈ g(pi)− ε · g′(pi) (3.17)

g(pj + ε) ≈ g(pj) + ε · g′(pj) (3.18)

∆E = E[Xnew]− E[Xs] ≈ ε · (g′(pj)− g′(pi)). (3.19)

Note that g(p) = pX(p) is strictly convex in p, so its first derivative is increasing in p.

Therefore since pj > pi, we have that g′(pj) − g′(pi) > 0. The value of ∆E from (3.19) is positive:

the expected value of expertise has increased, because we shifted work from agent i who has less

expertise i to agent j who has more expertise. We improve E[X] by giving more work to the busiest

agent from any other agent who has nonzero work.

Corollary 3.4.4. To maximize the expected value of expertise seen by a customer, E[X], the optimal

routing policy under the conditions of Theorem 3.4.3 is to send all work to a subset of fully utilized
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agents, and no work to the others. There may be one agent who is partially utilized, but never more

than one.

Proof. By contradiction. Assume the optimal policy is to route work to two partially utilized agents.

But then by Theorem 3.4.3,E[X] will be improved by increasing one agent’s workload until her utiliza-

tion rate is 100%—culminating in one fully utilized agent, and another partially utilized or unutilized

agent.

This property scales to larger systems of I agents: E[X] improves as work is shifted to the

busiest agent, until she is 100% utilized; E[X] is improved again as work is shifted to the next busiest

agent, until he is 100% utilized; and so on.

3.4.2 Even Routing Optimizes The Supervisor’s Utility

Here we use convexity arguments similar to those of the last section to show that even routing

is optimal for the supervisor’s utility, Us(p).

Theorem 3.4.5. Consider again the system described in Section 3.4.1. Assume the asymptotic exper-

tise of an agent X(p) is concave in p. Then the sum of asymptotic expertise in the system, S[X], is

always increased by shifting work from an agent with more expertise to an agent with less expertise.

Proof. The sum of asymptotic expertise present in the firm, S[X], is given by

S[X] = X1(p1) +X2(p2) + ...+Xi(pi) + ...+Xj(pj) + ...+Xn(pn) (3.20)

Consider agents i and j who receive routing proportions pi and pj , with pj > pi. Perturb the

system to a new state using a routing rule to remove a small proportion of arrivals ε = ∆p from agent

j’s assignment, and add those to agent i’s assignment. The new value of S[X], or S[Xnew], becomes

Snew[X] = X1(p1) +X2(p2) + ...+Xi(pi + ε) + ...+Xj(pj − ε) + ...+Xn(pn) (3.21)
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Now we can analyze the difference ∆S = S[Xnew]−S[X]. If this difference is positive, the

sum of expertise in the firm increased due to the perturbation. We construct a first-order approximation

to ∆S as follows:

Xi(pi + ε) ≈ Xi(pi) + ε ·X ′
i(pi) (3.22)

Xj(pj − ε) ≈ Xj(pj)− ε ·X ′
j(pj) (3.23)

∆S ≈ ε · (X ′
i(pi)−X ′

j(pj)). (3.24)

Note thatXi(pi) andXj(pj) are strictly concave in p, so their first derivatives are decreasing

in p. Here pi < pj , so X ′
i(pi) > X ′

j(pj), and Equation (3.24) is positive due to the change in routing

assignment ε. The sum of expertise S[X] increases from shifting work from an agent with more

expertise to an agent with less expertise.

Corollary 3.4.6. To maximize the sum of expertise over all agents in the system, S[X], the optimal

routing policy under the conditions of Theorem 3.4.5 is to share all work as evenly as possible among

the agents.

Proof. By contradiction. Suppose we claim the optimal policy for routing customers to agents is to

route more to one of the agents, and fewer to a second agent. But by Theorem 3.4.5, S[X] will improve

if some work is shifted to the second agent. All agents share identical learning curves, so this fact is true

for any two agents in the system; thus a policy of routing customers evenly to all workers maximizes

S[X].

Remark. Corollary 3.4.6 does not hold for the more general case where agents learn at different rates.

Still, over a variety of contact center simulations in Chapter 5, we find a policy of even routing usually

achieves a high value for the metric S[X].
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3.4.3 Example Using a Specific Expertise Function

This section shows that the results of the last two sections apply to a function we developed

previously to model asymptotic expertise levels in stochastic service systems. Recall the expression

for the value of asymptotic expertise X∞(p) = αλp
β+αλp given by Equation (3.8), where the arrival rate

to an agent pλ is a Poisson process, and the service rate µ is ignored in the forgetting calculation.

Lemma 3.4.7. Let the value of asymptotic expertise be given by X(p) = αλp
β+αλp , from Equation (3.8).

Then (i) the expected value of expertise seen by the customer in steady state, E[X] =
∑I
i piX(pi),

is always increased by shifting work from an agent with less expertise to an agent with more expertise.

(ii) To maximize the expected value of expertise seen by a customer, E[X], the optimal routing policy

under the conditions of Theorem 3.4.3 is to send all work to a subset of fully utilized agents, and no

work to the others. There may be one agent who is partially utilized, but never more than one.

Proof. We show that the function X(p) = αλp
β+αλp fulfills the requirements placed on the expertise

function by the conditions of Theorem 3.4.3. The routing proportion p ranges between zero and one,

0 ≤ p ≤ 1, so 0 ≤ X(p) ≤ 1. Further, X(p) has continuous first and second derivatives with respect

to p :

X(p) =
αλp

β + αλp

X ′(p) =
αλ

β + αλp
− (αλ)2p

(β + αλp)2

X ′′(p) =
−2αλ2

(β + αλp)2
+

2p(αλ)3

(β + αλp)3
.

Therefore X(p) is an expertise function according to Definition (3.4.2).

It remains to show that g(p) = pX(p) is a strictly convex function of p. Let p1 and p2 be

two routing proportions, with p1 6= p2. Use parameter ω, 0 ≤ ω ≤ 1 , to form linear (convex)

combinations of p1 and p2, and of g(p1) and g(p2); these combinations are written as ω · p1 + (1 −
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ω) · p2 and ω · g(p1) + (1− ω) · g(p2) , respectively. Strict convexity occurs when

g (ω · p1 + (1− ω) · p2) < ω · g(p1) + (1− ω) · g(p2)

0 < ω · g(p1) + (1− ω) · g(p2) − g (ω · p1 + (1− ω) · p2) .(3.25)

After simplifying the notation by letting v = ωp1 + (1− ω)p2, we have:

g(v) =
αλv2

(β + αλv)

ωg(p1) =
ωαλp2

1

(β + αλp1)

(1− ω)g(p2) =
(1− ω)αλp2

2

(β + αλp2)
.

Now we may use these three terms to build an expression that is the equivalent of the right

side of Equation (3.25):

ωg(p1) + (1− ω)g(p2)− g(v) =
ωαλp2

1

(β + αλp1)
+

(1− ω)αλp2
2

(β + αλp2)
− αλv2

(β + αλv)
.

Strict convexity holds if this expression is positive for all p1 6= p2. Note that the terms in the

denominator are all positive. After expanding over a common denominator, the numerator becomes

ωαλp2
1(β + αλv)(β + αλp2) + (1− ω)αλp2

2(β + αλv)(β + αλp1)− αλv2(β + αλp1)(β + αλp2).

After canceling like terms, this reduces to ω · (1 − ω) · β2 · (p1 − p2)2 . Here all four

quantities are positive; therefore ω · (1− ω) · β2 · (p1 − p2)2 > 0 for all p1 6= p2, and pX(p) is

strictly convex.

Now we have shown that X(p) = αλp
β+αλp is an expertise function meeting the requirements

of Theorem 3.4.3, and therefore property (i) holds. Property (ii) follows from Corollary 3.4.4.

Lemma 3.4.8. Let the value of asymptotic expertise be given by X(p) = αλp
β+αλp , from Equation (3.8).

(i) Then the sum of asymptotic expertise in the system, S[X], is always increased by shifting work from
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an agent with more expertise to an agent with less expertise. (ii) To maximize the sum of expertise over

all agents in the system, S[X], the optimal routing policy under the conditions of Theorem 3.4.5 is to

share all work as evenly as possible among the agents.

Proof. Following the proof of Lemma 3.4.7, the only requirement we have not yet demonstrated for

this function is whether or not X(p) is strictly concave. The test for strict concavity is a modification

of Equation (3.25), for all values of p1 and p2 where p1 6= p2:

X(v)− ω ·X(p1) − (1− ω) ·X(p2) > 0. (3.26)

As before, v = ω · p1 + (1− ω) · p2. The three terms of interest are:

X(v) =
αλv

(β + αλv)

ωX(p1) =
ωαλp1

(β + αλp1)

(1− ω)X(p2) =
(1− ω)αλp2

(β + αλp2)
.

Arranging these in the form of the left-hand side of Equation 3.26 gives:

αλv

(β + αλv)
− ωαλp1

(β + αλp1)
− (1− ω)αλp2

(β + αλp2)

Again the terms in the denominator are positive, so we observe the sign of the numerator over a

common denominator to determine concavity:

α ·λ ·v ·(β+αλp1)(β+αλp2) − α ·λ ·p1 ·((β+αλv)(β+αλp2) − α ·λ ·p2 ·((β+αλv)(β+αλp1)

Evaluating this expression and cancelling like terms results in ω ·(1−ω) ·α ·β ·λ ·(p1−p2)2.

All terms are positive, so

ω · (1− ω) · α · β · λ · (p1 − p2)2 > 0. (3.27)

Thus X(p) = αλp
β+αλp from Equation (3.8) is strictly concave, and it meets the requirements for an

expertise function in Theorem 3.4.5. Therefore, Theorem 3.4.5 holds, and claim (i) is satisfied. Claim

(ii) follows from Corollary 3.4.6.
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3.5. Conclusions from the Asymptotic Expertise Model

In this chapter, we describe a method to quantify how task routing rules influence the long-

run expertise of agents in a call center through on-the-job learning effects. We then prove how to

obtain the optimal solutions for two conflicting objectives: the expected value of expertise seen by

customers, or the customer’s objective, and the sum of all expertise within the firm, or the supervisor’s

objective. When all agents in a population share the same potential to learn, a policy of extreme uneven

routing optimizes the expected value, while a policy of even routing optimizes the sum. These routing-

driven productivity trends guide our expectations when designing routing rules in Chapter 5, where we

quantify trade-offs between knowledge management and waiting time goals over groups of agents and

tasks.
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CHAPTER

FOUR

Empirical Measurements of Agent Expertise

Chapter One: Managing On-The-Job Expertise Development in Contact Centers, page 1

Chapter Two: Expertise Predicted by Dynamic Programming, page 14

Chapter Three: Utility Functions in Agent Expertise, page 36

Chapter Four: Empirical Measurements of Agent Expertise, page 61

Chapter Five: Planning and Simulation of Expertise Development, page 81

Chapter Six: Conclusions, and Recommendations for Future Research, page 124

4.1. Empirical Research Goals

Here we analyze empirical performance data for agents in a financial service call center, and

find evidence of on-the-job learning. As would be expected, learning occurs more clearly in a few

call types, and in the earlier stages of an agent’s career. We focus on a description of some of these

observations. This data set is particularly valuable because it provides a rare opportunity to observe

trends in both handle time (abbreviated HT, or just H), and first call resolution rate (abbreviated FCR,

or just R). It has been suggested that a combination of these two metrics (the quantity µ-R = R/H) is
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useful for implementing skill-based routing rules in call centers, and in this chapter we take advantage

of this data to examine trends for the combined metric as well.

Performance on service quality metrics such as HT and FCR varies per call type and per

agent. By observing service trends with respect to explanatory variables—such as the call type, the

agent ID, the length of the agent’s tenure, or his total cumulative production—we may generate models

that predict future productivity.

Performance Metric Expertise from Recent Experience Expertise from Cumulative Experience

Chapter 2 Chapter 4

Empirical observations of faster

Call Handle Time H call handle times (H) with increasing

experience.

Chapter 5

Chapter 3 (X) Chapter 4

General Expertise X , Empirical observations of improving

First Call Resolution changes in first call resolution rates (R)

Rate R with increasing experience.

We confirm the observation made about other industries that cumulative production may be

used to define learning curves, such that we know who the best agents will be in the future: they are

the ones who handle the most tasks. Then since management controls the agents’ work assignments,

management may shape the skills of its workforce over time through work assignment policies—

Chapters 2, 3, and 5 evaluate these policy choices. In particular, the rates of expertise improvement

seen among agents in Chapter 4 greatly influences our expertise optimization model in Chapter 5, both

in terms of the learning model, and the optimization time period.

The table above shows how this study fits among the problems explored in other chapters.

For more context see also the full thesis outline, the motivations behind each chapter, and the separate
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Figure 4.1: Volume of Calls. Left: volume of calls by call type, where types are numbered from 1 to
178. Most of the call volume is generated by the top 25 call types. Middle: aggregated annual traffic
of all call types to the center as distributed by month. Right: Traffic of call type # 149 as distributed
by month.

Call Type Identifier Description Call Volume, % of Total Sample

15 address change 7.5%

16 agent inquiry 5.9%

149 sales request inquiry 5.9%

152 securities transfer inquiry 5.0%

88 legal transfer instructions 4.5%

150 sales request taken 4.4%

154 shareholder confirmation 4.4%

127 price history inquiry 4.1%

61 duplicate investor id letter inquiry 3.9%

Table 4.1: Examples of Call Types. Large-volume call types in our sample. See also the right side of
Figure 4.1.

chapter models that are described starting on page 5 in Chapter 1.

4.1.1 Contents of the Data Set

Our entire data set consists of call-by-call records of one contact center for all of 2007, and

contains about 2.7 million calls. We present the following description of these records to help the

reader understand the scope of the raw data. Each record has six fields:

• The name (individual agent ID number) of the agent who handled the call.
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• The reason for the call— also the call type, or task type—which falls into one of 178 categories.

• The date and time of the call.

• The start date of the agent who handled the call; her tenure is computed as the difference between

this field and the call date above.

• The time needed to handle the call, or handle time (HT), in seconds.

• The resolution status of the call—see below.

The resolution status may itself take one of six different values:

1. The customer’s inquiry was resolved to a satisfactory level, such that the customer need not call

again regarding this particular issue.

2. This call is the first of two or more transactions needed to satisfy the customer.

3. This is one of potentially multiple intermediate customer follow-up calls about this issue.

4. This is the last call out of a repeated series of customer calls regarding the same issue.

5. The calling party was not recognized as a customer.

6. “Other,” a catch-all category for odd call types.

In our study, we define resolution status levels 1, 4, 5, and 6 to be successful from the point

of view of service quality, while levels 2 and 3 are service failures. Thus the service quality record

simplifies to a binary set, where a one in a call’s resolution field is a success, and a zero is a failure.

Figure 4.1 gives some high-level call distribution data for this center. At left, the call volume

by call type shows that most customer inquiries fall into the top 25 out of 178 categories. Table 4.1

also gives some details about the largest call types by total volume.

The middle bar graph of Figure 4.1 shows the arrival rate per month, as a percentage of the

total annual call volume. Every month experienced substantial volume, though there was a decline at
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Figure 4.2: Performance Trends by Call Type. Left: scatterplot of HT versus call volume, where
each point is a different call type, and the HT value is an average computed over all agents who took
calls of that type. Middle: same as left, but for the FCR metric. Right: scatter-plot of FCR vs. HT. On
all three plots, call type # 149 is indicated by an arrow (see Section 4.3).

the end of the year. The final bar graph at right shows the call volume per month of a specific call type,

# 149, “sales request inquiry.” (Note that a call type ID number has no relation to the total call volume

of that type.) Later, Section 4.3 gives a detailed look at performance trends for call type # 149.

Among the various ways of classifying groups within this data, the call type proved to be the

most significant; that is not surprising, because each call type defines a fundamentally different kind of

task to be performed by agents. Thus our analyses in later sections generally start by segmenting the

performance data into groups defined by call type.

Figure 4.2 provides scatter plots of performance metrics, averaged over all agents, broken

down by call type. At left is handle time (HT) versus volume. A light linear regression trend line

is shown on the data, showing a general trend of faster service with volume of calls. The middle plot

shows the first call resolution rate (FCR) versus the volume of calls, with the trend line showing a slight

worsening with volume. The right-hand plot shows FCR versus HT. Note that if successful efforts were

made to improve performance through additional training, adjusting rosters, reassigning work, and so

on, then those efforts will tend to move this cluster of points up and to the left.

The HT and FCR values form another useful quantity when combined together. Gans and

Zhou (2003) showed that the product of resolution rate and service rate, or ρµ, is the best metric to use

for assigning work to agents under certain conditions. Here µmeasures how fast an agent works, and ρ

measures the success rate in resolving calls. Higher values of this product indicate an agent both serves
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Figure 4.3: Handle Time Trends with Tenure. Left: average handle times, in seconds, for agents
with up to two years’ tenure in the call center show a slight decreasing trend. Each marker gives the
value for one agent, averaged over all call types she handled. Right: the aggregate trend for all agents
with up to 13 years’ tenure shows an increasing trend. Note the large variation in mean HT starting
at about three years out. The right-hand plot includes the data from the left-hand plot; the x-axis and
y-axis scales on the right are larger.

customers more quickly, and reduces the number of incoming calls by providing correct service, thus

avoiding repeated inquiries and lowering future traffic (and call center costs).

Here we refer to this metric as the µ-R product, or metric, and compute it as a mean FCR

value divided by a mean HT value. A virtue of the µ-R product as a tool for managerial decisions

is that it places an agent’s speed of answer in a quality context. For example, some agents complete

their customer encounters quickly, but fail to resolve problems—and basing judgments solely on HT

data would reward such dysfunctional behavior. Sections 4.3 and 4.4 emphasize trends using the µ-R

metric.

4.1.2 Plan of Experiments: Data-Tenure, and Data-All

While records for 1006 agents exist in our database, we only have the tenure start date for

310 of them. Further, Figure 4.3 shows that agents with greater than about three years’ tenure exhibit

a wider variation of mean handle time than newer agents. That variation may be driven by factors we

cannot observe; our data set spans one year, so work assignments for previous years that could drive

trends among veteran workers remain unknown to us.
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Figure 4.4: Characteristics of Low and High Tenure Agents. Scatter-plots of agents’ average per-
formance over all call types served: HT (left) and FCR (right). The data used is for all 310 agents for
whom we have tenure records; tenure in days is plotted next to selected agents.

Figure 4.4 shows evidence for one possible explanation of the veteran agents’ performance.

These are scatter-plots of agents’ average HT (left) and FCR (right) over all call types served. The data

used is for all 310 agents for whom we have tenure records; tenure in days is plotted next to selected

agents. Most agents of fall in the middle in terms of the number of call types served (40 to 100).

But a number of high-tenure agents serve a very small number of call types, and also demon-

strate poor performance in terms of handle time and call resolution rate. That is consistent with a policy

of making veteran agents specialists in certain call types, and giving those specialists the toughest calls

from the most demanding customers. These veteran agents belong to a qualitatively different group

and should be studied separately.

In response to these factors, we define data set Data-Tenure to be the subset of the main

database containing all calls handled by agents with less than 15 months’ tenure. In other contexts

performance improvement is most pronounced among new workers, because newer workers are in the

midst of ascending the steepest portion of their learning curves. Later sections examine Data-Tenure to

test whether tenure and cumulative production have a significant relationship with agent performance.

Finally, define data set Data-All to be all records in the database. We describe some results

using Data-All as well, in order to to try to boost the power of statistical tests, and see how results are
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Figure 4.5: Individual Handle Time Trends. Left: One agent’s handle time trend for a specific
call type, showing improved performance (faster service) as cumulative production increases. Here
−b̂ = −0.04. Right: A different agent’s handle time trend. The rate of improvement is quite high—
this agent reduced service time by almost 40% over three months, from an average of eight minutes
per call to five minutes, after serving 560 calls. In this case −b̂ = −0.07.

influenced by larger sample sizes. Tests and results involving Data-All ignore the tenure field.

4.2. Performance Trends at the Level of Individual Agents

The left side of Figure 4.5 shows the handle time performance of Agent #103 on call type

#149 over all the days in 2007. This comes from data set Data-Tenure. This agent begins work at the

end of 2006, and so begins taking calls just before the series of measurement starts. The olive circles

show the cumulative average HT over all the calls to that point—the trend with cumulative production.

The converging dashed lines give 95% confidence intervals for the cumulative average HT.

Let N stand for cumulative production (the number of discrete tasks of this type done to

date); and let H(1) stand for the handle time of the first call. Then the traditional log-linear learning

curve is given by the expression

H(N) = H(1) ·N−b̂ (4.1)

where exponent b̂ is estimated from the data. For Agent #103, the best fit is b̂ ≈ 0.04; and the learning

curve follows the cumulative average HT trend line shown by the circles. This is a substantial trend in

which the long-run average drops from about 300 seconds to 200 seconds per call over the first half of
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Figure 4.6: Call Quality Trends. Left: Agent #103’s first call resolution (FCR) trend for call type
#149. Here FCR performance does not change as cumulative production increases. Right: Some
agents demonstrate on-the-job learning trends for call resolution. Here a different agent improves his
cumulative average first call resolution rate from 40% to 80% after taking about 560 calls over six
months.

the year. The right side of Figure 4.5 shows a different agent hired late in the year (Agent #642) who

demonstrates a rapid learning rate, b̂ ≈ −0.07.1

Note that in contrast with data from manufacturing settings, there is considerable variance

among the call time values due to the inherent variability of customer service demands. For individual

learning curve estimates, we only recorded b̂ values for agents who handled 120 or more calls of the

type in question.

Figure 4.6 gives the same agent’s performance history for the FCR metric. One means a

call is resolved successfully, and zero means the customer’s issue is unresolved and he must call back.

By contrast with the HT curve, this cumulative average FCR curve is flat, and no significant learning

curve appears. For many agents, changes in the mean resolution rate with cumulative production are

less significant than changes in the mean handle time. Even when the mean resolution rate is a flat,

fixed value, that value is different from agent to agent, and agents may still be differentiated by their

FCR performance. Some agents do demonstrate learning trends with respect to call resolution—the

agent on the right of Figure 4.6 doubled productivity on this measure after serving about 560 calls.
1The estimation routine finds the best least-squares fit of a log-linear trend line, characterized by H(1) and b. Before fitting,

the call data is averaged such that one data point submitted to the estimator represents 40 calls. Those calls may be spread out
in time—the averaging operation is done with respect to volume, not time.
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Figure 4.7: Example of Performance Getting Worse. Left and right plots are examples of two
different agents who are assigned only a few calls of call type #149–most of their work involves
handling other kinds of calls. As their production rate falls, their cumulative average HT and FCR
values get worse.

Our review of this contact center’s procedures leads us to assume that the difficulty level of

a particular call is not screened before the call is routed to an agent.2 All agents have the same chance

of facing an unusual inquiry that is very difficult to handle in one encounter; when comparing work

histories spanning hundreds or thousands of calls of a specific type, differences observed among FCR

rates may thus be fairly attributed to the background, training, and talents of the individual agents.

As an interesting side note, we have investigated whether FCR gets worse when agents are

highly utilized; in general, no significant correlation between peak busy periods and poor FCR values

exists among these agents. On a typical day these agents as a group are 32% utilized, based on an

8-hour shift. The maximum utilization is about 86%, but in the record the mean utilization for agents

in the Data-Tenure set rises above 50% for only 18 days out of the year.

The trends in the plots of HT and FCR repeat in data set Data-Tenure among the other agents

as well. Exceptions occur when only a few calls appear in an agent’s record; then the small sample

size with high variance gives an erratic trend for the mean, and larger confidence intervals.

As an example, Figure 4.7 gives the performance history for an agent whose work assignment

changes mid-year, and who takes less than 40 calls of type #149 for the last half of 2007—most of
2One exception to this is the small set of returning calls to the most veteran agents, who are routed the most unusual or

specialized cases. When we are aware of them, we exclude these cases from our analysis.

70



Figure 4.8: Clusters Assigned by Call Volume, Plotting µ-R Metric, for Call Type Sales Requests.
From data set Data-All: performance on the µ-R metric for call type #149. Left: to obtain even cluster
sizes, agents who served more than 800 calls join the last cluster (indicated by **). Right: cluster sizes
are uncontrolled. Single agents are allowed to form clusters, so the trend among very high-volume
agents influences the general trend. The best agent achieves over twice the µ-R score of the lowest-
volume cluster.

Figure 4.9: Clusters Assigned by Call Volume, Plotting Handle Time and Call Resolution, for
Call Type Sales Requests. From data set Data-All, for call type #149. Left: the median call handle
time decreases with the volume of calls handled. Middle: the FCR rate is high throughout, but does
show improvement in later clusters. Right: again for reference, the µ-R metric improves with volume.

his time is then spent on other call types. This agent’s production rate slows down over time, and

his performance levels show evidence of worsening over time, making him a potential subject for a

forgetting rate study. For now, we just indicate that possibility for future work, and maintain focus on

trends of increasing productivity in the data.
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4.3. Performance Trends at the Level of a Single Call Type

Call type #149, or “sales request inquiries,” exhibits significant cumulative production-based

performance trends. Section 4.2 takes examples of agents serving this call type to illustrate productivity

changes at the individual level. Here we broaden the scope of our analysis: we seek to know how

significant production volume trends are among all agents serving this type.

As the first step, consider the following approach. Given a specific call type Y found in data

set Data-Tenure, consider all the agents who served that type during the year. Put those agents into

a list, and sort them by the number of type Y calls they took. Those at the bottom of the list served

tens or hundreds of type Y calls, while those at the top served thousands. May we expect a significant

performance difference between those at the bottom of the list, and those at the top?

To test call type #149, we split the list into two agent groups of equal size, low-volume and

high-volume, and compare their median µ-R values (computed as mean HT divided by mean FCR for

each agent and call type). Using a standard t-test and a Wilcoxan rank test, we find trends with respect

to volume that are significant at the 95% level. The high-low group difference for median µ-R values

is about 25%, and for median handle times is about a minute per call.

Some agents in this contact center are in the active portion of their learning curves—consider

them active learners—and some have already traversed their learning curves with respect to cumulative

production: they have reached a performance plateau. For Data-Tenure, call type #149, the mean

estimated learning exponent for handle time is b̂ = .018, with standard deviation σ̂ = 0.033. 70% of

these agents were active learners, and 54% had a learning exponent more active than the mean, with

b̂ > 0.018. Note that values of b̂ close to zero indicate a plateau, while larger values indicate active

improvement—the larger, the more active. For instance, an agent for which b̂ = .018 will demonstrate

a mean handle time that is 11% faster after serving 500 customers of this type.

Figure 4.8 illustrates another approach for observing performance trends with respect to

volume. We use a standard, tree-based clustering algorithm to group agents into clusters based on
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the volume of calls they take. The effect is to reduce the natural variation that exists in the customer

encounter data, and expose underlying trends.

Here the left-hand bar graph gives the median µ-R value for each of seven clusters, with the

median volume of each cluster increasing from left to right on the abscissa. Comparing the first and

last clusters, we see the median µ-R value has increased about 20%—see Table 4.2, Part (I).

In this plot, size limits keep the clusters from becoming too small. That forces the last cluster

(marked by two stars, **) to accept several elite agents, who handled extremely large numbers of calls

of type #149. Note that we are measuring median values, so even if the top ten elite agents are removed,

we still see the same 20% increase in µ-R levels.

For the right-side bar graph, the clustering algorithm runs with no restrictions on cluster size.

Now it defines clusters for the elite agents, even though some clusters only hold one agent. The new

trend is striking: the µ-R value more than doubles when the best cluster is compared to the lowest-

volume cluster.

We note the following evidence of the relationship between call volume and µ-R performance

level for type #149:

• The Wilcoxan rank test shows that the higher-volume half of the agent population performs

better.

• The size-restricted clustering results show a 20% improvement between the first and last clusters.

• The unrestricted clustering results show a performance doubling between the first and last clus-

ters.

We also see evidence at the individual level of agents improving their operational perfor-

mance by handling more calls. Agents 103 and 642 from Section 4.2 demonstrate improvement with

increased production. In the unrestricted clustering results, agent 103 is in the third-highest cluster;

and agent 642 after only three month’s service moved from the bottom 25% to the top 25% of agents

by µ-R level.

73



(I.) Call Type #149 Volume-Based Clusters, Cluster Size Restricted. Data Set Data-All

# Agents Median Tenure Median Volume Median µ-R Metric Median HT

174 — 95 .15 328

82 — 217 .14 313

43 — 337 .15 298

55 — 436 .15 294

25 — 586 .17 295

14 — 703 .15 290

45 — 800 .18 259

(II.) Call Type #149 Volume-Based Clusters, Unrestricted. Data Set Data-All

402 — 201 .15 304

19 — 967 .18 257

12 — 1409 .17 268

1 — 1795 .20 262

2 — 2184 .22 257

1 — 2626 .24 215

1 — 3087 .32 169

(III.) Call Type #149 Volume-Based Clusters, Unrestricted. Data Set Data-Tenure

42 318 154 0.12 379

24 292 364 0.16 321

23 261 612 0.14 312

1 208 1013 0.14 363

2 314 1534 0.15 327

1 362 1786 0.25 214

2 235 2183 0.26 221

Table 4.2: Characteristics of Agent Clusters That Are Assigned Based on Call Volume, for Call
Type Sales Requests. (I.) Assignment of agents into seven clusters for call type # 149, for Figure 4.8.
The clustering criterion is call volume. Note that the µ-R metric tends to get better with cumula-
tive production for the very high volume clusters—and we can see that a decreasing handle time is
negatively correlated with increasing µ-R levels. (II.) Size is unrestricted—the algorithm may form
individual clusters for elite agents. (III.) Clusters are recomputed using Data-Tenure, showing no clear
trend with respect to agent start dates.
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4.4. Performance Trends at the System-Wide Level

For almost every call type, some individual agents demonstrate increased productivity as a

function of cumulative production. Repeating the high volume-low volume group segmentation of the

previous section for the other call types, we find that about 40% of all customer requests belong to a

call type for which performance is better—statistically significant at the 95% level—for high-volume

agents than for low-volume agents.3

We would also like to know if cumulative production or simple tenure better predicts per-

formance changes in this setting. A repeat of the Wilcoxan rank test for tenure shows 15% of all the

customer requests belong to call types for which tenure predicts improving performance at the 95%

level of significance.

This section goes further and applies our clustering method to other call types as well. Agents

serving each type join one of seven groups based on volume. In separate trials, they join based on their

tenure. After the clusters are formed, the median µ-R values from each group are compared with the

clustering variable to see how well they are correlated. No limits exist for cluster sizes, so single-agent

clusters are allowed. We find that about 30% of the calls fall into categories that resemble type #149,

where µ-R performance levels are well predicted by volume-based clusters. Only three call types

demonstrate tenure-based clusters that predict µ-R well.

Table 4.3 shows the cluster analysis results, for clusters whose correlation and R2 values

we consider significant. Part (A) lists results for volume-based clustering using data set Data-Tenure.

Part (B) shows the results for tenure-based clustering. Part (C) repeats (A) using the larger data set,

Data-All.

We apply the following five metrics, all of which indicate higher correlation or quality the

closer they approach one.

• CC is the cophenetic correlation coefficient, which measures the internal consistency of the
3Some call types with very low arrival rates were excluded from this analysis. For those types, so few calls were handled

that the median values of low and high volume agent groups were almost the same.
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clusters.

• Kendall’s tau correlation coefficient is a unitless, nonparametric estimator of the trend among

clusters for µ-R to improve with volume, Parts (A) and (C), or tenure, Part (B). Section 4.A.2

provides more details.

• R2, volume is a metric from a linear least-squares regression, showing how well volume predicts

the µ-R trend among clusters.

• R2, tenure is similar, but uses tenure as the predictor instead of volume.

• R2, Vol.+Ten uses both volume and tenure to predict µ-R.

4.5. Conclusions from the Empirical Study

In this chapter we have analyzed a data set of almost three million calls handled over the

course of a year by one thousand agents. Those calls are classified into 178 distinct types. For many

call types, there is at least one example of a learning curve by which an agent improves his handle time

performance, or his call resolution performance, as a function of his cumulative average production of

that type. Over the set of individual agent learning curves, regardless of call type, we estimated the

fastest learning rate in Equation (4.1) to be b = 0.1.

At a higher level, we see that increased cumulative production can drive performance across

large groups of agents. For several call types there was a statistically significant improvement in

performance for agents who took a high volume of that type, compared to agents who only took a few

calls of that type. A cluster analysis of one of these types shows that the µ-R metric doubled when we

compare the most experienced worker to the median of the cluster of the least experienced workers.

In Chapter 5, we draw upon these observations to set the parameters in a two-step, optimization–

simulation approach for finding the best work assignments to groups of agents.
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(A) Volume-Based Clusters, Data Set Data-Tenure

Task ID # Agents CC Kendall’s Tau R2, Volume R2, Tenure R2, Vol.+Ten.

39 95 0.80 0.71 0.65 0.81 0.83

61∗ 97 0.83 -0.71 0.64 0.34 0.86

70 82 0.75 0.81 0.65 0.19 0.76

127 78 0.80 0.62 0.82 0.06 0.85

145 16 0.97 0.81 0.92 0.24 0.93

149 95 0.93 0.62 0.70 0.02 0.73

150 77 0.90 0.71 0.73 0.08 0.75

166∗ 29 0.95 -0.52 0.61 0.36 0.68

174 52 0.81 0.81 0.76 0.10 0.77

(B) Tenure-Based Clusters, Data Set Data-Tenure

Task ID # Agents CC Kendall’s Tau R2, Volume R2, Tenure R2, Vol.+Ten.

49∗ 22 0.86 -0.81 0.05 0.66 0.73

61∗ 97 0.81 -0.71 0.66 0.78 0.92

153 16 0.89 0.71 0.06 0.72 0.75

(C) Volume-Based Clusters, Data Set Data-All

Task ID # Agents CC Kendall’s Tau R2, Volume — —

14 212 0.89 0.73 0.84 — —

70 299 0.78 0.52 0.50 — —

88 315 0.88 0.81 0.87 — —

127 347 0.93 0.81 0.83 — —

149 438 0.91 0.90 0.84 — —

150 284 0.89 0.81 0.57 — —

152 331 0.87 0.81 0.74 — —

174 158 0.86 0.81 0.71 — —

178 179 0.78 0.62 0.78 — —

Table 4.3: Characteristics of Agent Clusters That Are Assigned Based on Call Volume, for Se-
lected Call Types. Clustering trends that predict the µ-R metric. There are no restrictions on cluster
sizes. Section 4.4 provides definitions of the column headings. Agents serving each call type in this
table were divided into seven clusters, and cluster median values were compared. These call types
demonstrate statistically significant performance differences from one cluster of agents to the next
cluster, where agents are assigned to clusters based on how many calls of that type they took during
2007—volume-based clusters. (*) Call types 49, 61, and 166 are interesting because of their high neg-
ative correlation with µ-R performance. For type 61, the reason is that FCR rates fall with increasing
tenure and volume.
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4.A. Clustering and Ranking Methods∗

4.A.1 An Algorithm for Forming Agent Clusters∗

The clustering results discussed in Chapter 4 are obtained using the following three-step

procedure.

First, we compute the Euclidian distance between each pair of observations in the set. In

these experiments the distance would be in units of time, for tenure-based clusters, or in units of

customers served, for volume-based clusters.

Next, the procedure builds a hierarchical cluster tree. All agent records start as leaf nodes,

and they join clusters in such a way that the increase (due to the join) in the sum of the squares of

the distances within a cluster is minimized. Small clusters are then joined to form larger ones, until a

predefined number of clusters is achieved—here, between seven and ten. To evaluate whether or not

to join small clusters a and b, we note the membership size of each, na and nb, and then compute

na · nb · d2/(na + nb), where d is the distance between the centroids of the two clusters.

Third, we compute the Cophenetic clustering coefficient, which measures how well the hi-

erarchical tree preserves the original distances between the observations: a value close to one means

the clustering solution represents the original structure of the data well (Martinez and Martinez [2008],

page 436).

4.A.2 A Note on Kendall’s Tau, A Nonparametric Ranking Comparison of Tenure

and Volume Effects∗

Preliminary regression tests indicate that volume is a better predictor than tenure, but it is

difficult to directly compare the effects of tenure and cumulative production because of differences in

the units of the regression coefficients. As a means of validation, we may use Kendall’s tau coefficient

τ to provides a unitless comparison of these trends (Higgins [2004], page 159). Consider a two-

column, n-row matrix of pairs of observations (Xi, Yi) that we assume have been drawn randomly
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from a continuous bivariate population—in this case, Xi will represent tenure in weeks or the call

volume, and Yi will be a performance measure, such as handle time. In the tests implemented here,

these values are positive integers. Then, sort the rows in ascending order of the X-values, keeping pairs

of observations together. We define the rank correlation coefficient τ as follows:

τ = 2 · P [(Xi −Xj)(Yi − Yj) > 0]− 1.

So τ is a function of the probability P that the product (Xi−Xj)(Yi−Yj) is greater than zero, where

index j is a row further down than i. τ takes values from 1 to -1; if P = 1/2, then τ = 0.

We can compute an estimate of τ as follows:

Uij =


1, (Xi −Xj)(Yi − Yj) > 0

0, (Xi −Xj)(Yi − Yj) < 0
(4.2)

Then define Vi =
∑n
j=i+1 Uij , so that Vi is the number of pairs (Xj , Yj) that are concordant

with (Xi, Yi) for j ≥ i+ 1. Then
(
n
2

)
is the number of pairs in the data set, and

Vi =
∑n−1
i=1 Vi(
n
2

)
is the fraction of concordant pairs. Then the estimate of the expected value of τ becomes

τ̂ = 2 ·
∑n−1
i=1 Vi(
n
2

) − 1.

The variance is

Var[τ̂ ] =
4n+ 10

9(n2 − n)
.

So the estimation process for τ̂ is straightforward, though some technical corrections are

needed when ties are present among the data.

4.A.3 The Wilcoxon Rank-Sum Test∗

Another non-parametric test used in Chapter 4 is the Wilcoxon rank-sum test, also known

as the Mann-Whitney U test (Higgins [2004], page 37). We compare two agent groups to test the
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hypothesis that they both come from the same population—in this case, whether agents Xi that handle

low call volumes achieve the same performance as those Yj who handle high volumes of a certain type.

Our results is that the median of the low-volume group is significantly different from the high-volume

group at the 95% level.

For groups such as ours with more than 20 members, the test is computed simply as follows.

Define the Mann-Whitney statistic U as the number of pairs (Xi, Yj) for which Xi < Yj . A large

value of U means the larger rank values—say, ranked in increasing order by µ-R value—occur among

the high-volume Yj agents. Then consult a lookup table for U that defines the critical values at the

desired significance.

Tables of the standard normal may be used for large sample sizes, such as ours. In this case

Z = U−µu

σu
, where µu = NX ·NY

2 , and σu =
√
NX ·NY · (NX +NY + 1)/12; NX is the number of

agents in the low-volume group, and NY is the number in the high-volume group.

The derivation of the statistic U is similar to that of Kendall’s τ , and the two statistics are

equivalent in specific cases.
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CHAPTER

FIVE

Planning and Simulation of Expertise Development

Chapter One: Managing On-The-Job Expertise Development in Contact Centers, page 1

Chapter Two: Expertise Predicted by Dynamic Programming, page 14

Chapter Three: Utility Functions in Agent Expertise, page 36

Chapter Four: Empirical Measurements of Agent Expertise, page 61

Chapter Five: Planning and Simulation of Expertise Development, page 81

Chapter Six: Conclusions, and Recommendations for Future Research, page 124

5.1. Introduction: An Optimization/Simulation Approach

5.1.1 Motivation and Models

Suppose an operations manager determines that on-the-job learning is significant among

the workforce of agents she is responsible for. She observes her agents developing expertise with

additional exposure to specific calls, exhibiting trends such as those of Figure 5.1 . How may she

best take advantage of those trends to improve her group’s performance? In this chapter, we provide a

two-part answer to this question. This model assumes a call center with agent utilization rates between

30% and 60%, belonging to the quality-driven regime (see Gans et al. [2003], page 100).

As the table below shows, Chapter 5 focuses on improvements in call handle time with
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cumulative expertise, where handle time is assumed to start slow and to get faster with experience. We

have several reasons for selecting the handle time–cumulative experience model here. First, note that

trends of handle time getting faster with experience were common among the agents and call types

observed in Chapter 4. From the data, we saw that forgetting may be a factor for some agents, but that

forgetting trends were not reliably identified for larger groups. By contrast, trends of learning with

cumulative production were significant on a wide scale. Improvements in handle time may also have

several interpretations, making them useful in different contexts. For instance, they may be taken to be

improvements in service quality—a fast response may indicate a knowledgeable agent. They also have

a noticeable operational impact because they increase the call center’s capacity, and lower customer

waiting times, which can be measured in queueing simulations. For more context on our modeling

choices, see also the full thesis outline, the motivations behind each chapter, and the separate chapter

models that are described starting on page 5 in Chapter 1.

Part one, starting at Section 5.2, discusses mathematical programming approaches for gen-

erating optimal work assignments. These assignments are in the form of call routing targets for each

agent that depend on their skill and expected learning curve in cumulative production for each call type.

To be useful, the routing targets need accurate assessments of agents’ potential to improve—derived

for instance from human resources data about an agent’s education, background, and training period

observations—and an accurate demand forecast for incoming calls. We will assume sufficient accuracy

on both measures for the purpose of this chapter.

Performance Metric Expertise from Recent Experience Expertise from Cumulative Experience

Chapter 2 Chapter 4,

Chapter 5

Design and simulation of optimal

work assignments under learning,

Call Handle Time H adapting Ch. 3 utility functions

to evaluate improvements in call

handle times (H) over groups

of agents.

Chapter 3 (X) Chapter 4 (R)

General Expertise X ,

First Call Resolution

Rate R

Part two, starting at Section 5.3, describes routing rules that implement the routing targets

in a stochastic model of a small contact center, where customer arrival times and service times are

randomly distributed. In the normal case of multiple agents serving multiple queues, the observed
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inherent randomness of these systems will cause agents to be ahead of schedule with respect to some

routing targets, and behind with respect to others, at any single point in time. Recognizing this, we

define five routing rules that control agent activity with respect to their pre-set targets in different ways.

We then conduct experiments using discrete-event simulations to evaluate the rules along dimensions

of expertise development, variation of expertise among agents, and maintenance of waiting-time per-

formance.

Informed by the behavior of expertise objectives from Chapter 3, we observe how the five

rules must trade off customer waiting time against fidelity to routing targets. Among our simulation re-

sults, we describe a case under which the customer’s utility function Uc may be substantially improved

using priority routing, and another using the same system parameters under which priority routing

is counterproductive. Taken all together, parts one and two provide a contact center manager with a

toolkit to set both routing targets and target-implementing rules such that the development of agents’

expertise can be fully incorporated in operational planning.

Figure 5.1: Recap: Empirical Examples of Improving Performance. Repeated again from Chap-
ter 1: an example of cumulative average handle time performance improving with experience. Left:
an agent gets faster and decreases her average handle time from 8 minutes to 5 minutes, a ≈ 40%
improvement, after handling about 560 calls over five months. Right: our model of this process, the
log-linear learning curve, where the call handle time for agent i and call type k is a decreasing function
of cumulative production, Hik(Nik) = Hik(1) ·N−bik

ik . The learning exponent in this case is b = 0.07.

83



5.2. A Nonlinear Program For Finding Optimal Work Assign-

ments

5.2.1 Design of the Objective Function

Suppose our operations manager is responsible for a total of I agents who handleK different

call types. The handle time performance changes by agent and by type, so let subscripts i and k be

the indices specifying each agent and type, respectively. More customers typically call in than a single

agent can handle, so she seeks to divide Ntotal calls into work assignments Nik for each {agent, type}

pair:

Ntotal =
K∑
k=1

Nk =
I∑
i=1

K∑
k=1

Nik. (5.1)

Her first step is to define an objective function for the optimization. She notices that her

agents perform better with experience, and thus wishes to consider learning-based improvements in

efficiency as part of her work allocation model. In Chapter 3, we examined two fundamental functions

of expertise that she can use.

• The first is the the expected value of agent expertise seen by a customer, which we call the

customer’s utility function of expertise, or Uc. This function is optimized by an extreme routing

rule that concentrates the highest possible volume of work on the smallest feasible subset of

agents.

• The second is the sum of expertise present at the call center, which we call the supervisor’s

utility function of expertise, or Us. This function is optimized by a routing rule that divides work

assignments evenly among agents.

In the approach taken here, one of these utility functions becomes the optimization objective, and its

influence is represented in the optimization solver output by a set of target percentages for routing calls

to agents. Subsequent simulation results show us which of a selection of routing rules characterized by
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high to low evenness among call distribution outcomes does best to implement the objective’s target

values in a stochastic model of the service system.

The agents’ circumstances will favor one of these utilities. If the arriving tasks favor special-

ized expertise—expert agents demonstrate critical efficiency and accuracy improvements compared to

unseasoned agents—and if on-the-job learning is important for manifesting that expertise, then Uc is

the better choice. Some agents may have strong latent task-specific potential that benefits the group if

it can be tapped; specialized routing targets to steer the right calls to those agents are preferred.

On the other hand, the manager may have several reasons for wanting to develop agents’

expertise equally. Agents may cover for each other more easily. Server pooling to reduce system

congestion becomes easier. Agents perceive their own workload to be more fair when everyone else

receives the same assignment. The firm may reclaim some bargaining power with respect to salaries

by distributing necessary skills more evenly. If such reasons predominate, objective Us is the better

choice.

An additional subtlety exists in the present context regarding the supervisor’s utility Us, the

straight sum of expertise values in a group. Note that Chapter 3 examines these utility functions where

all calls are classified into a single type. But Chapter 4 shows that agents face a variety of call types, and

each type is characterized by different average performance measures. In fact, we find that each agent-

type pair exhibits a unique performance trend. Now we broaden our approach to accommodate both

multiple call types and multiple agents when pursuing objective functions for expertise development.

Given differing call types and agent abilities, the optimal value of the sum of expertise may not be

produced by a completely even assignment of calls to agents. But from our experience of how to

maximize a concave sum, we can expect that the best assignment for Us will be more even than the

best assignment for Uc.

Our manager knows that during her career she may face a different balance favoring one or

the other for a specific agent group and time period. Here we will consider both Uc and Us as objective

functions, and explore the ramifications of both choices.
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As a first step, our manager collects data to determine an accurate estimate of her agents’

potential to improve, such as the data shown in Figure 5.1 that plots one agent’s change in performance

on a specific task. She has confidence in her data, and can estimate well the capabilities of untried

agents by matching their human resources profiles with past work histories of veterans who were once

at the same stage of expertise.

Figure 5.2: Objective: Minimize a Function of Marginal Handle Times. Given a demand forecast
D, we must assign Ni jobs to agents i ∈ {1, 2, 3}, such that

P3
i=1Ni = D. We require that our optimization

objective take into account the dynamic of agent handle time decreasing through cumulative experience.

The model of expertise development appears at the right of Figure 5.1. Recall that this

model is the commonly used log-linear learning curve applied to improvements in an agent’s handle

time, where the call handle time for agent i and call type k is a decreasing function of cumulative

production,Hik(Nik) = Hik(1)·N−bik

ik . Figure 5.2 illustrates this dynamic in the presence of multiple

agents. The organization also conducts research for quality assurance purposes on agent performance,

and finds that improved efficiency often correlates with improved expertise on other dimensions of

service quality—by encouraging efficiency improvements, she also hopes to boost quality metrics that

are harder to quantify.

Our manager considers whether or not it is useful to specify routing priorities, and works out
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a simple way to estimate their importance. Say Hik(NM ) is the handle time after an agent takes some

number of calls NM , where NM is the maximum number of calls of type k that could be routed to i in

one period. Then to attain a percentage p of this improved efficiency, the agent needs to be routed Np

calls, where

Hik(Np) = Hik(NM ) + p · [Hik(1)−Hik(NM )]

Hik(1) ·N−bik
p = Hik(1) ·N−bik

M + p · [Hik(1)−Hik(1) ·N−bik

M ]

Np =
(
(1− p) + p ·N−bik

M

)(−1/bik)

(5.2)

Figure 5.3: Example of Arrival Rates. Different call types to have different arrival rates. Routing
rules that encourage priorities or specialization are most important when significant learning occurs
among the low-volume call types.

For example, if bik = 0.01 and NM = 300, to attain p = 75% of the potential efficiency

improvement this agent must be routed a total of Np = 70 calls. In general it would be easy to route

Np calls to i if the arrival rate λk of call type k is large, so that i receives frequent opportunities for

service through a policy of agents taking the first waiting customer—then routing priorities may be

unnecessary. However, that is not the case for many call types; for instance, see Figure 5.3 for the

empirical distribution of call type arrival rates from Chapter 4. In our example, consider the volume

of other call types to be so large that they crowd out our agent’s favored type, making it unlikely a
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no-priority policy will cause agent i to get 70 calls within the optimization period. Were our manager

to ascertain that many examples like this exist in her group—that certain of her agents will progress

rapidly on specific lower-volume call types—then objective Uc is preferred, because her assignment

objective must introduce routing priorities to match capable agents to favored task types that they

would otherwise rarely see.

5.2.2 Maximizing the Customer’s Utility Function Uc

Here we can also define the total customer’s utility Uc over all agents and call types as the

expected value of expertise, as discussed in Chapter 3. There, a quantity 0 ≤ X ≤ 1 represented a

positive experience level. Now, consider instead the slowest mean handle time Hk among the agent-

type pairs to be zero expertise; and let positive quantities of expertise be represented by the difference

between Hk and faster values Hik.

• We can write the expertise level as Xik = Hk −Hik.

• In the cumulative production model Hik(Nik) = Hik(1) ·N−bik

ik .

• Substitution in the first equation gives Xik = Hk −Hik(1) ·N−bik

ik .

• The customer’s utility is defined as Uc =
∑
j pjXj for some j, requiring routing proportions

pj . Here, proportions pik for agent i and call type k may be obtained by splitting the number of

calls assigned Nik into Nik = pik ·Dk, where Dk is the demand forecast for type k calls.

The customer’s objective, the expected value of expertise, may now be expressed as

I∑
i

K∑
k

pikXik =
I∑
i=1

K∑
k=1

pik ·
[
Hk −

(
Hik(1) ·D−bik

k · p−bik

ik

)]
(5.3)

Note that the routing proportions sum to one for every call type, or
∑I
i pik = 1. Also note

that expertise now has units of time (say, minutes) and its values lie in the range 0 < Xik ≤ Hk.

Our manager observes that Equation (5.3) would better reflect the value of agents’ expertise

to the contact center if they were weighted by the relative arrival rates of the different call types. She
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therefore assigns weights to each term wk = λk

I·
PK

k=1 λk
, where λk represents the mean arrival rate of

type-k customers to the center. The term I in the denominator here allows the weights to sum to 1

over all terms in the double summation, but it also reduces the numerical accuracy of a solver. Since

it is present identically in all terms, it can be discarded. Note that the weights wk could potentially

incorporate other factors, such as the profitability of serving each of k different classes of customers.

Weights wik could also be defined to account for unique costs or other characteristics of individual

agents.

We now define the final form of the customer’s utility function as

Uc(pik) =
I∑
i=1

K∑
k=1

wk · pik ·
[
Hk −

(
Hik(1) ·D−bik

k · p−bik

ik

)]
. (5.4)

When our manager decides the customer’s utility—the expected value of expertise—is the

right quantity to optimize, she would like to maximize Equation (5.4) as the objective, written

max
pik

(Uc(pik)) , or equivalently min
pik

(−1 · Uc(pik)) .

Unfortunately as we saw before (pages 48 and 53), and show in Lemma 5.2.1 below, Uc(Nik) is a

convex function, and so it presents the potential for multiple local maxima. It does not have convenient

optimality properties—the local maximum that is returned depends on the initial conditions the solver

sees, and it may not be the true global maximum.

As a technical matter before stating the next result, we note that all routing proportions pik

are constrained to be strictly greater than zero in the targets we seek from a solver, although pik is

allowed to be very small, so that it is acceptable for pik ·Dk ≈ 0.

Lemma 5.2.1. The objective function of Equation (5.4), Uc(pik), is a convex function of pik.

Proof. To show that Uc(pik) is convex in pik, we must show that ~vT∇2Uc(pik)~v ≥ 0 for any real-

valued vector ~v of length I ∗ K (see Boyd and Vandenberghe [2004], page 74, or Nash and Sofer

[1996], pages 22-23). Here ∇2Uc(pik) is the Hessian matrix, I is the total number of agents, and K is
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the total number of call types. First, note that

Uc(pik) =
I∑
i=1

K∑
k=1

wk · pik ·
[
Hk −

(
Hik(1) ·D−bik

k · p−bik

ik

)]
=

I∑
i

K∑
k

wk · pik ·Hk −
I∑
i=1

K∑
k=1

wk ·Hik(1) ·D−bik

k · p(1−bik)
ik

Constant C1 =
I∑
i=1

K∑
k=1

wk · pik ·Hk =
K∑
k

wk ·Hk (5.5)

Uc(pik) = C1 −
I∑
i=1

K∑
k=1

wk ·Hik(1) ·D−bik

k · p(1−bik)
ik

= C1 −
I∑
i

K∑
k

Cikp
(1−bik)
ik (5.6)

where terms Cik = wk · Hik(1) · D−bik

k are constant with respect to pik, and Equation (5.5) holds

because
∑I
i pik = 1. Uc(pik) is now a constant minus a sum, and the nonzero Hessian terms are

∂Uc(pik)
∂pik

= −(1− bik) · Cik · p−bik

ik

∂2Uc(pik)
∂p2

ik

= bik · (1− bik) · Cik · p−(1+bik)
ik ≥ 0

∇2Uc(pik) = diag
(
bik · (1− bik) · Cik · p−(1+bik)

ik

)
. (5.7)

The Hessian matrix ∇2Uc(pik) is thus a diagonal matrix of size (I ∗ K, I ∗ K), with strictly pos-

itive elements on the diagonal (because pik > 0). Therefore all of its eigenvalues are positive;

∇2Uc(pik) is positive definite (see for example Lay [1994], pages 289 and 416); and the quadratic

form ~vT∇2Uc(pik)~v > 0. It is therefore also positive semidefinite. Thus we have shown that Uc(pik)

is a convex function of pik, and the lemma is proved.

Finding the best solution to objectiveUc(pik) involves submitting the problem (maxpik
Uc(pik))

to a nonlinear solver; but as discussed above, the global optimum may not be returned, or the solver

may have trouble converging to a solution. Our operations manager devises the following work-around.

The first-order Taylor series approximation to the nonlinear term p−bik

ik is just the linear term pik. Her

data reveal the values of the learning exponents to be bik ≤ 0.1 among the agent-type combinations,

so the maximum linearization error for one pik term in the sum is about 4% at pik = 0.349—and the
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error is much less for other pik values. She accepts the trade-off of losing a small amount of accuracy

to guarantee the solver’s convergence to a good solution, and therefore the new linearized objective

function for the customer’s utility becomes

Uc(pik) =
K∑
k

wk ·Hk −
I∑
i=1

K∑
k=1

(
wk ·Hik(1) ·D−bik

k

)
· pik. (5.8)

5.2.3 Maximizing the Supervisor’s Utility Function Us

To maximize the sum of expertise Us in the current context, where a high level of expertise

is expressed as fast service, we need to minimize the sum of final marginal handle times. Thus our

manager starts with an objective function to minimize the sum of Hik(Nik) values over all agent-type

pairs, and again includes the weighting by call type arrival rate wk = λk

I·
PK

k=1 λk
. This gives

Us(pik) =
I∑
i=1

K∑
k=1

(
wk ·Hik(1) ·D−bik

k

)
· p−bik

ik . (5.9)

We seek the values p∗ik that minimize this function, or minpik
(Us(pik)). An optimal

routing target p∗ik may show some unevenness, and increase assignments according to high-volume

call types given by wk values, and according to high-performing agents as determined by low Hik(1)

and high bik values. Nevertheless as we show in Lemma 5.2.2 below this is a convex function we wish

to minimize; in a solver that may be transformed to the problem of maximizing a concave function,

which we saw in Chapter 3 was maximized by making even assignments when agents were equally

capable. Our manager therefore expects the routing targets derived from Us(pik) and the associated

best routing rule to promote more even assignments than would be the case for the Uc objective, which

explicitly seeks the most extreme specialized assignments.

Lemma 5.2.2. The objective function of Equation (5.9), Us(pik), is a convex function of pik.
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Proof. Proceeding as in Lemma 5.2.1, we have

Us(pik) =
I∑
i=1

K∑
k=1

(
wk ·Hik(1) ·D−bik

k

)
· p−bik

ik

=
I∑
i=1

K∑
k=1

Cik · p−bik

ik

∂Us(pik)
∂pik

= −bikCikp−(1+bik)
ik

∂2Us(pik)
∂p2

ik

= bik(1 + bik)Cikp
−(2+bik)
ik ≥ 0

∇2Us(pik) = diag
(
bik(1 + bik)Cikp

−(2+bik)
ik

)
. (5.10)

The Hessian matrix∇2Us(pik) is thus a diagonal matrix of size (I∗K, I∗K), with positive elements on

the diagonal. Therefore as we saw for the Hessian matrix in Lemma 5.2.1, page 89, ~vT∇2Us(pik)~v ≥

0, and the lemma is proved.

5.2.4 Design of the Constraints

Our operations manager notes that three constraints are implied by Figure 5.2. First, the sum

of the calls must equal the demand forecast Dk, or ∀ k,
∑I
i=1Nik = Dk. Second, every agent

must get some calls—Agent 2 appears the least efficient, but still receives a nonzero allocation. This

is because substantive changes in expertise accrue slowly and in parallel to the daily peaks and valleys

of incoming traffic, and even the less promising agents will be needed during the peak times to keep

customer waiting times reasonable. Thus some reserve capacity for peak times must be built into the

solver’s work assignment—and informed by Chapter 4’s data, we take that to mean that every agent

must be taking calls during at least 20% of the time during the optimization period. This capacity is

captured in a set of minimum utilization constraints, which we will also refer to simply as minimum

constraints. This discussion also informs the question of what time span the work assignments should

cover. Since meaningful expertise gains occur after completing tens or hundreds of similar tasks, while

agents only get a few chances each day to engage in the same task, the time horizon for the manager’s

expertise-aware routing assignments will be some number of months.

92



Third, agents must not be overloaded. This is represented by the gray areas next to agent

allocations that show unused capacity. Both behavioral and operational issues may be at stake: large

differences in volumes of work assigned will strike some agents as unfair, and generating extremely

tight work schedules through routing targets leaves agents with no flexibility to cope with day-to-day

fluctuations around the average demand forecasts. These ideas are captured in maximum utilization

constraints, or just maximum constraints. Chapter 4’s data suggest a maximum utilization constraint

where an agent is between 50% and 60% utilized during the optimization period.

To express the minimum and maximum constraints, the manager evaluates the total time

taken by agent i to handle all calls in his assignment of type k, for every agent-type pair. This is

accomplished by the following steps.

• If an agent’s handle time does not change, he takes Tik =
∑N
n=1Hik(n) minutes to handle N

jobs, where Hik(n) is the time needed for the nth call; if Hik(n) is constant, Hik(n) = Hik(1),

and Tik = N ·Hik.

• Assume a unique log-linear learning curve function exists for every agent-type pair. Hik(n) de-

creases monotonically as we have seen compared with the first handle timeHik(1) as cumulative

production n increases.

• As before, the cumulative production total Nik and the routing target proportion pik are related

by Nik = pikDk, where Dk is the demand forecast for type k calls. Here it is convenient to

work with Nik.

• Specific limits can be placed on the value of the learning exponent bik, based on observations

from Chapter 4: 0 ≤ bik ≤ 0.1, and therefore 0.9 ≤ (1− bik) ≤ 1.

• In the presence of a learning curve, the time taken to handle N jobs becomes Tik =
∑N
n=1Hik(n) ≈∫ N

v=0
Hik(v)dv.
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Figure 5.4: Convex Objective and Concave Constraint Functions in Nik. Left: plot of a convex
log-linear learning curve Hik(Nik) = Hik(1)N

−bik
ik . The curve shows marginal values of handle time per call

decreasing with cumulative productionNik, for agent i and call type k. Right: the sum of all the handle times from
the left-hand curve becomes a concave function, the total time Tik(Nik)—note the scale of the peak is attenuated
to fit on the plot.

A good closed-form approximate expression for Tik is:

Tik ≈ Hik(1)
∫ N

v=0

v−bikdv =
Hik(1) ·N (1−bik)

(1− bik)
. (5.11)

Now the set of maximum utilization constraints may be written as

∀ i
K∑
k=1

Tik ≤ Tmax. (5.12)

and the set of minimum utilization constraints may be written as

∀ i
K∑
k=1

Tik ≥ Tmin (5.13)

The manager sets the values of Tmin and Tmax by looking at empirical trends of agent

utilization, as those reveal the organization’s consensus about the sustained rates at which agents should

be busy over multiple-month time periods. Again, as her data is similar to the quality regime call center

data in Chapter 4, the minimum utilization might be 20%, and the maximum 60%. Multiplying the

standard number of minutes worked per day by the number of working days in the optimization period

gives the total time Twork corresponding to 100% utilization. Let ρmax be the busiest allowed mean

utilization rate over the period; then Tmax = ρmax ·Twork. Similarly, ρmin is the lowest allowed mean

utilization rate over the period, and Tmin = ρmin · Twork.
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Figure 5.4 compares the forms of the convex marginal handle time function Hik(Nik) and

the concave total time Tik(Nik). Note that Tik(Nik) appears in two constraint functions with opposite

relational symbols—greater than or equal to Tmin, and less than or equal to Tmax—but when solving

an optimization problem, constraints must be able to be expressed in a standard form where all inequal-

ities point in the same direction. We take that direction to be less-than-or-equal-to, which means the

minimum constraint must be inverted. When that occurs, the sum of concave functions in the minimum

constraint is also inverted, resulting in the convex function TminPK
k=1 Tik

.

The shapes of the constraint functions become important in Section 5.2.6, so we conclude

this section with two results that describe their convexity properties. For convenience we refer to the

the number of calls Nik as the optimization variable rather than the routing target proportion of calls

pik. Again, these are simply related by Nik = pikDk, where exogenous constant parameter Dk is the

demand forecast of type k calls.

Lemma 5.2.3. The maximum utilization constraint function in Inequality (5.12),
∑K
k=1 Tik(Nik) ≤

Tmax, is a concave function of the number of calls Nik, and thus of the routing target proportion pik.

Proof. Let g(Nik) =
∑K
k=1 Tik(Nik). Then Inequality (5.12) may be written g(Nik) ≤ Tmax. We

prefer to define constraints in a standard form where the right-hand side is zero, so then this becomes

g(Nik)
Tmax

− 1 ≤ 0. In this case, for g(Nik) to be concave we must show that ~vT∇2g(Nik)~v ≤ 0 for any

real-valued vector ~v of length K. There is a separate constraint for every agent i, so we are concerned

only with a single summation over K call types in this case. Note that:

g(Nik) =
K∑
k=1

Tik(Nik)

∀ i, k: Tik(Nik) =
Hik(1) ·N (1−bik)

ik

(1− bik)
∂g(Nik)
∂Nik

= Hik(1) ·N (−bik)
ik

∂2g(Nik)
∂N2

ik

= −bikHik(1)N−(1+bik)
ik ≤ 0 (5.14)

∇2g(Nik) = diag
(
−bik(1 + bik)wkHik(1)N−(1+bik)

ik

)
. (5.15)
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The Hessian matrix ∇2g(Nik) is thus a diagonal matrix of size (K,K) that has strictly negative el-

ements on the diagonal. This latter property is true because pik > 0, we take Dk > 0, and so

Nik = pik · Dk > 0; therefore terms like (5.14) are strictly negative. Thus we know that all the

eigenvalues of ∇2g(Nik) are negative, and so ∇2g(Nik) is a negative definite matrix (see Lay [1994],

pages 289 and 416). It is also a negative semidefinite matrix, and we know for the quadratic form

that ~vT∇2g(Nik)~v ≤ 0 for any vector ~v. Therefore g(Nik) is a concave function of Nik. Substi-

tuting pik = Nik/Dk does not change the sign of terms like (5.14)—the only change is a constant

multiplier—and thus g(Nik) is also a concave function of pik, and the lemma is proved.

Lemma 5.2.4. The minimum utilization constraint function in Inequality (5.13),
∑K
k=1 Tik(Nik) ≥

Tmin, is a convex function of the number of calls Nik, and thus of the routing proportion pik.

Proof. Inequality (5.13) in standard form becomes TminPK
k=1 Tik(Nik)

≤ 0. Now the function we are

concerned with in this case is g(Nik) = TminPK
k=1 Tik(Nik)

. Note that:

g(Nik) =
Tmin∑K

k=1 Tik(Nik)

∀ i, k: Tik(Nik) =
Hik(1) ·N (1−bik)

ik

(1− bik)
∂g(Nik)
∂Nik

=
−Tmin

(
∑K
k=1 Tik)2

Hik(1) ·N (−bik)
ik

Diagonal elements of the Hessian are given by:

∂2g(Nik)
∂N2

ik

=
bikTminHik(1)N−(bik+1)

ik

(
∑K
k=1 Tik)2

+
2TminH2

ik(1)N−2bik

ik

(
∑K
k=1 Tik)3

≥ 0 (5.16)

Off-diagonal elements of the Hessian are given by:

∂2g(Nik)
∂Nik∂Njm

=
2TminHik(1)N−bik

ik ·Hjm(1)N−bjm

jm

(
∑K
k=1 Tik)3

≥ 0 (5.17)

The Hessian matrix ∇2g(Nik) is thus a square real symmetric matrix of size (K,K) with

all elements on and off the diagonal greater than or equal to zero. For conciseness, let ΣK =∑K
k=1 Tik(Nik), letFik = Hik(1)·N−bik

ik , and define a vector ofFik values to be ~F = (Fi1, Fi2, ..., FiK).
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Again, we take pik > 0, Dk > 0, and Nik = pik ·Dk > 0, so that we have

∇2g(Nik) =
(
Tmin
(ΣK)3

)
·
[
diag

(
ΣKbikFikN−1

ik

)
+ 2

(
~F · ~FT

)]
~vT∇2g(Nik)~v =

(
Tmin
(ΣK)3

)
·

ΣK ·

(
K∑
k=1

v2
kbikFikN

−1
ik

)
+ 2

(
K∑
k=1

vkFik

)2
 > 0.

Therefore we may claim that ~vT∇2g(Nik)~v ≥ 0, so that g(Nik) is a convex function of Nik. As in

Lemma 5.2.3, substituting pik = Nik/Dk does not change the sign of terms like (5.16) or (5.17), so

we know that g(Nik) is also a convex function of pik, and the lemma is proved.

5.2.5 Linearizing the Concave Maximum Constraint

Our operations manager seeks a method for computing work assignments that converges

reliably to an optimal solution, and produces repeatable results given the same set of inputs. But

those qualities are not guaranteed when using the set of nonlinear constraint functions developed in

the previous section. In particular, note that the maximization constraint in standard form is concave.

When combined with the convex objective and minimum constraint, that may cause a solver to be

trapped in local minimum, hence failing to find the true global minimum. In this section, we show

how to overcome this problem and design a convex program that consistently terminates in a unique

optimal solution value.

Unfortunately, to obtain the convex program we must sacrifice some accuracy in the maxi-

mum utilization constraint. This arises because all functions ofNik whose sum is suited to be bounded

by a maximum constraint here are increasing inNik—for example, Tik(Nik),Hik(1)−Hik(Nik), and

so on. (Of course a sum of just the marginal values Hik(Nik) is not useful in a maximum constraint.)

But learning curves exhibit diminishing returns with increased production, so all the functions we

might use that are increasing in Nik happen to be concave functions. Thus we have (concave function

≤ Tmax), destroying the convexity property of the nonlinear program.

To resolve this, we linearize the maximum utilization constraint. Instead of ∀ i
∑K
k=1 Tik ≤

Tmax, we use the sum ∀ i
∑K
k=1 βikHik(1)Nik ≤ Tmax. Here βik > 0 is a discount factor. This lin-
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Figure 5.5: The Effect of Linearization. Linearization of the terms in the maximum utilization constraint
achieves a convex program at the cost of some accuracy.

earization step implicitly assumes the following approximation is sufficiently accurate for each agent-

call type pair:

βikHik(1) ·Nik ≈ Tik(Nik) =
Hik(1) ·N (1−bik)

ik

(1− bik)
(5.18)

The approximation error increases as the learning exponent bik increases. Figure 5.5 illus-

trates the problem.

• Consider an example with two call types, where Ti1(N∗
i1) + Ti2(N∗

i1) = Tmax.

• Here the constraint is active at the solution, Ti1(N∗
i1) = Hi1(1)·(N∗

i1)
(1−bi1)

(1−bi1)
, and Ti2(N∗

i2) =

Hi2(1)·(N∗
i2)

(1−bi2)

(1−bi2)
.

• In the figure, the value Ti1(N∗
i1) given by the solid curve is attained early by Hi1(1) · N ′

i1,

given by the dotted line, and N∗
i1 > N ′

i1. Thus the new maximum constraint has become active

prematurely; agent i could have actually handled more calls of type 1 beyond what the new

linearized constraint allowed. A similar effect occurs for type 2 calls.

As a means to control this error, we specify a discount factor βik > 0. This reduces the slope

of the linear approximation, which is illustrated in the diagram of type 1 calls in Figure 5.5. Here a

value of 0 < βik < 1 is fortuitously chosen to make N∗
i1 − N ′

i1 = 0, as shown by the second dotted
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line. But because N∗
ik values are optimization outputs, and not knowable in advance, the choice of β

values must be estimated before the run.

To take full advantage of the discount βik, the user must devise a preliminary estimation step

to judge how large it should be with respect to other agents’ Hik and bik parameters, arrival rates λk,

and other factors. For the scenarios we examine, we do not see significant errors even when setting

βik = 1—the maximum constraint is not often active—and leave the development of a suitable method

to set βik as an open estimation problem. If necessary, users can also simply shorten the optimization

period to reduce this error, and re-optimize with a new set of updatedHik(1) values; and Appendix 5.A

describes another experimental method for reducing some of this linearization error.

5.2.6 A Nonlinear Program to Find Good Call Routing Targets

Below we present two convex programs with linearized maximum constraints, known as

Program CP-Uc and Program CP-Us. These two programs are used to generate the optimal call routing

targets for Section 5.3. The constraint functions are the same for both objective functions; Uc(pik)

maximizes the linearized customer’s utility function and Us(pik) maximizes the supervisor’s utility

function over all agent-type pairs by varying call routing proportions pik. Here all functions are written

in terms of the optimization variables pik.
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CP-Uc max
pik

Uc(pik) =
K∑
k

wk ·Hk −

I∑
i=1

K∑
k=1

(
wk ·Hik(1) ·D−bik

k · pik
)

(5.19)

such that

∀ i, k: Nik = pik ·Dk “number of calls”

∀ i, k: Tik(pik) =
Hik(1) · (pik ·Dk)(1−b)

(1− b)
“time taken”

∀ k: wk =
λk∑K
k=1 λk

“arrival rate weighting”

∀ i
K∑
k=1

βikHik(1)(pik ·Dk) ≤ Tmax “max. utilization” (5.20)

∀ i
K∑
k=1

Tik(pik) ≥ Tmin “min. utilization.” (5.21)

∀ k
I∑
i=1

pik ·Dk = Dk “full service” (5.22)

∀ i, k pik > 0 “pik positive” (5.23)

CP-Us min
pik

Us(pik) =
I∑
i=1

K∑
k=1

wkHik(1)(pik ·Dk)−bik (5.24)

such that...(as above)

We adopt the form of a convex program for each objective in order to guarantee the existence

of a global minimum objective value. A convex program is defined as an optimization program that

minimizes a convex function over a convex set, where the convex set is formed from a set of nonlinear

convex inequality constraints and linear equality constraints. See Boyd and Vandenberghe [2004], page

136; Bertsekas [2003], page 208; or Nash and Sofer [1996], page 473 for proofs and examples. It is

known that convex programs yield unique global solution values, and commonly used interior point

solvers such as Matlab’s fmincon() function can find these global solutions in a reasonable time by

means of a variant of Newton’s method (see Coleman and Zhang [2009], pages 3–18). Now we are in

a position to prove the result:
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Theorem 5.2.5. Program CP-Uc is a convex program.

Proof. Note the following properties of Program CP-Uc’s components:

1. By Lemma 5.2.1, page 89, the objective function is a linear function, which for the purpose of

classifying a nonlinear optimization program may be considered a convex function.

2. By Lemma 5.2.4, page 96, Inequality (5.21) is a convex nonlinear inequality constraint.

3. Inequality (5.20) is a linear inequality constraint, and thus can be considered a convex inequality

constraint.

4. The full service constraint is a linear equality constraint.

Together these four properties are sufficient to classify Program CP-Uc as a convex program, complet-

ing the proof.

Theorem 5.2.6. Program CP-Us is a convex program.

Proof. Note the following properties of Program CP-Us’s components:

• By Lemma 5.2.2, page 91, the objective function is a linear function, which for the purpose of

classifying a nonlinear optimization program may be considered a convex function.

• Note that properties 2, 3, and 4 of Theorem 5.2.5 above apply to Program CP-Us as well.

Together these properties are sufficient to classify Program CP-Us as a convex program, completing

the proof.

5.2.7 Example of Work Assignment Optimization

Our manager knows or can predict the starting handle times Hik(1), and can predict bik and

Nik for future time periods. Then Program CP-Uc and CP-Us on page 100 generate priority routing

target proportions that account for improving handle time trends among agents and call types. Consider

the following small example:
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Input Output CP-Uc Output CP-Us

Learning Exponents Start Handle Times Routing Targets Routing Targets

bik Hik(1) pc∗
ik ps∗

ik26666664
0.01 0.01 0

0.005 0.005 0

0 0 0

37777775

26666664
7.0 7.0 5.5

7.0 7.0 6.0

8.0 7.0 6.0

37777775

26666664
0.29 0.02 1.0

0.71 0.4 ≈ 0

≈ 0 0.58 ≈ 0

37777775

26666664
0.35 0.09 0.83

0.58 0.50 0.01

0.06 0.40 0.16

37777775
Table 5.1: Optimal Work Assignment Example Rows correspond to agents i = 1, 2, and 3; columns
correspond to call types k = 1, 2, and 3. A larger value for bik indicates an agent-type pair for which larger
learning-based improvement occurs. Call types are evenly weighted in the objectives. Note that pik > 0, but
values lower than 0.01 are indicated by ≈ 0 in the routing target tables. As expected, maximized objective
Uc(p

c∗
ik) > Uc(p

s∗
ik ), minimized objective Us(p

s∗
ik ) < Uc(p

c∗
ik), and the sum of final handle times under ps∗

ik is
lower than under pc∗

ik .

• Our call center has three agents, I = 3, and three call types, K = 3.

• The time span of interest is three months, or 60 work days, and agents take calls for equal shifts

of 480 minutes per day; if an agent were 100% utilized, he would work for 28800 minutes during

the entire period.

• The traffic forecast predicts an equal number of calls for each type, Dk = 1660, so the call types

are evenly weighted in the objectives. At the time of the forecast, calls are expected to take

around 6-7 minutes to handle, depending on the agent-type pairing.

• Staffing for the center has been set to match the volume forecast, such that the center’s mean

utilization is about 40%. To keep our nonlinear programming solution in line with this, Tmax =

15000 minutes. We set the lower bound Tmin to 5760 minutes, which corresponds to a utilization

of 20%.

Under these conditions, Table 5.1 shows the optimal routing assignments for a roster of three

agents taking three call types. At left are inputs: the learning exponents bik, and the starting handle

times Hik(1). A larger value for bik indicates an agent-type pair for which larger learning-based

improvement occurs. Here the numbers provide a challenge to the two objective functions Uc(pik) and
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Us(pik) from page 100, in that a good solution to one is likely to be a good solution to the other, and the

solver must work hard to generate outputs that give superior differentiated results on each objective.

The right side of the table shows the routing proportions output by a solver for these two

objectives. Both Uc(pik) and Us(pik) start at the same initial solution when running in separate trials

in the solver, and in each trial they improve their values until succeeding iterations of the total objective

differ by no more than 1e-6 minutes.

For call types 1, 2, and 3, the final target routing proportions differ by 25%, 35%, and 34%

respectively as the two objectives attempt to fulfill their differing aims. Let pc∗ik represent the output

under the customer’s objective Uc, and let ps∗ik represent the output under the supervisor’s objective Us.

• The maximized objective is Uc(pc∗ik) > Uc(ps∗ik ) (0.65 > 0.62).

• The minimized objective is Us(ps∗ik ) < Uc(pc∗ik) (19.73 < 19.77).

• The sum of final marginal handle times under ps∗ik is slightly lower than under pc∗ik (59.26 <

59.37).

This example demonstrates two other properties of the routing target computation. First,

given the presence of the learning exponent bik, the optimal routing policy cannot be deduced simply

by observing the starting handle times, Hik(1). Second, the presence of other agents and their individ-

ual characteristics changes the composition of the optimal solution. As a result, potential on-the-job

learning opportunities may be denied to certain agents because their skills are needed elsewhere to

improve the selected objective function’s value.
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5.3. Simulation of Routing Policies to Implement Optimal Work

Assignment Targets

5.3.1 Approach to Simulation

Our nonlinear program outputs precise targets for the agents’ workloads. Yet it is unclear

how such precise targets may be implemented in the unpredictable daily call volume seen by a typical

contact center. To gain insight into methods for implementing our ideal targets, we now describe

results generated by a contact center simulator. This simulator generates streams of random numbers

that imitate the random time points at which calls arrive, and the random lengths of time required to

serve each customer.

The goal here is to develop and analyze routing rules that both show fidelity to our optimiza-

tion targets, and show high performance on day-to-day operational metrics. Call centers depend on

metrics that are not easily amenable to analytical methods and optimization, such as mean customer

waiting time, the average service level, the average number of abandonments or dropped calls per pe-

riod, and so on. All time-based metrics correlate fairly well with waiting time — more waiting time

leads to predictably higher abandonment rates, and lower service levels — so we focus primarily on

the average waiting time W̄ as our key queueing simulation output.

In a single experiment, an optimization solver implementing Program CP-Uc or CP-Us runs

first. It defines the size and scope of the problem, and all relevant parameters. As described in Sec-

tion 5.2.6, it outputs a list of target proportions for each agent-call type pair. It also generates two

critical priority routing tables: the agent-to-type map, or just agent map, and the type-to-agent-map,

or just type map. The simulator contains a routing subprogram that uses these tables to guide new

customers to free agents during the run. When output from Program CP-Uc or CP-Us, both routing

tables follow exactly the ordering of target proportions. For instance, if an agent is assigned tasks A

and B in proportions 50.1% and 49.9%, task A comes first in his row of the agent map.
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5.3.2 Priority Routing Rules

The simulator uses the proportions and tables differently, depending on a key parameter:

the routing rule or policy. Figure 5.6 illustrates the differences among the routing rules we will be

exploring. In the top figure, the system does not prioritize calls by type, but only considers waiting

time: a “no priority” policy. When available to take a call, an agent chooses the customer with the

longest waiting time according to first-in-first-out order. The figure assumes the agents’ mean service

times are the same, so in the long run they each end up serving half of the incoming arrivals.

Without priorities, on-the-job learning specific to each call type still takes place, but it is not

tracked. As we have seen before, this leads to expertise distributions among agents driven solely by the

proportion of call types within the arrival stream, and each agent’s potential to learn by serving those

types. Agents serve many types, and spend a high proportion of their time in the steep starting phase

of each learning curve. This policy both minimizes waiting time from server pooling, and maximizes

the sum of expertise over all agents and types in the system.

Yet management may determine that more specialized expertise is needed than can be ob-

tained under a no-priority rule. The bottom of Figure 5.6 illustrates policies that develop specialized

expertise. Maximum specialization occurs when agents serve a single type, and sit idle when their

preferred customer type is absent. However, this extreme rule is rarely feasible except in the largest

systems. Instead, we may use rules that trade-off some waiting time performance to obtain a higher

degree of specialized expertise. Such rules employ agent-to-type priority routing schedules that limit

idling.

Consider a priority routing rule for Figure 5.6. Call types A and B arrive at the system

requiring separate kinds of expertise—in a the financial services setting, A may represent questions

about tax forms, and B may represent questions about credit card payments. Agents 1 and 2 have their

own preferred call type, but may also assist by taking calls of the other type. Let the service rates µ1

and µ2 be constant at one customer per arbitrary time period. Then the arrival rates λA and λB and the
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Figure 5.6: Three Rules for Routing Calls To Agents. Example of policy-dependent priority maps.
Top: When no call type priorities are identified, policy NP, agents take any waiting call. Bottom:
When priorities are present, agents choose the first waiting call of their preferred type. If no preferred
customers are present, the agent may offer to serve other types of customers (priority-no-idle policies),
or he may idle and wait for his preferred type (priority-with-idle policies). Here λA and λB are Poisson
arrival rates for call types A and B; rik are rates of type k served by agent i.

routing rule determine the degree of task sharing, and thus the trade-off of waiting time for specialized

expertise.

• Routing Rule Example Assume the lower diagram of Figure 5.6 is a system with Marko-

vian arrival and service processes. Mean arrival rates are λA = 0.45 customers per arbitrary time

period, λB = 0.25, and service rates are µ1 = µ2 = 1. The priority schedule, or priority map, for

agent 1 is {A, B}. For agent 2 the map is {B, A}. We adopt the routing rule priority-no-idle (PNI):

serve the highest priority customer from the priority map, if a customer of that type is present in the

system; otherwise check if the other agent is busy and a customer of the other type is waiting—if so,

then serve the other type.

These parameters suffice to determine the steady-state flows in the system: r1A = 0.365, r1B =

0.029, r2A = 0.085, r2B = 0.221. Figure 5.7 shows a simulation procedure’s convergence to the final
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Figure 5.7: Utilization for Two Agents Under Idle and No-Idle Routing. Example 5.3.2 results. The
two results in the middle are achieved under policy PNI, while the extreme top and bottom results are
obtained under PWI.

answer. Agent 2 is free more often, and the task sharing rule allows him to give substantial assistance

to Agent 1. Occasionally, Agent 1 assists Agent 2 with type B calls as well — about 7% of Agent 1’s

service is used to help Agent 2. 2

For our system simulations, let us consider the following five operational routing rules. Com-

pared to the first default rule, the other four pay a higher cost in waiting time in return for a better value

of the customer’s objective function, Uc(pik), as we will measure in Section 5.4.

1. No priority, or NP. Under this rule, on-the-job learning plays no role in workload assign-

ments. We calculate a staffing level sufficient to maintain a desired average service level with respect

to a call volume forecast, and do not consider skills or the call type when routing calls to agents.

2. Priority-No-Idle-Constant, or PNI-Constant. When free, an agent will take his next

call from the queue that is highest on his priority list, but all call types appear on his list. So he favors
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the call types in a certain order, but will not be idle if a customer is ready to be served.

3. Priority-No-Idle-Swap, or PNI-Swap. This is the same as PNI-Constant, with one

difference — the priorities of call types in the routing tables are changed dynamically, such that the

agent-type pair with the greatest error between the routing target proportion and the currently calculated

proportion occupies the top agent map and type map positions. The pair with the second greatest error

occupies the second two positions, and so on. The recalculation takes place following every service

event.

4. Priority-With-Idle-N-Constant, or PWI-N-Constant. An agent will idle until a call

type from his assigned priority list arrives, even at the cost of making other customers wait. The

implementation drops all non-priority call types from the rows of the agent map and the type map. If

all types were present, this would be the same as PNI-Fixed. The value N indicates the lengths of the

rows on the agent and type maps.

5. Priority-With-Idle-N-Swap, or PWI-N-Swap. This is the same as PWI-Constant, except

that the priorities among the agent-type pairs still present in the reduced agent and type maps are

changed dynamically, as with PNI-Swap.

5.4. Routing Rule Performance

5.4.1 The Efficient Frontier Defined By Five Routing Rules

Figure 5.8 plots the performance of our five rules in a such a way that they define an efficient

frontier describing the trade-off between the normalized value of the customer’s objective function

Uc(pik), as defined on page 100, and the normalized mean waiting time per customer W̄ . An ideal

policy, unachievable in practice, would land on the origin: zero waiting time, and maximum customer

utility.
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Figure 5.8: Optimal Trade-Off Curves, Defined by Routing Rules. Optimal tradeoff curves for
6 call types and 12 agents. Each point marks the performance of one of the types of routing rules.
The rules shown define the efficient frontier for average system utilization rates of 40% and 60%.
Normalizations are done separately with respect to the values generated by each utilization series.

Each point represents the tradeoff at the final value of a year’s operation (240 business days)

of a twelve-agent, six-call-type system. All agents begin the year with the same mean service time of

seven minutes for every call type; their learning exponents bik are all set to a moderate value of 0.01,

and the system assumes Markovian arrivals and service. The arrival rates for each call type are equal,

and are determined by the mean utilization value for the system: 40%, or 60%. Again, for this system

the arrival rates among call types are equal, and learning rates among agents are equal.

Under these conditions, we see how the introduction of priorities increases both measures.

Rule NP lies at one extreme, providing the lowest waiting time. The forced idling rule PWI-3-Swap

lies on the other extreme, providing the largest gain in objective Uc(pik). Both priority-no-idle rules

offer good compromises for the 40% utilization case. When utilization increases to 60%, interruptions

in agent work patterns caused by prioritizing call types result in longer queues. They also result in

more service opportunities for ascending specialized learning curves; PWI-3-Swap at 60% achieves a
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higher Uc(pik) gain than PWI-3-Swap at 40%.

Figure 5.9: Routing Rules and the the Supervisor’s Utility. Optimal tradeoff curves for 6 call types and
12 agents, with the sum of expertise (the supervisor’s utility Us) on the horizontal axis, and waiting time on the
vertical axis. Each point marks the performance of one of the routing rules. Note that the optimal trade-off curves
consist of a single point for both the 40% and 60% utilization cases. That point corresponds to routing rule NP, or
no-priority.

By contrast, Figure 5.9 shows the equivalent efficient frontier curve for the same system

using the supervisor’s utility as the objective function, as defined by Us(pik) on page 100. Note that

the curve consists of one point for both 40% and 60% utilization values: rule NP achieves both the

lowest total waiting time and the best value of the objective function. This supports the intuition

developed in Chapter 3 that the supervisor’s utility is optimized by even routing, as rule NP routes

calls evenly among agents. It also naturally weights routing proportions according to the arrival rate

ratio λkPK
k=1 λk

, which we also included in the objective Us(pik). In contrast to rule NP, the priority
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266666666666666666666664

0.0005 0.0005 0.02 0.0005 0.0005

0.0005 0.0005 0.0005 0.02 0.0005

0.0005 0.0005 0.0005 0.0005 0.02

0.0005 0.0005 0.0005 0.0005 0.0005

0.0005 0.0005 0.0005 0.0005 0.0005

0.0005 0.0005 0.0005 0.0005 0.0005

0.0005 0.0005 0.0005 0.0005 0.0005

377777777777777777777775
Table 5.2: Learning Rates for Section 5.4.2. The set of learning exponent values bik used for the exper-
iments of Section 5.4.2. Each column represents one of the five call types, and each row represents one of the
seven agents. Agents 1, 2, and 3 have high learning rates for call types 3, 4, and 5, respectively, as indicated by
the boxes. Note that in the second of the three experiments discussed, the values in the boxes are reduced to the
same low learning rates found elsewhere in the table: bik = .0005 for every entry.

routing rules do not appear to be attractive options when our manager chooses the supervisor’s utility

as her objective.

5.4.2 Routing Rule Performance Given an Asymmetric Distribution of Arrival

Rates

Figure 5.10: Asymmetric Distribution of Arrival Rates.Left: relative distribution of arrival rates over five
call types, used in Section 5.4.2. Actual arrival rates λk for k = 1...5 are multiplied by a common factor to obtain
a specific system utilization value for each experiment. Right: empirical distribution of call types, from Chapter 4.
We may expect different call types to have different arrival rates. Note that routing rules that implement priority
routing are most important when learning occurs among the low-volume call types.

Recall our manager’s observations on page 87 regarding the role of arrival rates. If on-the-job
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learning is important only for the high-volume call types that flood into the center every day, then there

is no need for priority rules to distribute those calls. Instead, those high-volume calls will constitute

a share of every agent’s workload, thus ensuring that everyone gets the cumulative production needed

to improve. In such cases we may expect routing rule NP to give the best value for the supervisor’s

objective Us(pik), and to give a very attractive point on a efficiency frontier such as Figure 5.8: the

lowest waiting time among the rules, and a competitive value of the customer’s objective Uc(pik)

compared to priority rules.

On the other hand, if learning is important on low-volume call types—and where as in Fig-

ure 5.10 traffic is an asymmetric mix of high- and low-volume types—then there is no guarantee that

an agent with a talent for improvement on a low-volume type will be exposed to that specific type

under a no-priority policy. Under these conditions, priority routing rules deliver better outcomes for

the customer’s utility Uc(pik) (at the cost of longer customer waiting times) and competitive values for

the supervisor’s objective Us(pik) . The following three simulation examples illustrate this dynamic.

Consider again the arrival distributions of Figure 5.10. Here, the first two call types λ1 and

λ2 occur so frequently that all agents must take a share to avoid unreasonable customer waiting. The

other three types may be served by one or two agents with acceptably small waiting time increases,

allowing for more specialization. We simulate the performance of seven agents serving these five

types, with an average system utilization of 40%, given the distribution of learning exponents from

Figure 5.2, and for all five distinct routing rules. Each replication reports the outcome for the system

at the end of one year’s operation. (See Appendix 5.B for more simulation details.)

• Figure 5.11 represents high learning on the call types with low arrival rates. This is

the scenario outlined above where we expect priority routing rules to do well. Note that among the

35 agent-type pairings, just three demonstrate high talent levels: the first three agents are capable of

fast improvement on low-volume call types 3, 4, and 5, respectively. The bar chart on the top shows

metrics we desire to maximize: dark green represents the customer’s objective Uc(pik); medium green
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Figure 5.11: Developing Expertise by Priority Routing. Results for five routing rules. Here there are
5 call types, 7 agents, and 40% average system utilization with the asymmetric call type arrival distribution of
Figure 5.10. Learning improvement exponents bjk are given in Table 5.2. Top: metrics we desire to maximize.
Dark green bars represent the value of the customer’s objective Uc(pik). Medium green bars show improvements
in the scaled supervisor’s objective Us(pik)/I . Bottom: metrics we desire to minimize. Black bars represent the
mean waiting time over all customers. Tan bars represent the coefficient of variation of the customer’s objective.
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Figure 5.12: Priority Routing When Learning Rates Are Low. As Figure 5.11, but low learning:
bik = 0.0005 for every agent i and type k. The coefficient of variation calculation for a specific call type includes
agents whose routing table prohibits that type; this greatly increases the COV value for the priority-with-idle
policies.
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Figure 5.13: Routing with Incorrect Priorities. As Figure 5.11, including the same high learning rates. But
the highest productivity agent-type pairs are given the lowest priority assignments—so agents are given the wrong
priorities from an operational point of view, and priority routing is actually counterproductive on the metrics we
wish to maximize.
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represents the supervisor’s objective Us(pik) (divided by I = 7 agents to put it on the same scale as

Uc(pik)); and yellow represents the number of calls served by the center during the year, normalized

to the number under rule NP (about 233,000 calls).

The plot on the bottom shows metrics we desire to minimize. Black bars represent the mean

waiting time under each rule. Tan bars represent the coefficient of variation (COV) of the customer’s

objective under each rule—the standard deviation divided by the mean. This COV value is first com-

puted separately for each call type, over all agents; and then combined into a single value over all types

through a weighted average, as weighted by arrival rate proportions λkPK
k=1 λk

. Note that the reported

COV values are pessimistic, in that agents who took no calls of a certain type are included in the

standard deviation; were they to be excluded, the COV values for the priority-with-idle rules would

decrease.

Note the clear trade-off shown in the two graphs between increasing the expected value of

expertise and customer waiting time—the progression over routing rules of increasing emphasis on

priority from NP, to PNI, to PWI increases both Uc(pik) and COV values, and mean waiting time (W̄ )

increases for PWI rules. The value for Uc(pik) is about 5 times higher under PWI-3-Swap than under

NP: this difference illustrates the value of priority routing rules. Both priority-no-idle policies PNI-

C and PNI-Swap also offer improved performance over NP, for almost no cost in increased waiting

times. We conclude that if our manager prefers the customer’s objective, then the introduction of

priority routing here is advantageous; and if the waiting time increase under PWI is too great, PNI is

the clear alternative.

• Figure 5.12 is identical to Figure 5.11 in every respect, except that the three high learning

rates highlighted in Table 5.2 have been reduced back to the same negligible levels as all other agent-

type pairs: bik = 0.0005,∀ i, k. Now the routing rules produce about the same value of Uc(pik); and

PWI-3-Swap incurs a ten-fold increase in waiting time. There is no useful trade-off here, and NP is

preferred.
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• Figure 5.13 repeats the experiment of Figure 5.11, but no priority assignments are made

to high productivity agent-type pairs—thus the boxed learning exponents in Table 5.2 are disregarded.

We prioritize the extreme opposite of the best choices from an operational perspective: we make

all the wrong priority assignments. In this case, policy NP is superior on four of the five metrics,

including Uc(pik), the very productivity measure that priority routing exists to enhance. Here priority

assignments offer no benefits according to our operational metrics.

This case occurs in practice because other concerns may take priority over management’s

targets for expertise development. For instance, to increase agent satisfaction and decrease turnover,

agents in some centers choose their own priorities. They may select types that seem easier, or more

interesting, according to their individual preferences; such choices may not align with priorities that

offer optimal productivity increases.

5.4.2.1 Time Series of Expertise and Waiting Time

As an illustration of how the customer’s objective Uc(pik) develops as a simulation experi-

ment unfolds, Figure 5.14 provides two time series plots from one replication for quantities of interest

in this case. These plots use the same service time (mean 7 minutes) and learning exponents (Table 5.2)

as before. This time the PWI rules’ routing tables have four entries instead of three.

The top of Figure 5.14 shows the evolution of Uc(pik) in the system, and the bottom shows

the mean waiting time for the five policy types. Routing rule PWI-4-Swap appears in the highest

position both times—it provides the largest trade-off of waiting time for expected expertise; and policy

NP gives the smallest trade-off, as we expect from Figures 5.8 and 5.11.

5.4.3 Performance of Natural Rules

Our results also offer guidance in cases where routing rules and priorities must be chosen

without access to a program that sets optimal targets. Consider the following two possibilities:

• Agent performance characteristics are known, or may be estimated. Policies PNI-C and
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Figure 5.14: Simulation Time Series.Top: evolution of the customer’s objective Uc(pik) in the system.
Priority-With-Idle-Swap performs best. Bottom: cumulative average waiting time in the system.
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PWI-C use agent and type routing maps that prioritize agent-type pairings relative to other agent-

type pairings. A qualitative assessment of relative performance is sufficient to build these maps.

Relative priorities, if accurate, suffice to achieve higher gains in the expected value of expertise.

• Agent performance characteristics are unknown. The introduction of priorities in this case

may be counterproductive, since as the experiment of Figure 5.13 shows the wrong priorities

may be assigned and cause performance to get worse. In our tests we find that a variant of

PNI-C may still be viable: PNI-C with alternating priorities, or PNI-C-Alt. Here the agent

routing map is organized as a Toeplitz matrix, with rotating priority assignments, and the type

map is adjusted to match. This routing rule does no worse than NP in boosting Uc(pik), and

occasionally does better when an agent’s performance characteristics align with her priorities.

PNI-C-Alt performed about the same as NP on waiting time and COV metrics, but resulted in a

slightly worse value of the supervisor’s objective, Us(pik)/I .

5.5. Conclusions from the Optimization-Simulation Studies

We found the log-linear function Hik(1) · (pik · Dk)−bik to be convenient for modeling

learning effects among contact center agents. Relative to other kinds of learning functions, empirical

estimates of the learning exponent are robust, and in addition the function’s monomial form makes it

suitable for use in the objective and in the constraints of a nonlinear optimization program. In this

chapter we showed how to create target routing proportions that take agent expertise into account, and

simulated five distinct routing rules to implement the targets in stochastic service systems. Rules that

introduce service priorities for specific agent-call type pairs improve the expected value of expertise

seen by customers, as long as the assigned priorities accurately reflect the capabilities of the agents.

We note that the priorities may actually be set qualitatively by an informed manager, without recourse

to an optimization engine; suboptimal but significant expertise gains may still be achieved.
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5.A. A Two-Step Nonlinear Program∗

Programs CP-Uc and CP-Us from page 100 are used to generate call routing targets for

use in the simulations of Section 5.3. In order to guarantee convergence to a global minimum, the

original nonlinear maximum utilization constraint is linearized in these programs—so its convergence

properties were obtained at the cost of some accuracy in the upper bound of the call volume allowed

for each agent. In some cases, this error may be reduced and the optimization variables p∗ik output by

Program CP may be improved according to the following technique.

• Compute p∗ik values normally using Program CP, which is shown again on the left of Table 5.3.

• Use p∗ik as an initial starting solution for Program NLP, shown on the right of Table 5.3. The only

difference between Program NLP and Program CP is that the nonlinear maximum utilization

constraint has been restored.

The hope here is that the solution p∗ik will guide the solver to the vicinity of Program NLP’s

true global minimum, bypassing peaks in the objective function that block solvers from escaping local

minima traps. Then we guess that iterations of Program NLP from point p∗ik will find this true global

minimum. In experiments, we sometimes find that this two-step solver chaining method produces a

small improvement in the p∗ik values. Another possibility in cases where other methods fail is to run

a metaheuristic simulated annealing, genetic algorithm, or probability collectives solver starting at p∗ik

(Ryder and Ross [2005]).

5.B. Simulation Details∗

Chapter 5 explores a two-step approach for first defining routing targets, and then for simu-

lating routing rules that implement those targets in a queueing system model of a group of call center

agents. In this appendix we discuss some details of interest related to the software environments used

to generate these results.
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Role Program CP (Convex) Program NLP (Not Convex)

Objective Uc(pik) or Us(pik), page 100 same

Min. Util. ∀ i
PK

k=1 Tik(pik) ≥ Tmin same

Max. Util. ∀ i
PK

k=1 βikHik(1)pikDk ≤ Tmax ∀ i
PK

k=1 Tik(pik) ≤ Tmax

Full Service ∀ k
PI

i=1 pik ·Dk = Dk same

GT Zero ∀i, k pik ≥ 0 same

Table 5.3: Convex Program and General Nonlinear Program. Chaining two optimization programs
explore for better results. Program CP sacrifices accuracy in the maximum utilization constraint to guarantee
finding a global optimum; Program NLP restores that accuracy, but running by itself from an arbitrary starting
solution it may be trapped in a local minimum. By seeding Program NLP with the output p∗ik of Program CP we
aim to force Program NLP to start running in the vicinity of the true global minimum for the problem.

The nonlinear optimization programs CP-Uc and CP-Us from page 100 create the routing

targets. These are implemented as Matlab routines that call the constrained nonlinear optimization

function fmincon(). See Chapter 3 of Coleman and Zhang [2009] for more details.

• Inputs to the nonlinear solver include the optimization time span, agent characteristic matrices,

objective and constraint data, and arrival rates and service rates derived from a fixed average

utilization rate for all agents.

• Outputs from the solver include agent-to-type and type-to-agent priority routing lists and their

associated numerical pik targets.

Our first prototype routing rule simulations were developed in the feature-rich, user-friendly

environment Extend c©, from the Imagine That! Corporation; please see http://www.extendsim.com.

To be compatible with others in our research community we also developed simulations

that consist of Java programs that invoke the ContactCenters simulation library. This open-source

library has been developed at the University of Montreal by Professor Pierre L’Ecuyer’s contact center

research group, with Dr. Eric Buist as the lead designer and programmer. The library contains all the

functionality required to run complex discrete-event simulations of contact centers, and is noted for

its fast completion times for long runs. Table 5.4 defines the default simulation parameters we use in
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Parameter Type Default Value†

Customer arrivals Fixed Poisson arrival rate;

may differ by call type.

Service time Exponential service times

(an M/M/C system with priorities).

Simulated time span for each experiment 12 months

Working days per month 20 days

Working minutes per day 480 minutes (eight hours)

Working minutes per month 9600 minutes

Mean agent utilization Fixed for each experiment,

over the entire time span at a value between 30% and 60%.

Number of replications for each experiment 30

Sample standard deviation, typical output value Less than 1% of mean

Sample standard deviation, maximum observed Less than 11% of mean

for rare events (such as waiting time

values under low utilization), one replication

Table 5.4: Chapter 5 Simulation Parameters.† Unless indicated otherwise in the text.

Chapter 5.

• Inputs to the ContactCenters simulator include all the input parameters for the solver program,

the routing target output information from the solver, the choice of routing rule for the current

replication—NP, PNI-C, PNI-Swap, PWI-C, or PWI-Swap—and the depth of the priority routing

list in the case of priority-with-idle rules.

• Outputs from the simulator include customer waiting times, agent utilization rates, routing pro-

portions observed in simulation p̂ik, objective function values Uc(p̂ik) and Uc(p̂ik), and the

coefficients of variation for those objectives.

Note that the queueing system model may be sensitive to the choice of the service time
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distribution, and results for other distributions of potential interest have not been pursued here. Gans

et al. [2003], page 112 compares the effect of assuming exponential, lognormal, and deterministic

service times in an M/G/100 system. Using the exponential distribution (as we do here) gives the

longest waiting times. Their model has other parameters we will not describe, but lognormal service

times cause waiting times to decrease roughly 10%, and deterministic service times cause waiting times

to decrease roughly 20% relative to waiting times under the exponential service time assumption.

Each replication took a year of simulation time, which according to pessimistic assumptions

in Equation (53) of Whitt [1989] gives between 5% to 10% of the required simulation time needed to

obtain a 95% level of significance in the results (±2.5% confidence intervals). However, the confidence

intervals reported by Contact Centers are better we would expect under this prediction. We believe this

is because Contact Centers uses stratified sampling and other variance reduction techniques to reduce

uncertainty in the results (L’Ecuyer and Buist [2006]; Ross [2002], pages 131–166). ContactCenters

reports its own estimate of its simulation error, and in the worst observed case for a waiting time

measurement, the ContactCenters 95% confidence intervals are within 11% of the mean at the end of

240 simulated days (one replication). We then averaged the results of 30 replications with different

random seeds to reduce the effect of random simulation errors further.
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CHAPTER

SIX

Conclusions, and Recommendations for Future Research

Chapter One: Managing On-The-Job Expertise Development in Contact Centers, page 1

Chapter Two: Expertise Predicted by Dynamic Programming, page 14

Chapter Three: Utility Functions in Agent Expertise, page 36

Chapter Four: Empirical Measurements of Agent Expertise, page 61

Chapter Five: Planning and Simulation of Expertise Development, page 81

Chapter Six: Conclusions, and Recommendations for Future Research, page 124

In summary, the principle results of the previous chapters are as follows:

• In Chapter 2, I describe a Markov decision process model shows that the existence of learning

will cause changes to the optimal policy for routing work to an agent. I consider parameter ranges

of interest for rates of learning, forgetting, arrival and service in the case of one call center agent

serving two queues, where learning and forgetting act to change the service rate. The policy

SMax, also known as the shortest processing time first policy, most closely approximates the

optimal policy in the majority of cases. Note that the commonly used µ-C rule is optimal under

124



the assumption of unchanging mean service rates, but suboptimal when the agent’s mean service

rate fluctuates.

• In Chapter 3, expertise is quantified as a continuous function of the arrival rate of jobs to an

agent. Two key funcions are defined: the customer’s utility function Uc, which is the expected

value of expertise seen by a customer; and the supervisor’s utility function Us, the sum of all

expertise values in the system. As a performance metric, Uc is optimized through specialized

work assignments, and Us is optimized through even or cross-training assignments. In real call

centers, management’s ability to optimize Uc is limited because server pooling is required to

keep service levels high—some call types must be shared among agents, forcing mixed work

assignments.

• Chapter 4 describes productivity trends in a new set of empirical call-by-call data from a finan-

cial service contact center. Many individual agents demonstrate improvement from on-the-job

learning. Specific task types demonstrate significant performance improvement with cumulative

production over large groups of agents. The log-linear learning curve function is used due to

its robustness in the presence of noisy data. Learning exponents as high as bik = 0.1 are found

when agents’ work histories are fit by this function.

• In Chapter 5, the research from prior sections informs a new approach to modifying work assign-

ments for contact center agents in order to maximize operational efficiency. A nonlinear program

identifies optimal work assignments based on characteristics of each agent–call type pair: these

work assignments balance immediate operational performance with the gains realized through

learning. Then a contact center simulator identifies the best routing rule to use to achieve these

optimal targets in a real system. The routing rules trade-off fidelity to specialized expertise tar-

gets with server pooling that reduces customer waiting time; management may use these results

to choose the routing rule whose trade-off is best for a specific case. Results include approximate

routing rules that do not require the use of nonlinear programming to set targets first.
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Interesting extensions of these results may be obtained in three areas. First, new empirical

data sets that provide call-by-call details of customer-agent interactions would help to establish how

well these learning, service time, and first call resolution parameter assumptions apply to other contact

centers. In addition, since operational analyses only consider aspects of service that are quantifiable,

contact centers that manage to quantify heretofore elusive aspects of the service encounter have an

advantage. An empirical data set that contains additional service quality data—whether or not a call

was transferred before terminating; the originating, intermediate, and terminating agent IDs for each

unresolved call sequence; whether or not increased call resolution failure is related to management

directing the toughest calls to specific agents—would provide a valuable window into the processes

analyzed in Chapter 4.

Second, note that the nonlinear programs of Chapter 5 could be adapted to optimize different

objective functions in cumulative production. One natural extension is to try to build convex programs

that consider the µ-R trends for agents, instead of just optimizing based on service time trends. Then

combinations of service time and quality parameters may be used to develop work assignment targets

that differ to some degree from the targets set solely using service time, and an appropriate implemen-

tation policy can then be chosen from my simulation studies.

Third, the variance in time and quality for calls of the same type handled by the same agent is

significant in this data. Advanced studies of how much each side—the customer and the agent—shares

responsibility for this variance could reveal how much an agent can learn to reduce variance with more

experience. A variance reduction learning curve may then be added to the optimization and simulation

framework presented here.
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