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Abstract  

This paper presents a novel mixed-integer linear programming (MILP) formulation for 

the Tank Farm Operation Problem (TFOP), which involves simultaneous scheduling of 

continuous multi-product processing lines and the assignment of dedicated storage tanks 

to finished products. The objective of the problem is to minimize blocking of the finished 

lines by obtaining an optimal schedule and an optimal allocation of storage resources. 

The novelty of this work is the integration of a tank assignment problem with a 

scheduling problem where a dedicated storage tank has to be chosen from a tank farm 

given the volumes, sequencing, and timing of production of a series of products. The 

scheduling part of the model is based on the Multi-operation Sequencing (MOS) model 

by Mouret et al., (2011). The formulation is tested in three examples of different size and 

complexity.  

Keywords: Tank farm operation, production scheduling, tank assignment, multi-

operation sequencing.  

 

Introduction 

Chemical manufacturing sites ship finished products to customers using different modes 

of transportation (MOT) such as railcars, tank trucks, and pipelines. These MOTs are 

usually loaded from or connected to storage tanks. Consequently, all finished products 

have to be fed from the process into the storage tanks before being shipped to customers. 

This type of operation imposes the need for available storage space at all times in order to 

avoid unnecessary shut-downs of the upstream chemical process. When these shutdowns 

occur, they are said to be a result of storage tanks blocking the process. If the chemical 

process produces several products and each one requires dedicated tanks, the product-

tank assignment and the processing schedule at the finishing lines determines how 
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efficiently the storage space is used. An inefficient assignment of tanks or processing 

schedule can result in blocking the production of certain products, even when there is 

plenty of available storage space in tanks assigned to other products.  

 

In this paper, we consider a multiproduct manufacturing facility that includes finishing 

lines connected to a number of storage tanks from which products are shipped to 

customers using different modes of transportation (MOT). The tanks are dedicated to one 

product, meaning that once a product is assigned to a tank, it cannot be used for another 

product. Cleaning of tanks to store different products is not allowed. We are concerned 

with finding the best possible assignment of products to dedicated storage tanks, and the 

best processing schedule at the finishing lines in order to minimize the unallocated 

production. For scheduling purposes, there is a set of production orders that requires the 

processing of a certain amount of product in the finishing lines. Orders have a known 

release date and all are due at the end of the time horizon. The release date corresponds to 

the moment when a certain amount of an unfinished product becomes available for 

processing in the finishing lines. These lines can process the order immediately and feed 

the storage tanks, or delay the order for a while until there is available storage space. The 

main decisions in this problem are the tank-product assignment and the scheduling of 

processing orders.  The set of storage tanks included in the production facility is 

collectively known as a Tank Farm, and therefore, the problem outlined above is referred 

to in this paper as the Tank Farm Operation Problem (TFOP).    

 

The paper by Sharda and Vazquez (2009) illustrates the relevance of the tank farm 

operation problem (TFOP) for the Dow Chemical company. The authors describe the 

development of a Decision Support System to evaluate the operation of a tank farm at a 

chemical production site in Freeport, TX. The system they propose is based on Discrete 

Event Simulation (DES). In discrete event models the system changes states as events 

occur and only when those events occur (ExtendSim, 2007). DES works by representing 

the occurrence of an event by generating and passing items among the elements of the 

simulation model. Cassandras et al. (1993), Banks et al. (2005), and ExtendSim (2007) 

are useful references on Discrete Event Systems and Discrete Event Simulation. Sharda 
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and Vazquez (2009) evaluate the operation of a tank farm in a Dow Chemical site that 

consists of more than 80 tanks for storing 60 product families, processed in 6 finishing 

lines. Their simulation model captures complex operating constraints, such as the effect 

of recycle lines on the simultaneous loading and unloading of tanks, operational logic 

when dealing with delayed processing orders, and the stochastic nature and dynamics of 

the operation of loading from tanks unto the different modes of transportation (MOT). 

Since the approach is based on simulation, it is not intended for finding an optimal 

resource allocation or production schedule; it is a tool for evaluating different storage 

tank allocations for a given production schedule.  

 

Other authors have used this type of DES as a support tool for operating a tank farm. 

Chen et al. (2002) from the Mathematical Modeling Group at BASF provide another 

example of a DES study of logistics in a chemical plant. The tank farm problem is also 

relevant in crude refining operations. For instance, Stewart and Trierwiler (2005) carried 

out a study of the tankage requirement in different operational scenarios for the Kuwait 

National Petroleum Company. Their main tool is DES which they combine with Linear 

Programming (LP). Chryssolouris et al. (2005) present an integrated simulation based 

approach that manages scheduling, tank farm, inventory, and distillation operations in a 

refinery. Their approach is based on generating random solutions within a given search 

space and evaluating them using the simulation model.  

 

Mathematical programming is another approach to the Tank Farm Operation Problem 

(TFOP). Optimization methods can determine the best possible tank allocation and/or 

production schedule within a given search space, as opposed to simulation tools that 

require the allocation and schedule to be specified. The disadvantage of this approach is 

that it requires operational constraints to be expressed as algebraic equations. Many of the 

operational constraints of TFOP have to be simplified in order to express them with 

algebraic equations for the optimization algorithms. Even with this limitation, 

optimization approaches have been successfully used in problems related to storage tank 

allocation and tank transfer scheduling.  
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Hvattum et al. (2009) address the storage tank allocation problem (TAP) in a maritime 

bulk shipping operation. A ship is equipped with a set of storage tanks that are loaded and 

unloaded according to a scheduled route. This problem has similar constraints as the tank 

farm operation problem we address in this paper; each tank holds only one type of 

product and several tank-product assignments are infeasible due to structural or safety 

constraints. The loads received and delivered at different ports are similar to product 

loading and unloading to storage vessels in the tank farm according to a production and 

shipping schedule. A Mixed-integer Linear Programming (MILP) model is used to either 

test the feasibility of a shipping route, to minimize tank cleanup time, or to maximize the 

vacant space in storage tanks. The main difference between the TAP and the TFOP is that 

the TFOP deals with a continuous production system, whereas the TAP deals with a 

limited number of discrete loading and unloading events. The work by Ha et al. (2000) is 

a good example of a research topic related with storage tank allocation, namely, the 

optimization of intermediate buffer sizing and allocation in multi-product batch process 

systems. Ha et al. (2000) determine the location, number, and size of storage tanks with 

the objective of minimizing the makespan. As opposed to the Tank Farm Operation 

Problem (TFOP), storage vessels can be shared by different types of batches. Vecchietti 

and Montagna (1998) address a similar problem. On a similar subject, there are 

mathematical programming approaches that deal simultaneously with production 

scheduling and storage considerations. Shaik and Floudas (2007) where the authors 

consider the short-term scheduling of continuous processes using a state-task-network 

representation with unit-specific event-based continuous-time formulation that rigorously 

models several storage requirements such as dedicated, flexible, and no intermediate 

storage. Sundaramoorthy and Maravelias (2008) present a simultaneous batching and 

scheduling formulation for a multiproduct multistage process that includes storage 

detailed storage constraints related to the maximum time a batch can spend in storage, 

and that acknowledges that in multistage processes batches of the same product cannot 

share the same storage vessel, making the size and number of storage units and important 

consideration. None of the last two works, however, considers the assignment of products 

to dedicated storage tanks among a preexisting tank farm to be a degree of freedom. In 

this fact lies a significant part of the contribution of the present paper where the tank 
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assignment problem is simultaneously solved with the scheduling problem.From the 

above review, we can conclude that Discrete Event Simulation (DES) is the approach that 

has received the most attention for addressing the TFOP in process industries. 

Mathematical optimization has been mostly aimed at related problems such as buffer tank 

allocation in multiproduct batch scheduling, or to assignment problems such as in the 

case of the tank allocation problem in maritime operations. Some authors (Zeng and 

Yang, 2009; Chen et al., 2002) have pointed out that the number of variables and 

constraints, the operational complexity, and the stochastic nature of logistic processes 

involved in tank farm management produce either intractable or oversimplified 

mathematical optimization models. Zeng and Yang (2009) propose integrating simulation 

and optimization for solving the TFOP. Their argument is that an approximate 

optimization model is sufficient for obtaining good solutions that can be evaluated using 

the simulation model in a second step. They use neural networks and genetic algorithms 

for the optimization module.  

The objective of this paper is to present an optimization method based on mathematical 

programming, namely Mixed-Integer Programming (MILP), for solving the TFOP. Our 

model of the TFOP includes scheduling of orders that arrive to the finishing lines as well 

as the optimal tank allocation. We use the description of the tank farm operation given by 

Sharda and Vazquez (2009), and try to incorporate in our MILP model as much of the 

operational details as possible. This paper does not include simulation by DES. 

Nevertheless, we believe that the output of the optimization model we propose could be 

evaluated, validated, and communicated using DES. The novelty of our work is the 

management of the system of storage tanks (i.e., the tank farm) as part a decision variable 

in a single stage production process. From the previous literature, we can see that the 

most closely related problems in the scheduling literature contained in the works by 

Shaik and Floudas (2007) and Sundaramoorthy and Maravelias (2008) do not consider 

the decision making process involved in assigning a tank or set of tanks from an existing 

tank farm as part of the degrees of freedom in a scheduling problem. It should be clear to 

the reader that although we choose a suitable existing scheduling model (Mouret et al., 

2011) to carry out the integration of the tank assignment and the scheduling problems, the 
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novelty of our work is not in the scheduling formulation itself but rather in the integration 

of the tank assignment and scheduling problems. 

In the following sections of this paper we give a more detailed description of the tank 

farm problem, state the optimization problem, discuss the mathematical model, and apply 

the formulation to three case studies. We end this paper with a summary of our findings 

and a discussion of possible future work. 

 

Problem Statement 

In this section we describe the tank farm problem as defined in this paper. The 

downstream section of a chemical production facility includes a set M  of continuous 

finishing lines that represent the last step in the manufacturing of a set J  of products, 

along with a set K  of storage tanks (the tank farm) from where the products are shipped 

to the consumers. The shipping operation uses different modes of transportation, usually 

railcars, tank trucks, or pipelines. Figure 1 (Sharda and Vazquez, 2009) shows a 

representation of this system.  

 

 

 

 

 

 

 

 

 
Figure 1. Downstream section of chemical production process 

 

The processing step in lines Mm∈  is carried out according to processing orders. A 

processing order is generated when a batch of unfinished product from the upstream 

chemical plant is ready to be processed by the finishing lines, which operate 

continuously. Each order is single product. The parameter jod ,  specifies the amount of 

product j to be produced according to order o . Each order Oo∈ has a release date ord  

Upstream 
chemical 
process
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that corresponds to the moment when the unfinished product is available for processing 

in the finishing lines, and when the corresponding production order gets generated. All 

orders are due at the end of the operating horizon. If an order cannot be processed at its 

release date, its production can be delayed as long as it can still meet the due date.  The 

production rate of each product Jj∈  in line m , mjrate , , is a known deterministic 

parameter. After its release date, ord , the order o is processed in the finishing lines and 

sent to storage in one of the Kk∈ tanks of the tank farm. At the beginning of the time 

horizon, some or all of the tanks are empty.  

 

It should be pointed out that for simplicity we assume that the tanks are initially empty. 

In practice, however, it is clear that most likely several tanks may be partially filled at the 

initial point, unless they have been emptied for cleaning and maintenance proposes. For 

modeling purposes, however, it is straightforward to handle the case when several tanks 

are partially filled. In particular, once a tank k  has been allocated to store a product j , it 

remains dedicated to this product throughout the operating horizon considered in this 

paper. In this way, by imposing this additional constraint the discrete decision of 

assigning the product j to a tank k is actually removed thereby reducing the degrees of 

freedom in this problem. 

 

There are a number of operational characteristics that make the management of a tank 

farm a complex problem. The processing of certain products might not be possible in 

every finishing line, and a product can only be transferred from a line to a tank if there is 

piping or some other type of connection between them. Simultaneous loading and 

unloading of tanks is not allowed. Finally, shipping can be done using different modes of 

transportation (MOTs), namely, railcars and tank trucks that are loaded in batches at 

specified times that correspond to the arrival of available MOTs.    

  

The problem can be summarized as follows: 

 

Given are: 

• A finite time horizon  
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• A set of finishing lines and their operational characteristics: 

o Subset of products that can be processed in it 

o Processing rate for each product 

o Subset of tanks that the line is connected to, and to which it can transfer 

material 

• A set of production orders with the following information: 

o A product to be processed (orders are single product) 

o Quantity of product to be processed  

o Release date 

o A due date corresponding to the end of the operating horizon 

• A set of products 

• A set of storage tanks and their characteristics: 

o Maximum capacity (volume or mass) 

o Subset of products that are compatible with its operating conditions 

o Frequency of unloading to MOT 

o Rate of transfer to MOT during unloading   

 

The problem is to determine: 

• The assignment of products to dedicated storage tanks 

• The assignment of orders to finishing lines 

• The start and duration of the processing time for each order 

• The tank or tanks to which each order will be transferred to 

 

Subject to: 

• Assignment constraints: 

o One product per tank 

o Maximum and minimum number of tanks for a product 

o Physical and chemical compatibility of finished product and tank 

conditions  

o Constraints given by existing connections between finishing lines and 

storage tanks 
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• Mass balance constraints 

o The rate of processing of an order is equal to the rate of transfer to storage 

tanks 

o Accumulation in storage tanks is equal to all transfers from lines minus all 

quantity loaded to MOTs 

• Scheduling constraints 

o No two orders can be processed simultaneously in the same line 

o An order can only be processed after its release date 

• Tank operation constraints 

o Simultaneous loading and unloading is not allowed  

o Unloading operations to MOTs occur with predetermined frequency 

o Unloading operations to MOTs have a predetermined maximum duration 

 

With the objective of: 

• Minimizing unallocated production that results from blocking finishing lines by 

unavailability of storage space 

 

The simplifications with respect to realistic tank farm operation are as follows: 

- Unloading operations occur at the same time in all tanks. Otherwise, the 

unloading of each tank at the end of each day could potentially require a 

priority slot, and the problem size would increase considerably.  

- Simultaneous loading and unloading of tanks is prohibited. 

- Modes of transportation operate in semi continuous mode only; there are no 

continuous MOTs. 

- Changeover times are neglected for the scheduling.  

 

Continuous time scheduling in the Tank Farm Operation Problem (TFOP) 

As we stated in the previous sections, production orders can be delayed. This allows for a 

production order to be scheduled some time after its release date, and allows optimization 

of the processing schedule at the continuous finishing lines in order to make the most of 

the available storage space given by the tank assignment decisions. An important 
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characteristic of the finishing process is that once an order has started, it has to be 

processed completely or the unprocessed quantity has to be declared as unallocated 

product. This fact is a result of the operational logic shown in Figure 2.  

 

There are alternative models that can be used for scheduling continuous parallel 

production lines. Since we are interested in the material balance in the storage tanks, we 

need to consider the transfer of different products from several parallel finishing lines. 

The simplest alternative to do so is to use a discrete time formulation. The state-task-

network (Kondili et al., 1993) and the resource-task-network (Pantelides, 1994) are the 

most general discrete time formulations for batch processes. Since the process at hand is 

single-stage and continuous, a much simpler formulation where at most one production 

order can be assigned to each time interval and each line could be used. The transfer to 

storage tanks would be equal to the processing rate, and the unloading of tanks to MOTs 

could also be specified for some of the time intervals. The balance of the inventory tank 

could be easily calculated at the end of each time interval. The drawback of this simple 

discrete time formulation is that when a large number of time intervals are needed, the 

problem may become intractable.   

 

Continuous time scheduling models are common nowadays since they can potentially 

decrease the combinatorial complexity that results from discrete time models (Floudas 

and Lin, 2004). Erdirik-Dogan and Grossmann (2008) present a model for simultaneous 

planning and scheduling of continuous parallel production lines that divides the operating 

horizon into planning time periods. The inventory mass balance is calculated at the 

beginning and at the end of each time period. A slot-based MILP scheduling problem in 

continuous time is solved within each time period. This model has a very natural way for 

incorporating sequence-dependent changeovers that has been extended by Lima et al. 

(2011) and Kopanos et al. (2011) to consider production changeovers across time periods. 

Yet another type of continuous time models relevant to the TFOP comes from the study 

of tank transfer and crude oil scheduling problems in the refining industry (Furman et al., 

2007; Mouret et al., 2009; Mouret et al., 2011 ).  Among these alternative models, we use 

the Multi-operation Sequencing (MOS) model described by Mouret et. al (2011). We 
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justify our decision as follows. On one hand, we exclude a Discrete-time formulation 

following the arguments of Floudas and Lin (2004) that state that a discrete-time 

formulation would lead to very large models that could quickly become intractable, 

especially since the problems considered in these paper span several weeks but require 

small time intervals given the short duration of some operations like shipping events that 

last only for a few hours. On the other hand we prefer the MOS model over the one by 

Erdirik-Dogan and Grossmann (2008) since this last one would most likely require a 

larger number of time slots, given than the time horizon has to be divided into time 

periods and within each one a number of priority slots has to be postulated. The number 

of time periods would have be equal to the maximum potential number of shipping events 

in order to carry out the mass balances in the storage tanks, and within each one a number 

of slots proportional to the unprocessed orders has to be postulated. In contrast, the MOS 

requires a number of time slots proportional only to the number of orders since there is no 

need to define time periods. We acknowledge that the model size is not the only relevant 

variable for computational efficiency, namely, there is also the tightness of the linear 

relaxation, but since the focus of our work is on the integration of scheduling and tank 

assignments, we consider that these criteria for selection of a scheduling model are well 

justified although a stricter selection of scheduling model would require extensive testing 

of several case studies using all possible types of models. 

 

Mathematical Model 

In this section we present a mathematical model that corresponds to the problem defined 

above where the tank assignment decisions and the scheduling decisions are solved 

simultaneously. The mathematical model in this paper is based on the Multi-operation 

sequencing (MOS) model of Mouret et. al (2011). It has been modified to account for 

specific considerations of the TFOP. The MOS formulation by Mouret et. al (2011) uses 

the idea of operations assigned to priority time slots that enforce a precedence of time 

events. Multi-operation sequencing (MOS) receives its name from the fact that several 

operations can be assigned to the same slot unless they are considered as non-

overlapping. To illustrate this concept, consider the six operations and three resources 

shown in Table 1 (Mouret et al., 2011). Operation v4 consumes resources r1 and r2, which 
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means it cannot be performed simultaneously with either operation v1 or v2. Operations 

that share resources are termed non-overlapping.      

 
Table 1. Set of operations and resources used by each operation 

Operation v1 v2 v3 v4 v5 v6 

Resource r1 r2 r3 r1∧ r2 r1∧ r3 r2∧ r3 

 

Figure 2 (Mouret et al., 2011) shows another way of representing operations and the non-

overlapping relationship among some of them. The graph in this figure has an arc 

between all non-overlapping operations. The idea of a clique from graph theory is used to 

group subsets of non-overlapping operations. For instance, the subset },,{ 642 vvv  is a 

clique in the graph on Figure 2. Figure 3 (Mouret et al., 2011) shows a feasible schedule 

with the six operations in Table 1 that illustrates the idea of multi-operation sequencing 

(MOS) and non-overlapping operations for a set of 4 priority time slots. For instance, 

note that operations 1v  and 6v  are assigned to slot 1, while operations 2v  and 5v  are 

assigned to slot 2. In general, let V be the set of operations, L  the set of slots, ,vS  the 

start of operation Vv∈  in slot L∈ , ,vE  the ending time, and ,vZ  a binary equal to 1 if 

v is assigned to  . Then, the basic idea of the MOS model is summarized by the 

following constraints: 

1
*

, ≤∑
∈Vv

vZ       )(*, VcliqueVL ∈∈             (MOS1) 

and 

)1(
*

,
*

,
*

, 221 ∑∑∑
∈∈∈

−+≤
Vv

v
Vv

v
Vv

v ZHSE    )(*,,,, 2121 VcliqueVL ∈<∈  ,   (MOS2) 

where )(Vclique  is formed by all subset of operations VV ⊆*  such that any two 

operation in *V  must not overlap. For instance, all operations that use a common 

resource would be part of a set )(* VcliqueV ∈ . Note that constraint (MOS1) states that at 

most one operation v  from a given subset of operations *V  can be assigned to a slot  , 

while constraint (MOS2) enforces for all operations from the subset *V , that the end 

time of slot 1  takes place before the start time of slot 2  if an assignment is made. 
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Figure 2. Non-overlapping graph 

 

 
Figure 3. An illustrative solution schedule 

 

In this paper we use the same approach by defining as non-overlapping operations those 

that occur in the same processing line, as well as any pair of shipping and processing 

operations. Shipping and processing are non-overlapping since loading and unloading of 

a tank cannot occur at the same time. The set V is a collection of two types of operations: 

processing of an order in a finishing line, and an unloading or shipping event. The first 

type is defined by a pair MOmo ×∈),( ; the second type of operation considers any 

shipping event  Ss∈ . In set notation: { }SsMmOosmoV ∈∈∈= ,,:)(),,( . The cliques 

that appear in equations (MOS1) and (MOS2) are 

{ } MmSsOosmoVcliquem ∈∀∈∈= ,,:)(),,()( . These cliques are result of defining that 

the processing of two orders on the same finishing line, and that loading and unloading of 

a tank must not overlap. As an example, consider the small system described in Table 2, 
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where three processing orders have to be scheduled in two finishing lines. The finished 

products are stored in three tanks from which there will be shipped once to the customer. 

  
Table 2. Small illustrative example 

Processing orders o1 o2 o3 

Product in order i  A B C 

Finishing lines m1 m2  

Storage tanks T1 T2 T3 

Shipping events s1   

 
Table 3. Definition of operations in small illustrative Example 

Processing operations (o1,m1) (o2,m1) (o3,m1) (o1,m2) (o2,m2) (o3,m2) 

Shipping operations s1      

 

Figure 4 shows the non-overlapping graph that corresponds to the operations in Table 3. 

o2,m2

o2,m1

o1,m2

s1

o3,m1

o3,m2

o1,m1

 
   Figure 4. Non-overlapping graph in small illustrative example 

 

There are two cliques in the graph of Figure 4: 

 )}(),,(),,(),,{( 11312111
smomomocliquem = ,  
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and  

)}(),,(),,(),,{( 12322212
smomomocliquem = . 

 

Recalling that the set of slots is L, the non-overlapping constraint (MOS1) in the small 

illustrative example is written below:  

1
*

, ≤∑
∈Vv

vZ       Mm  cliqueVL m ∈∀∈∈ *, , 

or alternatively, if variable ,vZ  is disaggregated into a variable for assigning processing 

operations to slots ,,mowo  and another for assigning shipping events to slots ,sws , 

1,,, ≤+∑∑
∈∈ Ss

s
Oo

mo wswo     MmL ∈∈ , . 

The latter form has the advantage that the cliques do not have to be explicitly defined, 

and that the constraint is described in terms of the naturally occurring sets L and M. This 

is the form that we use in equations (4) and (5) of the mathematical model. Finally, a 

feasible schedule for this illustrative case using 3 priority time slots is found in Figure 5. 

 

Line 1

Line 2

Shipping

o1 o3

o2

s1

time

(a) Gantt Chart (b) Assignment of slots

Line 1

Line 2

Shipping

slot 1 slot2 

slot 1

time

slot 3

 
Figure 5. A feasible schedule for the illustrative example 

 

Objective function  

The objective is to minimize the unallocated product. This objective is equivalent to 

maximizing the amount of finished product that is allocated to the storage tanks during 

the time horizon. The parameter oω  is included to give different weights to different 
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production orders. For instance, if an order is urgent it could have a large value of oω . 

For all the results in this paper we set Ooo ∈∀= ,1ω . 

∑∑∑∑
∈ ∈ ∈ ∈

=
Oo L Mm Kk

in
kmoovap


 ,,,ω             (obj) 

 

Scheduling constraints 

Equations (1a) and (1b) establish that the start time for the processing of order o in line 

m at slot  is zero if the order is not assigned to that line during that slot, or otherwise it 

must be sometime after the release date and before the end of the horizon. Equation (1c) 

is a constraint on the frequency of shipping events.  This equation fixes the start of each 

event s at slot   to either zero or the predetermined shipping time sstime . In equation (1d) 

the duration of the processing operation of order o in line m can only be non-zero if has to 

been assigned to slot  . The duration of a shipping event is either zero or less than the 

predetermined maximum duration of shipping events, as established by equation (1e). 

Equations (1f) and (1g) set the ending time of any slot to either zero if it is not assigned 

to processing or shipping, or to less than the operating horizon.  Equations (2a) and (2b) 

establish that the ending time of any slot is equal to its starting time plus its duration. 

 

 Hwosto momo ,,,,  ≤      MmLOo ∈∈∈ ,,        (1a) 

omomo rdwosto ,,,,  ≥      MmLOo ∈∈∈ ,,                       (1b) 

sss stimewssts  ,, =      LSs ∈∈ ,         (1c)  

Hwodro momo ,,,,  ≤      MmLOo ∈∈∈ ,,                       (1d) 

sss shipwinwsdrs  ,, ≤      LSs ∈∈ ,         (1e) 

Hwoeo momo ,,,,  ≤      MmLOo ∈∈∈ ,,        (1f)  

Hwses ss  ,, ≤       LSs ∈∈ ,                                   (1g) 

momomo drostoeo ,,,,,,  +=     MmLOo ∈∈∈ ,,        (2a)  

 ,,, sss drsstses +=      LSs ∈∈ ,         (2b) 
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It should be noted that the sum of all processing durations modro ,,  for each order are 

bounded by the sum of the product demands jodo ,  as will be specified later in constraint 

(6). 

By constraint (3a) an operation can be assigned at most once to any slot or finishing line; 

by constraint (3b) each shipping event only takes place once.  

1,, ≤∑∑
∈ ∈L Mm

mowo


      Oo∈                 (3a) 

1, ≤∑
∈L

sws


        Ss∈                 (3b) 

 

Constraint (4) enforces that no overlapping operations are assigned to the same slot. It 

was described in more detail in the previous sections. 

1,,, ≤+∑∑
∈∈ Ss

s
Oo

mo wswo      MmL ∈∈ ,           (4)  

 

According to the idea of priority slots (Mouret et al., 2009), slot 1  in equation (5) has a 

higher priority than slot 2 in the sense that it takes place before or at the same time as 

slot 2 . If two non-overlapping operations, such as processing on the same finishing line 

or a shipping event and a processing operation, are assigned to  1  and 2 , then 2  must 

start after the end of 1 . Equation (5) enforces this constraint. The duration of the 

intermediate slots 21:  <<  is considered in order to strengthen this constraint 

(Mouret et al., 2011). 

)1(
2222

2121

11

,,,,,,

,,,,,,,













smo
Ss

s
Oo

mo

L
ms

L
mo

Ss
s

Oo
mo

wswoHstssto

drsdroeseo

−−++

≤+++

∑∑

∑∑∑∑

∈∈

<<
∈

<<
∈∈∈

 MmL ∈<∈ ,,,, 2121          (5) 

 

Tank transfer constraint 

Equations (6) and (7) allow the transfer of a finished product to storage tank k from line 

m during slot  , only if an order corresponding to that product is being processed, and if 

the tank is assigned to this product (i.e. 1, =kjz ) . In both constraints ∑
∈Jj

jod , is a valid 
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upper bound. Constraint (8) allows transfer between a line and a tank only if there is a 

feasible connection (e.g., a pipe) between them. Constraint (9) sets the maximum rate of 

transfer to tanks equal to the rate of processing at the finishing lines. Equation (10) sets 

the maximum amount that can be unloaded from a tank for a shipping event in a given 

slot. The maximum rate of unloading is set by constraint (11) 

 

∑∑
∈∈

≤
Jj

jomo
Kk

in
kmo dwov ,,,,,,      MmLOo ∈∈∈ ,,                     (6) 

)( ,,,,, ∑
∈

≤
Jj

jokj
in

kmo dzv       KkMmLOo ∈∈∈∈ ,,,         (7) 

∑
∈

≤
Jj

jomk
in

kmo dtlcv ,,,,,      KkMmLOo ∈∈∈∈ ,,,              (8) 

∑
∈

≤
Jj

momjjo
in

kmo droratev )( ,,,,,,,  δ    KkMmLOo ∈∈∈∈ ,,,         (9) 

ks
out

ks vwsv  ,,, ≤       KkLSs ∈∈∈ ,,                   (10) 

 ,,,, sjs
out

ks drsshv ≤      KkLSs ∈∈∈ ,,                   (11) 

 

Material balance in storage tanks 

The concept of priority slots 21,  where,
21 ˆ21  stet ≤⇒< , allows the material 

balance at each tank to be calculated as in constraint (12). 

∑ ∑∑∑ ∑
∈ ≤∈ ∈ ≤

−=
Ss

out
ks

Mm Oo
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kmok vvlv
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,,
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,,,,    KkL ∈∈ ,        (12) 

Constraint (13) limits the level of inventory to the capacity of tank k, 

kk vlv ≤,        KkL ∈∈ ,        (13) 

 

Tank assignment constraints 

Equation (14) enforces the condition that at most one product can be assigned to each 

dedicated tank. Constraint (15) establishes the minimum and maximum number of tanks 

to which a product can be assigned. This equation can be relaxed if the user of the model 

is not limited by any practical constraint on the minimum or maximum number of tanks 
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required by a product. Constraint (16) allows an assignment only if the chemical and 

physical properties of a product are compatible with the operating conditions of a tank. 

1, ≤∑
j

kjz        Kk ∈                     (14) 

j
k

kjj mxkzmnk ≤≤ ∑ ,     Jj∈           (15) 

kjkj cmpz ,, ≤       KkJj ∈∈ ,          (16) 

 

Variable domain specifications 

{ }1,0,, ∈mowo     MmLOo ∈∈∈ ,,                  (17) 

{ }1,0, ∈sws     LSs ∈∈ ,         (18) 

{ }1,0, ∈kjz     KkJj ∈∈ ,         (19) 

+ℜ∈out
ks

in
kmo vv ,,,,, ,      SsKkMmLOo ∈∈∈∈∈ ,,,,   (20) 

+ℜ∈momomo eodrosto ,,,,,, ,,      MmLOo ∈∈∈ ,,        (21)  

+ℜ∈ ,,, ,, sss esdrssts     LSs ∈∈ ,         (22) 

+ℜ∈klv ,     KkL ∈∈ ,         (23) 

+ℜ∈ap              (24) 

 

Example 1 

In this   example we wish to determine the optimal tank assignment and optimal schedule 

for a system of 5 tanks and 2 finishing lines where 3 products are processed for 8 orders 

over a 2 week time horizon. We have a set of production orders that arrive during an 

interval of two weeks. This set of production orders is representative of the frequency of 

orders and the quantity ordered during long term operation of the system. Thus, it can be 

used for optimally assigning tanks to products. Tables B1 – B3 in Appendix B contain the 

data required for the optimization model. In this example we consider that all products 

can be stored in all tanks, and that there is a feasible connection between every line and 

every tank. 

 The TFOP formulation described in the mathematical model section is used to solve 

Example 1. After some pre-analysis, 6 priority time slots are postulated. The main idea is 
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that we need 4 slots to process the 8 orders in the 2 production lines, and, given the rates 

of unloading of tanks, about 2 or 3 slots for shipping operations. Computational results 

indicate that 6 priority slots yield the same solution as 7 but require less computational 

time.  The resulting Mixed-Integer Linear Programming (MILP) model has 195 binary 

variables, 1,471 continuous variables, and 3,358 constraints. It was implemented in 

GAMS version 23.6 for Windows and solved using Gurobi 4.0.1 with an Intel Core i7 

CPU at 2.93 GHz, and 4.00 GB of RAM. All other examples were solved with the same 

hardware and software. A solution within 0.2% of the optimum was found in 21 CPU 

seconds. The results are summarized in Table 4, and Figures 7 – 8. As seen in Table 4, 

1.4 ton of product B cannot be allocated. 
 

Table 4. Allocated product for Example 1   

Product
Ordered amount 

[ton]
Allocated  Quanity 

[ton]
A 215 215
B 244 242.6
C 206 206

Total 665 663.6  
 

Figure 6 shows the optimal product-tank assignment. The total production volume 

specified by the production orders of Product B is the highest, and it is assigned the 

largest total storage tank capacity. Product A has a larger production target than product 

C, but product A is allotted less storage space. Figure 7 shows that the two production 

orders of product A are scheduled at the beginning and end of the time horizon, allowing 

for the complete unloading of the storage tank. This fact is observed in Figure 8(d). The 

Gantt chart in Figure 7 shows how the scheduling of non-overlapping operations, such as 

the processing operations in the same line, and processing and unloading operations are 

never scheduled in the same slot. From this figure we can also confirm that the ordering 

of the priority slots is maintained: every slot that has a lower numbering than a shipping 

slot ends before the shipping starts.  
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A

B

C

Tank 1

Tank 2

Tank 3

Tank 4

Tank 5

215
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244
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90
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120
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85
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110
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Figure 6. Optimal product-tank assignment in Example 1 

 
0 hrs 100 200 300 336 hrs

Line 1 order 1 order 2 order 7 order 8 Product A

Line 2 order 3 order 4 order 6 order 5 Product B

Product C
Shipping

Shipping

Line 1
slot 1 slot 3 slot 5 slot 6

Line 2
slot 1 slot 3 slot 5 slot 6

Shipping
slot 2 slot 4

0 hrs 100 200 300 336 hrs  
Figure 7. Gantt chart of optimal schedule in Example 1 

 

The plots of the tank levels in Figure 8 show a common pattern. Towards the end of the 

operating horizon all tanks except number 5 are completely full. This result is a 

combination of the objective function of the TFOP that requires a maximal amount of 

product going into the tanks, and the finite operating horizon. In real-life operations a 

shipping event would probably take place at the end of the time horizon. A cyclic 
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schedule is an approach that eliminates this effect in case it is found to be an undesirable 

way of operating the system. We explore this alternative in Example 3. 

(a) (b)

(c) (d)

(e)

/ Prod C

/ Prod C

/ Prod B

/ Prod B

/ Prod A

 
Figure 8. Tank levels in the optimal solution to Example 1 

 

 

Example 2 

The purpose of this example is to highlight the advantage of solving the TFOP including 

scheduling of processing orders instead of considering a fixed processing schedule. We 

consider a system of 2 parallel finishing lines where 8 products are processed for 21 

orders and fed into 10 storage tanks. The operating horizon is 672 hours (4 weeks). 

Tables B4 – B6 contain the operating data of this system.  
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In the case where the schedule is fixed each production order starts exactly at the release 

date and lasts until it is completed or until a new order has to be processed. Every time 

that the tanks block the finishing lines, there is a quantity of unallocated product 

generated that is equal to the time the line was blocked multiplied by the processing rate 

of the line. The 21 production orders can in principle be processed in 11 priority slots by 

the two finishing lines, and we estimated 2 or 3 shipping events per week. After some 

computational experiments we specified 18 priority slots. These computational 

experiments involved starting with 15 priority slots (11 for processing the orders and 4 

for one shipping event per week) and increasing the number of slots by 1 until there was 

no improvement in the solution. The minimum number of slots that could be used for 

finding this solution was 18. The resulting MILP has 1,340 binary variables, 16,561 

continuous variables, and 40,261 constraints.Table 5 shows the best solutions and 

solution times found with fixed schedule and with optimal scheduling. Note that fixing 

the schedule actually makes the problem harder to solve, presumably because it becomes 

more constrained.  
 

Table 5. Computational results of the TFOP with fixed and optimal scheduling 

  

  

 

 

 

 

 

The total quantity required by production orders is 526 tons. The best solution with fixed 

schedule (439 tons) after 10,000 CPU s corresponds to approximately 16% unallocated 

product, while a solution of 517 tons involving less than 2% unallocated product is found 

when optimal scheduling is included in the TFOP. Table B4 shows that seven production 

orders are released between hour 0 and hour 21. A similar accumulation of orders occurs 

between hours 540 and 560. When the schedule requires each order to be processed at its 

 Fixed Scheduling Optimal Scheduling 

Best Solution [ton] 439 517 

Optimality Gap [%] 19.9 1.7 

Linear Relaxation [ton] 526 526 

CPU [second] 10,000 530 
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release date, as is the case with fixed schedule, some orders have to be cut short or 

missed all together.   

 

P3

P5

P8

T 1

T 3

T 5

T 7

T 9

88 ton

P4

P7

P2

P6

P1

T 2

T 4

T 6

T 8

T 10

70 ton

70 ton

70 ton

98 ton

50 ton

40 ton

40 ton

90 ton

37 ton

28 ton

24 ton

25 ton

36 ton

43 ton

23 ton

29 ton

40 ton
 

Figure 9 Optimal tank assignment with fixed schedule 
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T 3

T 5

T 7

T 9

88 ton

P4

P7

P2

P6

P1

T 2

T 4

T 6

T 8

T 10

70 ton

70 ton

70 ton

98 ton

50 ton

40 ton

40 ton

90 ton

37 ton

28 ton

24 ton

25 ton

36 ton

43 ton

23 ton

29 ton

40 ton
 

Figure 10., Optimal tank assignment with optimal schedule 
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The main point in this example is that including the optimal scheduling in the TFOP has a 

significant effect on the quality of the solution found and on the computation times 

required. When scheduling is included, a solution within 2% of the optimum and 

involving almost no unallocated product can be found in 530 CPUs. In contrast, the best 

solution found after 10,000 CPUs for the problem with fixed scheduling involves 

significant amounts of unallocated product and an optimality gap of ~20%.   

 
0 hrs 100 hrs

Line 1  Order 2 Order 5 Order 8 Order 9

Line 2 Oeder 1 Order 7

Shipping

200 hrs 300 hrs

Line 1 Order 11 Order 12 Order 14 Order 15
3

Line 2 Order 10 Order 13 Order 16

Shipping

400 hrs 500 hrs

Line 1 Order 17 Order 18

Line 2 O19 Order 20

Shipping

600 hrs 672 hrs
Line 1

Line 2

Shipping  
Figure 11a. Gantt Chart Example 2 with fixed schedule 
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0 hrs 100 hrs

Line 1 Order 7

Line 2 Order 5 Order 1

Shipping

200 hrs 300 hrs

Line 1 Order 13
3

Line 2

Shipping

400 hrs 500 hrs

Line 1 Order 17 Order 4 Order 9 Order 19 Order 2

Line 2 Order 3 Order 11 Order 14 Order 21 Order 18

Shipping

600 hrs 672 hrs

Line 1 Order 16 O 6 Order 8

Line 2 Order 20 Order 15 Order 10

Shipping  
 

 

Figure 11b. Gantt Chart Example 2 with optimal schedule 

 

Example 3 

This example involves the same system as in Example 2 but with an extended time 

horizon of 6 weeks (1008 hrs.), which is longer than usual for scheduling problems. The 

reason is that we require a schedule that is representative of the medium to long-term 

operation of the plant in order to make the tank allocation decisions.  An important 

difference from previous examples is that we consider a cyclic operating mode where the 

cycle time is 1008 hrs. A new variable, 0
ks , is introduced in the equation for the inventory 

balance, yielding equation (25).  

∑ ∑∑∑ ∑
∈ ≤∈ ∈ ≤

−+=
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,    KkL ∈∈ ,        (25) 

The following constraint to enforce similar initial and final inventory is added to the 

model: 
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kkkkk slvs εε +≤≤− 0
,

0
      KkL ∈= , ,       (26) 

where kε is a small scalar introduced to constraint (26) in order to relax the strict equality 

between initial and final inventory in cyclic scheduling. Computations showed that this 

relaxation has a significant effect on the speed of convergence of the MILP solver we 

used. For this case study, we set kε  to 2. For instance, increasing the value of kε  from 2 

to 5 reduces the required CPU time to about one fourth. However, we considered a value 

of 2 the largest reasonable slack in equation (26). 

To ensure the slot L=  corresponds chronologically to the last slot, we enforce the 

following precedence constraint: 

∑∑∑∑
∈∈∈∈

+≤+
Ss

s
Oo

mo
Ss

s
Oo

mo stsstoeseo
2211 ,,,,,,    MmLL ∈=∈ ,, 21        (27) 

 

Table B7 contains data of the orders corresponding to the extra two weeks in Example 3. 

Selecting 24 priority slots using the same methodology as in Example 2, the resulting 

MILP has 2,500 binary variables, 31,691 continuous variables, and 77,212 constraints. 

Table 6 shows the best solution found after 7 hours of computations. The product tank 

assignment is shown in Figure 12, while the initial and final inventories are shown in 

Table 7.  
Table 6. Computational results of the TFOP with cyclic scheduling 

 

    

 

 

 

 

Best Solution [ton] 769 

Unallocated product [%]  7.5 

Optimality Gap [%]                     5.9 

CPU [second] 24,538  
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T 6
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Figure 12 Tank assignment with cyclic schedule 

 

Table 7. Initial and final inventory in storage tanks 

 *Final inventory = Initial inventory +/-  2 

 

After 7 hours of CPU time the optimality gap is still 6%. We are interested in obtaining a 

lower bound on the amount of unallocated product (an upper bound to equation obj) that 

would be possible to achieve if storage tank space was not a limitation. Therefore, we 

solve a relaxation of Example 3 that involves unlimited storage capacity.  

Remark Since we allow several lines to feed the same tank simultaneously, and we 

assume there is at least as many tanks as products, unlimited storage capacity turns the 

Tank Capacity 

[ton] 

Initial inventory 

[ton] 

Final inventory* 

[ton] 

T1  90  0.0  2.0 

T2 37 19.0 21.0 

T3 28  0.0  2.0 

T4 24 8.8              10.8 

T5 25 0.0 2.0 

T6 36              12.0              14.0 

T7 43 27.6 29.6 

T8  23 13.0 15.0 

T9 29 13.3 15.3 

T10 40 38.0 40.0 
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product-assignment into a meaningless decision variable. For this reason we assign a 

product to a tank arbitrarily and a priori. 
 

Table 8. Computational results of the TFOP with cyclic scheduling with unlimited tank sizes 

  

    

 

 

 

 

 
Table 9. Storage requirements, initial, and final inventory in TFOP with unlimited tank sizes 

  

 * Final inventory = Initial inventory +/- 2. 

 

Comparing Tables 14 and 16 we can see the storage requirement for the solution 

corresponding to 828 tons of allocated product (vs. 769 tons in the finite storage setting) 

requires more storage capacity than what is available in the tank farm. The total storage 

capacity required to meet the maximum inventory levels obtained from solving the 

problem assuming unlimited storage capacity is 454 tons, while the original problem with 

finite storage has a total capacity of 375 tons. This type of analysis could be used to 

evaluate capital investment decisions in tank farms.   

 

Best Solution [ton] 828 

Unallocated product [%] 0.4 

Optimality Gap [%] 0.4 

CPU [second] 219 

Product Maximum inventory 

[ton] 

Initial inventory 

[ton] 

Final inventory* 

[ton] 

P1  76.0 46.0               48.0 

P2 98.0 58.0 60.0 

P3 50.0 0.0 2.0 

P4 65.1 25.1 27.1 

P5 50.0 0.0 2.0 

P6 50.0 0.0  0.0 

P7 40.0 0.0  0.0 

P8  25.0 3.0  5.0 
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Conclusions and future work 

We have presented a novel MILP formulation for the Tank Farm Operation Problem 

(TFOP) that integrates continuous production scheduling with storage resource allocation 

when the storage vessels are dedicated tanks. One of the examples in this paper shows the 

impact of including optimal scheduling in the TFOP, as opposed to assuming a fixed 

schedule. Even though the scheduling part of the problem corresponds to an efficient 

model for continuous-time scheduling based on the idea of Multi-operation Sequencing 

(Mouret et al., 2011), the scheduling horizon that can be contemplated within reasonable 

computational time is limited to a few weeks. For this reason a representative set of 

production orders and release dates has to be chosen in order to obtain an efficient 

product-assignment for medium to long-term operation. Alternatively, a cyclic schedule 

can be assumed as we did in Example 3. 

We envision our MILP formulation combined with Discrete Event Simulation (DES) like 

the one in Sharda and Vazquez (2009) as part of a comprehensive decision support 

system. The DES model could be run by fixing the scheduling and tank farm decisions 

obtained by the optimization step detailed in this work. The results can be used to verify 

the feasibility of the optimal decisions with a simulation model that is able to capture 

more detailed dynamics of the problem such as simultaneous loading and unloading of 

storage tanks. The DES formulation mentioned before by Sharda and Vazquez (2009) is 

tailored specifically to this problem and was designed for industrial use. Consequently, 

testing and integration with this simulation tool is a natural next step. In this way, the 

MILP capabilities of rigorous search among alternative could be combined with the 

capability for representing complex operational issues of DES.  
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Appendix A: Nomenclature 

Sets/Index 

jJ /     Products 

kK /     Tanks 

/L     Time slots 

mM /     Finishing lines 

oO /     Production orders 

sS /     Shipping or unloading events 

 

 

Variables 

ap  total amount of finished product allocated to storage tanks 

,,modro  duration of processing of order o  in line m  during slot    

,sdrs  duration of shipping event s in slot    

,,moeo  end time for processing order o  in line m  during slot    

,ses  end time of shipping event s in slot    

klv ,  inventory levels in tank k  at the end of slot   

0
ks  initial inventory in tank k 

,,mosto  start time for processing order o  in line m  during slot    

,ssts  start time shipping event s in slot    

in
kmov ,,,  quantity of material corresponding to processing order o   

transferred to tank k from line m  during slot   
out

ksv ,,  quantity of material shipped or unloaded from tank k  

during unloading event s  in slot   
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,,mowo  binary variable to denote that order o   is processed in line 

m  during slot   

,sws  binary variable to denote that unloading event s occurs in 

slot   

kjz ,  binary variable to denote that tank k  is dedicated to 

product j  

Parameters 

kjcmp ,  1 if physical and chemical properties of product j are 

compatible with the operating conditions of tank k; 0 

otherwise  

jo,d  amount of finished product j  requested by processing 

order o  

jo,δ  1 if product j  is requested in processing order o ; 0 

otherwise  

H  length of time horizon  

jmxk  maximum number of tanks that can be assigned to product j 

jmnk  minimum number of tanks that must be assigned to product 

j 

mjrate ,     rate of production of product j in line m  

ord  release date of processing order o  

sshipwin  time window during which unloading of tank into modes 

transportation is allowed; the length of this shipping 

window is predetermined by the logistics of the process 

system   

jssh ,  shipping rate of product j in shipping event s    

sshd  maximum duration of shipping event s    
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sstime  time when a shipping event s is allowed to start; the 

maximum shipping event frequency is determined a priori, 

according to logistics of modes of transportation  

 

kltlc ,  1 if any product can be transferred between line   and tank 

k; 0 otherwise 

kv  volume of tank k 

oω  Weighting parameter of order o according to its importance 

in the production schedule 

Appendix B: Data Tables 

 
Table B1. Production orders in Example 1 

Order Product
Quantity 
[ton/hr]

Release date 
[hr]

1 A 105 0
2 C 69 0
3 C 35 48
4 B 98 72
5 A 110 96
6 B 56 168
7 C 102 216
8 B 90 264  

 

Table B2. Production rate and tank capacities in Example 1 

 
 

Table B3. Interval between shipping, duration of unloading, and unloading rate   
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Tank       
Interval 

[hr]
Duration 

[hr]
Transfer rate 

[ton/hr]
1 24 6 12.07
2 24 6 13.86
3 24 6 12.01
4 24 6 12.31
5 24 6 11.83  

 
Table B4. Production orders in Example 2 

Order Product
Quantity 

[ton]
Release date 

[hr]
1 P1 30 0
2 P1 40 0
3 P1 18 10
4 P2 10 14
5 P2 40 16
6 P2 20 18
7 P3 30 21
8 P3 20 124
9 P3 20 156

10 P4 30 198
11 P4 30 220
12 P4 10 272
13 P5 50 284
14 P5 30 316
15 P5 18 378
16 P6 25 380
17 P6 25 412
18 P7 30 544
19 P7 10 536
20 P8 25 558
21 P8 15 560  

 
Table B5. Production rate and tank capacities in Example 2 
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Production rate [ton/hr] Tank Capacity [ton]
Line 1 Line 2

P1 1.29 1.29 T1 30
P2 1.07 1.07 T2 27
P3 1.07 1.07 T3 18
P4 1.07 1.07 T4 15
P5 1.64 1.64 T5 15
P6 0.55 0.55 T6 15
P7 0.71 0.71 T7 12
P8 0.71 0.71 T8 12

T9 15
T10 39  

 
 

 

Table B6. Interval between shipping, duration of unloading, and unloading rate   

  

Tank       
Interval 

[hr]
Duration 

[hr]
Transfer rate 

[ton/hr]
1 24 4 2.50
2 24 4 2.25
3 24 4 1.50
4 24 4 1.25
5 24 4 1.25
6 24 4 1.25
7 24 4 1.00
8 24 4 1.00
9 24 6 0.83

10 24 6 2.17  
 

Table B7. Processing orders in weeks 5 and 6 in Example 3 

   

Orders Product
Quantity 
[ton]

Release date 
[hr]

22 P3 30 650
23 P3 20 700
24 P3 20 710
25 P4 50 712
26 P4 30 714
27 P4 18 750
28 P1 30 770
29 P1 40 790
30 P1 18 800
31 P2 10 850
32 P2 40 900
33 P2 20 950  

 


