

Integrated Simulation Modeling of Supply Chain Impacts from Genetic Improvements in Switchgrass

Haley Stauffer¹, Dr. Tom L. Richard¹, Dr. Erin Webb² ¹The College of Agricultural Sciences, Department of Agricultural and Biological Engineering, Pennsylvania State University, University Park, PA 16802 ²Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37830

Abstract

The implementation of advanced lignocellulosic biofuel production in the U.S. is largely dependent on identifying and addressing uncertainty and risk along the feedstock supply chain. Switchgrass is a warm season herbaceous perennial grass native to North America that is well suited for biofuel production, according to the Department of Energy (DOE). This proposed research will evaluate the impacts on the supply chain from improved switchgrass phenotypes, accounting for increased yield and better yield stability. Data will be taken from the daily time-step biogeochemical model, DayCent, and incorporated into a supply chain model, ExtendSim Pro, via Python, quantifying risks along different regional supply chains. The results generated from these integrated models will enable better informed current and future decision making regarding the U.S. switchgrass bioenergy supply chain for growers, processors, and policy makers alike.

Valer and Witrogen Use Efficiency Growth Curve Data Feedstock Composition * WUE= Water Use Efficiency *NUE= Nitrogen Use Efficiency	IUJIII. Uncertainties ional Economic ly chain lation regional shortages or surpluses	Sequesters carbon in deep root structure, uptakes nutrients, and enhances wildlife habitats		competit biomass • Longer transpor distance needed quantitie	tion for volatility •Water availability es to obtain biomass es	
Research Questions & Objectives		Methodology		Expected Results		
Research Question 1 What are the economic trade-offs of increased yield and yield stability in	 Research Question 2 What are the risks and uncertainties within the biomass supply chain and how will they interact with yield fluctuations to impact farmers and biorefineries? 	 Phase 1: Build the supply chain model based on literature values, including yield variability and supply chain risks Phase 2: 		Yield	Quantify the potential benefits of improved Water and Nitrogen Use Efficiency (WUE, NUE) with respect to average yield and/or yield stability	
regional switchgrass bioenergy supply chains with conventional vs. improved phenotypes?		 Research case studies on different U.S. regions of interests (Upper Midwest, Lower Midwest, Northeast, Southeast) evaluating and accounting for crop yield risks during a given year and yield stability risks from year to year 		Risk	Evaluating regional response scenarios for biorefineries and farmers alike across the bioenergy supply chain will provide insight into designing supply chain risk management tools	
Objective 1 Identify trade-offs (risks and uncertainties) associated with biomass supply chains	Objective 2 Objective 2 Objective 2 Objective 2 Objective 2 Objective 2 of response (mean and statistical ranges) of improved switchgrass	 Phase 3: Incorporating baseline, medium, and future scenarios for estimations of supply shortage, excess supply, or projected average mean supply into software quantifying annual risk 		Uncertainty	Model uncertainty will be characterized through a stochastic modeling and Monte Carlo approach with various iterations.	
for conventional and	phenotypes compared to conventional varieties	Phase 4:		Decision	A comprehensive portfolio of de	ecision making

phenotypes in different geographic regions within the U.S.

improved switchgrass

- Transfer scenario results into the regional simulation model
- ExtendSim for further evaluation of key trade-offs and future

Thank you to John Field from Colorado State University for providing annual yield data from the DayCent model and Robin Clark from Oak Ridge National Laboratory for assisting with the ExtendSim Pro software set up and analysis.

Bartling, A. March 2020. Techno-Economic Analysis of a LigninFirst Integrated Biorefinery Using Reductive Catalytic Fractionation. CBI Monthly Sustainability and Economics Team Meeting Presentation. Webb, E. July 2020. Technoeconomic Analysis of Biofuel Feedstock Supplies to Inform Plant Development R&D. CBI Annual Meeting Poster Presentation.

