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Abstract

The frequency of demands are crucial when analysing a safety instrumented
system (SIS). IEC 61508 distinguishes between low and high demand mode
when calculating risk for such a system. In reality there are systems that
can not clearly be placed in one of the two modes. These types of systems
are called intermediate demand mode systems, which we will analyse in this
thesis. Not many published SIS reliability studies focus on the problems
related to this borderline. Oliveira [4] predicts somewhat strange behaviour
for the hazard rate in the intermediate demand mode, as well as [2] with a
focus on the demand duration.

The results from the analyses of a redundant system show that the stan-
dard Probability of Failure on Demand (PFD) formulae are usable for very
low demand rates, but become increasingly more conservative as one moves
into the intermediate mode, while the Probability of Failure per Hour (PFH)
is non-conservative. This can cause major consequences for the operator of
a safety system in the sense of not obtaining the optimal testing strategy,
or even worse encounter a hazard.

For more complex systems with several components the Markov ap-
proach has its limits, choice of distributions and maintenance details are
also restricted. Discrete Event simulation can deal with such complex sys-
tems, and also the rare event problem that often is a challenge for safety
system analysis can be handled satisfactorily.

By use of Harel Statechart and discrete event Monte Carlo simulations
for different safety systems, it is shown that the intermediate demand mode
is dependent on the relationship between the proof-tests, demands and repair
duration. When a demand rate increases to a significant level, demands can
be used as tests. With Harel Statecharts we can calculate realistic models
that go beyond what a Markov model is capable of.
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1.

Safety Instrumented Systems

All types of systems have a risk of failing. The question is what level of risk
can be tolerated by the operator. Safety is provided by layers of protection
to achieve a tolerable risk level. Elements of safety are added to the sys-
tem by the operator. These elements can vary in complexity from the less
complicated, such as typical mechanical devices, procedures etc., to more
complex instrumented systems. For example, if a firewall does not meet
the given risk requirements for a system, a fire detection and a sprinkler
system can be added. Though, this extra level of protection also has a risk
of failing. It is increasingly common to use software-based or instrumented
protection systems, or to replace mechanical devices with automated sys-
tems compared to only a few decades ago. Like today’s cars, more functions
are being automated. With that, knowledge and analysis about Safety In-
strumented System (SIS) is becoming increasingly relevant and important
for different fields.

A SIS is a safety system, added to a critical process to reduce risk by pre-
venting hazardous events. Hazardous events are incidents or consequences
that occur when there is a significant deviation from the normal situation.
A critical process can be defined as a system that will cause damages to hu-
man health, the environment or financial loss for an industry, in the event
a hazard failure occurs. A SIS is also known as a protection or emergency
shut-down system, for example an anti-breaking system (ABS) or an auto-
matic train protective system which makes a train reduce speed if it runs
too fast or come to close to the train ahead of it (relevant especially for
metro systems), or it ensures that a train will stop at a red signal even if
overlooked by the operator. It typically consists of three elements [12] (il-
lustrated in figure 1.1); a detector (or sensor), a logic solver and actuating
items (final control elements such as valves, brakes). The sensors are used
to detect a possible emergency situation. The logic solver performs state
control, and then the actuating items implement the action determined by
the logic controller.

7



8

Figure 1.1: SIS

There are challenges in designing a protective system (SIS) to prevent
or control dangerous failures. There are two types of dangerous failures [2]:

Dangerous undetected failure: A DU-failure is a failure on the safety
system that is not yet visible for the operator. When the safety system
is in this mode, it will not react correctly if a demand for it occurs,
which might lead to a hazardous event. This type of failure is the main
contributor to the SIS unreliability [2].

Dangerous detected failure: DD-failures are detected immediately by
the safety system, normally by the controller. The repair can therefore
be initiated immediately, and complete preferably before a demand oc-
curs.

When a safety system experiences a demand, which is pre-programmed
or a direct request from the operator, the system goes from its ”normal
condition” to a different given mode. This can for instance be a railway
signal system, a fire detector reacting to a fire, or an air-bag that inflates in
a collision.

To assure the readability of the SIS many industries use the IEC 61508
[1], a generally-based standard for safety of Electronic Safety Systems. It
includes a set-up method (SIS life-cycle) to implement the SIS to an exist-
ing system, and states the requirements for how to optimize the system and
increase safety. The SIS life-cycle includes all aspects of a system, from the
concept phase to decommissioning or disposal. There are also other such
standards for other types of systems, like IEC 61511 for the process industry,
IEC 62278/EN 50126 for the railway industry and ISO/ DIS 26262 for the
auto-mobile industry.

When a system is designed, risk and hazard analysis are performed on
the system. If the risk is intolerable, it must be reduced. To reduce the risk,
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the design of the system might be changed or non-SIS protection layers can
be added. From the example at the beginning of this section this would be a
fire wall. If this is not satisfactory, a SIS can be implemented to reduce the
risk further. The SIS can perform one or more control functions to protect
the system, called safety instrumented functions (SIFs) (e.g. a fire detector
and a fire sprinkler system). A SIF is an electronic system that protects
against a specific hazard and performs a safety function to reduce the risk
to a tolerable level. The question is how much reliance on the additional SIS
is needed to make the total risk acceptable. This ”reliance” is also called
Safety Integrity Level (SIL). However, a SIF also adds a risk to the sys-
tem which needs to be analysed. When a SIF is to be implemented to the
system the SIL is determined, which sets the requirements of the necessary
risk reduction for each SIF. SIL is the probability of a dangerous failure on
a SIF that is targeted [6]. Thereafter the SIS is installed and the overall
safety, operation, maintenance and repair are validated and tested, before a
possible modification is done or a decommissioning of the system.

The IEC 61508 has stated four SILs, illustrated in table 1.1. The more
reliable a system needs to be to perform satisfactorily, the greater risk re-
duction is needed and the higher SIL. SIL 4 represents the highest possible
risk level, where the systems are required to have a very low probability to
fail. Systems on this level have a very high requirement to the reliability
of the SIF. It contains systems that have severe consequences on personnel,
environmental and assets as well as production/ financial loss. This can be
systems like railways and nuclear power plants. SIL 1 provides the lowest
risk level that is accepted, and contains systems with a small ”risk gap”,
such that the reliability required from the SIF can be rather low. The sys-
tem can have a high failure rate. Table 1.1 says as the required probability
on demand (PFD) or probability of failure per hour (PFH) decreases, the
system requires a higher SIL.

From table 1.1 we can see that IEC 61508 establishes the requirements
of the SIL accordingly with the two following demand modes. Each level
contains a probability interval for failure on demand and failure per hour.
These are found in terms of a maximum tolerable hazard rate. The two
measures are [2]:
1) The average probability of failure on demand (PFD), a function based on
the failure rate and the test interval.
2) Average frequency of a dangerous failure of the safety function, or the
probability of failure per hour (PFH).

IEC 61508 suggests to use PFD for a low demand mode system, and
PFH for a high demand mode system. The standard defines a SIS to be
in the low demand mode when demands do not occur more than once a
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Table 1.1: SIL requirements

Safety
integrity

level
(SIL)

PFD of the safety
function (low-demand
mode of operation)

PFH (hour−1) of the
safety function

(high-demand mode
operation)

4 ≥ 10−5 to < 10−4 ≥ 10−9 to < 10−8

3 ≥ 10−4 to < 10−3 ≥ 10−8 to < 10−7

2 ≥ 10−3 to < 10−2 ≥ 10−7 to < 10−6

1 ≥ 10−2 to < 10−1 ≥ 10−6 to < 10−5

year and less than twice the frequency of functional tests. For the opposite
case, when there is more than one demand on the safety system per year, or
greater than twice the frequency of functional tests it is in a high demand
mode system.

The SIL levels have the same meaning for low demand mode as for high
demand mode systems. The risk level is more moderate for lower SIL. When
a system is in SIL 1, the system has a higher rate of failure during an hour.
For an increased frequency of demands, the more likely it is to detect a
failure on a component before the whole system fails. A system in SIL 4 will
have a very high frequency of demands and a small probability of failure.
This is the same for a low demand system.

The relation between the failure and demand rate distinguish if the sys-
tem is in a low or a high demand mode. However, why IEC 61508 makes
the distinction on one year is unclear though [2].

A SIS can be analysed by various methods. Among them are approx-
imation formulas (for example given by the IEC standards) and Markov
methods (do not differentiate between a low demand mode and a high de-
mand mode system), which has been concluded to be the most suitable [12].

PFD is calculated when a system is in a low demand mode as [6]:

PFDavg =
λτ

2
(1.1)

This is only true for λτ << 1, where λ is the failure rate and τ the length
between tests.

The hazard rate for a low demand mode system is

η = δ · PFDavg, (1.2)
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where δ is the demand rate.

The risk is dependent on the frequency of a hazard. The IEC 61508
states that the risk for a system to fail is dependent on the demand rate
and PFD. The PFD given by the standard is not automatically a function
of failure rate and test interval. It turns out that it can often be calculated
as equation 1.1, because the DU-failure becomes the dominant one. When a
DU-failure has occurred during a test interval, the test interval contains an
unknown (failure not yet detected) and a known part. The average downtime
is therefore τ

2 [2]. Why PFD is used as a measure for determining the hazard
rate is merely a tradition the process industry wants to hold on to.

For example the railway industry does not work with PFD, only PFH,
which is here called Tolerable Hazard Rate (THR) [17].

For a low demand mode system it is necessary to perform regular test-
ing to be sure to detect a possible DU-failure before a demand, to prevent a
hazardous event. A fire detector, emergency shut-down systems (ESD) and
air-bag system are all examples of systems in a low demand mode.

The following relationship is valid for a low demand mode system, when
assuming demands occur more frequent than failures:

τf ≥ δ >> λ >> η,

where τf is the frequency of tests and η is the hazard rate.

For a well working low demand mode system there should be more fre-
quent tests than demands, and more frequent demands than failures on the
system. To fulfil the definition of IEC 61508 for the low demand mode sys-
tem we can have τf = 1. The scale is then in per year for the different
rates. During a reasonable number of failures, only a small part of them
should lead to a crucial accident for the system. This is proved by using
equation 1.2, the assumption τf = 1 and maximum one demand per time
unit. Hence δ ≤ 1. This indicates the following:

δ =
2η

λ
≤ 1 ⇔ η

λ
≤ 1

2

and we have the relationship between the failure rate and the hazard rate
to be:

λ >> η

For other systems where demands are more frequent than tests, like a
railway signalling system, it does not make sense to run proof-tests between
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each demand. The proof-tests are superfluous because demands always de-
tect the failures before the proof-tests. The high number of demands will
detect a failure before the proof-tests are performed. It is cost and time
consuming for the operator to perform more tests than needed. In these
cases the safety is dealt with through redundancy and testing by demands.
These types of systems are often activated automatically. Another example
of a high demand mode system is dynamic positioning (DP) system for ships.

For the high demand mode system case, each demand represents a proof-
test [3]. Here δ >> λ must be true to have a realistic system. When
calculating the failure rate in a high demand rate case, the intervals in
time are very small since the demands have a high frequency to appear
(∆(t) → 0, where ∆(t) is the length between a demand at time t and until
the next demand occurs). The failure rate approximates the hazard rate [8].
The relationship is now for a single component system:

δ >> λ ≈ η

In reality there are systems that cannot be clearly placed in either a low
or high demand mode system, and might be called intermediate demand
mode systems. For example a blow-up preventer (BOP). During a drilling
operation, it is meant to stop uncontrolled flow from oil wells. This happens
seldom, but when a demand does occur it provides ”sub-demands”, that can
be activated for hours or weeks [2].

We are looking more closely into this demand region in this thesis.



2.

Harel Statecharts

Classic state diagrams create properties and transitions for each single state/
node in a system with a finite number of states. A state diagram where it is
only possible to be in one state at a time, it is a disjunctive (”xOr”) diagram
[13]. Each node contains all the parameters and properties for describing
the behaviour of each state, which means when a state is known all its prop-
erties are known to the system. This can lead to a large number of nodes
to define a more complex system, and reduce the understanding of the state
diagram [11].

Harel Statechart is a visual state diagram with relevance for describ-
ing complex discrete-event systems. It simplifies the systems compared to
state diagrams because of its structure that creates super nodes/ super-
states [11] that allows the machine to have the ”AND”-diagram property.
The sub-state system can be serial or parallel. The properties (parameters
and variables) the super-state contains are available for all its sub-states.

For a serial sub-state system, the initial state given for this series is en-
tered, and the system will only be in one state at a time (”xOr” diagram).
There are sub-conditions that define more properties than are known by the
superstate. When a super-component property is known and updated in a
sub-state, it is known for the whole system. In that way the model can com-
bine the information given by the superstate with the value of the parameter
on a sub-state level to define the exact condition/state of the system. This
means that the number of nodes to describe each state of a system can be
reduced, and the diagram is more intuitive to understand.

Transitions between the sub-state system happen when the event of en-
tering a specific node is true. Each node has the variables from the super
node available for use. It goes from one node to another when the event
(entering condition) for a specific node is true.

13
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O C

a

b

Figure 2.1: State diagram for a door

1st,O 1st,C 2nd,O 2nd,C 3rd,O 3rd,C

Figure 2.2: Traditional state diagram for an elevator door at three floors.

From [5] a statechart is described as:

statecharts = state diagrams + depth

+ orthogonality + broadcast-communication
(2.1)

A statechart is an enlargement of classic state diagrams, with some extra
properties added. This is described below, based on [5] and [14]:

State diagram A state diagram can for example be a door that can be
open and closed, illustrated in figure 2.1. State ”O” defines that the
door is open, while in state ”C” the door is closed. Transition rate a
means that someone is closing the door, while b defines that it is being
opened. The trigger condition to enter state ”O” is that b has to be
true, while for entering state ”C”, a must be true.

This example can be extended to be an elevator door, where we want
the system states that define which floor the elevator door is opened
or closed on. A state diagram needs six components for describing a
system where an elevator runs between three floors. This example is
illustrated in figure 2.2.

Depth (Hierarchy) and Orthogonality (Concurrency) We can easily
see that the state diagram can quickly be very chaotic if there are many
more states (more floors) in the state diagram in figure 2.2. However,
figure 2.3 illustrates how this is solved by Harel Statechart. Super-
state ”Elevator” consists of AND components, where ”Door” is one
sub-level of the super-state consisting of the nodes in a serial system
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”O” and ”C” (”xOr” diagram). ”Floor” is the other sub-level with
a serial system containing the three floors ”1st”, ”2nd” and ”3rd”.
This set-up reduces the transitions between each component since the
states do not have to be directly linked. We can easily move back and
forth between each level. ”Door” and ”Floor” are both synchronized
and independent. When the system is in ”Elevator”, it also has to be
in ”O” or ”C” and ”1st”, ”2nd” or ”3rd”.

Figure 2.3: Harel State chart diagram for the behaviour of an elevator door
at three floors.

Broadcast-communication The model from the superstate point of view
sees all events that occur ”below” hierarchically. This is illustrated for
the elevator example in figure 2.4.

Figure 2.4: State chart illustrating orthogonality and broadcasting

For more detailed information about Harel Statechart, check out [5].
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2.1 Harel Statechart in ExtendSim

The properties of Harel Statechart are implemented in ExtendSim 9. The
hierarchical property is considered here with use of a parentOfParents block
as the superstate. The variables are inherited hierarchically.

The system models simulated in this thesis are constructed in a similar
way. There is a ”Global” state, which is the superstate of the system (par-
entOfParents block). This state contains all parameters and variables that
are on a system level, which are available to the sub-states of the ”Global”
state. The sub-states represent parallel modules consisting of serial sub-
states that constitute the different states for a component of the system.
Each sub-state block also contains local variables that are only revealed to
the sub-system and its sub-systems (if they exist). During the simulation
time the system is at all times in the ”Global” state as well as in one of the
serial states of all parallel modules.

Each Harel State block contains details about which conditions are valid
for entering and exiting the block, as well as its duration time. When a block
is entered it has the possibility to calculate values that are of relevance to
it. The system variables that are calculated and updated throughout the
simulation in a sub-state block, are updated in all other blocks on the system
containing this variable. With the updated information the system makes
the necessary change of state.

Each Harel State block gives results of how many times it has been vis-
ited through the simulation time, with mean and standard deviation.

In this thesis we simulate a 1oo1, 1oo2 and a 2oo3 system model. For the
1oo1 system model, technically there is no point to have a ”Global” block,
because there is only one component consisting of a series of states (state
diagram). However, when we have a component as a sub-state system to
the ”Global” block, it is very easy to extend the model to a 1oo2, 2oo3, or
a even more complex system model that goes beyond what a Markov model
can calculate. We will look closer into this.

For more detailed information about the relevant blocks used in Extend-
Sim for the different simulation models in this thesis, see appendix B.



3.

Single channel system with repair

A SIS is said to have a k-out-of-n configuration. We will first start with a
1oo1 system. The following system is based on a nuclear power plant with
repair ([3]).

3.1 Description of the system

• λ (Failure rate): The failure rate is constant. In this thesis it is strictly
equal to 1. A failure is detected by either a demand or a proof-test.

• δ (Demand rate): Measured as a rate of the failure rate. Exponentially
distributed.

• µ (Repair rate): Measured as a rate of the failure rate. Exponentially
distributed. Mean time of repair is 1

µ .

• τ (Proof-test interval): It is a fixed length between each proof-test. It
is measured as a length of time of the time between each failure.

The model illustrated in figure 3.1, describes a simple safety system for
a nuclear power plant. The three states for the model are:
State 1: the system is up
State 2: the system is down, but failure is undetected
State 3: the system is down, failure has been detected and is under repair

The assumptions made for the single-channel model are:

• The model consists of a failure rate λ, a repair rate µ and demand rate
δ that are constant over time.

• It is periodically tested, with a constant length τ .

• For time 0, the system is up and running (state 1).

17
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1 2 3

λ δ

µ

Figure 3.1: State diagram illustrating orthogonality and broadcasting

• There can be a maximum of one hazardous event on a proof-test in-
terval.

The model treats two types of cases:

Offline model: The plant is shut down when the safety system is known
to be down. No demands on the system occur. In this model, the
system is turned off when it is in state 3.

Online model: The model assumes that the operator lets the plant run
when the safety system is in repair, state 3. Demands on the sys-
tem during repair of the safety system can occur, which leads to an
increased frequency of hazard events.

For a single channel system the online case is not realistic. Oliveira ex-
plains the motives for including an online case in the article [3] in an e-mail
to Bent Natvig (quoting): ”the plant can get back to operation after an ac-
cident before the safety system is restored to an operating condition. This
is quite an unusual situation, but not impossible, especially if the ”plant”
accident is not really catastrophic, but one that causes a temporary disrup-
tion or a loss of production”. For a two-channel system this makes more
sense, and can be more common.

The plant hazard rate is described [3] as a ”plant” transition, meaning
the system does not necessarily break down even if the safety system does.
The hazard rate for the plant will be obtained from the simulation of the
safety systems. A hazard failure can only happen when a demand occurs
when the system is in a down state. For the offline model, this is in state 2.
A demand happens before a proof-test when there is an undetected failure.
The hazard rate for the plant is in this case:

η(t) = δP2(t) (3.1)

For the online case, the plant may still have demands when the safety
system is under repair. The hazard rate is therefore:

η(t) = δ [P2(t) + P3(t)] (3.2)
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3.2 Asymptotes for the single channel protective
system

The asymptotes for a hazard rate of the single channel protective system
without repair, is as stated in section 1. For a low demand rate it is: δ λτ

2
(equation 1.2). And for a high demand rate it approximates the failure rate
λ, as shown in section 1.

The Probability of Failure on Demand (PFD) for a system with repair
is [9]:

PFD =
λ

2

(
τ +MTTR

)
,

where MTTR is Mean Time to Repair, 1/µ. The asymptote of a hazard
rate for a system with low demand rate and repair is then:

η1oo1,l = δ · λ
2

(
τ +

1

µ

)
(3.3)

We can assume this is also valid for the online case, since there is close
to zero demands during the repair when the demand rate is low.

For systems with high demand rates, we can find the asymptote of the
hazard rate by looking at the steady-state condition for the Markov model
(figure 3.1). This model is designed to solve a high demand problem since
none of the states are dependent on proof-tests. With an expression of P2

and P3 the asymptotes of a hazard rate for the offline and online models are
obtained. The system equation is when δPi(t)

δt = 0 for i = 1, 2, 3:

1) δP2 = λP1

2) µP3 = δP2

3) P1 + P2 + P3 = 1

From equation 1 and 2 we obtain:

P1 =
δ

λ
P2, and

P3 =
δ

µ
P2

By substituting this into equation 3 we get an expression for P2:

P2 =
λµ

µδ + δλ+ λµ
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Using this expression in equation 3.1, and letting δ → ∞, the asymptote
for a hazard rate of an offline model with repair is:

η1001,h,off =
λµ

µ+ λ
(3.4)

This states that including a repair time to a system decreases the hazard
rate, λµ

µ+λ < λ, since there cannot be hazardous events during repair for the
offline case.

For the asymptote of the hazard rate for the online model, we obtain P3

from the equations above by substituting for P2:

P3 =
λδ

µδ + µλ+ λδ
,

substituting P2 and P3 into equation 3.2:

η = δ

[
λµ

µδ + δλ+ λµ
+

λδ

µδ + µλ+ λδ

]
,

and finally have δ → ∞ on this expression:

η1001,h,on =
λδ

µ+ λ
(3.5)

3.3 Simulation of the single channel system

To analyse this single component safety system in figure 3.1 we use Harel
Statecharts in ExtendSim, introduced in section 2. We are interested in
obtaining the hazard rate for the offline and online model (equation 3.1
and 3.2). If we make a model which simulates all demands and proof-tests
on a system this costs a lot of processing time. The computer processes
a lot more events than are necessary to find the hazardous events, which
makes the time to run the simulation longer. Especially for a high demand
mode system the majority of the simulated demands and proof-tests does
not detect a failure. To reduce the processing time, the simulation time
can be decreased. There will be less demands that can detect the failures,
which leads to a less accurate result of the hazard rate, and we have a Rare
Event Problem. To deal with this we can simulate only those proof-tests
and demands that actually detect a failure. This is performed using Harel
State Models simulated using Discrete Event Monte Carlo Simulation. In
section 4.2.1 we will compare the results of a simulation model for a safety
system model that simulates all demands and proof-tests on the system,
with a model only simulating the crucial events.
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Discrete event Monte Carlo Simulation is explained in [24]. It is based
on the simulation model calculating the next event in the system with ran-
domly drawn times for the specified distribution. The computer keeps track
of the near future events that will happen to the system. The simulation
model can in this way go from event to event, and is much more efficient,
compared to doing traditional simulations with constant time steps [24].
The simulation model can therefore calculate the next wanted event at the
specific time it is relevant, and does not ”waste” processing time on calcu-
lating information that is not crucial for the simulation model at all times.
This solves a Rare Event Problem in an adequate way.

For this model it is assumed that demands are exponentially distributed,
and by its memoryless property, the next demand to occur is not dependent
on the previous one. Proof-tests happen with a constant length of time, and
the next proof-test can easily be found. Hence, the rare event problem is
resolved by calculating the time for next proof-test and demand when the
system has an undetected failure.

Figure 3.2: Simulation model of a single-channel model using ExtendSim

Figure 3.2 illustrates the one component model in figure 3.1 simulated
in ExtendSim.

”Global” contains the system parameters λ, δ, µ and τ . These param-
eters have a given value. ”Global” also contains the variables; tnextDemand

(time for next demand) and tnextTest (time for next test) which are thus for
all sub-systems.

The system starts in ”Working” (state 1), and stays there until a fail-
ure occurs on the system. The model goes to ”FailureUndetected” (state
2). Here the failure is detected either by test or demand, and the system
will go to either ”DetectedByDemand” or ”DetectedByTest”, and on to be
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repaired in ”UnderRepair” (state 3). During the repair time for the on-
line case a demand might occur, and in that case the system can go to
”DemandDuringRepair” otherwise it goes to ”NoDemandDuringRepair”.

A more detailed explanation of each sub-state block follows:

Working: The initial state of the system, state 1 in figure 3.1, is repre-
sented by the block ”Working”. This block has λ as a parameter from
”Global”. This block is configured such that the duration the system
will stay here is exponentially distributed with rate λ. In this way the
model knows when there is a failure in the system, and the time in
which this block will finish. Thereafter it moves on to the connected
block ”FailureUndetected”.

Since the next demands and next tests are not crucial for the system
in this state they are not calculated here.

FailureUndetected: This block represents state 2 in figure 3.1. This block
has the global parameter δ, and variables tnextDemand and tnextTest.

In this block it is crucial to calculate the time for the next demand
and the next test, since we know that this will lead to detecting the
failure on the system. Therefore when this block is entered these two
times are calculated with the following formulae:

tnextDemand = t+DExp(δ), and (3.6)

tnextTest = t+ τ − (t mod τ), (3.7)

where t is the current time and DExp is the interval between events,
that is exponentially distributed with δ as the expected number of
events per time. The next demand can be calculated since it contains
the memoryless property, meaning it is independent of the time since
the previous demand. We can calculate the time to the next test
since they are dependent, and happen with a constant length. These
calculations are now updated in ”Global”, and other blocks that use
these two variables. If the time to the next demand is smaller than the
time to next test, the model goes to ”DetectedByDemand”. Otherwise
it goes to ”DetectedByTest”. The algorithm in this block is shown in
listing 3.1.

DetectedByDemand: This block is used to count how many times the
system gets a hazardous event. The duration time is approximately
zero, and the system goes directly to ”UnderRepair”.
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Listing 3.1: Calculations in ”FailureUndetected”

// when entered

nextTest = currentTime + tau - RealMod(currentTime, tau);

nextDemand = currentTime + DExponential(demand);

// triggerOut condition

if(nextDemand < nextTest) -> "DetectedByDemand"

else -> "DetectedByTest"

Listing 3.2: Calculations in ”UnderRepair”

// when entered

if(nextDemand < currentTime) nextDemand = currentTime +

DExponential(demand);

repairTimeOver = currentTime + DExponential(mu);

// triggerOut condition

if(mu==0) -> "Working";

else if(nextDemand < repairTimeOver) -> "DemandDuringRepair";

else -> "NoDemandDuringRepair";

DetectedByTest: This block is used to count how many times the safety
system has failed, but a test detected the failure and a hazardous event
is avoided. The duration time is approximately zero, and the system
goes directly to ”UnderRepair”.

UnderRepair: This block represents state 3. It contains the global param-
eter µ and the variable tnextDemand. The local variable is trepairT imeOver

(time when the repair is finished). The calculations done in this block
is shown in listing 3.2. Note that the block has the information of the
time to the next demand that was calculated in ”FailureUndetected”.
This is updated here if necessary.

The duration in this block depends on the condition set for the model.
If there is no repair, the duration time is 0. If the system is turned
off during repair (offline case), the duration time is trepairT imeOver − t.
The system then goes to ”Working”.

For the case where the system is not turned off (online case), the du-
ration of this block is tnextDemand − t. If there is a demand, the model
goes to ”DemandDuringRepair”, where the rest of repair is being done.

DemandDuringRepair: It contains the local variables tnextDemand and
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Listing 3.3: Calculations in ”DemandDuringRepair”

//when entered

if(timeIn < currentTime) timeIn = currentTime;

//triggerOut condition

if(timeOut < currentTime) timeOut = currentTime;

-> "Working"

//Expression evaluated on Exit from state.

//Demands during repair

f = (timeOut-timeIn)*demand

f = DPoisson(f);

addDemand += f;

trepairT imeOver, calculated in ”UnderRepair”, as well as ttimeIn (time
for entering the block), ttimeOut (time for exiting the block) and ”ad-
dDemand”.

The duration of this block is the remaining repair time trepairT imeOver

- tnextDemand.

Demands during the repair time can be modelled as a homogeneous
Poisson process [12] with rate δ·tsystemDownTime where tsystemDownTime

is the time from one demand occurring and until the repair time is over.
”addDemand” sums up each demand that is calculated within the time
in this block. The calculations are in listing 3.3.

NoDemandDuringRepair: The duration is approximately zero, and the
system goes straight to ”Working” because the repair time for the
component is finished.

Calculating the hazard rate for the simulated model

As mentioned in section 2 and above in the explanation of each block, the
Harel State blocks contain information on how many times the system visits
each of them. There is a hazardous event when a failure is detected by
demand, when the system is in ”DetectedByDemand”. The hazard rate for
an offline model, equation 3.1 is calculated by:

ηsim,off =
# events in state 2

# simulation time
=

# events in ”DetectedByDemand”

# simulation time
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When simulating equation 3.2, the result of the local variable ”addDe-
mand” from ”DemandsDuringRepair” has to be included.

ηsim,on =
# events in state 2 and 3

# simulation time
= ηsim,off +

”addDemands”

# simulation time

3.4 Simulated results

Figure 3.3: Reliability of a single-channel protective system. λ = 1, τ = 0.1
and µ = 200. Rates per year.

The hazard rates are plotted in figure 3.3, as well as their calculated
asymptotes (equation 3.3, 3.4 and 3.5). The results from the simulated
model are well approximated to the asymptotes for the hazard rate of the
offline and online models. The curve of the hazard rate for the online model
flattens out slightly around δ = 50, before becoming steep after δ = 100.
The hazard rate of the offline model approximates a constant as demands
occur with a high frequency, while the online model approaches infinity.

When the δ > 10λ (λ = 1) there is a significant difference between the
offline and online model. For a higher frequency of demands there is a nega-
tive effect on the hazard rate if the operator runs the system while the safety
system is down for repair, because of increased chance of demands to cause
hazardous events.

Table 3.1 illustrates the numerical values obtained for the asymptote,
numerical calculation from the Markov model [3] (where P2 and P3 are the
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Table 3.1: Comparing plant hazard rates of the single-channel system. Fail-
ure rate λ = 1, repair rate µ = 200 and proof test interval τ = 0.1

Off-line On-line

δ Asymptote

Markovian
ap-

proach
[3]

Simulated Asymptote

Markovian
ap-

proach
[3]

Simulated

0.1 0.005 0.0048 0.0047 0.005 0.0048 0.00498
1 0.05 0.0468 0.0465 0.05 0.047 0.0492
10 0.3573 0.3563 0.3737 0.3911
30 0.6678 0.6656 0.7611 0.7913
50 0.7866 0.7886 0.9712 1.0137
70 0.8439 0.844 1.1222 1.168
100 0.8884 0.8899 1.3079 1.3673
1000 0.995 0.9844 0.985 4.98 5.6579 6.0034
10000 0.995 0.9942 0.9946 49.8 48.216 51.2626

calculated probabilities in section 3.1 substituted in equations 3.1 and 3.2)
and the simulated values.

From these results there is not much difference from using a Markovian
approach and a simulated model.



4.

Two channel Protective System

The model in this section is a two channel safety system model based on [4].
The components in the single channel system from section 3 are a super-
component for each of the components in this 1-out-of-2 system (parallel
system).

A parallel system will not fail until all of the components have failed,
which means the last one to fail and cause a hazardous event is the most
important one. As the number of components increases so will the reliability
of the system. The component with the lowest hazard rate is the upper limit
for a parallel system.

The assumptions made for the two channel model are:

• The model consists of a failure rate λ, a repair rate µ and demand rate
δ that are constant in time. The rates are equal for both components
(similar as for the single channel system in section 3).

• It is periodically tested, with a constant length τ . All components are
tested at the same time.

• For time 0, the system is up and running (state 1).

• The system is in state ”working” as long as minimum one component
is up.

• The repairs are independent. When a failure is detected due to demand
or proof-test on a component the operator will start repair even when
the system is up.

• When the safety system is down for repair, and one component has
finished repair before the other, the system starts to run immediately.
There is perfect repair on the components. These are systems that
can recover after an accident.

27
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Figure 4.1: State diagram for a two channel safety system with repair

• The solutions are only valid within each proof test interval.

The states of this model are as follows:
State 1: both channels are up
State 2: one channel is up, and the other is down, but failure is undetected
State 3: both channels are down, but failures are undetected
State 4: one channel is up, and the other is under repair (its failure has been
detected due to demand)
State 5: one channel is down, but undetected, and the other is under repair
State 6: both channels are down, and their failures have been detected due
to demand

Its state diagram is shown in figure 4.1.

With the same reasoning as for the single channel system, the hazard
rate for an offline model is [4]:

η = δ[P3 + P5], (4.1)

since a demand is crucial when the system is down for state 3 (both channels
are down, but failures are undetected) and state 5 (one channel is down, but
undetected, and the other is under repair).
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For the online model, the operator lets the system run, and state 6 (both
channels are down, and their failures have been detected due to demand)
also has to be accounted for. The hazard rate is:

η = δ[P3 + P5 + P6] (4.2)

4.1 Asymptotes

4.1.1 Asymptote of the hazard rate for the no-repair case

The Probability of Failure on Demand (PFD) in a low demand case with no
repair is for a k-out-of-n system [7]:

PFDp = 1−
n∑

x=k

[ x∑
i=k

[(
n

x

)(
x

i

)
(−1)x−i

]
· 1− e−x·λτ

x · λτ

]
, (4.3)

where τ is the length of the proof-test interval. For a 1oo2 system, where
n=2 and k=1, the PFD is:

PFDp = 1− 2 · 1− e−λτ

λτ
+

1− e−2λτ

2λτ
(4.4)

By expanding the exponentials by a Taylor series, for a small λτ (λτ <<
1) we get:

PFDp ≈
(λτ)2

3
(4.5)

And the hazard rate for a low demand mode system without repair is:

η̂1oo2 = δ

[
(λτ)2

3

]
(4.6)

For the high demand case, as mentioned in section 1, demands behave as
proof-tests. Equation 4.3 cannot be used to estimate the hazard rate because
it is given for constant test intervals, which happen with too low frequency
compared to the demands. For a parallel system, when the demand rate is
very high it is assumed that each failure will be detected by demand, and
the system is protected by redundancy. Compared to the single system, it
will not necessarily lead to a hazardous event.

The asymptote for the high demand case, hazard rates are found in the
same way as for the single channel system, by steady-state conditions using
the Markov approach.
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Figure 4.2: State diagram for the two channel system without repair

The two channel system without repair reduces to only contain the three
first states. Its state diagram is shown in figure 4.2. By including the
Markov property and

∑n
i=1 Pi = 1 the system equation is when δPi(t)

δt = 0
for i = 1, 2, 3:

1) (δ + λ)P2 = 2λP1

2) δP3 = λP2

3) P1 + P2 + P3 = 1

By solving for P1 in 1), and substitute P2 from 2) into 1):

P1 =
(δ + λ)P2

2λ
=

(δ2 + δλ)P3

2λ2

Using this in 3):

(δ2 + δλ)P3

2λ2
+

δP3

λ
+ P3 = 1

Solving for P3 :

P3 =
2λ2

2λ2 + 3λδ + δ2

The hazard rate is in this case δ · P3. When δ → ∞, the hazard rate is:

ηhigh,no rep =
2λ2

δ
(4.7)

This approach cannot be used to obtain the asymptote of a low demand
mode system, because as stated above, the model does not contain proof
tests. For example, by letting δ → 0 for P3, then P3 ≃ 1, which does not
make sense since it is not an absorbing state. The hazard rate becomes
much too conservative.
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4.1.2 Asymptote of the hazard rate for a two channel system
with independent repairs

The probability of failure on demand for a 1oo2 system with repair is [1]:

PFD1oo2 = 2λ2

(
τ

2
+

1

µ

)
·
(
τ

3
+

1

µ

)

The asymptote of a hazard rate for a low demand mode system with inde-
pendent repairs (offline and online model) is:

η̂1oo2,low = δ · 2λ2

(
τ

2
+

1

µ

)
·
(
τ

3
+

1

µ

)
(4.8)

The same approach as in section 4.1.1 with the Markovian model (fig-
ure 4.1) is used to calculate the asymptote of the hazard rate for a high

demand mode system. The equation system when δPi(t)
δt = 0 for i = 1, .., 6

is:

1) 2λP1 = µP4

2) (δ + λ)P2 = 2λP1 + µP5

3) δP3 = λP2

4) (δ + µ)P5 = λP4

5) δP3 + δP5 = 2µP6

6) P1 + P2 + P3 + P4 + P5 + P6 = 1

From 1) - 6) the following probabilities for each state are obtained:

4) P4 =
δ+µ
λ P5

1) P1 =
µ(δ+µ)
2λ2 P5

2) P2 =
2λP1+µP5

(δ+λ) = P5

[ µ
δ+λ

( δ+µ
λ + 1

)]
3) P3 =

λ
δP2 = P5

[ λµ
δ(δ+λ)

( δ+µ
λ + 1

)]
5) P6 =

δ(P3+P5)
2µ = P5

[
λ

2(δ+λ)

( δ+µ
λ + 1) + δ

2µ

]
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The probabilities above are substituted into equation 6):

P5 =1− µ(δ + µ)

2λ2
P5 − P5

[
µ

δ + λ

(
δ + µ

λ
+ 1

)]
− P5

[
λµ

δ(δ + λ)

(
δ + µ

λ
+ 1

)]
− δ + µ

λ
P5 − P5

[
λ

2(δ + λ)

(
δ + µ

λ
+ 1

)
+

δ

2µ

]
1 =P5

[
1 +

(
δ + µ

λ

)(
µ

2λ
+

µ

δ + λ
+

λµ

δ(δ + λ)
+ 1 +

λ

2(δ + λ)

)
+

µ

δ + λ
+

λµ

δ(δ + λ)
+

λ

2(δ + λ)
+

δ

2µ

]
P5 =

1

1 +

(
δ+µ
λ

)(
µ
2λ + µ

δ+λ + λµ
δ(δ+λ) + 1 + λ

2(δ+λ)

)
+ µ

δ+λ + λµ
δ(δ+λ) +

λ
2(δ+λ) +

δ
2µ

(4.9)

The hazard rate is

ηhigh,offline = δ(P3 + P5) = δ(P5

[ λµ

δ(δ + λ)

(δ + µ

λ
+ 1

)]
+ P5)

When δ → ∞, ηhigh,offline → δP5. And substituting for P5 the asymptote
of the hazard rate for the offline model is:

η̂1oo2,high,off ≃ 2λ2µ

µ2 + 2λµ+ λ2
(4.10)

For the online case, we substitute P3 and P6 into equation 4.2;

ηhigh,online = δ

[
P5

[ λµ

δ(δ + λ)

(δ + µ

λ
+ 1

)]
+ P5 + P5

[ λ

2(δ + λ)

(δ + µ

λ
+ 1) +

δ

2µ

]]
,

and η1oo2,high,on → P5
δ2

µ when δ → ∞.

With similar approach and the result of δ · P5 → η̂high,offline when δ →
∞, the asymptote of the hazard rate for the high demand online case is

η̂online,high ≃ δλ2

µ2 + 2λµ+ λ2
(4.11)

It increases with the demand rate, as previously implied.
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4.2 Simulation models of the two channel system

The two channel model from figure 4.1 is simulated in three ways using Ex-
tendSim to illustrate the accuracy of the method we use to overcome the
Rare Event Problem introduced in section 3.3. The first model described in
section 4.2.1 is seen from the operators’ perspective where tests and demands
run continuously through the whole simulation time, even when the system
is working. The computer processes a lot more events than are necessary
to find the hazardous events, which makes the time to run the simulation
longer. We call this model a direct model.

The second model in section 4.2.2, tries to deal with the low demand
rare event problem by simulating proof-tests only when necessary, namely
when at least one component is down. This model also experiences a long
processing time when the demand rate increases.

To deal with the Rare Event Problem for demands, the solution proposed
for the single channel model, is used for both the components. Similar to
the calculation of proof-tests, the time for next demand is calculated when
it is crucial for a demand or a proof-test. In this case, when at least one
component is down. This approach is explained in the third model, sec-
tion 4.2.3, the optimized model.

For models with more than one component there is a system and a
component level of detail. Failure, proof-tests and repairs occur on each
component, while demand and hazards happen on system level.

The methods and results are explained in more details in the following
sections.

4.2.1 Simulation model with a test and demand generator

The two channel safety system is modelled in figure 4.3. (a) illustrating it
from a system point of view, while (b) shows how each of the system com-
ponents ”C1” and ”C2” are modelled.

For a two channel system we start to see the advantages of simulating
the model on different hierarchy blocks, and levels. The simulation model
is at the same time in ”Global”, one of its sub-states in ”C1” and one of
its sub-states in ”C2”. The system states are obtained by the relevant com-
bination of being in each of these blocks. This clearly demonstrates the
advantage of Harel Statecharts compared to traditional state systems.
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(a) Two-channel system with test and demand generators.

(b) Single system ”Ci” for i=1,2

Figure 4.3: Direct reliability model of two-channel system with its compo-
nents.
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Linking the Markov state diagram (figure 4.1) and the simulated model is
not as trivial as for the single component system. Each of the Markov states
are not directly seen through different blocks in this case. Instead, each of
the Markov states can be programmed in ”TwoChannelEvents” to get the
frequency for each system state. This is a unique set of state combinations
from ”C1” and ”C2”. A closer description of this, and each block follow:

Global The ParentOfParents block. It contains the parameters λ and µ
that are accessible for all the blocks in each of the two components,
”C1” and ”C2”. Note that these variables are on component level.
Since both components are assumed to have the same value, it is more
convenient to place them here.

Demand It occurs on system level, and is generated by an exponential dis-
tribution throughout the whole simulation time. Even when the sys-
tem is in state ”Working”. This is programmed so that the component
is considered ”down” with a mean time 1/δ. When a demand occurs
the block is ”up” for a very short time, and sends this information to
the relevant components, ”FailureUndetected” (through ”TestDem”),
”Repair” and ”DemandDuringRepair”.

There is not a point to connect it to for example ”Working”, since it
will not give us any valuable information.

Test Each test is generated continuously throughout the whole simulation
time with a constant interval on the system level, but is performed
on component level. Even when the system is in a working or repair
state. It is ”down” for the length of test time, and when the operator
performs a test the component is ”up” for a very short time. This
message is given to ”TestDem”.

TestDem This block takes all demands and proof-tests as inputs. The
reason is to distinguish them from the interruption on the ”Failure-
Undetected” blocks, to know which one occurs first.

It has ”1” as an output when a demand happens, and ”2” when a test
occurs.

C1 and C2 These are single components based on the same structure as
the single system from section 3.1.

Working is identical to the one in the model of figure 3.2.
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Listing 4.1: Calculations in ”FailureUndetected”

// triggerOut condition

if(interrupt==1 && TestDem==1) -> "DetectedByDemand"

else -> "DetectedByTest"

Listing 4.2: Calculations in ”Repair”

// when entered

repairTimeOver = currentTime + DExponential(mu);

// triggerOut condition

if(mu==0) -> "Working"

else if(interrupt==1) -> "DemandDuringRepair"

else -> "NoDemandDuringRepair"

FailureUndetected has two additional inputs, connected with ”Test-
Dem”. The connector under the block has an ”interrupted” function.
This means when the condition given for interruption is true, the sim-
ulation model leaves the block. ”TestDem” helps this block to know
whether there is a demand, or a test interruption.

The duration of the block is dependent on whether a demand or a
test occurs first, and that specific time. The algorithm is shown in
listing 4.1.

DetectedByDemand and DetectedByTest are identical to the one
in the model in figure 3.2.

The system is then sent to Repair. The block contains the local
variable trepairT imeOver, and the global parameter µ. ”TestDem” is not
attached here, because only the information of a demand is relevant
for this block in an online model. If it is interrupted by a demand,
the rest of the repair is done in ”DemandDuringRepair”. The code for
”Repair” is in listing 4.2.

DemandDuringRepair is connected with ”Demand” through the
”interrupt” input. Now that every demand is generated, the demand
is not calculated by the Poisson distribution as in section 3. The
simulation will make a loop for every demand that occurs during the
repair time, shown in listing 4.3.

The number of entries of the block is counted, which gives us the
information of how many demands there have been during the whole
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Listing 4.3: Calculations in ”DemandDuringRepair”

// triggerOut condition

if(interrupt==1 && currentTime < repairTimeOver) -> "

DemandDuringRepair"

else -> "Working"

Listing 4.4: Calculations in ”SingleEvents”

if("Working"==TRUE) f = 5;

else if ("DemandDuringRepair==TRUE) f = 4;

else if ("Repair==TRUE) f = 3;

else if ("FailureUndetected==TRUE) f = 2;

else if ("DetectedByTest==TRUE) f = 1;

else if ("DetectedByDemand==TRUE) f = 0;

else f = f0;

simulation time.

Each relevant block in the single system is connected to a function
block SingleEvents. This function block keeps track of when and
where the single system is. Each block has its unique value (where f0
equals the previous output). The algorithm is shown in listing 4.4.

TwoChannelEvents The ”SingleEvent” from ”C1” and ”C2” is connected
to ”TwoChannelEvents”. Because of the Harel Statechart property,
the simulation model is at the same time in ”Global”, ”C1” and ”C2”.
In that way, the ”TwoChannelEvents” function block knows which
output each of the ”SingleEvent” blocks have at all times. In this way
we get the relevant information about the two-channel model, as a
multi-state system. This block gives the system states from figure 4.1.

The ”TwoChannelEvents” block has the following states:
0: The system is detected by demand, and there is a hazardous failure
on the system. One component is in ”DetectedByDemand”, while the
other is in either ”FailureUndetected” or ”Repair”. This is represented
as state 6 in the Markov state diagram.
1: The system is detected by test. One component is in ”Detected-
ByTest”, while the other is in either ”FailureUndetected” or ”Repair”.
The system has been in state 3 or 5 in the Markov model, but a test
detecting the failure provides it to go to state 6.
2: The system has demands during downtime (only relevant for online
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Listing 4.5: Calculations in ”TwoChannelEvents”

if((C1==0 && C2<=4)|| (C1<=4 && C2==0)) f = 0; //detected by

demand

else if ((C1==1 && C2<=4) || (C1<=4 && C2==1)) f = 1; //

detected by test

else if ((C1==4 && C2<=4) || (C1<=4 && C2==4)) f = 2; //demand

during the system is down

else if ((C1==5 && C2<=5) || (C1<=5 && C2==5)) f = 3; //

working

else f = f0;

model). One component is in ”DemandDuringRepair” while the other
is in ”FailureUndetected” or ”Repair”. The system is in state 6 from
the Markov model.
3: The system is working. At least one component is in ”Working”.
This is represented by state 1, 2 and 4 in the Markov model.

”TwoChannelEvents” gives information on how many times the system
is in each of the states above, and the mean time for each of them.
This is programmed in listing 4.5.

4.2.2 Simulation model with a demand generator

By first trying to handle the rare event problem for the low demand mode
system, this model only consists of a demand generator. The simulation
model is illustrated in figure 4.4.

The global parameters are now λ, µ and τ , and tnextTestT ime (time for
next test) is a global variable. τ and tnextTestT ime are on a system level and
only relevant for ”FailureUndetected”.

The main difference from the simulated model in the previous section is
that tests are now only performed when necessary, following the formula
given in equation 3.7. When a component fails the sub-state ”Failure-
Undetected” contains the relevant information for calculating the time for
the next test to appear. ”FailureUndetected” is now only connected with
”Demand” as a possible interruption variable. If ”interrupted”==TRUE
< tnextTestT ime, the simulation leaves the state for ”DetectedByDemand”.

The time to next test is calculated in ”FailureUndetected” for each com-
ponent, meaning the system only does proof-tests when at least one compo-
nent is down.



4. Two channel Protective System 39

(a) Two-channel system with a demand gen-
erator.

(b) Single system ”Ci” for i=1,2

Figure 4.4: Reliability model of two-channel system with its components.
Demands are generated throughout the simulation time and tests are per-
formed when needed.
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(a) Optimized two-channel system

(b) Single system ”Ci” for i=1,2

Figure 4.5: Reliability model of two-channel system optimized for a rare
event problem.

The rest of the serial state system for each component is exactly the
same as in the previous section, where the demand generator affects the
same blocks according to the same assumptions.

The ”TwoChannelEvents” is identical to the one in the previous model.

4.2.3 Optimized simulation model for a two channel system

Figure 4.5 illustrates the model that takes care of the rare event problem
for both unnecessary tests and non-hazardous demands, in a similar way as
for the single system in section 3.3.

The global parameters are in this case λ, µ, τ , δ and the global variables
tnextDemand and tnextTest.



4. Two channel Protective System 41

Listing 4.6: Calculations in ”DemandDuringRep”

// condition for triggerInn

"TwoChannelEvents"==2

// when entering

previousTime = currentTime;

// triggerOut

"TwoChannelEvents"!=2

// expression on Exit from state

f = (currentTime - previousTime)*demand

f = DPoisson(f);

addDemand += f;

The components have access to the information needed to calculate when
the next test or demand is. In that way tests and demands are now only
calculated and will happen when at least one component is down. ”C1” and
”C2” are identical to the single system in the model in figure 3.1, except for
the block ”DemandDuringRepair”. Demands during repair is on the system
level, such that number of demands during repair cannot be calculated on
the component level. Here ”DemandDuringRepair” only registers how many
repairs where at least one demand happens. The ”SingleEvent” introduced
in section 4.2.1 is included.

”TwoChannelEvents” is the same as in section 4.2.1.

The online case is dealt with differently than in the other models by
adding the blocks ”DemandDuringRep” and ”OtherStates” connected to
”TwoChannelEvents”. As mentioned in section 3.3 demands during the re-
pair time can be modelled as a homogeneous Poisson process [12] with rate
δ · tsystemDownTime. tsystemDownTime is the time from when a demand has
occurred when the two channel system is in repair, until the first compo-
nent is done with the repair. As long as the ”TwoChannelEvents” registers
that the two channel system is in state 0, 1 or 3, the simulation will at the
same time be in ”OtherStates”. When the output value from ”TwoChan-
nelEvents” is 2, the simulation model will go to ”DemandDuringRep”. In
this block ”addDemand” sums up all demands that are calculated for each
simulation. This is programmed in the block ”DemandDuringRep”, shown
in listing 4.6.

The results are plotted in figure 4.7.
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4.3 Calculating the hazard rates

The offline model

The system will have a hazardous failure when one component is in ”Detect-
edByDemand” and the other component is in either ”UndetectedFailure”
or ”UnderRepair”. Every time this combination occurs, the ”TwoChan-
nelEvent” registers output ”0”. The hazard rate is the number of times
event ”0” is registered divided by the simulation time. Or explained by the
Markov state diagram when a demand appears:

ηoffline =
# events in state 3 and 5

simulation time

The online model

From the simulation model the hazard rate is obtained by the number of
events in ”0”, number of events in ”2” and the Poisson calculated values
in ”DemandDuringRep”, this is divided by the simulation time. From the
Markov state diagram, we have the following when a demand occurs:

ηonline =
# events in state 3, 5 and 6

simulation time

4.4 Results from the simulated models

4.4.1 The model without repair

Figure 4.6 illustrates the results for a 1oo2 system model without repair
(µ = 0) presented in section 4.1.1. The simulation model used for this
model is the optimized model from section 4.2.3. The simulated hazard rate
results approximate the asymptotes calculated in equations 4.6 and 4.7 very
well. The hazard rate increases as more failures are detected by demands in
the low demand region.

As introduced in section 1, the IEC standard suggests to use the PFD
formula for a system that is defined to be in a low demand mode, and the
PFH formula when it is in a high demand mode. For a system with δ ≤ 20
the PFD is a good estimate of the hazard rate. While for δ > 20 we can see
the effect of demands taking over as tests, which makes the system stronger
and the hazard rate to decrease. For this region the PFH is an accurate
estimate to use.
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Figure 4.6: 1oo2 system model without repair

4.4.2 The distinction between the three methods of simulat-
ing the models

The calculations of the hazard rate for the three models give the following
result shown in figure 4.7.

For δ < 100λ (λ = 1) the three models are identical. When the demand
rate increases further for the model generating every single demand and
test, and the model only generating demands (section 4.2.1 and 4.2.2), the
result starts to deviate for the online case. At δ = 300 the time to run both
the offline and online cases for the models generating tests and demands,
and only demands takes respectively 10 minutes and 6 minutes. We can see
very clearly that demands occurring before a failure is not significant for
calculating the hazard rate since the results plotted for the optimized model
is the same as for the models calculating all demands. By eliminating the
tests and demands that are superfluous, and only calculating the demands
and tests when needed, we get a much more powerful and time efficient
model. The Harel State model simulated with discrete event Monte Carlo
approach gives accurate results for very high demand rates, which means the
rare event problem is solved in a satisfactory way. The simulation model for
δ = 100000 takes 23 seconds.

The simulated model is well approximated when considering the asymp-
tote for both the low demand mode (equation 4.8) and the high demand
mode system (equations 4.10 and 4.11) for the offline and online models.
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(a) Offline model with repair

(b) Online model

Figure 4.7: Results for the model without repair and with repair for the
three simulation models when λ = 1, µ = 200 and τ = 0.1.
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For the intermediate demand region there is an unexpected behaviour
for the two cases, offline and online. The offline model has a maximum
point, while the online model also has a minimum point. The PFD which
is suitable as a hazard rate estimate when the system is in a low demand
mode, is only a good approximation when δ ≤ 20. For a δ ≥ 200 the PFH is
a good estimate for the high demand mode system. However, when δ > 20
and δ < 200 there is a large deviance for both offline and online models. The
PFD gives estimates of the hazard rate that are too conservative (plotted as
”asymptote, low demand”, equation 4.8), while the PFH is non-conservative
(plotted as ”asymptote, high demand”, equations 4.10 and 4.11).

The unexpected behaviour of the hazard rate in the intermediate demand
region can be explained. When there is a very low demand rate most of the
failures are detected by proof-tests. At this point the undetected failure
time can be very long, which means the downtime (undetected failure time
+ repair time) for one component is even longer. If there is a failure on the
other component as well, it is more likely to be detected by a demand as
the demand increases in frequency. The hazard rate increases.

At a certain point the demands occur with such a high frequency that
the demands detects the majority of failures. The proof-tests are no longer
necessary. The undetected failure time, and hence the downtime of a com-
ponent, is drastically reduced. If there is a failure on one component now, it
is detected within a shorter period of time and up running before a possible
failure is detected for the other component. The hazard rate decreases, and
a maximum point appears.

As the demand rate increases even further, the undetected failure time
and the components downtime become very short. A failed component starts
repair almost immediately. If a failure occurs in that period, a hazardous
event happens with a large probability. The hazard rate keeps steady for the
offline model, while for the online model when demands are still produced
the hazard rate increases.

This will be better illustrated in the following sections, which gives the
results of an analysis of various test intervals and repair rates on the two
channel model.

4.4.3 Results with various test intervals

The results for various proof-test intervals are seen in figure 4.8 for the of-
fline and online models.

The plots, both the offline and online case illustrate the change in be-
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(a) Offline model

(b) Online model

Figure 4.8: Results for the optimized model with various test intervals,
µ = 200 and λ = 1.
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haviour in the intermediate region as the length between tests varies. For
τ > 0.05 both the models have a maximum point, and the online model also
has a minimum point.

The online plot illustrates that there is only the maximum point that is
affected by the various lengths of proof-tests. We can see as the demand rate
increases the maximum points move slightly to the right. We can conclude
the maximum point is dependent on the relationship between proof-tests
and the demand rate. For systems with a low demand rate, the proof test
interval is significant for the risk level of the system. The hazard rates for
high demand rates are clearly not dependent on proof-tests.

When τ = 2 there are tests performed for about every second failure
(λ = 1) on one component. As expected these results give a high hazard
rate compared to models with a higher test frequency. This is also the case
that has the most impact on the intermediate region, where the estimates
between a PFD/PFH approach deviate the most compared to simulated
results. The undetected failure time is now so long that the model has a lot
to gain when demands happen with such a frequency to work as tests. The
hazard rate decreases significantly.

As the frequency of proof-tests increases the intermediate demand re-
gion becomes narrower. The undetected failure time and the downtime for
the system decreases, which is indicated by a decreased hazard rate. The
right side of the maximum point becomes less steep because of the effect
of demands taking over as tests becomes less significant. The maximum
point moves because the demand rate has to be significantly larger than
proof-tests for it to occur.

For all cases of τ the hazard rate approximates the same value when the
demand rate is high.

When τ = 0.01 there are 100 tests within one failure of a component.
The undetected failure time is very short. The demand never has the chance
to take over as tests before the effect of the repair takes place, which is shown
through a steadily increasing hazard rate.

4.4.4 Results with various repair rates

The hazard rates for various demand rates with different values of the repair
rate, µ (mean repair duration equals 1/µ) are illustrated in figure 4.9.

The plots illustrate that the repair rate gives an effect on the maximum
point, and especially for the minimum point in the online model. When
µ ≥ 100 the maximum and minimum points start to stand out, and there
is an effect on the intermediate region. The repair rate has a small effect
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(a) Offline model

(b) Online model

Figure 4.9: Results for the optimized model with various repair rates, λ = 1
and τ = 0.1.
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for low demand systems, compared to high demand systems where there are
wide differences in the results for the hazard rates.

For higher repair rates, the repair time is shorter, and the system goes
back to ”perfect” condition quicker. The intermediate demand region be-
comes wider. Since the downtime for a failed component is short, the possi-
bility of having a failure and a demand during this time is low. This supports
a lower hazard rate. There is a stronger redundant system.

The minimum point shifts slightly to the right as the repair rate in-
creases, while the maximum point does not. The minimum point occurs
when there are demands during the systems downtime, which means that
the demand rate must be significantly larger than the repair rate. This ap-
pears in the online plot when δ > µ.

When µ < 100, the repair time is so long that it will for a lot of the time
only have one component up running. The system has a weak redundancy,
and there are no maximum or minimum points. The point where the demand
takes over as tests seems to never have an impact, because the system is for a
long time up with only one component. And there is a big chance of having
a failure and a demand to occur when the other component is repaired. This
makes a hazard rate increase when a demand detects the failure and not a
test. The 1oo2 system approximates a 1oo1 system.

If we look at the plot for λ = 1, µ = 2 in figure 4.9 (both models), a
component is on average down for half of the time between failures. It is
likely that a failure occurs on the other component while the first one is in
the repair mode, and if it continues like that, the two channel system has
the majority of time with only one working component. The hazard rate
does not have any minimum or maximum points, as it is for a single channel
model, and the hazard rate approximates λ.

The hazard rate for all spectres of the demand rate is therefore strongly
dependent on the repair rate. The plot illustrates it is most significant for
the intermediate and the high demand mode system.

4.5 Two channel model with an ergodic state

This model illustrated in figure 4.10 is based on the model from section 4.
The restoration time a system experiences when a hazardous event happens
until it is ”as good as new” has been discussed with Oliveira. However, the
assumption of a ”perfect repair” when the system is down makes it possible
to calculate the steady-state probabilities. It is now assumed that there
has been a catastrophic accident which is impossible to recover from, which
might be a more realistic assumption for many systems. This means state
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Figure 4.10: State diagram for the two channel repair system with a recur-
rent state

6 is an absorbing state, there is no transition out of the state.

The asymptote for a hazard rate in the low demand mode is like the
previous model, equation 4.8. For a high demand mode system the hazard
rate approximates 1, but an asymptote can be calculated for a given as-
sumption of lifetime on the system. We assume the lifetime of the system
equals the time the optimized model in section 4.2.3 is in state ”Working”.
The asymptote of a hazard rate for a high demand mode can therefore be
set to be the same as for this model, equation 4.10.

The simulation model is illustrated in figure 4.11. ”Global”, ”C1”, ”C2”
and ”TwoChannelEvents” are identical as in section 4.2.3. When there is
a hazardous failure (output from ”TwoChannelEvent” equal 0), it goes to
”HazardFailure” which sends this message as TRUE to the ”interrupt” in-
put in ”Global”. When the system has broken down, ”Global” ”resets” its
variables (tnextDemandT ime, tnextTestT ime) so the two channel system is start-
ing over again with both of the components in ”Working”.
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Figure 4.11: ExtendSim model of the 1oo2 model with recurrent state

The result is illustrated in figure 4.12 with the hazard rate for the offline
model and its asymptotes. This model suits the asymptote perfectly for
both low and high demand rates. For a model with low demand rates it
fits the asymptote better than the model with a ”perfect repair” assump-
tion (section 4.2.3). From δ > 1 the two models are more or less identical.
We can conclude that the renewal rate is only significant for systems with
a very low demand rate. However as the demand rate increases, a system
that breaks down completely (replaced by a new system) and a system with
perfect repair are not significant when calculating the hazard rate.
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Figure 4.12: Results for the 1oo2 model with a recurrent state for various
demand rates. λ = 1, µ = 200 and τ = 0.1.
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A 2oo3 safety system model

The 1oo2 safety system model from section 4 can easily be extended to a
2oo3 model with the simulation program ExtendSim. For a 2oo3 model at
least two components have to work for the system to be functional.

The PFD for a 2oo3 system is [10]:

PFD2oo3 = (λτ)2 (5.1)

The asymptote of the hazard rate for the 2oo3 system in low demand
mode is:

η2oo3,low = δ · (λτ)2 (5.2)

We do not account for the repair rate since it will not have a big impact
when the demand rate is low.

To calculate the asymptote for the high demand rate case is a more
complex Markov equation to solve when systems contain many components.
However, to simulate the model with a Harel Statechart it is just to add an
extra component and change the system logic somewhat.

We have simulated a direct model with test and demand generators,
similar to the approach for the 1oo2 model in section 4.2.1 and the opti-
mized model, where only the necessary tests and demands are calculated in
section 4.2.3.

Figure 5.1 (a) illustrates the direct way of simulating it. The blocks
contain the same calculations and work in the same way as explained in
section 4.2.1. C3 is identical to C1 and C2. We have changed the ”Sin-
gleEvents” function block in ”Ci” for i = 1, 2, 3 to a more suitable function
in ”SystemEvents” to a 2oo3 model. The algorithm is now shown in list-
ing 5.1.

The ”SystemEvents” block contains information of which states the three
components are in at all times, and gives the system states in a similar way
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Listing 5.1: Calculations in ”SingleEvents”

if("Working == TRUE) f = 10;

else if ("DemandDuringRepair" == TRUE) f = 6;

else if ("Repair" == TRUE) f = 3;

else if ("FailureUndetected" == TRUE) f = 2;

else if ("DetectedByTest" == TRUE) f = 1;

else if ("DetectedByDemand" == TRUE) f = 0;

else f = f0;

Listing 5.2: Calculations in ”SystemEvents”

f = C1+C2+C3

if((f <= 16 && C1==0) || (f <= 16 && C2==0) || (f <= 16 &&

C3==0)) f=0; //hazard event

else if((f <= 17 && C1==0) || (f <= 17 && C2==0) || (f <= 17

&& C3==0)) f=1; //detected by test

else if((f <= 18 && C1==0) || (f <= 18 && C2==0) || (f <= 18

&& C3==0)) f=2; //repair

else if((f <= 19 && C1==0) || (f <= 19 && C2==0) || (f <= 19

&& C3==0)) f=3; //demand during downtime

else if(f >= 20) f = 4; //working

else f = f0;

as ”TwoChannelEvents” in section 4.2.1. The simulation model is now in
”Global”, a serial-block in ”C1”, ”C2” and ”C3”. The formula is described
in listing 5.2.

Figure 5.1 (b) illustrates the ExtendSim model for the 2oo3 system for
the optimized case. ”C1”, ”C2” and ”C3” are the same as the components
for the 1oo2 simulated model in section 4.2.3. ”DemandDuringRep” and
”OtherStates” are also identical to the ones in the 1oo2 model. ”Syste-
mEvents” is the same for the direct model, listing 5.2.

The low demand rate can easily be verified by the asymptote in equa-
tion 5.2. Since it is more complex to calculate the asymptote for a high
demand mode system, we compare the results of the hazard rates for the
optimized model to the direct model. This model is the correct one since it
takes into account all tests and demands that appear. Figure 5.2 (a) illus-
trates that the optimized model is more or less identical to the results for
the direct model until the processing time for the direct model becomes too
long, which is around δ = 150. The hazard rate follows the same pattern
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(a) ExtendSim model illustrating the 2oo3 direct model where tests and demands are
generated.

(b) ExtendSim model illustrating the 2oo3 optimized model.

Figure 5.1: ExtendSim models of a 2oo3 system.
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(a) The results of the hazard rate for a 2oo3 model with the direct and the optimized
model for offline and online case.

(b) Comparison of the hazard rate between a 1oo2 and a 2oo3 system hazard rate.

Figure 5.2: 2oo3 system hazard rate results. λ = 1, τ = 0.1 and µ = 200.
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as the optimized model when the demand rate gets larger than the direct
model. We interpret these results as accurate for high demand rates. This
applies for both the offline and online model.

Figure 5.2 (b) compares the result with the 1oo2 system hazard rate for
the offline and online model. As we can see the hazard rate for the 2oo3
model is higher, but parallel. This is logical since the 2oo3 system has lower
availability.

The behaviour of the hazard rate in the intermediate demand region is
the same as for the 1oo2 system, it has a maximum point for both the offline
and online model, as well as a minimum point for the online model. The
effects of the relation between the demand rate, proof-tests and the repair
rate are the same as for the 1oo2 system, which contributes to the maximum
and minimum points.

The maximum point occurs because of a change in the redundant system,
demands takes over for proof-tests, which makes the redundancy stronger
and the hazard rate decreases. While the minimum point arises for the
online model when the demand rate exceeds the repair rate, and more de-
mands happens during the system’s downtime, which increases the hazard
rate. This is explained more thorough in section 4.4.2.

Therefore the conclusion of PFD being too conservative and the PFH
non-conservative is valid for the intermediate demand mode in a 2oo3 sys-
tem as well.

5.1 2oo3 model with repair crew

We can extend the 2oo3 model to a more realistic model. The industry
has limited resources to repair their systems, or it is common that a broken
system has to wait for the right parts to start the repair.

Figure 5.3 illustrates the simulation model of this case. ”ResourcePool”
and 20 of the ”Component” blocks are added to the 2oo3 model from fig-
ure 5.1 (b).

”ResourcePool” contains the number of specified repair crews. In this
case, the model has one repair crew. This means that only one failed com-
ponent can be repaired at a time. If other components fail during the time
the repair crew is occupied, the component has to wait to be repaired and
its downtime gets longer.

The 20 components run at the same time as in the 2oo3 model. They
do not interact with the 2oo3 system, but are components the repair crew is
in charge of when failing. The components have the same failure and repair
rates as the 2oo3 system, and are either ”up” or ”down”.
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Figure 5.3: ExtendSim model of a 2oo3 system with components and repair
crew
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Figure 5.4: 2oo3 model with repair crew versus not repair crew. λ = 10,
µ = 200 and τ = 0.1.

We have simulated three cases for an offline model where λ = 10, µ = 200
and τ = 0.1:

Case 1: ”First in-first out”. The components are repaired in the same order
that they fail.

Case 2: Prioritized repair. The 2oo3 components (”C1”, ”C2” and ”C3”) are
prioritized to be repaired before a ”Component” block after a failure.

Case 3: No repair crew. All failed components are repaired immediately when
the failure is detected, no matter how many other components are
repaired at the same time.

The results plotted in figure 5.4 illustrate the difference between an offline
2oo3 model with the three cases explained above.

We can see that the model with no repair crew, case 3, has a maximum
point. Case 2, ”First in - first out” shows a large deviance from the model
without repair crew. It does not have a maximum point. This is explained
by the fact that the failed components in the model with repair crew have a
much longer downtime. It can be compared to the effect of the components
having a very long repair rate, explained in section 4.4.4. Case 3, the pri-
oritized repair model, gives a bit lower hazard rate, but still no maximum
point. The downtime for each failed component is not as long for the three
prioritized system components, which means it has a slightly stronger re-
dundant system.
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6.

SIS model with demand duration

We are now looking at how the hazard rate for a single system is behaving
when it has a demand duration, compared to the models above where a
demand is just a spike. There are also two types of failures, a dangerous
undetected and detected failure. The following model is from [2]. We will
also compare the results of the hazard rate that we think are calculated
wrongly by [2] with the corrected calculations and simulations.

The Markov state diagram of the model is illustrated in figure 6.1. The
transition rates are described in table 6.1 with its parameters used in this
thesis.

Description of each state:
State 5: The system is working. (Initial state)
State 4: Safe state.
State 3: Functioning. The system has a demand duration.
State 2: DD-failure.
State 1: DU-failure.
State 0: D-failure (DU or DD). Hazardous events,

where DD-failure (dangerous detected failure) and DU-failure (dangerous
undetected failure) are explained in section 1. D-failure is dangerous failure.

Assumptions of the model [2]:

• The system consists of a ”safe state”, which cannot lead the system
to a hazardous event. The system is in this state in case of spurious
activation. The transition rate from state 4 to state 5, µs, is calculated
as 1/MTTRs, where MTTRs is the mean restoration time.

• All transition rates are constant in time.

• A repair starts immediately when a DD-failure occurs. The DD repair
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Figure 6.1: Markov transition diagram

Table 6.1: Description of the transition rates, system specifications and its
values (in hours)

Transition rate Description Value
λde Demand rate varies
λs Transition rate to safe state 5 · 10−7

µs Restoration rate 2 · 106
τde Mean demand duration 0.2
µde Demand duration rate 5
λDD DD-failure rate 3 · 10−7

λDU DU-failure rate 5 · 10−7

λD(= λDU + λDD) Dangerous failure rate 8 · 10−7

τDU/τDD Mean repair time (DU and DD) 8
µDD DD repair rate 0.125
µDU DU repair time 4.5496 · 10−4

τ Proof-test 4380
m Renewal rate 0.00595
τm Mean renewal time 168
τs Mean restoration time 24
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rate is

µDD =
1

MTTRDD
.

• A repair starts after a DU-failure. The DU repair rate is

µDU =
1

τ
2 +MTTRDU

,

where τ/2 is the average time before the failure is detected.

Note that this is a rough estimation that is wrong. Adding two ex-
pected downtimes τ/2 and MTTRDU , where we assume each random
variable is exponentially distributed, is correctly assumed to be the ex-
pected downtime after a DU-failure. But it is not correct that taking
the inverse of this expression gives the µDU of an exponential distribu-
tion. From probability theory we have that the sum of two variables
that are exponentially distributed with a common scale parameter is
gamma distributed with the common scale parameter and shape pa-
rameter equal to 2.

• The time between demands are exponentially distributed with param-
eter λde. The mean duration for a demand is hence 1/µde.

• The renewal time is exponentially distributed with rate m.

• No more than one hazardous event can occur during a test interval.

6.1 Asymptote

The PFD with a dangerous detected and undetected failure is [2]:

PFD = 1− e−λDtCE , (6.1)

where tCE is the average downtime after a dangerous failure.

tCE =
λDU

λD

(
τ

2
+MTTRDU

)
+

λDD

λD
MTTRDD (6.2)

The asymptote of the hazard rate for a low demand mode system be-
comes:

ηPFD = λde · (1− e−λDtCE ) (6.3)

The asymptote of the hazard rate for the high demand mode is

ηhigh = λD

This is according to what discussed in section 1, when the system is a single
channel system the hazard rate approximates the dangerous failure rate.
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Figure 6.2: Pr(TDU < Tde ≤ τ)

6.2 Calculation of the hazard rate by scenario-
based formulae

Jin [2] introduces a different way of calculating the hazard rate for a safety
system that suits both low- and high demand modes. We believe that the
calculations of the probabilities for each of these scenarios are wrong. We
will look at the solutions for both cases, as well as results obtained from a
simulation model. The calculations are done in appendix C.

Each scenario is quoted from [2] below:

Scenario 1

A DU-failure occurs at time t. The demand happens after the DU-failure,
but before the next scheduled functional test at time τ . In this case, an
incorrect probability of having a hazardous event with scenario 1 is

P1 = Pr(TDU < Tde ≤ τ) =

∫ τ

0
λDUe

−λDU t
(
1− e−λde(τ−t)

)
dt (6.4)

Scenario 1 (Pr(TDU < Tde ≤ τ)) is correctly illustrated in figure 6.2.
This is according to the description above from [2] which gives the impression
that there is only one demand happening during a test interval (quoting:
”The demand occurs after the DU-failure...”). A test interval with only
one demand is only valid for a very low demand rate case, but not for a
high demand case. The correct occurrence of a demand is between time t
and τ . By accounting for the probability of a demand to happen after time
t = TDU , we include:

Pr(t < Tde) = e−λdet.

Since for TDU happening at time t we have:

Pr(t < Tde ≤ τ) = Pr(t < Tde) · Pr(Tde ≤ τ − t)

The correct probability of scenario 1 is then:
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P1 = Pr(TDU < Tde ≤ τ) =

∫ τ

0
λDUe

−λDU te−λdet(1− e−λde(τ−t)) dt (6.5)

Equation 6.4 does not state the same. It says that a DU-failure hap-
pens at time t and demand occurs between time 0 and τ − t. By having
Pr(t < Tde) = 1, we can interpret scenario 1 in the same way as we have
done with the other safety systems introduced in this thesis. This scenario
also has a rare event problem, discussed in section 3.3. When a DU-failure
happens we know the length τ − TDU , and a demand needs to occur within
this length of time for a hazardous event to apply. At this time the memo-
ryless property for a demand comes in, and the next demand is calculated.
If it occurs within the length of τ −TDU a hazardous event apply. However,
making the assumption that a demand survives time t overestimates the
hazard frequency for the scenario.

The adjusted expression of probability that represents equation 6.4 is

Pr(TDU = t ∩ 0 < Tde ≤ τ − t) =

∫ τ

0
λDUe

−λDU t
(
1− e−λde(τ−t)

)
dt (6.6)

Scenario 2

A DD-failure occurs at time t. A demand occurs after the DD-failure and
before the failure is repaired, which happens before τ . The repair starts
immediately after a DD-failure. In this case, the probability of having a
hazardous event is:

P2 =Pr(TDD < Tde < TDD + T̃DD ≤ τ)

=

∫ τ

0
λDDe

−λDDtPr(t < Tde < t+ T̃DD ≤ τ) dt,
(6.7)

where T̃DD is the repair time of a DD-failure, and an incorrect probability
is given by

Pr(t < Tde < t+ T̃DD ≤ τ) =

∫ τ−t

0
(1− e−λdeu)e−µDDu du (6.8)
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Figure 6.3: Pr(t < Tde < t+ T̃DD ≤ τ)

Pr(t < Tde < t + T̃DD ≤ τ) in equation 6.8 is correctly illustrated in
figure 6.3. The equation on the other-hand implies that a demand occurs
between time 0 and u, and the repair is finished after time u. When we
solve the equation, and calculate it for various scales, we obtain different
results. This should not be possible for a probability, and indicates that
the stated equation is wrong. Our calculations give expressions that do not
cancel out the difference. This is because [2] calculates the probability of
having a repair to survive time u, and not to be finished at time u. The
µDD in front of µDDe

−µDDu is missing.

Equation 6.8 and figure 6.3 are supposed to state the probability of
a demand to occur after the DD-failure at time t: e−λdet, but before an
additional time u, when the repair is finished.

Pr(t < Tde < t+T̃DD ≤ τ) = Pr(Tde > t)·Pr(Tde ≤ u)·Pr(T̃DD = u ≤ τ−t),

where u equals the time of repair, and the correct probability must be:

Pr(t < Tde < t+ T̃DD ≤ τ) =

∫ τ−t

0
e−λdet(1− e−λdeu)µDDe

−µDDu du (6.9)

However, we have a similar type of a rare event problem here as for
scenario 1, where a demand leads to a hazardous event when happening
within time u, which is ≤ τ − TDD. This scenario is also too conservative,
because of the assumption of having a demand to survive the time where a
DD-failure occurs.

The adjusted probability for scenario 2 when the demand is exponentially
distributed is therefore:

Pr(TDD = t ∩ 0 < Tde ≤ u ∩ T̃DD = u ≤ τ − t)

=

∫ τ

0
λDDe

−λDDt dt×
∫ τ−t

0
(1− e−λdeu)µDDe

−µDDu du
(6.10)
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Figure 6.4: Pr(t < Tde < t+ T̃DD ≤ τ)

Scenario 3

A demand occurs at time t. A dangerous failure occurs during the demand,
but before the end of demand which happens before τ . Hence the probability
of having a hazardous failure is

P3 =Pr(Tde < TD < Tde + T̃de ≤ τ)

=

∫ τ

0
λdee

−λdetPr(t < TD < t+ T̃de ≤ τ) dt,
(6.11)

where T̃de is the demand duration, and an incorrect probability is given by

Pr(t < TD < t+ T̃de ≤ τ) =

∫ τ−t

0
(1− e−λDu)e−µdeu du (6.12)

Pr(Tde < TD < Tde+ T̃de ≤ τ) from equation 6.11 is correctly illustrated
in figure 6.4.

There is a similar probability error here as for scenario 2, where µde is
missing in front of µdee

−µde .

Since

Pr(t < TD < t+ T̃de ≤ τ) = Pr(t < tD) · Pr(TD ≤ u) · Pr(T̃de = u ≤ τ − t),

where u is the time of demand duration, the correct probability is:

Pr(t < TD < t+ T̃de ≤ τ) =

∫ τ−t

0
e−λDt(1− e−λDu)µdee

−µdeu du (6.13)

Here a dangerous failure to occur during demand is a rare event problem.
Since the D-failure is exponentially distributed, the same approach is valid
to use as for scenario 1 and 2. The adjusted probability is:
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Pr(Tde = t ∩ 0 < TD ≤ u ∩ T̃de = u ≤ τ − t)

=

∫ τ

0
λdee

−λdet dt×
∫ τ−t

0
(1− e−λDu)µdee

−µdeu du
(6.14)

Calculation of the hazard rate

Since a hazard only takes place when a demand occurs during the system’s
downtime, or when a failure occurs during demand the hazard rate is,

HEF(t) = λde · P1(t) + λde · P2(t) + λD · P3(t),

where Pi for i = 1, 2, 3 are the long-run probabilities that the system ends
in state i from figure 6.1.

Jin [2] uses the scenarios above to define the hazard rate to be:

HEF =
P1 + P2 + P3

τ
, (6.15)

From now on the scenario-based formula containing the equations 6.6,
6.10 and 6.14 is called scenario-based adjusted method. While the equations
6.5, for scenario 2 including equation 6.9 and for scenario 3 with equation
6.13 is called scenario-based probability method.

6.3 Simulation models of the correct probability
scenarios

All three scenarios are based on the same ExtendSim model as illustrated
in figure 6.5, but with distinctive parameters and formulas. Each scenario
model is explained in more detail below.

Scenario 1

We want to simulate Pr(TDU < Tde ≤ τ), by the proportion of events where
a demand occurs after a DU-failure within a test interval. This is according
to figure 6.2. For this case we have to calculate TDU and Tde in time 0, to
know where they are in relation to each other within the test interval.

The parameters in ”Scenario” are: λde, λDU and τ , while ”nextDemand”,
”nextDUFailure” and ”nextTest” are variables. The simulation code is in
listing 6.1, where we do a rejection sampling:
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Figure 6.5: ExtendSim model of a scenario.

Listing 6.1: Calculations in ”Scenario” for the probability in scenario 1

// when entered

nextTest = tau;

nextDemand = DExponential(lambda_de);

nextDUFailure = DExponential(lambda_DU);

// triggerOut condition

if(nextDUFailure < nextDemand < nextTest) -> HazardFailure

else -> NoHazard
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Listing 6.2: Calculations in ”Scenario” for the probability in scenario 2

// when entered

nextTest = tau;

nextDemand = DExponential(lambda_de);

nextDDFailure = DExponential(lambda_DD);

repairDone = DExponential(mu_DD);

// triggerOut condition

if(nextDDFailure < nextDemand < repairDone <= nextTest) ->

HazardFailure

else -> NoHazard

Scenario 2

We want to simulate from figure 6.3, Pr(TDD < Tde < TDD + T̃DD ≤ τ), by
the proportion of events where a demand occurs after a DD-failure, and dur-
ing its repair within the test interval. TDD, Tde and T̃DD are calculated in
time 0 for each test interval. The simulation model is illustrated in figure 6.5.

”Scenario” now contains the following parameters: λDD, λde, µDD and
τ , and the variables: ”nextTest”, ”nextDemand”, ”nextDDFailure” and ”re-
pairDone”. The algorithm is in listing 6.2.

Scenario 3

We want to simulate Pr(Tde < TD < Tde + T̃de ≤ τ) as in figure 6.4, by the
proportion of events where a D-failure occurs after demand, and during the
demand duration within a test interval.

The simulation model is similar to the one for Scenario 2, ”nextDDFail-
ure” is replaced by ”nextDemand”, ”nextDemand” is replaced by ”nextD-
Failure”, and ”repairDone” by ”demandDone”.

The hazard rate according to equation 6.15 is obtained by adding the
simulation result for each of the three scenarios.
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Listing 6.3: Calculations in ”Scenario” for equation in scenario 1

// when entered

nextTest = tau;

nextDemand = DExponential(lambda_de);

nextDUFailure = DExponential(lambda_DU);

if(nextTest > nextDUFailure) tToTau = nextTest -

nextDUFailure;

else tToTau = 0;

// triggerOut condition

if((nextDUFailure < nextTest) && (nextDemand <= tToTau)) ->

HazardFailure

else -> NoHazard

6.4 Simulation models of the adjusted scenarios

Scenario 1

The integral in equation 6.4 is equal to:

Pr(TDU = t ∩ 0 < Tde ≤ τ − t), t ∈ [0, τ ] (6.16)

The simulated model is built up in the same way as in figure 6.2, but
is now based on the probability in equation 6.16. We want to simulate the
probability of a failure to be within a test interval, and a demand to happen
before the test given a failure has happened.

The parameters are the same as for scenario 1 in section 6.3, except for
”tToTau” which is added. This variable is the time between a DU-failure
and the next test. There is a hazardous event if there is a DU-failure within
the test interval, and a demand occurring within the time to the next test.
The simulation is described in listing 6.3.

Scenario 2

We want to simulate from equation 6.10 Pr(TDD = t ∩ 0 < Tde ≤ u ∩T̃DD =
u ≤ τ − t), where u is the DD-repair time. Note that we have simulated the
repair to be finished in time u, and not to survive it. As stated above in
section 6.2, this makes more sense.

”Scenario” contains the same parameters and variables as in section 6.3,
as well as ”repairDuration” and ”tToTau”.
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Listing 6.4: Calculations in ”Scenario” for equation in scenario 2

// when entered

nextTest = tau;

nextDemand = DExponential(lambda_de);

nextDDFailure = DExponential(lambda_DD);

repairDone = DExponential(mu_DD);

if(nextDDFailure < nextTest) tToTau = nextTest -

nextDDFailure;

else tToTau = 0;

//triggerOut condition

if((nextDDFailure < nextTest) && (nextDemand < repairDone <=

tToTau))-> HazardFailure

else -> NoHazard

Scenario 3

We want to simulate equation 6.14, Pr(Tde = t ∩ 0 < TD ≤ u ∩ T̃de = u ≤
τ − t), where u is the demand duration time given a demand has happened.

Scenario 3 has an algorithm that is basically the same as for scenario 2
(listing 6.4), where ”nextDDFailure” is replaced by ”nextDemand”, ”nextDe-
mand” is replaced by ”nextDFailure”, and ”repairDone” by ”demandDone”.

There is a hazardous event if there is a demand within the test interval,
and a D-failure between time 0 and the duration of demand.

6.5 Results of the calculations of the scenarios

Figure 6.6 illustrates that both the scenario-based models depending on the
probabilities and the adjusted one have identical simulated and analytical
results. Both methods approximate the asymptote well for very low demand
rates. The deviation between the adjusted one and the probability based
hazard rates deviate more as the demand rate increases. We notice that
the hazard rate decreases for the probability based calculation when the
demand rate increases. The reason is the probabilities for scenario 1 and
2, where it assumes that there is only one demand per test interval that is
a threat. Scenario 3 does not make much of a difference since it depends
on a D-failure to occur during a demand, where the D-failure rate is very
small and does not appear more than once during a test interval. Each of
the two probabilities for scenario 1 and 2 is dependent on the frequency of
demands and respectively the frequency of a DU-failure and a DD-failure,
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Figure 6.6: The hazard rate as a function of demand rate in low-demand
mode per 1000 hours

(a) Comparing the adjusted and correct calculated and simulated scenario-based hazard
rate with the asymptote. One demand per hour. Note the scales.

(b) The simulated and the calculated hazard rate for the correct scenario-based formula.
One demand per hour. Note the scales.

Figure 6.7: ExtendSim model of a scenario.
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which also are stochastic variables. These are dependent for a hazardous
failure to occur. For example for the first scenario, we must know where
there is a DU-failure and where there is a demand during the interval. This
is determined immediately when entering a new test interval. For a very low
demand rate it is correct that there is only one demand per test interval,
which shows through a well approximated calculation to the asymptote for
this case. But as the demand rate increases, there will be more than one
demand on each test interval. Since the probability and the corresponding
simulation model only account for the first demand happening after time 0
in the test interval, there are demands after the DU-failure that are missed.
The hazard rate decreases.

This becomes even more clear when we look at the results for the high
demand rate case in figure 6.7 (a), where the correct calculation of the
scenario-based formula, shown more explicitly in (b), gives a very small es-
timate of the hazard rate. It is underestimated compared to the asymptote.
The simulated model and the calculations are more or less identical.

The scenario-based adjusted model approximates the asymptote very
well for the high demand rate case.

6.6 Simulation model of the system

We have simulated the system model in two ways. The first model simulates
the Markovian transition diagram (figure 6.1) with assumptions from [2].

As mentioned, we think the repair rate of a DU-failure µDU is not cor-
rect. In the second model we want to look closer into this by simulating
demands continuously throughout the simulation time (in a similar way as
we did in the model for the two channel protective system in section 4.2.2,
where demands are generated).

Note that the big difference is in state 1, the undetected failure state.
The assumption of [2] says that when the system comes to this state, it stays
here with a mean duration τ

2 +MTTRDU . There is a hazardous event if a
demand occurs during this time.

In real life the system is in an undetected failure state until it is detected
by either a demand or a test, for so to be repaired. This is what simulation
model 2 implies, and should be the more accurate system model.
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Figure 6.8: The simulation model of the single component safety system.

6.6.1 Simulation model 1: exponentially distributed DU-
repair rate

The system model, in figure 6.1, is simulated in much the same way as the
single component simulation model explained in section 3.3. The model is
illustrated in figure 6.8.

The simulated model starts in ”Working”. The time for next DD-failure,
DU-failure, safe state and demand is calculated. For the event that oc-
curs first, the model goes to the represented block. In the DD-block and
DU-block, the event of having a demand before its repairs are finished is
calculated. If the time of repair is less than the time to next demand, the
model goes to ”Working”. Otherwise, it goes to ”Renewal”, which is the
hazardous event state of the simulated model, represented as state 0 in the
Markov model.

For the demand block, the event of having a failure before the duration of
the demand ends is calculated. If the time of failure is less than the time of
the demand duration, the model goes to ”Renewal”, and we register another
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hazardous event on the system. If not, the model goes to ”Working”.
In the safe state block it has a given duration before it goes back to

”Working”.

A more detailed explanation of the simulated model and each block fol-
lows:

Global The parent state. The global parameters for the model are all the
transition rates from figure 6.1: λDD, λDU , λD, λde, λs, µde, µDU ,
µDD, µs and m. τ is also a variable here, with the other variables that
are calculated in other blocks continuously throughout the simulation;
nextDDFailure (time for next DD-failure), nextDUFailure (time for
next DU-failure), nextDangerousFailure (time for next dangerous fail-
ure), nextDemand (time for next demand) and nextSafeState (time for
next safe state). They are stored here, accessible for all other blocks
in the model.

Working This is the initial state and represents state 5 in the Markov
model (figure 6.1). From state 5 there are four possibilities: there can
be a DD-failure, DU-failure, a demand or the system goes to a safe
state. The calculations done in the block is shown in listing 6.5.

DD-failure This block represents state 2 in figure 6.1. When a DD-failure
occurs, repair starts immediately, and the model goes to ”RepairDD”
instantly.

RepairDD This block also represents state 2. The transition rate to state
5 is used giving the repair time for a DD-failure. There is a hazardous
event if a demand appears during the repair. Listing 6.6 shows the
algorithm.

DU-failure It represents state 1 in figure 6.1. The model leaves immedi-
ately to ”RepairDU”, since the undetected failure time is included in
the repair time.

RepairDU Here the component is being repaired after a DU-failure. This
is the transition from state 1 to state 5. The block calculates the du-
ration of the repair, which is the time spent in this block DExp(µDU ).
When the repair is finished the system is back to ”Working”. If a
demand has occurred during the repair it goes to ”Renewal”.

DuringDemand It represents state 3 in figure 6.1. If a demand occurs, the
mean duration time for a demand is 1/µde. This is the time spent in
this block, if a D-failure does not occur during the time of the demand
duration, which leads to a hazardous event. The block is illustrated
in listing 6.7.
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Listing 6.5: Calculations in ”Working”

// when entered

if (nextDemand < currentTime) nextDemand = currentTime +

DExponential(lambda_de);

if (nextDDFailure < currentTime) nextDDFailure = currentTime

+ DExponential(lambda_DD);

if (nextDUFailure < currentTime) nextDUFailure = currentTime

+ DExponential(lambda_DU);

if (nextSafeState < currentTime) nextSafeState = currentTime

+ DExponential(lambda_s);

// triggerOut condition

if((nextDDFailure < nextDUFailure) && (nextDDFailure <

nextDemand) && (nextDDFailure < nextSafeState)) ->

DD-failure

else if ((nextDUFailure < nextDDFailure) && (nextDUFailure <

nextDemand) && (nextDUFailure < nextSafeState)) ->

DU-failure

else if ((nextDemand < nextDDFailure) && (nextDemand <

nextDUFailure) && (nextDemand < nextSafeState)) ->

DuringDemand

else -> SafeState

Listing 6.6: Calculations in ”RepairDD”

// when entered

if(nextDemand < currentTime) nextDemand = currentTime +

DExponential(lambda_de);

repairDDOver = currentTime + DExponential(mu_DD);

// triggerOut condition

if(nextDemand < repairDDOver) -> Renewal

else -> Working



78 6.6. Simulation model of the system

Listing 6.7: Calculations in ”DuringDemand”

// when entered

if (demandOver < currentTime) demandOver = currentTime +

DExponential(lambda_de);

if (nextDFailure < currentTime) nextDFailure = currentTime +

DExponential(lambda_D);

// triggerOut condition

if(nextDFailure < demandOver) -> Renewal

else -> Working

SafeState It represents state 4 in figure 6.1. The mean duration of this
state is 1/µs. After that it goes back to ”Working”.

Renewal This block collects the hazardous events that occur from the three
scenarios; demand during a DD-repair, a demand during a DU-repair
and a failure happening in the duration of a demand. From the results
in this block we get the number of times this state has been visited,
which means how many times there has been a hazardous event during
the simulation time. The mean duration in this state is 1/m. After
the renewal time is over, the system is working perfectly again.

6.6.2 Simulation model 2: generated demands

Figure 6.9 illustrates the second version of the model from the Markovian
state diagram. To get the most realistic model, demands are generated
continuously throughout the whole simulation time, in the ”Demand” block.
The blocks that calculated ”nextDemand” in the previous model, now has
an ”interrupt” connection to the ”Demand”. When a demand happens that
is relevant for the system, the simulation model changes state according to
its conditions (the same as in the listings describing the calculations for each
block for the previous model).

This has the most impact on the ”DU-failure” block. The time for the
next test is calculated when entering, and if a demand occurs before that
time, interrupting the block, the system goes to ”DetectedByDemand”. This
block only keeps track of how many of the undetected failures are detected
by demand, and the simulation model goes immediately to ”Renewal”. If
a demand does not occur before the next test is done, the system goes to
”DetectedByTest”, and immediately to ”RepairDU”. Now the model spends
the correct amount of time in the undetected failure mode.
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Figure 6.9: The simulation model of the single component safety system
with a demand generator.
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Calculation of the hazard rate

ηsim =
# events in ”Renewal”

simulation time
, (6.17)

because all scenarios that lead to a hazardous event end in ”Renewal”.

6.7 Results for the simulated system model

The plots in figure 6.10 show that the simulated system with a demand
generator (simulation model 2, section 6.6.2) approximates the asymptote
slightly better than the system model based on assumptions from [2] (sim-
ulation model 1, section 6.6.1) for very low demand rates. The latter model
actually gives non-conservative hazard rates, when we use the correct sim-
ulated system model as benchmark for the low demand mode (figure 6.10
(a)).

While for systems in the high demand mode (figure 6.10 (b)) the simu-
lation model 1 approximates the failure rate (asymptote) before simulation
model 2, and is slightly too conservative before they both approximates the
asymptote.

We can see by assuming Pr(Tde > t) that the scenario-based adjusted
formula gives a good approximation to the correct simulated system model,
even though the assumptions made here are conservative. It is slightly too
non-conservative compared to the system model with demand. This can be
explained by a very low failure rate compared to the demand rate which
makes it very likely for a demand to occur after a DU-failure (5 · 10−7 and
demand rates from 1 · 10−4 per hour [2]).

The probability based formula however is much too non-conservative.

Even though the scenario-based adjusted formula is a good approxima-
tion to the hazard rate of the simulated system, it does not take into account
a safe state (λs and µs), the renewal time (m) or MTTRDU .

Increased duration time in repair, safe state or renewal time do not
lead to a hazardous event directly, but they do affect the availability of the
system. However, this has an impact on the hazard frequency of the system.

We have simulated four additional simulated system cases compared to
the standard one given in [2] for low demand rates. They are described
below, where the change in different parameters for each case are mentioned,
the rest of the parameters for the model are as in table 6.1.

Case 1: There is no safe state, m = 0 and MTTRDU = 0.

Case 2: The repair duration after a DU-failure is about 3 months compared to
8 hours. This means that µDU = 0.0005 per hour.
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(a) Comparing the scenario-based probability and adjusted methods, with the simulated
system hazard rate for low demand rates. One demand per 1000 hours. Note the scales.

(b) Comparing the scenario-based probability and adjusted methods, with the simulated
system hazard rate. One demand per hour. Note the scales.

Figure 6.10: Results comparing the simulated hazard rate for the systems
and the two versions of the scenario-based formula.
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Figure 6.11: Simulated results with additional cases for low demand rates.
One demand per 1000 hours.

Case 3: The mean renewal time is longer, 6 months (compared to 7 days).
m = 0.000228 per hour.

Case 4: There is a higher frequency for entering safe state, (λs = 5 · 10−5 per
hour). And the duration in safe state is 3 months, compared to 1 day.
µs = 4.1667 · 10−4 per hour.

From figure 6.11 we see that case 4 stands out. A long time in a safe state
decreases the availability of the system, which results in a decreased hazard
rate. The adjusted scenario-based formula is too conservative compared to
it.

It is also slightly too conservative compared to the other cases, but not
significantly. The parameters chosen might not give the necessary unavail-
ability for the system to influence the hazard rate.

This means that the scenario-based adjusted approach is a good approx-
imation method to the estimated hazard rate as long as the failure rate is
much smaller than the demand rate, and the parameters not included in the
formula are not of significant length.



7.

Conclusion

In this thesis we have looked at the effects on the hazard rate for various
demand rates in a 1oo1, 1oo2 and a 2oo3 safey system model. We have
modelled the systems with various assumptions of demand duration, differ-
ent failure rates, time between proof-tests, time of repair and priority of
repair. This to get a better understanding of the hazard rate in the different
models, and the borderline between low demand and high demand mode
systems, where we have the intermediate demand region.

We have illustrated that there is an unexpected behaviour for a parallel
system [4] compared to a single system [3] and [2]. The maximum and min-
imum points are dependent on the downtime for the system (section 4.4.2).
The effect of demands utilized as tests, which implies a stronger redundant
system and an increased availability for a system in the intermediate de-
mand region is shown well for a 1oo2 and 2oo3 system. The maximum
point occurs where the demand rate is significantly larger than the proof-
tests. The repair rate for a failed component is also a significant factor for
the downtime of system, impacting how strong the redundant system is.
For the online system there is a minimum point where there is a significant
possibility of having a demand during the system repair time, which means
the system has a weak redundant system. A long downtime approximates a
serial system for a 1oo2 system.

We can conclude that the intermediate demand mode is very much de-
pendent on the relationship between proof-tests, demands and repair.

The hazard rate for a system in the intermediate demand mode is not
suitable with the IEC standard’s calculation of PFD or PFH. It can lead to
major consequences for the operator and the people/ environment around it.
If the system has a SIL that is too high, there are too many tests performed,
which allocate resources in a cost-efficient way. Or even worse, the system
has a SIL that is too low. In that case the system can cause hazard costs,
loss of production and reduces profit.
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A new formula for calculating the probability of failure between the max-
imum and minimum point, or between the maximum point and the steady
point should be constructed.

We have shown an adequate and efficient way to deal with the rare event
problem when modelling safety systems for high demand rates. By calcu-
lating the crucial information when needed saves a lot of processing time,
and gives a much more powerful model. The Harel Statechart modelling
gives satisfying results for various demand rates from very low to very high
for various models with distinctive properties. It shows that we can model
realistic problems in an intuitive and uncomplicated way, which far exceeds
the possibilities we have with a Markov model.

Through Harel Statechart we have shown that using µDU = 1/( τ2 +
MTTRDU ) as the transition rate from a state where the system has an
undetected failure until it works again (model from [2] in section 6) gives a
non-conservative hazard rate compared to simulating each demand and let
the system go to repair when it is actually detected.

The adjusted scenario-based formula for calculating the hazard rate by
[2] is a good approximation to the system model, even though it has a con-
servative assumption. However, the failure rate has to be much smaller than
the demand rate, and not spend a significant time in a state that decreases
the availability on the system.



A.

List of abbreviations

D-failure Dangerous failure (DU+DD)

DD-failure Dangerous detected failure

DU-failure Dangerous undetected failure

PFD Probability of failure on demand

PFH Probability of failure per hour

SIF Safety instrumented function

SIL Safety integrity level

SIS Safety instrumented system

85



86



B.

ExtendSim

A brief description of each block used in the ExtendSim simulation models,
illustrated in figure B.1. This is taken from the ”Help” function for each
block in the program [13].

(a) Clock: For discrete event modelling this must be included to the left of
the model. It provides the settings for simulation control, attributes,
item contents and the discrete rate for doing event scheduling.

(b) Case Study: The link between Extend and Excel. Each desired case
is given in Excel. These cases are simulated by starting the simulation
from this block. The results is given in a ”result” tab in Excel.

(c) Function Block: It can take maximum 7 input variables. There are
fixed functions sat up like sum, max and min. But there is also a ”Gen-
eral” option where a desired function can be specified. The Function
blocks has the result of its calculation performed, or a given variable
for a specified equation of its function as an output variable.

(d) Component block: Modelling maintainable items. In the simulations
done in this thesis only the output on the right hand side ”O” (state-
Out) is used. Blocks that are connected to these blocks are informed
by TRUE/FALSE when there is a change in the component block (bi-
nary output).

The user can give the information for the component regarding its
initial state, up-value, down-value, MTTF, MTTR, distribution details
and its parameters, among other details about test and maintenance.

(e) Harel State block The following are/ can be given by the user for
each block: condition for triggering this state, expressions evaluated
on entry, calculation of duration time and expressions evaluated on
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(a) Clock (b) BaseCase

(c) Function
block

(d) Compo-
nent block

(e) Harel State block

Figure B.1: Illustration of relevant blocks in ExtendSim
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trigger out of the block. The Harel State block has several input and
output connectors. In this thesis we have used:

TriggerInn is for the input connector(s) (can be extended to have
maximum 20 input channels). Is most often connected to another
HarelState block, or a Component block.

TriggerOut contains the value that is given for triggerOut condi-
tion. Is often connected to another HarelState block or a Func-
tion block.

InterruptIn If another block/component connected here has a value
> 0, this block is interrupted, and the model leaves this block im-
mediately.

IsInStateOut has output equal to TRUE when the block is entered,
and FALSE when it has left. It is often connected to a Function
block. In that way the Function block has the possibility to know
which block that is active at all times.

The results given in each block states how many times each block has
been activated, mean duration time in this block, the standard devia-
tion, percentage immediate leave and enter.
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C.

Calculations of the scenario based
formulae

C.1 Scenario 1

Calculation of the adjusted probability in equation 6.4:

PR1 =

∫ τ

0
λDUe

−λDU t(1− e−λde(τ−t)) dt

=λDU

∫ τ

0

(
e−λDU t − e−(λDU−λde)t−λdeτ

)
dt

=λDU

[
−e−λDU t

λDU
+

e−(λDU−λde)t−λdeτ

λDU − λde

]τ
0

=
λDU

λDU − λde

(
e−λDU τ − e−λdeτ

)
− e−λDU τ + 1

(C.1)

Calculation of the correct integral for the probability in equation 6.5:

Pcorr1 =

∫ τ

0
λDUe

−λDU te−λdet(1− e−λde(τ−t)) dt

=λDU

∫ τ

0

(
e−(λDU+λde)t − e−(λDU )t−λdeτ

)
dt

=λDU

[
−e−(λDU+λde)t

λDU + λde
+

e−λDU t−λdeτ

λDU

]τ
0

=
λDU

λDU + λde

(
−e−(λDU+λde)τ + 1

)
+ e−(λDU+λde)τ − e−λdeτ

(C.2)
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C.2 Scenario 2

Calculation of the adjusted Pr(t < Tde < t+ T̃DD ≤ τ) gives:

∫ τ−t

0
(1− e−λdeu)µDDe

−µDDu du =µDD

∫ τ−t

0

(
e−µDDu − e−(λde+µDD)u

)
du

=µDD

[
−e−µDDu

µDD
+

e−(λde+µDD)u

λde + µDD

]τ−t

0

=µDD

(
e(λde+µDD)(t−τ) − 1

λde + µDD

)
− eµDD(t−τ) + 1

(C.3)

The adjusted probability of having scenario 2, equation 6.10:

PR2 =

∫ τ

0
µDDλDDe

−λDDt

[
e(λde+µDD)(t−τ) − 1

λde + µDD
− eµDD(t−τ) − 1

µDD

]
dt

=
µDDλDD

λde + µDD

∫ τ

0

(
e(λde+µDD−λDD)t−(λde+µDD)τ − e−λDDt

)
dt

− λDD

∫ τ

0

(
e(µDD−λDD)t−µDDτ − eλDDt

)
dt

=
µDDλDD

λde + µDD

[
e(λde+µDD−λDD)t−(λde+µDD)τ

λde + µDD − λDD
+

e−λDDt

λDD

]τ
0

− λDD

[
e(µDD−λDD)t−µDDτ

µDD − λDD
+

e−λDDt

λDD

]τ
0

=
µDDλDD

λde + µDD

(
e−λDDτ − e−(λde+µDD)τ

λde + µDD − λDD

)
+ µDD

(
e−λDDτ − 1

λde + µDD

)
− λDD

(
e−λDDτ − e−µDDτ

µDD − λDD

)
− e−λDDτ + 1

(C.4)

The correct integrals and probabilities, for equation 6.9:
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P (t < Tde < t+ T̃DD ≤ τ) =

∫ τ−t

0
e−λdet(1− e−λdeu)µDDe

−µDDu du

=µDDe
−λdet

∫ τ−t

0

(
e−µDDu − e−(λde+µDD)u

)
du

=µDDe
−λdet

[
−e−µDDu

µDD
+

e−(λde+µDD)u

λde + µDD

]τ−t

0

=µDDe
−λdet

(
e(λde+µDD)(t−τ) − 1

λde + µDD

)
− e−λdet(eµDD(t−τ) − 1)

(C.5)

The correct probability of having scenario 2 is:

Pcorr2 =

∫ τ

0
λDDµDDe

−λDDte−λdet

[
e(λde+µDD)(t−τ) − 1

λde + µDD
− eµDD(t−τ) − 1

µDD

]
dt

=
λDDµDD

λde + µDD

∫ τ

0

(
e(λDD−µDD)t−(λde+µDD)τ − e−(λDD+λde)t

)
dt

− λDD

∫ τ

0

(
e−(λDD+λde−µDD)t−µDDτ − e−(λDD+λde)t

)
dt

=
λDDµDD

λde + µDD

[
−e−(λDD−µDD)t−(λde+µDD)τ

λDD − µDD
+

e−(λDD+λde)t

λDD + λde

]τ
0

− λDD

[
−e−(λDD+λde−µDD)t−µDDτ

λDD + λde − µDD
+

e−(λDD+λde)t

λDD + λde

]τ
0

=
λDDµDD

λde + µDD

(
e−(λDD+λde)τ − 1

λDD + λde
− e−(λDD+λde)τ − e−(λde+µDD)τ

λDD − µDD

)
− λDD

(
e−(λDD+λde)τ − 1

λDD + λde
− e−(λDD+λde)τ − e−µDDτ

λDD + λde − µDD

)
(C.6)

C.3 Scenario 3

By letting Tde be replaced by TD, TDD by Tde and T̃DD by T̃de, and hence
λde is replaced by λD, λDD by λde and µDD by µde we obtain scenario 3
from scenario 2.

Calculation of the adjusted Pr(t < TD < t+ T̃de ≤ τ) gives:
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∫ τ−t

0
(1− e−λDu)µdee

−µdeu du = µde

(
e(λD+µde)(t−τ) − 1

λD + µde

)
− eµde(t−τ) + 1

(C.7)

The adjusted probability of having scenario 3, equation 6.14 gives:

PR3 =
µdeλde

λD + µde

(
e−λdeτ − e−(λD+µde)τ

λD + µde − λde

)
+ µde

(
e−λdeτ − 1

λD + µde

)
− λde

(
e−λdeτ − e−µdeτ

µde − λde

)
− e−λdeτ + 1

(C.8)

The result of the correct probability in equation 6.13:

Pr(t < TD < t+ T̃de ≤ τ) =µdee
−λDt

[
e(λD+µde)(t−τ) − 1

λD + µde

]
− e−λDt(eµde(t−τ) − 1)

(C.9)

The correct probability of scenario 3 is now:

Pcorr3 =
λdeµde

λD + µde

(
e−(λde+λD)τ − 1

λde + λD
− e−(λde+λD)τ − e−(λD+µde)τ

λde − µde

)
− λde

(
e−(λde+λD)τ − 1

λde + λD
− e−(λde+λD)τ − e−µdeτ

λde + λD − µde

) (C.10)



D.

Safety Instrumented Systems oper-
ated in the Intermediate Demand
Mode

The following article by Siegfried Eisinger (DNV GL), Bent Natvig(UiO),
Luiz F. Oliveira (DNV GL) and Kristine Tveit (UiO) was published and
presented at the European Safety and Reliability Conference (ESREL) in
Zurich, september 2015.

Abstract

When analysing critical systems the demand frequency is crucial. Often
the low and the high demand mode are distinguished. In this paper the
intermediate demand mode is analysed.

The results from the analyses of the example (two channel) model show
that the hazard rate exhibits unexpected behaviour in the intermediate de-
mand region. As far as can be seen from the analysis, the standard Prob-
ability of Failure on Demand (PFD) formulas are usable, but they become
exceedingly conservative as one moves into the intermediate demand re-
gion. On the other hand, usage of the standard formulas for the hazard rate
(PFH) (high demand mode) in the intermediate region may lead to non-
conservative results. Therefore, whenever a system seems to be operated
in this intermediate demand mode, or even only close to it is advisable to
perform more accurate analysis compared to standard PFD and PFH for-
mulas. It has been demonstrated that such analysis is readily feasible using
modern simulation tools. Operational or maintenance details should be easy
to accommodate on top of the issues handled in this article. The knowledge
of rare event handling techniques may be necessary. For the operator it is
necessary to perform the required tests and documentation after demands
in a proper way.
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1 INTRODUCTION

For Safety Instrumented Systems,
demands on the Safety Function are
obviously crucial and may lead to
hazards if the Safety System does not
react in the specified way. Safety-
critical component failures are of-
ten not detectable during normal
operation. For such systems, if
demands happen relatively seldom
proof tests may be specified which
detect the failures. Obviously proof
tests should be performed more fre-
quent than the occurrence of de-
mands. Systems where this is clearly
possible are said to be operated in
low demand mode. Fire detection
represents an example for such a sys-
tem.

On the other hand systems exist
where demands occur relatively fre-
quent and proof tests with an even
higher frequency do not make sense.
The safety protection must be estab-
lished in different ways, e.g. through
redundancy. Such systems are said
to be operated in high demand mode.
An example of such a system is given
by railway interlocking systems.

Safety Standards like (IEC61508
2010) treat the two demand modes as
completely distinguishable with re-
quirements that seem to be sepa-
rate from each other. Table 1 shows
the target failure measures for both
low and high demand mode. For
low demand mode the average Prob-
ability of Failure on Demand (PFD)
is used and for high demand mode
the average frequency for dangerous
failures (PFH). Note that the lat-
ter is called Tolerable Hazard Rate
(THR) in the railway industry (see

(EN50126 1999)). Note also that the
PFD cannot directly be used as ac-
ceptance criteria - the expected de-
mand rate needs always to be spec-
ified. (IEC61508) uses a criterion
δ < 1y (with δ: demand frequency)
for the low demand range.

In reality systems exist, which
cannot be clearly placed and might
be called ”intermediate demand
mode systems”. The present paper
discusses this intermediate mode.

The issue of utilising demands
as test has not been discussed ex-
tensively, but some authors have
addressed it with varying focus.
In (L.F.Oliveira, R.Youngblood, &
P.F.F.Melo 1990) similar systems as
the one discussed here have been
analysed. More recently (Y.Liu &
M.Rausand 2011) have taken up the
issue again using similar systems but
focusing on the demand duration.
All publications that we are aware of
are restricted to the Markov assump-
tion which can be overcome using the
analysis techniques discussed here.

2 THE MODELS

The analysis of intermediate demand
mode systems is not straight forward
due to the fact that there is a combi-
nation of periodic tests, repair times
and demands. The latter are at
least not periodic and are often as-
sumed random, with a constant de-
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mand rate δ. In the extreme regions
of (very) low demand rate or (very)
high demand rate the system reliabil-
ity can be readily approximated to a
good level of accuracy (see Section
2.1). Another complication is given
by the component and system level
of detail. While failures, repair and
proof testing happens on component
level, demand and hazards happen
on system level. Component level
analysis can be performed by (par-
tial) Markov Analysis, but the exten-
sion to the system level renders the
analysis at least rather complex and
limited to the Markov assumptions.

One method which overcomes all
these difficulties is given by Dis-
crete Event Simulation. It shall
be demonstrated that even the
Rare Events Problem (see (rareEvent
2015)), which is often a challenge in
safety system analysis based on simu-
lation can be solved in a satisfactory
way.

As the system to be analysed
here clearly involves states, gener-
alised state modelling represents a
good choice for model representation
both on the component and on the
system level. The following gener-
alisations with respect to standard
Markov State Models are utilised

• The standard Markov assump-
tion that a state transition is
only dependent on the cur-
rent state is not needed. This
means also that the involved
statistical distributions do not
need to be exponential.

• States can have a structure
including sub-state systems
as serial or parallel systems.

This feature is implemented
to counter the general ten-
dency that ’flat’ state systems
can get rather involved even
with a moderate amount of
states. For the present pur-
pose components are imple-
mented as parallel sub-state
systems. The system level is-
sues are modelled in another
parallel sub-state system. In
this way the model is kept
modular, easy to understand
and straightforward to extend
to e.g. other system configura-
tions like 2oo4.

• States can have variables re-
lated to the whole state system
or to sub-systems. This feature
turns states into pseudo states
in the sense that a state may
contain many states as always
only the state occupation to-
gether with all related variable
values fully define the state.

State models thus generalised where
proposed by Harel(see (Harel 1987)),
which represents also the implemen-
tation chosen in this project. The
modelling techniques resembles the
Petri Net Models (see (Y.Dutuit,
F.Innal, A.Rauzy, & J.Signoret
2008)) which have recently been sug-
gested for safety sytem calculations.
Both modelling techniques fall into
the same class of state-based dis-
crete event simulation, but we believe
that the Harel State Charts used here
are more intuitive to understand and
communicate.

On the component level a rather
simple repairable component is mod-
elled. Failures happen with a con-
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stant rate λ and are assumed hidden
until they are detected by either a de-
mand or a test. Repair takes a time
MTTR = 1/µ. In the present arti-
cle we assume that also this time is
exponentially distributed. The sim-
plicity of the model is mostly trig-
gered by the wish to be able to com-
pare our results with previously pub-
lished results. Most assumptions can
be made less stringent and more re-
alistic within the framework of the
present analysis.

The Harel State Chart model
simulated by ExtendSim for one
component is shown in figure 1. The
model shows the main states work-
ing, undetected failure and repair.
The model knows if a failure is de-
tected by demand or proof-test, and
is aware of possible demands during
the repair time of the system.

Note that this component model
has two inputs for the triggers when
proof tests are performed or when
a demand happens. These are sys-
tem properties which must therefore
come from the super model.

The model of figure 1 runs into a
rare-event problem (see (rareEvents
2015)) for high demand rates. This
rare event problem is caused by the
fact that most demands find the
system with all components work-
ing and only relatively few demands
find one component in the failed
state - thereby detecting this failure

and initiating repair actions. Even
fewer demands cause a system haz-
ard, namely the demands which find
both components in a non-working
state. Obviously, the system haz-
ard represents the rare event and the
many demands which find everything
working represent the events which
are not really interesting for the anal-
ysis, but which use up most of the
processing time during a simulation.
This problem description contains al-
ready the solution to the problem:
demands do not really need to be
made explicit when not needed - only
when at least one component has
failed the demand has a function to
the system. Moreover, as it is as-
sumed that demands arrive indepen-
dently from each other, demand gen-
eration is not dependent on previous
demands and it is thus sufficient to
calculate the next demand when a
situation arises where this needs to
be known, namely when at least one
component has failed. This strat-
egy is followed in a variant model to
figure 1, where the demand input is
omitted and the time for the next de-
mand is kept as a system variable.
The time for the next demand is cal-
culated by any component which fails
and is available for all components in
the system.

A similar rare event problem ex-
ists in the low demand mode region.
When the demand frequency gets
low the hazard frequency gets like-
wise low, but system proof tests are
still performed using valuable pro-
cessing time. Similar to the discus-
sion above, observing that most tests
are not actually important for the
analysis (namely the tests when all
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components are working), tests can
simply be generated when needed,
i.e. when at least one component
has failed. In the case of the proof
test there is complete dependency
between tests, such that it is again
possible to calculate the next proof
test time at any time of the simula-
tion using the formula 1.

tnextTest = t+ τ − (t mod τ) (1)

Also in this case the test input is
omitted and the time for the next
test is kept as a system variable
which is only updated ‘just in time’,
when at least one component fails.

In high demand mode a single
component system does not really
make sense in critical applications:
either the failure mode in question
can be excluded as incredible or re-
dundancy is needed as it is impossi-
ble to detect failures and bring the
system into a safe state if there is
only one component and a high de-
mand frequency. This article is re-
stricted to two component systems
as the simplest extension to a single
system. The two component system
is shown in figure 2 and follows the
same rules as given in (L.F.Oliveira,
R.Youngblood, & P.F.F.Melo 1990).
”C1” and ”C2” represents the single
channel system illustrated in figure 2.

We distinguish between two mod-
els:

online model During repair the
system is fully in use. This in-
cludes also the possibility that
demands are received during
repair, even if both components
are not working.

offline model The system is still in
use if one component has failed.
If both components have failed
and the failures are detected,
the system is taken offline for
repair.

The related state diagram is
shown in figure 3, implementing the
states

State 1 both channels are up

State 2 one channel is up, and the
other is down, but failure is un-
detected

State 3 both channels are down,
but failures are undetected

State 4 one channel is up, and the
other is under repair (its fail-
ure has been detected due to
demand)

State 5 one channel is down, but
undetected, and the other is
under repair

State 6 both channels are down,
and their failures have been de-
tected due to demand. Note
that the transitions from state
6 are somewhat different from
(L.F.Oliveira, R.Youngblood,
& P.F.F.Melo 1990) due to the
fact we assume that both re-
pairs can be done simultane-
ously.
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Figure 2 represents the two com-
ponent system model while figure 3
represents the component sub-model,
which resides in the blocks ”C1” and
”C2” of the system model. The two
figures 2 and 3 illustrate very well
the different approach in Harel State
Charts modelling compared to tra-
ditional state charts. In many ways
the system model of figure 2 resem-
bles a Reliability Block Diagram (ref.
(A.Høyland & M.Rausand 1994)),
but it is in fact more than that
because the ”TwoChannelEvents”
block keeps track of which state each
of the components are in at all times.
In that way this block contains the
relevant states that are illustrated
in the state diagram. The model
in figure 2 is very well modularised
and can be extended to more compo-
nents in a straightforward way. The
model of figure 3 does not offer that.
Moreover, Markov modelling is also
limited when it comes to the choice
of distributions, maintenance details
and system safety strategy. This sim-
plified model has mainly been chosen
for comparison with previous work.

The blocks in addition to ”C1”
and ”C2” in the system model of fig-
ure 2 have the following purpose

Global Global variable settings
which are available for all sub-
state models. In our case these
are λ, δ, µ, τ , tnextDemand and
tnextTest. Note that the first
three of these could be com-
ponent level variables (and
be chosen different from each
other). Here they are only
added for convenience, since
they are chosen equal for all

components.

Demand The demand generator.
This block triggers demands
and communicates them to the
components.

Test The test generator. This block
triggers proof tests and com-
municates them to the compo-
nents.

TestDem Since the component
blocks need only to know the
demands and the combined de-
mands and tests, “TestDem”
generates the combined signal
from these triggers.

The model of figure 4 represents
the model without treatment of rare
events. For optimised treatment of
rare events the model must be mod-
ified into the model shown in figure
4.
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Clearly the explicit generation of
demands and tests is not present any
more in figure 4. In the case of online
repair another rare event problem is
revealed, namely the demands dur-
ing repair of both components, which
become many events in the case of
high demand frequency. Instead of
explicitly generating these demands,
only the state ‘DemandDuringRep’
is modelled. When this state fin-
ishes a representative number of ad-
ditional demands is sampled through
a Poisson distribution according to
the demand rate and the time inter-
val. This issue represents a solution
to a system level rare event problem.

With respect to figure 3 the haz-
ard rate for an offline case is found
by:

η̂offline =
# events in states 3 and 5

simulation time
(2)

because these two states represent
hazardous events when a demand oc-
curs. For the online case the hazard
rate is:

η̂online =
# events in states 3, 5 and 6

simulation time
(3)

where the additional state 6 repre-
sents the additional demands during
repair discussed above.

2.1 Asymptotes

The asymptotes for the hazard rate
for small and high demand rates can

be calculated analytically.

In the low demand range the de-
mands de-couple from the failures
such that the traditional PFD can be
calculated for a two channel system.
The hazard rate becomes (see (IEC
61508), part 6, B.3.2.2)

ηlow demand ≃ δ·2λ2

(
τ

2
+
1

µ

)
·
(
τ

3
+
1

µ

)
(4)

This formula can be derived through
Markov analysis or through reason-
ing about failure rates and equivalent
down times

In the high demand range the re-
pair time dominates the hazards. In
the case of offline repair the state 5
of figure 3 dominates. I.e. one chan-
nel is under repair and the other fails
and the failure is detected by the de-
mand. This leads to the formula

ηhigh demand offline ≃
2λ2µ

λ2 + 2λµ+ µ2

(5)

In the case of online repair, the
additional failures during the time
when both components are repaired
come in addition and are dominant
for very high demand rates. The re-
spective formula becomes

ηhigh demand online ≃
δλ2

λ2 + 2λµ+ µ2

(6)

The last two equations are ei-
ther obtained through calculating
the equilibrium Markov solutions
or through approximations with re-
spect to repairable systems (see
also (L.F.Oliveira, R.Youngblood, &
P.F.F.Melo 1990)).
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3 RESULTS

The problem at hand and the models
introduced in section 2 contain the
following parameters

Failure rate λ The rate at which
the components of the system
fail. It is assumed that λ is con-
stant and that the failure rates
of all components of the system
are equal.

Demand rate δ The rate of de-
mands on the safety system.
This is a system parameter.

Proof test interval τ The interval
for proof tests of the system
components. It is assumed that
proof tests are performed pe-
riodically and that all compo-
nents are tested at the same
time.

Repair rate µ The repair rate µ =
1/MTTR for a component af-
ter a failure is detected. Within
generalised state modelling it is
not necessary to assume a con-
stant repair rate. In any case,
when a failure mode is known
it is often more realistic to as-
sume a constant repair time.
Still, in this paper a constant
rate is assumed for easy com-
parison with previous work.

Without loss of generality λ = 1 is
set throughout this paper, i.e. the
time unit is set equal to the mean
time between failures of a single com-
ponent. As repair rate µ = 200 is
used as a ‘typical’ repair rate.

Results for τ = 0.1 are shown in
figure 5.

It is clearly seen that the di-
rect model is limited in the demand
range at least in the high demand
mode area both for online and of-
fline repair. For demand rates above
about 100λ the simulation times for
the direct model become too long to
be practicably feasible. In the area
where both models can produce re-
sults, the results coincide well within
statistical accuracy. The rare events
problem in the low demand range
does not become visible for demand
rates down to 0.01λ.

With the choice of time scale as
λ and µ = 200 as typical values, this
leaves two parameters to be varied
in a suitable range and the resulting
system hazard rate. The results for
offline repair are shown in figure 6.
Similar results for online repair are
shown in figure 7. As the frequency
of proof-tests decreases, the interme-
diate mode has a greater effect on the
system. There is a larger deviation
from the simulated results and the
asymptotic formulas normally used
for PFD and PFH calculation.
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The asymptotes as discussed in
section 2.1 are confirmed well in all
plots, as illustrated for one case (τ =
0.1) in figure 5. When the demand
rate increases the hazard rate for the
offline model approaches towards the
hazard rate given by the asymptotic
equation 5. For the online model,
equation 6 shows that the hazard
rate increases with the demand rate.

The plots exhibit an unexpected
pair of extreme points which are
most marked for large proof test
times. The top point is due to the
fact that demands become effective
as tests when the demand rate in-
creases. In this way failures of sin-
gle components are detected earlier,
reducing the chance for double fail-
ures and hazards. On the other hand
there is the repair time which con-
tradicts this effect since failures and
demands during repair can increase
the hazard rate. The asymptotic for-

mula which explains the low demand
region does not take these effects into
account. The effect diminishes when
the proof test interval is reduced and
seems to vanish altogether for very
small proof test intervals. There is a
similar dependency on µ which is not
elaborated here. Together these re-
sults confirm the above explanation
of the pair of extreme points.

4 DISCUSSION AND CON-
CLUSIONS

The results from section 3 show
clearly that the hazard rate exhibits
unexpected behaviour in the inter-
mediate demand region. As far as
can be seen from the analysis, the
standard PFD formulas are usable,
but they become exceedingly conser-
vative as one moves into the inter-
mediate demand region. According
to [1] the PFH formula should be
used for δ > 1y. In this case the
asymptotic hazard rate renders non-
conservative results in the intermedi-
ate region . Therefore, whenever a
system seems to be operated in this
demand mode, or even only close to
it, it is advisable to perform more
accurate analysis compared to stan-
dard PFD and PFH formulas. It has
been demonstrated that such anal-
ysis is readily feasible using mod-
ern simulation tools. Operational or
maintenance details should be easy
to accommodate on top of the issues
handled in this article. The knowl-
edge of rare event handling tech-
niques may be necessary.

As the usage of demands as effec-
tive tests is crucial for gaining the ad-
vantage of an improved hazard rate
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it is important that

• demands are properly recorded
in relevant systems

• the necessary tests on the com-
ponents are performed and the
results recorded, such that the
demand can actually be used as
an effective test

The analysis performed here can
be extended towards a number of ad-
ditional points in order to better un-
derstand the details. Without claim-
ing completeness the following issues
would be interesting

• systematic analysis of the de-
pendencies on the repair rate µ

• more realistic distributions
(e.g. constant repair time)

• other system architectures (e.g.
more general koon architec-
tures including also common
cause failures)

• other possible maintenance
strategies (e.g. take the system
offline when only one working
component is left)
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