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ABSTRACT: When analysing critical systems the demand frequency is crucial. Often the low and the high
demand mode are distinguished. In this paper the intermediate demand mode is analysed.
The results from the analyses of the example (two channel) model show that the hazard rate exhibits unexpected
behaviour in the intermediate demand region. As far as can be seen from the analysis, the standard Probability
of Failure on Demand (PFD) formulas are usable, but they become exceedingly conservative as one moves into
the intermediate demand region. On the other hand, usage of the standard formulas for the hazard rate (PFH)
(high demand mode) in the intermediate region may lead to non-conservative results. Therefore, whenever
a system seems to be operated in this intermediate demand mode, or even only close to it is advisable to
perform more accurate analysis compared to standard PFD and PFH formulas. It has been demonstrated that
such analysis is readily feasible using modern simulation tools. Operational or maintenance details should
be easy to accommodate on top of the issues handled in this article. The knowledge of rare event handling
techniques may be necessary. For the operator it is necessary to perform the required tests and documentation
after demands in a proper way.

1 INTRODUCTION

For Safety Instrumented Systems, demands on the
Safety Function are obviously crucial and may lead
to hazards if the Safety System does not react in
the specified way. Safety-critical component failures
are often not detectable during normal operation. For
such systems, if demands happen relatively seldom
proof tests may be specified which detect the failures.
Obviously proof tests should be performed more fre-
quent than the occurrence of demands. Systems where
this is clearly possible are said to be operated in low
demand mode. Fire detection represents an example
for such a system.

On the other hand systems exist where demands oc-
cur relatively frequent and proof tests with an even
higher frequency do not make sense. The safety pro-
tection must be established in different ways, e.g.
through redundancy. Such systems are said to be op-
erated in high demand mode. An example of such a
system is given by railway interlocking systems.

Safety Standards like (IEC61508 2010) treat the
two demand modes as completely distinguishable
with requirements that seem to be separate from each
other. Table 1 shows the target failure measures for
both low and high demand mode. For low demand

Table 1: Safety Integrity Levels - target failure measures for a
safety function (according to IEC61508)

SIL PFDavg (low demand) PFHavg (high demand)

4 ≥ 10−5 . . . > 10−4 ≥ 10−9/h . . . > 10−8/h
3 ≥ 10−4 . . . > 10−3 ≥ 10−8/h . . . > 10−7/h
2 ≥ 10−3 . . . > 10−2 ≥ 10−7/h . . . > 10−6/h
1 ≥ 10−2 . . . > 10−1 ≥ 10−6/h . . . > 10−5/h

mode the average Probability of Failure on Demand
(PFD) is used and for high demand mode the average
frequency for dangerous failures (PFH). Note that the
latter is called Tolerable Hazard Rate (THR) in the
railway industry (see (EN50126 1999)). Note also that
the PFD cannot directly be used as acceptance criteria
- the expected demand rate needs always to be spec-
ified. (IEC61508 2010) uses a criterion δ < 1y (with
δ: demand frequency) for the low demand range.

In reality systems exist, which cannot be clearly
placed and might be called intermediate demand
mode systems. The present paper discusses this in-
termediate mode.

The issue of utilising demands as test has not
been discussed extensively, but some authors have
addressed it with varying focus. In (L.F.Oliveira,
R.Youngblood, & P.F.F.Melo 1990) similar systems



as the one discussed here have been analysed. More
recently (Y.Liu & M.Rausand 2011) have taken up the
issue again using similar systems but focusing on the
demand duration. All publications that we are aware
of are restricted to the Markov assumption which can
be overcome using the analysis techniques discussed
here.

2 THE MODELS

The analysis of intermediate demand mode systems
is not straight forward due to the fact that there is a
combination of periodic tests, repair times and de-
mands. The latter are at least not periodic and are
often assumed random, with a constant demand rate
δ. In the extreme regions of (very) low demand rate
or (very) high demand rate the system reliability can
be readily approximated to a good level of accuracy
(see Section 2.1). Another complication is given by
the component and system level of detail. While fail-
ures, repair and proof testing happens on component
level, demand and hazards happen on system level.
Component level analysis can be performed by (par-
tial) Markov Analysis, but the extension to the system
level renders the analysis at least rather complex and
limited to the Markov assumptions.

One method which overcomes all these difficul-
ties is given by Discrete Event Simulation. It shall
be demonstrated that even the Rare Events Problem
(see (rareEvents 2015)), which is often a challenge
in safety system analysis based on simulation can be
solved in a satisfactory way.

As the system to be analysed here clearly involves
states, generalised state modelling represents a good
choice for model representation both on the compo-
nent and on the system level. The following generali-
sations with respect to standard Markov State Models
are utilised

• The standard Markov assumption that a state
transition is only dependent on the current state
is not needed. This means also that the involved
statistical distributions do not need to be expo-
nential.

• States can have a structure including sub-state
systems as serial or parallel systems. This feature
is implemented to counter the general tendency
that ’flat’ state systems can get rather involved
even with a moderate amount of states. For the
present purpose components are implemented as
parallel sub-state systems. The system level is-
sues are modelled in another parallel sub-state
system. In this way the model is kept modular,
easy to understand and straightforward to extend
to e.g. other system configurations like 2oo4.

• States can have variables related to the whole
state system or to sub-systems. This feature turns

states into pseudo states in the sense that a state
may contain many states as always only the state
occupation together with all related variable val-
ues fully define the state.

State models thus generalised where proposed by
Harel(see (Harel 1987)), which represents also the
implementation chosen in this project. The mod-
elling techniques resembles the Petri Net Models
(see (Y.Dutuit, F.Innal, A.Rauzy, & J.Signoret 2008))
which have recently been suggested for safety sytem
calculations. Both modelling techniques fall into the
same class of state-based discrete event simulation,
but we believe that the Harel State Charts used here
are more intuitive to understand and communicate.

On the component level a rather simple repairable
component is modelled. Failures happen with a con-
stant rate λ and are assumed hidden until they are
detected by either a demand or a test. Repair takes
a time MTTR = 1/µ. In the present article we as-
sume that also this time is exponentially distributed.
The simplicity of the model is mostly triggered by the
wish to be able to compare our results with previously
published results. Most assumptions can be made less
stringent and more realistic within the framework of
the present analysis.

The Harel State Chart model simulated by Extend-
Sim for one component is shown in figure 1. The
model shows the main states working, undetected fail-
ure and repair. The model knows if a failure is de-
tected by demand or proof-test, and is aware of possi-
ble demands during the repair time of the system.

Note that this component model has two inputs for
the triggers when proof tests are performed or when a
demand happens. These are system properties which
must therefore come from the super model.

The model of figure 1 runs into a rare-event prob-
lem (see (rareEvents 2015)) for high demand rates.
This rare event problem is caused by the fact that
most demands find the system with all components
working and only relatively few demands find one
component in the failed state - thereby detecting this
failure and initiating repair actions. Even fewer de-
mands cause a system hazard, namely the demands
which find both components in a non-working state.
Obviously, the system hazard represents the rare event
and the many demands which find everything working
represent the events which are not really interesting
for the analysis, but which use up most of the pro-
cessing time during a simulation. This problem de-
scription contains already the solution to the problem:
demands do not really need to be made explicit when
not needed - only when at least one component has
failed the demand has a function to the system. More-
over, as it is assumed that demands arrive indepen-
dently from each other, demand generation is not de-
pendent on previous demands and it is thus sufficient
to calculate the next demand when a situation arises
where this needs to be known, namely when at least
one component has failed. This strategy is followed in



Figure 1: State model of component sub-system

a variant model to figure 1, where the demand input is
omitted and the time for the next demand is kept as a
system variable. The time for the next demand is cal-
culated by any component which fails and is available
for all components in the system.

A similar rare event problem exists in the low de-
mand mode region. When the demand frequency gets
low the hazard frequency gets likewise low, but sys-
tem proof tests are still performed using valuable pro-
cessing time. Similar to the discussion above, observ-
ing that most tests are not actually important for the
analysis (namely the tests when all components are
working), tests can simply be generated when needed,
i.e. when at least one component has failed. In the
case of the proof test there is complete dependency
between tests, such that it is again possible to calcu-
late the next proof test time at any time of the simula-
tion using the formula 1.

tnextTest = t+ τ − (t mod τ) (1)

Also in this case the test input is omitted and the time
for the next test is kept as a system variable which is
only updated ‘just in time’, when at least one compo-
nent fails.

In high demand mode a single component system
does not really make sense in critical applications: ei-
ther the failure mode in question can be excluded as
incredible or redundancy is needed as it is impossi-
ble to detect failures and bring the system into a safe
state if there is only one component and a high de-
mand frequency. This article is restricted to two com-
ponent systems as the simplest extension to a single
system. The two component system is shown in figure
2 and follows the same rules as given in (L.F.Oliveira,
R.Youngblood, & P.F.F.Melo 1990). ”C1” and ”C2”
represents the single channel system illustrated in fig-
ure 2.

We distinguish between two models:

online model During repair the system is fully in
use. This includes also the possibility that de-

Figure 2: Direct model - reliability model of two component sys-
tem

mands are received during repair, even if both
components are not working.

offline model The system is still in use if one com-
ponent has failed. If both components have failed
and the failures are detected, the system is taken
offline for repair.

The related state diagram is shown in figure 3, im-
plementing the states

State 1 both channels are up

State 2 one channel is up, and the other is down, but
failure is undetected

State 3 both channels are down, but failures are un-
detected

State 4 one channel is up, and the other is under re-
pair (its failure has been detected due to demand)

State 5 one channel is down, but undetected, and the
other is under repair

State 6 both channels are down, and their failures
have been detected due to demand. Note that the
transitions from state 6 are somewhat different
from (L.F.Oliveira, R.Youngblood, & P.F.F.Melo
1990) due to the fact we assume that both repairs
can be done simultaneously.



Figure 2 represents the two component system
model while figure 3 represents the component sub-
model, which resides in the blocks “C1” and “C2”
of the system model. The two figures 2 and 3 illus-
trate very well the different approach in Harel State
Charts modelling compared to traditional state charts.
In many ways the system model of figure 2 resem-
bles a Reliability Block Diagram (ref. (A.Høyland &
M.Rausand 1994)), but it is in fact more than that be-
cause the ”TwoChannelEvents” block keeps track of
which state each of the components are in at all times.
In that way this block contains the relevant states
that are illustrated in the state diagram. The model
in figure 2 is very well modularised and can be ex-
tended to more components in a straightforward way.
The model of figure 3 does not offer that. Moreover,
Markov modelling is also limited when it comes to the
choice of distributions, maintenance details and sys-
tem safety strategy. This simplified model has mainly
been chosen for comparison with previous work.

The blocks in addition to “C1” and “C2” in the sys-
tem model of figure 2 have the following purpose

Global Global variable settings which are available
for all sub-state models. In our case these are λ,
δ, µ, τ , tnextDemand and tnextTest. Note that the first
three of these could be component level variables
(and be chosen different from eachother). Here
they are only added for convenience, since they
are chosen equal for all components.

Demand The demand generator. This block triggers
demands and communicates them to the compo-
nents.

Test The test generator. This block triggers proof
tests and communicates them to the components.

TestDem Since the component blocks need only to
know the demands and the combined demands
and tests, “TestDem” generates the combined
signal from these triggers.

The model of figure 2 represents the model without
treatment of rare events. For optimised treatment of
rare events the model must be modified into the model
shown in figure 4.

Clearly the explicit generation of demands and tests
is not present any more in figure 4. In the case of
online repair another rare event problem is revealed,
namely the demands during repair of both compo-
nents, which become many events in the case of high
demand frequency. Instead of explicitly generating
these demands, only the state ‘DemandDuringRep’
is modelled. When this state finishes a representative
number of additional demands is sampled through a
Poisson distribution according to the demand rate and
the time interval. This issue represents a solution to a
system level rare event problem.
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Figure 3: State diagram of the two-channel model where each
transfer of state is exponentially distributed with the correspond-
ing parameter.

Figure 4: Reliability model of two component system optimised
for dealing with the rare event problem



With respect to figure 3 the hazard rate for an of-
fline case is found by:

η̂offline =
# events in states 3 and 5

simulation time
(2)

because these two states represent hazardous events
when a demand occurs. For the online case the hazard
rate is:

η̂online =
# events in states 3, 5 and 6

simulation time
(3)

where the additional state 6 represents the additional
demands during repair discussed above.

2.1 Asymptotes

The asymptotes for the hazard rate for small and high
demand rates can be calculated analytically.

In the low demand range the demands de-couple
from the failures such that the traditional PFD can be
calculated for a two channel system. The hazard rate
becomes (see (IEC61508 2010), part 6, B.3.2.2)

ηlow demand ≃ δ · 2λ2

(
τ

2
+

1

µ

)
·
(
τ

3
+

1

µ

)
(4)

This formula can be derived through Markov analysis
or through reasoning about failure rates and equival-
end down times

In the high demand range the repair time dominates
the hazards. In the case of offline repair the state 5 of
figure 3 dominates. I.e. one channel is under repair
and the other fails and the failure is detected by the
demand. This leads to the formula

ηhigh demand offline ≃
2λ2µ

λ2 + 2λµ+ µ2
(5)

In the case of online repair, the additional failures
during the time when both components are repaired
come in addition and are dominant for very high de-
mand rates. The respective formula becomes

ηhigh demand online ≃
δλ2

λ2 + 2λµ+ µ2
(6)

The last two equations are either obtained through cal-
culating the equilibrium Markov solutions or through
approximations with respect to repairable systems
(see also (L.F.Oliveira, R.Youngblood, & P.F.F.Melo
1990).

3 RESULTS

The problem at hand and the models introduced in
section 2 contain the following parameters

Figure 5: Offline repair results for the direct model and the rare
events optimised model for τ = 0.1 over a wide demand range

Failure rate λ The rate at which the components of
the system fail. It is assumed that λ is constant
and that the failure rates of all components of the
system are equal.

Demand rate δ The rate of demands on the safety
system. This is a system parameter.

Proof test interval τ The interval for proof tests of
the system components. It is assumed that proof
tests are performed periodically and that all com-
ponents are tested at the same time.

Repair rate µ The repair rate µ = 1/MTTR for a
component after a failure is detected. Within
generalised state modelling it is not necessary to
assume a constant repair rate. In any case, when a
failure mode is known it is often more realistic to
assume a constant repair time. Still, in this paper
a constant rate is assumed for easy comparison
with previous work.

Without loss of generality λ = 1 is set throughout this
paper, i.e. the time unit is set equal to the mean time
between failures of a single component. As repair rate
µ = 200 is used as a ‘typical’ repair rate.

Results for τ = 0.1 are shown in figure 5. It is
clearly seen that the direct model is limited in the de-
mand range at least in the high demand mode area
both for online and offline repair. For demand rates
above about 100λ the simulation times for the direct
model become too long to be practicably feasible. In
the area where both models can produce results, the
results coincide well within statistical accuracy. The
rare events problem in the low demand range does not
become visible for demand rates down to 0.01λ.

With the choice of time scale as λ and µ = 200 as
typical values, this leaves two parameters to be varied
in a suitable range and the resulting system hazard
rate. The results for offline repair are shown in figure
6. Similar results for online repair are shown in fig-
ure 7. As the frequency of proof-tests decreases, the
intermediate mode has a greater effect on the system.
There is a larger deviation from the simulated results



Figure 6: Offline repair results using the rare events optimised
model for various τ over a wide demand range. µ = 200

Figure 7: Online repair results using the rare events optimised
model for various τ over a wide demand range. µ = 200

and the asymptotic formulas normally used for PFD
and PFH calculation.

The asymptotes as discussed in section 2.1 are con-
firmed well in all plots, as illustrated for one case
(τ = 0.1) in figure 5. When the demand rate increases
the hazard rate for the offline model approaches to-
wards the hazard rate given by the assymptotic equa-
tion 5. For the online model, equation 6 shows that the
hazard rate increases with the demand rate.

The plots exhibit an unexpected pair of extreme
points which are most marked for large proof test
times. The top point is due to the fact that demands
become effective as tests when the demand rate in-
creases. In this way failures of single components are
detected earlier, reducing the chance for double fail-
ures and hazards. On the other hand there is the repair
time which contradicts this effect since failures and
demands during repair can increase the hazard rate.
The asymptotic formula which explains the low de-
mand region does not take these effects into account.
The effect diminishes when the proof test interval is
reduced and seems to vanish altogether for very small
proof test intervals. There is a similar dependency on
µ which is not elaborated here. Together these results
confirm the above explanation of the pair of extreme
points.

4 DISCUSSION AND CONCLUSIONS

The results from section 3 show clearly that the haz-
ard rate exhibits unexpected behaviour in the interme-
diate demand region. As far as can be seen from the
analysis, the standard PFD formulas are usable, but
they become exceedingly conservative as one moves
into the intermediate demand region. According to
(IEC61508 2010) the PFH formula should be used for
δ > 1y. In this case the asymptotic hazard rate ren-
ders non-conservative results in the intermediate re-
gion . Therefore, whenever a system seems to be op-
erated in this demand mode, or even only close to it, it
is advisable to perform more accurate analysis com-
pared to standard PFD and PFH formulas. It has been
demonstrated that such analysis is readily feasible us-
ing modern simulation tools. Operational or mainte-
nance details should be easy to accommodate on top
of the issues handled in this article. The knowledge of
rare event handling techniques may be necessary.

As the usage of demands as effective tests is crucial
for gaining the advantage of an improved hazard rate
it is important that

• demands are properly recorded in relevant sys-
tems

• the necessary tests on the components are per-
formed and the results recorded, such that the de-
mand can actually be used as an effective test

The analysis performed here can be extended to-
wards a number of additional points in order to better
understand the details. Without claiming complete-
ness the following issues would be interesting

• systematic analysis of the dependencies on the
repair rate µ

• more realistic distributions (e.g. constant repair
time)

• other system architectures (e.g. more general
koon architectures including also common cause
failures)

• other possible maintenance strategies (e.g. take
the system offline when only one working com-
ponent is left)
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