

© 2024 ANDRITZ Inc. This program is protected by US and international copyright laws.

You may not copy, transmit, or translate all or any part of this document in any form or by any means,
electronic or mechanical, including photocopying, recording, or information storage and retrieval sys-
tems, for any purpose other than your personal use without the prior and express written permission of

ANDRITZ Inc.

License, Software Copyright, Trademark, and Other Information

The software described in this manual is furnished under a separate license and warranty agreement.
The software may be used or copied only in accordance with the terms of that agreement. Please note
the following:

ExtendSim blocks and components (including but not limited to icons, dialogs, and
block code) are copyright © by ANDRITZ Inc. and/or its Licensors. ExtendSim blocks
and components contain proprietary and/or trademark information. If you build blocks,
and you use all or any portion of the blocks from the ExtendSim libraries in your
blocks, or you include those ExtendSim blocks (or any of the code from those blocks)
in your libraries, your right to sell, give away, or otherwise distribute your blocks and
libraries is limited. In that case, you may only sell, give, or distribute such a block or
library if the recipient has a valid license for the ExtendSim product from which you
have derived your block(s) or block code. For more information, contact ANDRITZ at
Info.ExtendSim@Andritz.com or Support.ExtendSim@Andritz.com.

© 2024 ANDRITZ Inc. This program is protected by US and international copyright laws. Microsoft
is a registered trademark and Windows is a trademark of Microsoft Corporation. The copyright for
Stat::Fit® is owned by Geer Mountain Software. All other product names used in this manual are
the trademarks of their respective owners. All other ExtendSim products and portions of products
are copyright by ANDRITZ Inc. All right, title and interest, including, without limitation, all
copyrights in the Software shall at all times remain the property of ANDRITZ Inc. or its Licensors.

Acknowledgments

Extend was created in 1987 by Bob Diamond; it was re-branded as ExtendSim in 2007.

The contents of this document are the result of years of work by software architects, simulation en-
gineers, and technical writers and editors of ExtendSim products.

ANDRITZ Inc • 13560 Morris Road, Suite 1250 • Alpharetta, GA 30004 USA
770.640.2500 • Info.ExtendSim@Andritz.com

www.ExtendSim.com

Table of Contents

Introduction .. 1

Welcome! ..1
About this document...1
Who should read this document ...1
Chapters in this reference ...1
Resource management ..2
ExtendSim Advanced Resource Management..2
ARM features..4
Where to get more information outside of this document ..4

Basics: Exploring ARM.. 7
How Advanced Resource Management works ...7
Example model using ARM..7
Exploring the model ...8
Resource Manager block ..9
Queue blocks ..14
Resource Pool Release block..15
Running the model..16
Definitions ..16

Tutorial 1: Resource Creation Part 1.. 19
Overview...19
A sample model ..19
Create and configure the resources...20
Set requirements for Washer/Waxers..26
Track some transactions..27
Modify Queues to accommodate advanced resources..27
Add Resource Pool Release blocks ..28
Results...29
Next chapter..30

Tutorial 2: Resource Creation Part 2.. 31
Overview...31
Defining resources and resource requirements externally..31
Working with the Excel workbook ...32
Working with the model ...35
Selecting the requirement in the queues ...37
Next steps..38

Tutorial 3: Use Attributes for Flexibility and Scalability 39
Overview...39
Part I: using an item’s attribute value to select a resource requirement41
Part II: using an item’s attribute value for maximum flexibility43
Part III: associating a Pool property with an item attribute ..45

Reference ... 49

Overview...49
Other example models ..49
Comparison of explicit resource modeling methods ..50
Resources..51
Pools ...55
Groups...56
Status ..58
Status transitions...58
Transactions ..60
Properties ..61
Resource orders ..66
Resource requirement overview ...67
Filtering conditions...69
Quantity expressions...71
Resource requirement creation ...75
Release rules ...77
Policies..78
The Advanced Resources database...81
Blocks that compose the ARM system ...82
Primary transactions for ARM..83
What’s new in ARM since 9.0..89

ARM
Tutorial & Reference

Introduction

Welcome!
Thank you for using ExtendSim, the power tool for simulation modeling! We hope you enjoy
using ExtendSim and that you find this document helpful.

☞ This document assumes you are familiar with discrete event modeling and already know how
to launch ExtendSim and build a discrete event model. If not, see the Discrete Event Quick
Start Guide.

About this document
The purpose of this document is to get model builders familiarized with the ExtendSim
Advanced Resource Management (ARM) system, a powerful framework for representing
resources and their organization, properties, requirements, and behaviors. It is used to quantify
with a high degree of fidelity the impact of resources on system performance.

 ARM is an advanced feature that is a component of discrete event modeling. It is not available
for ExtendSim CP.

Who should read this document
The ExtendSim ARM technology is a sophisticated and comprehensive system for modeling
and managing resources.

• Discrete event model builders. While it is possible to model resources using other Extend-
Sim methods, ARM is indispensable whenever a high level of fidelity is required or if com-
plex resource requirements or allocation rules are needed for model integrity.

Even if those situations don’t apply to your models, before deciding how to model resources
you should at least read this introductory chapter as well as the “Comparison of explicit
resource modeling methods” on page 50. (The User Reference has even more information in
its Discrete Event: Resources and Shifts chapter.)

• Current ARM modelers. If you already use ARM in your models, there are many new fea-
tures and there’s probably information here that you haven’t discovered yet. Especially see
“What’s new in ARM since 9.0” on page 89.

Chapters in this reference
1) Introduction to ARM (this chapter of the document):

2) Basic information: exploring a model that uses ARM; a glossary of terms

3) Tutorial 1: using the Resource Manager to define and create resources and requirements

4) Tutorial 2: using Excel to define resources and resource requirements

2 Advanced Resource Management
Resource management
5) Tutorial 3: using an item’s attribute value to specify the item’s resource requirement or a
resource property value

6) Reference: new features since ExtendSim 9.0 and a comprehensive reference

Resource management
A resource is a stock or supply of some asset that can be drawn on as needed for an organiza-
tion to function effectively. Resources are both the factors required to accomplish an activity
and the means by which process activities and operations are performed. Examples of
resources include equipment, personnel, space, energy, time, information technology, and
money.

Use in simulation
In the context of simulation modeling, resource management is concerned with identifying and
then appropriately, efficiently, and effectively allocating resources when and where they are
needed.

Resources often have, as individual entities or as a group, specific characteristics or properties
that distinguish one from another. (For example, personnel could be categorized as sales staff,
mechanics, or programmers.) During a simulation, item entities will have a requirement that
one or more resources be allocated to them, based on the item’s needs and the resource’s spe-
cific properties.

Simulating resources allows the modeler to:

• Analyze resource availability and utilization, including how efficiently resources are being
used

• Determine the impact of resource constraints on the system’s capacity—what happens if
resources will not be available or if there is a delay until they become available?

• Explore how to improve resource utilization without causing overly long waiting lines

• Determine if waiting lines can be reduced without adding more resources

☞ If there is an infinite supply of a resource, there is no point in explicitly modeling it since it will
not cause any constraints on the model.

ExtendSim Advanced Resource Management
ExtendSim provides a unique and sophisticated architecture for systematically dealing with
multiple types of resources and complex resource requirements in simulation models. The
ExtendSim Advanced Resource Management (ARM) feature is a comprehensive system for:

• Creating resources and distinguishing between them

• Allocating resources to items as required by the model

• Releasing resources for reuse at the end of their assignment

• Generating statistical reports

The ARM system provides straightforward methods for defining complex resource require-
ments for items as well as a flexible set of rules for how resources get allocated to them.

When you should use ARM
One of the main reasons organizations build models is to determine how much work can get
done, how long it will take, and how much it will cost. The processes being modeled are often
resource-constrained—items can’t complete their activities unless specific resources are made

Introduction 3
ExtendSim Advanced Resource Management
available to them. For those models it is important to determine what the impact on operations
will be, given the available resources and how they’re configured.

As discussed in “Comparison of explicit resource modeling methods” on page 50, ExtendSim
provides several alternatives for modeling resources. However, the ARM method is preferred
when some or all of the following are true:

• A high degree of fidelity is desired or required for the model’s resources

• The resources need to be organized or differentiated in complex ways—available times, con-
ditions, training, and so forth

• Human capital resources are cross-trained or cross-functional

• There are complex requirements that determine which types and how many resources items
need to complete their tasks

• There are complicated rules for how and when resources can get allocated to items

• You need to collect detailed statistics, such as time spent in different states and utilization,
for individual resources.

☞ The ARM system can co-exist with the other resource modeling approaches (e.g. items as
resources and non-ARM resource pools). Thus ExtendSim models can use a mixture of
resource modeling methods.

Framework
The following components comprise the ExtendSim Advanced Resource Management system:

1) An ExtendSim database (Advanced Resources) is a repository for the information used to
represent the state and behavior of resources in the ARM system and provides the ARM
system’s architectural framework. ARM uses this database to represent, manage, and track
the status and properties of resources, pools, and groups, as well as allocation policies and
release rules.

2) The Resource Manager block (Item library) is the central component or “brain”
of the system. It:

* Manages and controls all resource allocations and releases

* Automatically generates and updates the Advanced Resources database

* Provides a dialog-based interface for creating and managing resources, requirements,
policies, and release rules. (For defining resources and requirements, an Excel work-
book can be used as an alternative to the Resource Manager block.)

3) When set to advanced resource mode:

* Queue blocks (Item library) communicate with the Resource Manager block to trigger
the allocation of resources to its items.

* Resource Pool Release blocks (Item library) communicate with the Resource Man-
ager block to trigger the release of resources from the items they’ve been allocated to.

4) Other blocks (listed on page 82) control or report various aspects of resources.

These components will be shown in the next chapter.

4 Advanced Resource Management
ARM features
☞ As an alternative to the dialog-based interface of the Resource Manager block, external appli-
cations such as an Excel workbook can be used to define and manage the model’s resources
and requirements.

ARM features
ARM has many features that makes it a powerful and sophisticated component of simulation
models, including:

☞ For a glossary of ARM terms, see “Definitions” on page 16.

Where to get more information outside of this document
All documentation is installed as eBooks in the Documents/ExtendSim/Documentation/folder.

User Reference
The ExtendSim User Reference has several How To chapters as well as a comprehensive refer-
ence section for Discrete Event modeling.

Discrete Event modeling
To learn more about discrete event modeling, see:

• The Discrete Event Quick Start Guide for general information and a tutorial on building dis-
crete event models

Feature Description

Comprehensive Create and manage resources and distinguish between each one. Use whole or frac-
tional resources. Create complex resource requirements and release rules, set policies,
manage data.

Automated An ExtendSim database is automatically added to the model and populated with data
as resources and requirements are created. A traceable resource order is automatically
generated whenever an item requests to have its resource requirement satisfied.

Cost-Assessed Costs can be tracked per time unit or per use on individual resources; total costs are
automatically calculated and reported.

Customizable and
Extensible

Resource requirements, release rules, and resource properties are customizable and
reusable.

Integrated and
Connected

ARM is tightly integrated with blocks in the Item library and the ExtendSim database.
Resource information, including allocation rules, is retained within the model. Use
Excel or another external application to define resources, resource requirements, and
custom properties. Import ARM definitions from external applications to the Extend-
Sim database.

Scalable Resource requirements are completely scalable since item attributes can be used as
references to resource properties and quantities and even to specify which resource
requirement the item will use. ARM also creates default resource requirements, allows
for custom resource properties, and allows for the auto-generation of resources, pools,
groups, properties, and requirements.

Helpful Statistics and reports are automatically calculated and stored, including total orders
serviced, utilization, total idle/busy/down/disabled/off-shift times, resource state tran-
sition events, and much more.

Introduction 5
Where to get more information outside of this document
• The User Reference’s Discrete Event section and its chapters on items, routing, batching, and
more

ExtendSim database
To learn more about ExtendSim database capability, see the ExtendSim Database Tutorial and
Reference.

Technical Reference
In most cases modelers will use the Resource Manager block or Excel to incorporate ARM in a
model. However, the Technical Reference is a great resource when using equation-based
blocks or when creating custom blocks for your model. The ExtendSim integrated develop-
ment environment (IDE) has thousands of pre-defined functions plus provides access to
sophisticated tools such as include files, a code editor, conditional compilation, a source code
debugger, code completion, and external source code capabilities.

☞ The ExtendSim manuals are eBooks that ship with every ExtendSim product. To access them,
see the Documents/ExtendSim/Documentation/folder, select the Help menu when using
ExtendSim, or launch the references from the Getting Started “Quick Start” model that opens
when ExtendSim launches.

Example models show you how
ExtendSim includes numerous tutorial models as well as example models that explain concepts
discussed in the documentation. See the Documents/ExtendSim/Examples folder.

 This document discusses ARM tutorial models. As indicated below, there are several additional
ARM models located at Documents/ExtendSim/Examples/Discrete Event/Resources and
Shifts/Advanced Resource Mgt. That folder also contains the Excel Template for ARM, which
can be used to define resources and resource requirements in Excel.

6 Advanced Resource Management
Where to get more information outside of this document

ARM
Tutorial & Reference

Basics: Exploring ARM

How Advanced Resource Management works
The basic mechanism for creating, allocating, and releasing resources using ARM is:

1) The model has multiple types of resources as well as requirements that specify how many
and what types of resources are needed

2) One or more Queue blocks are set to be advanced resource queues

* Depending on their needs, items in the Queue request resources, then wait until their
requirements can be satisfied

* Once resources are allocated to items, the items are released from the Queue

3) The items retain resources until they are released by Resource Pool Release blocks

4) The management of resource states and quantities and the allocation and release of
resources is controlled by a single Resource Manager block

5) As the model runs, discrete transactions occur between blocks specified for advanced
resources and the ExtendSim Advanced Resources database.

6) These transactions are driven by item arrivals in the Queue and Resource Pool Release
blocks, shift changes, and resource pool quantity changes.

☞ The primary ARM transactions are illustrated and described in more detail starting on page 83

Example model using ARM
To introduce you to the Advanced Resource Management (ARM) methodology and its compo-
nents, this chapter explores a model that already has ARM. It is the same model you will create
in the next chapter.

Open the model
Launch ExtendSim

Open the model titled ARM Tutorial 1 Final located at Documents/ExtendSim/Examples/
Tutorials/Advanced Resources.

8 Advanced Resource Management
Exploring the model
☞ Use this model to learn about ARM, but don’t save any changes you make because after you
build the model in the next chapter, you’ll want to compare your model to this original model.

About the model
The example model is derived from the Car Wash models of the tutorials discussed in the Dis-
crete Event Quick Start Guide. The car wash has two bays, one for washing and one for wash-
ing and waxing. The model simulates cars entering the car wash in one line and then choosing
whether they only want washing or also want waxing; 75% of the cars want just washing and
25% want wax and wash.

The main differences between the Car Wash models and the model used here are:

• Blocks specific to implementing ARM—a Resource Manager block and two Resource Pool
Release blocks—have been added to the model.

• Each bay has a Queue in front of it, rather than one Queue in the original model, and both
Queues have their behavior set to accommodate advanced resources.

• Using ARM, resources (attendants) have already been created for this model: 4 washers in a
Wash Only pool and 2 washer/waxers in a Wash & Wax pool.

• Each car requires 2 attendants from a specific pool who will wash (or wash and wax) it as it
goes through the bay. Two rules that specify those requirements have already been created.

• Rather than each bay processing one car at a time, an unlimited number of cars can be
washed (or washed and waxed) depending on the number and type of available attendants.
Thus the capacity of the two Activity blocks (Wash Bay and Wash & Wax Bay) has been
changed to infinite.

• Since the model uses ARM, it has an Advanced Resources database that manages all the
information.

Exploring the model
Since the model is a simple car wash similar to those described in the Discrete Event Quick
Start Guide, the main points to explore in this document are the ExtendSim database and the
blocks that are specific to ARM.

Basics: Exploring ARM 9
Resource Manager block
ARM Blocks
This model has blocks that are specific to the ARM architecture as well as Queue blocks that
are set to use ARM:

• The Resource Manager block is the central component and user interface for ARM. This
block is explored in detail below.

• While not specific to ARM, the two Queue blocks (labeled Wash Queue and Wash/Wax
Queue) have their behavior set to Advanced resource queue, as seen on page 16. Items will
wait in these queues until their required resources get allocated to them.

• The model also has two Resource Pool Release blocks, labeled Release Washers
and Release Washer/Waxers. During the simulation run, resources get allocated
to items. The only way to release ARM resources for reuse is by passing those
items through a Resource Pool Release block. This block is discussed on
page 15.

All four blocks come from the Item library.

Advanced Resources database
The Advanced Resources database is an ExtendSim database that stores the information used
to represent the state and behavior of resources in the ARM system. (To learn more about the
ExtendSim database feature, see the document “ExtendSim Database Tutorial and Reference”
located at Documents/ExtendSim/Documentation.)

In ExtendSim, go to the Database menu and select the Advanced Resources database.

Scroll through the list of tables and notice
that there are tables for pools, resources,
resource requirements, and more.

ARM uses this database to represent, manage,
and track the status and properties of resources,
pools, and groups, as well as allocation policies
and release rules. You don’t typically make
changes directly in this database; the Resource
Manager block (discussed below) automatically
updates the data in the Advanced Resources database whenever information is entered in the
block or the simulation is run.

Close the database window.

 While it is possible to directly use the database to enable ARM in a model, it is much easier and
safer to use the interface of the Resource Manager block.

Resource Manager block
While it is possible to define resources and resource requirements in Excel or some
other external application (as will be shown in the next chapter), the Resource Man-
ager block provides the main user interface for ARM.

Open the dialog of the Resource Manager block.

The block’s dialog has tabs for Resources, Requirements, Release Rules, Policies, Event Log-
ging, and Results. Each tab is explained below.

10 Advanced Resource Management
Resource Manager block
Resources tab
This tab is for creating, editing, and managing resources, pools, and groups.

Resources, pools, and groups

• Resources are what items in the model need to proceed to the next step in the process.

• A pool is a resource property that is used to organize resources so they can be referred to by
a common relation. Since they are used to organize resources, there must always be at least
one pool in a model before any resources are created.

• Groups are an optional, but powerful, method for organizing resources from one or more
pools

☞ These terms are defined on page 16 and further explained in the reference chapter that starts on
page 49.

Modes
The Resources tab operates in three modes:

1) Create resources. For creating resources, groups, and pools and specifying their properties.

2) Edit resources. For editing or deleting resources, groups, and pools, and for changing their
properties.

3) Manage groups. To define which groups, if any, selected resources belong to. Groups are
an optional property of resources and are discussed on page 56.

Resource properties
Resources have properties—characteristics which distinguish them from each other and allow
them to be completely specified. An example of a resource property is Pool or Initial Status.

As is true for item attributes, each resource property can have multiple values (for example, the
value for Initial Status could be idle or disabled). Every resource is required to have a Pool

Basics: Exploring ARM 11
Resource Manager block
property, a Maximum Quantity, and a minimum Allocation Quantity; the other resource prop-
erties (initial status, total down time, etc.) are optional. As discussed in “Properties” on
page 61, ARM provides for over 40 predefined resource properties and you can add custom
properties.

Explore this model’s ARM resources and pools
In the Resources tab, change to Mode: Edit resources

The top frame is for filtering resources by selected property values for the pool, initial status,
and so forth. With the default settings, all the model’s pools and advanced resources are dis-
played in the table in the bottom frame, shown here.

As mentioned earlier, this model has two pools and six resources:

• The Wash Only pool has 4 resources, named Washer_1 to Washer_4

• The Wash & Wax pool has 2 resources, Washer/Waxer_1 and Washer/Waxer_2

In this model all the resources are initially in the Idle status and each of them is represented in
the Advanced Resources database as a single, whole resource. (You will learn more about
whole and fractional resources in “Fractional and multiple resources” on page 52.)

Requirements tab
Go to the Resource Manager block’s Requirements tab

This tab is for cre-
ating named rules
that specify how
many of what
types of resources
the items will
need. The process
of creating a
resource require-
ment involves
three steps:

1) Create a filtering condition that limits the universe of all the model’s advanced resources to
a specific collection of resources. For example, only those in the Wash Only pool.

2) Create a quantity expression to indicate how many of those specific resources will be
needed, such as 2 from the Wash Only pool.

12 Advanced Resource Management
Resource Manager block
3) Finally, create the resource requirement. This can be as simple as the specified quantity of
resources with a specific condition (2 from the Wash Only pool) or as complex as multiple
quantity expressions combined together using AND or OR.

☞ As an alternative to using this tab, resource requirements can be defined in Excel or some other
external application and auto-generated by ARM. Both methods are shown in the following
chapters.

Explore this model’s resource requirements
In the block’s Requirements tab, check the box to Create/modify resource requirements

Click the popup menu for Choose resource requirement to see
the three resource requirements that have been created for this
model:

* RR_Wash & Wax Pool

* RR_2 from Wash Only Pool

* RR_2 from Wash & Wax Pool

Notice that the expression statement for the selected resource
requirement is displayed. For example, selecting RR_2 from
Wash Only Pool causes the expression QE_2 from Wash Only
Pool to be shown in the expression field.

As shown on page 14, based on whichever resource requirement is selected in a Queue block,
the ARM system determines which resources, and how many, each item needs before it can be
released from the Queue.

Release Rules tab
Go to the Resource Manager block’s Release Rules tab

The Release Rules
tab is where custom
release rules are cre-
ated. When used,
these rules control
which resources are
released from the
items that pass
through the Resource Pool Release blocks.

Why release rules aren’t always used
Resources that have been allocated to items can only be released when the items pass through a
Resource Pool Release block. Settings in that block provide that it releases either all the
resources, the resources from a specific resource order, or specific resources as identified by a
custom release rule that was created in the Resource Manager’s Release Rules tab. Thus a cus-
tom release rule is only used if it has been previously created in the Resource Manager block
and the Resource Pool Release block is set to use it.

Custom release rules are optional and this model doesn’t use any. For detailed information
about release rules, see page 77.

Basics: Exploring ARM 13
Resource Manager block
Policies tab
Go to the Resource Manager block’s Policies tab

The Policies tab con-
trols the order in which
resources search for
waiting items. This
determines which items
a resource can allocate
itself to when the
resource becomes avail-
able for work.

Whenever a resource becomes idle, it has an opportunity to allocate itself to one of the items
that are waiting for resources. The settings in this tab are used to sort the list of waiting items
before allocation is attempted.

There are several policy options in the top frame. The default is that items that are candidates
for allocation are sorted by their resource requirement rank and then by their queue arrival
time. If the resource requirement rank is part of the policy, the tab’s bottom frame allows you
to override the rankings for individual resources.

This model uses the default policy settings. For detailed information about setting policies, see
page 78. For information about resource requirement rankings, see page 80.

Event Logging tab
Go to the Resource Manager block’s Event Logging tab

If enabled, the Event Logging tab traces specified transaction types while the simulation is run-
ning.

As shown on “Logging status transitions” on page 59, if Resource status transitions is selected
in the Transaction Type table, a Status Transitions table appears to the right with over 100 tran-
sitions that can also be traced during the run. For more information, see “Status transitions” on
page 58.

Explore this model’s event logging
The Order Resources, Allocate
Resources, and Release
Resources transactions have
been selected in this model. To
see the results:

Click the View Database but-
ton in the Event Logging tab

Choose Data View in the
database window

In the All Tables pane, dou-
ble-click the Resource
Transaction Log table to open the database Viewer, shown here.

Transaction types are discussed on page 60 and status types and transitions are discussed start-
ing on page 58.

14 Advanced Resource Management
Queue blocks
☞ Use logging judiciously. Choosing all the transaction types, and especially using resource
names in the logging table, can significantly slow simulations.

Results tab
Go to the Resource Manager block’s Results tab

The Results tab provides statistical information about selected ARM components during the
simulation run. Choose that this tab reports on all pools or a specific pool, all resources or a
specific resource, and so forth. As seen below, the block gathers a lot of information, all of
which is also transmitted to the Advanced Resources database.

For this model, the table reports how much each resource was utilized during the run, the total
number of resource orders that were serviced, idle time, and so forth.

When you’ve finished examining the Resource Manager block, close its dialog

Queue blocks
When an item arrives in a Queue that is in ARM mode, the Queue notifies the Resource Man-
ager block that there is an item that needs its resource requirement satisfied. The Resource
Manager executes the specified resource requirement—determining which resources, and how
many, each waiting item needs and whether those resources are available—and notifies the
Queue as soon as the requirement can be satisfied. (As will be shown in Chapter 3, if any part
of the resource requirement is implicitly defined—that is, referenced by the item’s attribute—
the Resource Manager also looks up the item’s attribute values.)

For this model, the resource requirements were explicitly defined in the Resource Manager’s
Requirements tab and each Queue block has been set to use one of those specific requirements.
Until the required resources are allocated to an item, it must wait in its Queue. In this manner
the ARM system manages the allocation of scarce resources throughout the model.

☞ Not every queue in the model needs to be set to advanced resource behavior, only those whose
items require ARM resources.

Explore a Queue block
Open the dialog of one of the Queue blocks (Wash Queue or Wash/Wax Queue)

Notice that the behavior has been set to advanced resource queue

Items in these queues can’t leave the block until their resource requirements are satisfied. The
queues order resources based on the selected resource requirement.

The block’s dialog gives options for selecting a resource requirement. The
requirement can be specified by:

• Picking from the list of the model’s existing resource requirements (as
shown below and in Tutorials 1 and 2)

• Or, an attribute value (as shown in Tutorial 3)

Basics: Exploring ARM 15
Resource Pool Release block
• Or, a connector value

Explore this model’s resource ordering behavior
The Queues in this model order resources for their waiting items based on a resource require-
ment that is selected from a list.

• The Wash Queue is
defined such that every
item waits for 2 resources
(attendants) from the Wash Only pool.

• The Wash/Wax Queue
has its items wait for 2
attendants from the Wash
& Wax pool.

When you’re finished examining the Queue block, close its dialog

Resource Pool Release block
As mentioned earlier, allocated resources are
only released when the items pass through a
Resource Pool Release block.

When an item with ARM resources enters the
Resource Pool Release block, the block notifies
the Resource Manager that resources need to
be released from the item. The Resource Man-
ager releases the resources using release rules
specified in the Resource Pool Release block
and the item passes through the block, minus
the specified resources.

Explore a Resource Pool Release block
Open the dialog of one of the Resource Pool

Release blocks (Release Washers or Release
Washer/Waxers)

Notice that the behavior has been set to Release: advanced resources

Depending on the selection chosen, this block can release, from the items that pass through it:

• All the resources.

• Or, the resources from a specific resource order.

• Or, resources using a custom rule. (Custom release rules are created on the Resource Man-
ager block’s Release Rules tab.)

Explore this model’s release rules
In this model, both of the Resource Pool Release blocks are set such that all the resources will
be released from the items that pass through. Released resources transition to the Idle state and
become available for assignment to other items in the model.

When you’re finished examining the Resource Pool Release block, close its dialog

16 Advanced Resource Management
Running the model
Running the model
Run the model

Go to the Resource Manager’s Results tab

As seen below, the top table in this tab captures statistics about each resource.

Definitions
Before going through the tutorials in the following chapters, it is helpful to understand some
terms. The following definitions and abbreviations are used regarding the ARM system. Note
that italicized words are defined somewhere else in the table.

Term Definition

Advanced resource
(AR)

A resource that is designated as part of the Advanced Resource Manage-
ment (ARM) system.

Filtering condition
(FC)

One specified condition of a property for a resource or a group. For
example, that the resource comes from a particular pool or that it has a
defined cost per use. When applied during the simulation run, filtering
conditions restrict the allocatable resources to those that meet the specific
conditions. Filtering conditions are saved so they can be used in a quan-
tity expressions. They are thus the smallest (atomic) components of a
resource requirement.

Group Groups are a secondary and optional method of organizing resources
from one or more pools. (While a resource can only belong to one pool, it
can be a member of none, one, or multiple groups.) Like pools, groups
can be used to control which types of resources are allocated to and
released from items.

Pool A resource property that is the required method for organizing resources.
Each resource must have a pool property to control which types of
resources are allocated to and released from items, as well as to capture
statistics. A resource can belong to only one pool but it can be a member
of many groups.

Properties A method for distinguishing one resource, group, pool, or item from the
others. There are over 40 pre-defined resource properties and you can
create custom resource properties. A Pool is a required property for each
resource.

Quantity expression
(QE)

A component of a resource requirement that specifies the desired number
of resources to be selected from a list of those that meet the filtering con-
ditions. Each resource requirement has at least one quantity expression
that consists of a specified quantity of one or more filtering condition
results.

Basics: Exploring ARM 17
Definitions
Resource An economic or productive factor; the means by which process activities
and operations are performed. Typical resources include equipment, per-
sonnel, space, energy, time, and money.

Resource order A request by an item to satisfy a resource requirement. This causes the
Resource Manager to assign the item a unique Resource Order ID which
is stored in the item property “_AR Order ID”.

Resource Order ID The location (record index) of a resource order in the Resource Orders
database table. It is optionally attached to items using attributes in
queues.

Resource requirement
(RR)

A named rule that specifies how many of what types of resources to allo-
cate to an item. The rule could be simple (1 washer/waxer is required per
car) or it could be a complex expression involving several resources,
groups, and so forth. A resource requirement can be composed using one
or more quantity expressions.

Resource release rule A customizable mechanism for controlling which resources to release
when items enter Resource Pool Release blocks. Each resource release
rule is associated with a specific resource requirement and is designed to
control the release of resources at the quantity expression level of the
resource requirement.

Term Definition

18 Advanced Resource Management
Definitions

ARM
Tutorial & Reference

Tutorial 1: Resource Creation Part 1

Overview
This chapter shows how to use the Resource Manager block’s dialog to define and create
resources and resource requirements for a model.

Chapter 2, which starts on page 31, will show how to instead use an Excel workbook to define
those resources and resource requirements.

 It is suggested that you go through the Part I tutorial to understand the concepts and the Part II
tutorial to learn a different method.

A sample model
The model you will have created by the end of this chapter is the one shown in the previous
chapter.

Open the model
Launch ExtendSim

Open the model ARM
Tutorial 1 (not the
Final version) from the
folder Documents/
ExtendSim/Examples/
Tutorials/Advanced
Resources

Save the model as My
ARM Tutorial 1

 The models used in the ARM tutorials are not scalable and do not use the best modeling tech-
niques. However, they are purposefully structured to make it easier for you to learn ARM con-
cepts. For a scalable, logical example see the Semi-Conductor Fab model located at
ExtendSim/Examples/Discrete Event/Resources and Shifts/Advanced Resource Mgt. It shows
how to use ARM with 2D animation of a material handling system.

Tutorial assumptions
This model is based on the Car Wash models discussed in the Discrete Event Quick Start
Guide. However, it assumes that attendants are needed to wash (or wash and wax) the cars as
they proceed through the bays. To add ARM to this model, you need the following informa-
tion:

20 Advanced Resource Management
Create and configure the resources
• There are two types of attendants:

• Washers can only work on cars that need washing but not waxing

• Washer/Waxers can only work on cars that need waxing as well as washing

• Each type of attendant will be stored in a separate ARM pool

• There are 4 Washers and 2 Washer/Waxers

• Each car requires either 2 Washers or 2 Washer/Waxers, as appropriate

• Each bay can accommodate any number of cars

Since attendants are restricted to a specific bay, each type of attendant will have its own pool.
If instead the attendants could move between bays (e.g. if they were cross-trained), the model
could have one pool for all the attendants and divide them into groups (discussed on page 56).
But lets keep this model simple.

Add a Resource Manager block
Place a Resource Manager block (Item library) in your model. The block can be

placed anywhere, but the top left of the model will provide easiest access.

As you can see from the Database menu, adding a Resource Manager block auto-
matically adds a pre-configured Advanced Resource database to the model. This database has
tables, fields, and records to hold all the information that is created when you add ARM to a
model and when you run the simulation.

 The Resource Manager is only available in the ExtendSim DE and ExtendSim Pro products.

Create and configure the resources
Resources can have one or more properties, but a pool must be one of those properties. So the
first step is to create a pool to hold the Washer resources.

Open the Resource Manager block
Open the Resource Manager block’s dialog

Label the block “Resource Manager”

☞ Other than the Resources tab, the other tabs in this block are disabled. The tabs are meant to be
used sequentially and will remain disabled until you’ve created some advanced resources.

Create a pool of attendants who only wash cars
By default the dialog of the Resource
Manager block is set to Mode: Create
resources, which is what you want.

The top frame is where you specify
default resource properties—the pool
and so forth—for the resources you
will create.

Create a pool
Since this model doesn’t have any
resource pools, and since each resource is required to have a pool as one of its properties, the
first step is to create a pool property for the attendants.

Tutorial 1: Resource Creation Part 1 21
Create and configure the resources
Pools can be created in the Resource tab’s top frame (Specify default resource properties) or by
checking the box to “Display groups, pools, and properties”.

In the Resource’s tab, go to the top frame:

Click the popup menu for Pool name: Create new pool.

In the dialog that appears, name the pool Wash Only Pool and click OK

In the message that
appears, choose No,
so that a default
resource require-
ment is not created
by default. (For this
part of the tutorial, you will create it manually so you can see how it’s done.)

Name the resources
Whichever name is entered in the Resource name field will be the root name for all the
resources created for this pool. In addition, whichever properties are set here will apply by
default to every resource in the pool. (Resource names and other properties can be changed
later.)

As shown here, by default the resource name (Wash Only
Pool) is taken from the name of the pool. Click in the field
and change the resource name to Washer.

Specify the other default properties
The properties in this first frame will apply by default to all the resources in the pool. They can
be changed later for individual resources.

Leave the resource properties (initial status, shift, cost, and so forth) at their defaults.

What happened
The resources have been defined as:

• Having a Pool property named Wash Only Pool

• Having the Idle status with no Shift or cost information

However, the ARM system doesn’t yet know how many resources will have that Pool property
and if they will all have the same default properties or if some of them will have different
default properties.

Create resources for the Wash Only pool
In the bottom frame (Create resources with the specified properties):

Enter the number 4

Then click the Create button

As shown below, this creates 4 resources (Washer_1 through Washer_4) that each have a Pool
property named “Wash Only Pool” and the default initial status and other properties.

22 Advanced Resource Management
Create and configure the resources
Save your model

☞ The resources and their properties are automatically placed in the Advanced Resources data-
base. Saving the model saves those database changes.

Create a second pool of attendants who only wash and wax cars
Click the Pool name popup menu again. Since you’ve already created one

pool, the Pool name popup menu shows the existing pool.

Select Create new pool

Name the new pool Wash & Wax Pool and click OK

Choose Yes when asked
if you want to create a
default Resource
Requirement for that
pool

Change the resource
name to Washer/Waxer but leave the other options in the top frame at their defaults

In the frame for creating resources, enter
the number 2 and click the Create button

This creates two Washer/
Waxer resources, each of
which has the Wash &
Wax pool and the Idle
status as its properties.

Save the model
Click OK to close the dialog of the Resource Manager block.

Save the model to save your changes. This also saves the changes to the Advanced
Resources database, which now contains all the information you’ve entered about the pools
and their resources.

What happened
As the resources were created, the ARM system automatically:

• Named the resources (for example Washer_1 and Washer_2)

• Assigned the specified properties to them (such as the Wash Only Pool)

• Stored the resources as records in the Resources table of the Advanced
Resources database

• Listed them in the Resource Manager block so they can be edited

To view all the resources you’ve created, along with their properties, change the Resource
Manager block’s Resources tab to Mode: Edit Resources.

Tutorial 1: Resource Creation Part 1 23
Create and configure the resources
☞ The resources you’ve created here have only one property that you’ve explicitly specified—
their pool. It is more common that a resource would have multiple, compounded properties
(e.g. a particular pool plus a specific skill plus a utilization percentage of less than a certain
amount).

Set requirements for washers
The next step is to create a resource requirement which will establish how many of what types
of resources to allocate to an item. In this case, two attendants who come from the pool Wash
Only.

Resource requirements are built in three steps.

1) The first step is to create and save one or more filtering conditions. Each filtering condition
is one specific property that a resource must have, or not have, in order to be selected for a
requirement that references the filtering condition. For example, a filtering condition could
be that the resource comes from a particular pool or that it doesn’t cost more per use than
some defined amount. Filtering conditions are explored in detail starting on page 69.

2) The second step is to define and save one or more quantity expressions. Each quantity
expression is a logical statement—the desired number of resources that will be required for
the task, where the collection of resources is limited by the use of one or more filtering con-
ditions. An example is “2 workers from pool A”. Quantity expressions are discussed start-
ing on page 71.

3) The goal is to arrive at a resource requirement. In the simplest case, the resource require-
ment could be the same as the quantity expression (e.g. “2 workers from pool A”). It could
also be a complex expression that uses multiple quantity expressions to select resources
with specific properties from several pools and/or groups. For example, “2 workers from
pool A and 1 worker who costs less than $100 per use”. See page 67 for more information.

Create a filtering condition for the Washers
The filtering condition in this tutorial will be that the resources must come from a specific
pool—Washers from the Wash Only Pool, Washer/Waxers from the Wash & Wax Pool.

A new filtering condition
Go to the Requirements tab of the Resource Manager block

Check the box to Create/Modify filtering conditions

☞ Notice that the popup in the Choose filtering condition frame already lists one filtering condi-
tion—FC Wash & Wax Pool. This is because you chose on page 22 to allow the system to cre-
ate a default resource requirement for the Wash & Wax pool. You will use this filtering
condition later.

In the Choose filtering condition frame:

Click the popup menu

Choose New filtering condition

In the block’s dialog, the popup changes to unsaved
filtering condition and the text is in red – a reminder
that the filtering condition must be saved to be usable.

24 Advanced Resource Management
Create and configure the resources
Filter using the value of a Pool property
Choose to Filter using properties of: resources (the default)

Change the properties popup menu to: Property: Pool, telling ARM you want to filter using
one of the Pool property’s values

Leave the operator as “=”

In the popup menu, choose the Wash Only Pool as the
value for the Pool property. The expression should now read
as shown to the right.

☞ Each property can have one or more values. For example, you’ve created two values for the
Pool property: Wash Only Pool and Wash & Wax Pool.

Save
Click Save As, save the filtering condition as FC_Wash Only Pool, and click OK.

Since you want to under-
stand the process of how
a resource requirement is
created, in the message
that appears, choose No.
This means that a default
resource requirement is not created when the filtering condition is created.

Test
Click Test. This opens the ExtendSim database

Viewer, displaying which resources are currently in
the particular pool that was chosen to filter the
resources. (Resources can be added or deleted later.)

Close the database Viewer window

Save the model to save your work

Create a quantity expression for Washers
The quantity expression section is where you specify how many resources, from a particular
collection of filtered resources, will be needed to complete the task. The filtering condition you
just created will be used to narrow the collection of resources to just the ones in the Wash Only
pool.

New quantity expression
Check the box to enable Create/modify quantity expression

☞ There is already one quantity expression—1 From Wash & Wax Pool—because earlier you
said yes to the option to create a default resource requirement for the Wash & Wax Pool.

In the section Choose quantity expression, click the popup menu

Choose New quantity expression

The expression popup changes to
“unsaved quantity expression” and
the text is in red – a reminder that it
must be saved to be usable.

Tutorial 1: Resource Creation Part 1 25
Create and configure the resources
Enter a quantity
Enter Quantity = 2

Click the SELECT button (on the left)

This places the expression in the expression area, indicating
that 2 resources will be selected. Since there is no limit on
the type of resources, any two resources from the Resources
database table could be chosen.

Create an expression
To limit the resources to those specified by a filtering condition:

Click WHERE, causing it to be placed in the expression area

From the Insert resource filtering condition popup, choose FC_Wash Only Pool

The expression now
indicates that two
resources will be
selected from the pool named Wash Only.

Save and have the system generate the resource requirement
Click Save As

Save the quantity expression as QE_2 from Wash Only Pool

A dialog appears asking if you
want a resource requirement to
be created from this quantity
expression:

1) Yes means you want the resource requirement to be the same as what is described in the
quantity expression—any two resources as long as they are from the pool named Wash
Only, which is what you want.

2) No means you want a resource requirement that is more complex than what is described in
the quantity expression.

(For more information about default resource requirements, see page 76.)

In the dialog, choose Yes and change the resource requirement name to RR_2 from Wash
Only Pool. Then click OK.

Test
Click Test. This opens the database Viewer, display-

ing which resources would probably be the first
selected for allocation. As indicated in the table,
without any other conditions being present the sys-
tem will choose the first two resources in the list.

Close the database Viewer

If you want more space to work, close the Create/modify quantity expression frame by
unchecking the check box

26 Advanced Resource Management
Set requirements for Washer/Waxers
Create a resource requirement for Washers
Since the resource requirement was created
(above) from the quantity expression, there is
nothing more you need to do. In real life however, the section for creating and modifying
resource requirements is where you would combine quantity expressions to create complex
requirements.

Click OK to close the dialog of the Resource Manager block and save its changes

Save the model

Set requirements for Washer/Waxers
When you created the Wash & Wax Pool (see page 22), you also created a default resource
requirement of 1 Washer/Waxer from the pool named Wash & Wax. Using the ARM system to
create default resource requirements saves a lot of time if the required quantity is 1. But what
happens if, as in this case, the required quantity is 2 attendants?

In the Quantity Expressions section of the Resource Requirements tab, the number of
resources included in a quantity expression can be changed to any of the options given by the
Quantity button: all filtered resources, quantity from an attribute, or quantity from user input.

☞ This means you could easily change the quantity from a static number to a number indicated by
an item’s attribute. However, that is beyond the scope of this particular tutorial.

Change the quantity to 2 Washer/Waxers
Go to the Resource Manager’s Requirements tab

Check the box to Create/modify quantity expression

In the quantity expression popup menu, choose the quantity expression the quantity expres-
sion that was automatically generated: 1 from Wash & Wax Pool

For the Quantity, enter the number 2

☞ The quantity in the expression will not change until you choose either Save As or Save, as dis-
cussed below.

Assuming you don’t want the original expression (1 from Wash & Wax Pool) to now require
2 resources but not change its name, click the Save As button. This changes the quantity to
2 resources for the quantity expression, as shown below.

Name the new
expression QE_2
from Wash &
Wax Pool.

When asked if you want to generate a resource requirement from that quantity expression,
click Yes

Name the new resource requirement RR_2 from Wash & Wax Pool and click OK

Save the model

The above process allows you to change the quantity of an automatically generated quantity
expression and create a new resource requirement without having to redo everything.

☞ To change the quantity without changing the name, just click the Save button instead of Save
As. This writes over the original quantity expression without changing its name.

Tutorial 1: Resource Creation Part 1 27
Track some transactions
 The two resource requirements you created above have the required resource properties and
quantities explicitly defined. There is a more scalable approach, as discussed in “Part I: using
an item’s attribute value to select a resource requirement” on page 41.

Track some transactions
As discussed on page 13, the Resource Manager’s Event Logging tab traces specified transac-
tion types while the simulation is running.

In the Resource Manager’s Event Logging tab, check the box to Enable resource transac-
tion logging

Select the following transaction types:

• Order resources

• Allocate resources

• Release resources

Close the dialog of the Resource Manager block

Later, when the simulation is run, the ARM system will track these transactions and post the
data to the Resource Transaction Log table in the Advanced Resources database, shown below.

Modify Queues to accommodate advanced resources
Not every queue in a model needs to be or should be an Advanced Resource Queue. However,
the two queues in front of the bays need to use advanced resources because they will hold cars
until attendants are available.

Change the Wash Queue behavior for ARM
In the dialog of the Wash Queue block, change its queue

behavior from a sorted queue to an advanced resource
queue.

☞ You cannot change a Queue into an advanced resource queue
until a Resource Manager block has been placed in the model.

Tell the Wash Queue which resource requirement applies to its items
When set to behave as an advanced resources queue, the Queue releases an item when the
item’s resource requirements are met. The Queue gets the resource requirement from a list of
resource requirements, a connector value, or an attribute value. For this model, you want to get
it from the resource requirement named RR_2 from Wash Only Pool, which is in the list
selection.

In the section for defining the resource ordering behavior, choose to Get resource require-
ment from: list selection (the default)

In the popup menu, choose
RR_2 from Wash Only Pool

28 Advanced Resource Management
Add Resource Pool Release blocks
Click OK to close the dialog and save changes

Set the Wash/Wax Queue to use ARM
Using the same steps as above:

Change the Wash/Wax Queue’s behavior to be an advanced resource queue

For the resource requirement, select RR_2 from Wash & Wax Pool

Click OK to close the dialog and save changes

Save your model

 If resource requirements are explicitly set as done here, every Queue block that is used for
ARM would need to have a resource requirement specified in its dialog. See “Part I: using an
item’s attribute value to select a resource requirement” on page 41 for a more scalable
approach.

Add Resource Pool Release blocks
If resources get consumed by the items that require them, they don’t need to be released for
reuse; instead they just pass out of the system. These types of resources are part of an open sys-
tem, as discussed in the Discrete Event Quick Start Guide. Examples of consumable resources
are stock or a fixture that gets used up during the manufacturing process.

The attendants for this model are part of a closed system; after they’ve completed their work
they need to be returned to the pool as available resources.

☞ Rather than using multiple Resource Pool Release blocks, one block could release all the
resources on the items that pass through it. See Chapter 3 for an example.

Wash Bay
Insert a Resource Pool Release block (Item library) between the

Wash Bay and the Exit block.

In its dialog:

For the release behavior, choose to Release: advanced
resources

Leave the default settings as they are, causing the block to release all the resources from
items that exit

Label the block Release Washers

Click OK to close the dialog

Wash and Wax Bay
Insert a Resource Pool Release block (Item library) between the Wash &

Wax Bay and the Exit block.

In its dialog:

For the release behavior, choose to Release: advanced resources

Leave the default settings as they are

Label the block Release Washer/Waxers

Click OK to close the dialog

Tutorial 1: Resource Creation Part 1 29
Results
Save the model

Results
Your model should now look like the one below.

Run the model

Results tab of the Resource Manager block
Go to the Results tab of the

Resource Manager block

As seen in the table at right, statis-
tics have been calculated for each
attendant. Since the attendants
work in pairs, it makes sense that
each set of pairs would have the same numbers.

A second table in the Results tab
gives statistical information for the
two pools. Notice that since two
attendants are required, each of
them will cause the pool’s Total Orders to increment by 1. And when washing a car takes 6
minutes and requires two workers, the Total Busy Time will be incremented by 12 minutes for
each car washed,

Event Logging tab of the Resource Manager block
The Order Resources, Allocate Resources,
and Release Resources transactions have
been selected in this model. The details
logged for these transactions are helpful
when verifying that the proper resources
are being allocated to and released from
items and at the correct time.

To see the results:

Click the View Database button in the
Event Logging tab

30 Advanced Resource Management
Next chapter
In the All Tables pane, double-click the Resource Transaction Log table to open the data-
base Viewer, shown here.

☞ The final model is named ARM Tutorial 1 Final and is located at Documents/ExtendSim/
Examples/Tutorials/Discrete Event/Advanced Resources.

Next chapter
Instead of using the Resource Manager block to create resources and resource requirements,
you can use an external application to define them, then import them to the model.

The next chapter shows how to use an Excel workbook as an interface for defining the same
resources and resource requirements you created in this chapter.

ARM
Tutorial & Reference

Tutorial 2: Resource Creation Part 2

Overview
This chapter uses an Excel workbook to define the same resources and resource requirements
that you created in the previous chapter. After the definitions are imported to the model, the
ARM system uses them to create the model’s resources and resource requirements.

Defining resources and resource requirements externally
The previous chapter used the Resource Manager block to define and create resources and
resource requirements. Resources and resource requirements can also be defined in external
applications such as Excel, SQL Server, and Access. After the definitions have been imported
into the Advanced Resources database, ARM creates the resources either the first time the sim-
ulation is run or when the resources are auto-generated.

This chapter shows how to define resources and resource requirements using tables in an Excel
worksheet, import the definitions to the model, and auto-generate the resources.

 You need Excel to do this tutorial.

Why and how it works

The key is that the ARM database (Advanced Resources) has tables that organize and keep
track of everything about advanced resources. Two of the tables in that database are:

• Resource Classes. This database table provides a
template for defining all the resources and their
associated properties in an ARM model. The
records in this table track the name of each
resource, the pool it is in, the number of resources
of that name in that pool, the number of resources
represented by each record (Maximum Quantity per Resource Instance), and the smallest
quantity of a resource that can be allocated to a resource order (Maximum Allocation Quan-
tity).

☞ If you add fields to this table, it can also be used to define groups and custom resource proper-
ties. Note that each new field must be the name of an included or custom property.

32 Advanced Resource Management
Working with the Excel workbook
• Resource Requirement Expressions. This table holds
the definitions for a model’s resource requirements,
quantity expressions, and filtering conditions. Each
record in the table tracks all or a portion of a resource
requirement, including the property used as filtering
condition and the quantity used in the quantity expres-
sion. The Expression Group ID lets the ARM system
know where each expression starts and where it ends.

When a model with ARM is simulated (or the Auto-Generate Components button is clicked),
the data from the external application is imported and sent to these two database tables. Every
time the simulation is run, ARM checks the Resource Classes and Resource Requirement
Expressions tables. If these tables have data in them, ARM auto-builds the resources and
requirements from scratch using that data. If the tables are empty, ARM uses whatever is
already in the system.

Tutorial assumptions
This exercise assumes that you have created a model that has been partially pre-configured for
ARM. So that you can focus on the purpose of this tutorial:

• The model has a Resource Manager block and a Resource Pool Release block

• The two Queues have been configured to use advanced resources

• There are 4 Washer resources

However:

• The model does not have any Washer/Waxer resources or requirements for those resources.
You will define those in Excel.

• While a resource requirement for washers has been defined in Excel, the requirement has not
yet been created. You need to import that definition, as well as the definition for the Washer/
Waxer resources and the resource requirements into the ARM system.

Working with the Excel workbook
ExtendSim ships with an Excel workbook (Excel Template for ARM) for defining resources
and resource requirements. This serves as a template you can use as is or modify, for example
by adding columns for defining custom properties. The file is located at Documents/Extend-
Sim/Examples/Discrete Event/Resources and Shifts/Advanced Resources.

For this tutorial you will use a slightly different Excel file that already includes some informa-
tion for the Washer resources but needs additional information for Washer/Waxer resources
and requirements.

Create a folder in which to save the files for this example, so that the Excel file and the
model file are saved in the same folder.

Launch Excel

Open the Excel file named Excel for ARM Tutorial.xlsx. It is located at Documents/
ExtendSim/Examples/Tutorials/Advanced Resources.

So that you don’t overwrite the example, give the Save As command:

Name the Excel file My Excel for ARM Tutorial.xlsx

Tutorial 2: Resource Creation Part 2 33
Working with the Excel workbook
Save it to the folder you created

 The Excel file and the model that uses it must be kept in the same folder location.

Specify the resources
In Excel, go to the Resource Classes worksheet

Notice that information for the
Washer resource has already been
entered. The example model also
needs a Washer/Waxer resource,
so you will enter that in row #3.

In row #3:

Name the resource Washer/Waxer

Name the pool Wash & Wax Pool

For the number of instances, enter 2

Maximum Quantity: 1

Minimum Allocation: 1

Save the file

This names the Washer/
Waxer resource and its pool
property. It also specifies
how many Washer/Waxers
reside in that pool and indi-
cates that those resources are
neither fractional nor multi-
ple. If you’ve entered the information correctly, the Resource Classes worksheet should look
like what is shown here.

Specify the resource requirements
Go to the Resource Requirement Expression worksheet

Notice that rows #2
and #3 have already
been completed.
Those rows specify
the requirements for
the resources that have the Wash Only Pool as a property. The requirements for the Washer/
Waxer resources need to be added to rows #4 and #5.

Pre-built linked lists
This worksheet has pre-built linked lists with data validation for the following columns:

• Property

• Operator

• Relationship with Next Row

34 Advanced Resource Management
Working with the Excel workbook
Once you’ve named a resource requirement, clicking in the cells for Property, Operator, or
Relationship will reveal a drop down list for making selections. The drop down lists include all
the pre-built options for each of those columns. To add custom options, use the tables in the
Lists worksheet.

Row 4
For row #4:

For the Resource Requirement ID, enter RR_2 from Wash & Wax Pool

Click in the cell for the Property column
so that the drop down list selector (the
downward arrow) appears to the right of
the cell, as shown here

Click on the drop down list selector and from the options, choose Quantity as the prop-
erty

Similarly, click in the Operator column and choose “=” from the drop down list

Since each car requires 2 attendants, enter 2 for the value

From the drop down list for the Relationship column, choose AND for the relationship

For the Expression Group ID, enter EG_2

This defines a part of the expression indicating that 2 Washer/Waxer resources are required; the
AND indicates that there is more to the expression coming on the next line.

☞ You can use any wording you want for the Expression Group ID, up to 256 characters. Using
the same wording in two or more rows is the equivalent of putting parentheses around the
included rows.

Row 5
For row #5:

Copy the Resource Requirement ID from row 4 and paste it in row 5

For the property, choose Pool

Choose“=” for the operator

Enter Wash & Wax Pool for the value

Since there won’t be any further conditions to include in the expression, leave the rela-
tionship blank

For the Expression Group ID, enter EG_2

The result
The result of the information entered in rows 4 and 5 is an expression that is the equivalent of
“RR_2 from Wash & Wax Pool has as its quantity and conditions 2 resources that come from
the Wash and Wax Pool”.

Tutorial 2: Resource Creation Part 2 35
Working with the model
If you’ve entered
the information
correctly, the
Resource Require-
ment Expression
worksheet should
look like the worksheet shown here.

Save your work
Save the Excel file

Working with the model
Launch Extend-

Sim

Open the model
named ARM
Tutorial 2. It is
located in the
folder Docu-
ments/Extend-
Sim/Examples/
Tutorials/
Advanced
Resources

Save the model as My ARM Tutorial 2

 The model and the Excel file it uses must be kept in the same folder location, so save to the
same location you saved My Excel for ARM Tutorial.xlsx.

Importing definitions to the database
Data Import Export blocks are used to import the definitions for the resources and resource
requirements into the Advanced Resources database.

Import the resource definition to Resource Classes
Add a Data Import Export block (Value library) to your model. It can be placed anywhere

on the worksheet.

In the dialog of this Data Import Export block, leave the block’s action as the default
Import from Excel spreadsheet to ExtendSim database

Specify the ExtendSim data target as:

DB: Advanced Resources

Table: Resource Classes

Specify the external data source:

File name: My Excel for ARM Turorial.xlsx

Worksheet: Resource Classes

(Optional) Table: ResourceClasses

36 Advanced Resource Management
Working with the model
Label the block Resource Defs

Click OK to close the Data Import Export block’s dialog, then Save the model

Import the resource requirement definition to Resource Requirement Expressions
Add a second Data Import Export block (Value library) to your ARM Tutorial 2 model.

In the dialog of this Data Import Export block, leave the block’s action as the default
Import from Excel spreadsheet to ExtendSim database

Specify the ExtendSim data target as:

DB: Advanced Resources

Table: Resource Requirement Expressions

Specify the external data sources as:

File name: My Excel for ARM Turorial.xlsx

Worksheet: Resource Requirement Expression

(Optional) Table: ResourceRequirementExpressions

Label the block Requirements

Click OK to close the block’s dialog, then Save the model

Generate the information
At this point the resources and resource requirements have been defined and the importing of
those definitions has been set up. However, the resources and resource requirements still need
to be imported and created.

As was discussed on page 32, there are two ways to create the resources and requirements: run
the simulation or auto-generate. Before running the simulation, it is a good idea to see if every-
thing has been imported correctly.

In the Resource Manager block, click the Auto-Generate Components button located in
the top right of the dialog.

After clicking the button, you should get two messages:

☞ If Excel is not open when the Auto-Generate Components button is clicked, the ARM system
will first launch Excel.

Auto-generation imports the definitions from Excel into the Resource Classes and Resource
Requirement Expressions tables of the Advanced Resources database, creates the resources
and the resource requirements, and makes them available for use in the model.

Click OK to close the dialog of the Resource Manager block and save its changes

Tutorial 2: Resource Creation Part 2 37
Selecting the requirement in the queues
Verify the process
You can always look in the Advanced Resources database. However, the Resource Manager
block also provides information.

To examine resources, change the mode on the Resource Manager block’s Resources tab to
Edit Resources. Make sure all the resources you expect to be there are, and that they are
properly configured.

• For the resource requirements, select the “Create/modify resource
requirements” check box on the Resource Manager block’s Require-
ments tab, then click the resource requirement popup menu.

Selecting the requirement in the queues
The items that arrive to a Queue can get their requirements from:

• A list of resource requirements

• A connector value

• An attribute value

For this model, you want to the queues to get the resource requirement from a list selection.

☞ See “Tutorial 3: Use Attributes for Flexibility and Scalability” on page 39 for how to use attri-
butes to select which pool the desired resources are in; that is a more sophisticated approach
than used for this tutorial.

Tell the Wash Queue where to get its resource requirement
Open the dialog of the Wash Queue; notice that its behavior has already been set to use

advanced resources

In the section for defining the resource ordering behavior, choose to Get resource require-
ment from: list selection

Choose RR_2 from Wash Only Pool

Click OK to close the dialog and save changes

Tell the Wash/Wax Queue where to get its resource requirement
Open the dialog of the Wash & Wax Queue

In the section for defining the resource ordering behavior, choose to Get resource require-
ment from: list selection

Select RR_2 from Wash & Wax Pool

Click OK to close the dialog and save changes

Save the model

38 Advanced Resource Management
Next steps
Run the model
Running this model generates the same infor-
mation as running the model where resources
and requirements were created through the
dialog of the Resource Manager block. The
only difference is that the resources and
resource requirements for this model were
generated using the information entered into
an Excel workbook.

☞ The final model, shown above, is named ARM
Tutorial 2 Final and is located at Documents/
ExtendSim/Examples/Tutorials/Advanced
Resources.

Next steps
Now that you know the basics, look at your model and see if you noticed these issues:

• The Select Item Out block (Select Route) uses probabilities to route the cars. It is more likely
that your model would assign attributes to the cars and route them using those attributes.

• Each Activity block needs a Queue in front of it for selecting the resource requirement for
that line, and the requirement must be manually selected. This is fine for a small model but
most models would have dozens or even hundreds of Activity blocks.

See the next chapter for a model that has one Queue and uses an item attribute both to route the
cars and to tell the Queue which pool the resources should come from.

ARM
Tutorial & Reference

Tutorial 3: Use Attributes for Flexibility
and Scalability

Overview
The previous chapters showed how to create resource requirements by explicitly specifying the
values for resource properties and quantities. They also demonstrated how to explicitly specify
which resource requirements to use when items arrive in a Queue block.

This chapter shows how to make ARM models more flexible and scalable by using attributes
to implicitly specify those values.

• Part I, starting on page 41, shows how to have each item’s attribute value specify which
resource requirement it will use. This approach is especially useful when you have many
pre-defined resource requirements. It also minimizes the complexity of the model structure
since it requires fewer blocks.

• Part II, starting on page 43, demonstrates how an item’s attribute values can specify the
quantity of resources required as well as the value of a resource property. This approach
minimizes how many resource requirements the model needs.

• Part III, starting on page 45, shows how to associate a property with an item attribute.

 This chapter assumes that you already know how to use item attributes, including string attri-
butes. If not, see the Items, Properties, and Values chapter of the User Reference.

Explicit methods
As you saw in the previous chapters, explicit specification methods work well for ARM mod-
els that have a small number of resource allocation rules. However, in most real-world models,
it is necessary to have many different requirements for allocating resources. If explicit specifi-
cation methods are used, different filtering conditions, quantity expressions, and resource
requirements would need to be created to accommodate each difference, no matter how small
the difference is. Also, a separate Queue block would need to be used for each resource
requirement. Consequently, explicit specification methods can cause models to grow in size
and complexity and become difficult to scale and maintain.

Implicit methods
Instead of explicitly specifying property values, resource quantities, and requirement selec-
tions, ARM allows users to use attributes to implicitly specify these values. Embedding attri-
butes within resource requirement expressions enables ARM to look up the value of the
referenced attribute whenever a resource requirement, or any of its internal components, are

40 Advanced Resource Management
Overview
being executed for an item. This significantly reduces the number of requirement expressions
that need to be created in a model.

For example, the filtering condition that explicitly specifies the pool as being “Wash only
pool” and the filtering condition that specifies the pool as being “Wash & Wax Pool” can be
replaced with a single filtering condition that uses an item attribute to specify the property
value of the pool. When a property value is associated with an attribute in a filtering condition,
ARM will look up the current value of the specified attribute to determine which property
value to use when the filtering condition is executed.

Using attributes to specify values
Attributes can be used to specify the values for any resource property in a filtering condition.

• If a filtering condition refers to a resource property that has a numeric data type, the numeric
value of the attribute is used.

• If a filtering condition refers to a resource property that has a string data type, the value of
the attribute must be a string attribute as discussed below.

String attributes
Attribute values are stored internally in ExtendSim as numbers. When an attribute is used to
refer to an index within an enumerated list of string values, it is referred to as a string attribute.

String attributes are defined and associated with enumerated lists in the Executive block. The
enumerated list of string values are specified in the attribute string values table in the Item
Attributes tab of the Executive block. These values can be manually entered or they can be
linked to a database table.

Whenever a string attribute is used to specify a string type resource property in ARM, it is
strongly recommended that the enumerated list of string values be linked to a database table.
For example, a filtering condition that uses a string attribute to specify the value of a pool
should use a string attribute that is linked to the Pools database table in the Advanced
Resources database table. Doing this automatically couples the enumerated list to the current
list of pools in an ARM model. Any changes made to the list of pools would then be automati-
cally updated in the string attribute’s enumerated list.

When a filtering condition uses a string attribute that is linked to an ARM database table, the
value of the attribute is interpreted to be a record index in the linked database table.

How ARM handles item attributes
When items arrive to ARM queues, the queues send the Resource Manager block two pieces of
information:

• The resource requirement

• The item index

The Resource Manager then attempts to satisfy the specified resource requirement by execut-
ing the expressions within the resource requirement. However, if any of these expressions con-
tain a reference to an item attribute, the Resource Manager first replaces the reference with the
actual value of the attribute.

Embedding attributes within resource requirement expressions means that ARM can look up
the value of the referenced attribute whenever a resource requirement or any of its internal

Tutorial 3: Use Attributes for Flexibility and Scalability 41
Part I: using an item’s attribute value to select a resource requirement
components is being executed for an item. This significantly reduces the number of require-
ment expressions that need to be created in a model.

Part I: using an item’s attribute value to select a resource requirement
The models in the two previous chapters had only two simple but specific resource require-
ments. Models that use ARM usually have multiple and more complex resource requirements
that filter on compounded resource properties. For example, a requirement might be that the
resources have a specific pool as well as a particular range of utilization.

Also, it may not be enough to specify at the beginning of the simulation which pool a resource
comes from. Depending on what happens during the simulation, items might need flexibility in
choosing a resource requirement.

This tutorial shows how to use an item’s attribute value to specify which resource requirement
a Queue will use for that specific item.

Your task: use a scalable resource requirement
For brevity, the model already has one resource requirement that will use the value of an item’s
attribute to search for a related Pool value, selecting resources based on that property. Your
task for this tutorial will be to let the Queue know that each item’s attribute value will deter-
mine which resource requirement it has.

Open the model
Launch ExtendSim

Open the model ARM Tutorial 3A from the folder Documents/ExtendSim/Examples/Tuto-
rials/Advanced Resources

Save the model as My ARM Tutorial 3A

 The models used in the ARM tutorials do not use the best modeling techniques. However, they
are purposefully structured to make it easier for you to learn ARM concepts. For a scalable,
logical example see the Semi-Conductor Fab model located at ExtendSim/Examples/Discrete
Event/Resources and Shifts/Advanced Resource Mgt. It shows how to use ARM with 2D ani-
mation of a material handling system.

About the model
This model is similar to the ones used in the previous two chapters and the model assumptions
are the same, including that:

42 Advanced Resource Management
Part I: using an item’s attribute value to select a resource requirement
• There are 4 Washer resources and 2 Washer/Waxer resources

• There are two resource requirements, each of which requires two
resources from specific pools: RR_2 from Wash Only Pool and RR_2 from
Wash & Wax Pool

However this model is structured differently because, as seen in
the Executive block, the items (cars) have a string attribute (Res-
Requirement) that uses string values to specify whether the cars
will only be washed or also waxed.

(As explained in “String attributes” on page 40, it is best practice to
link the string attribute values to the requirements in the Resource
Requirements database table as is done in this model.)

Items also have a value attribute (ProcessTime) with two values (6 or 8) depending on whether
the car gets waxed or not, so the Activity (Car Wash) can tell how many minutes to process
each car.

• As items are created, they are assigned the ResRequire-
ment string attribute. The Random Number block, shown
here, specifies that 75% of the items will have the string
attribute value “RR_2 from Wash Only Pool” and 25%
will have the string attribute value “RR_2 from Wash &
Wax Pool”.

• An Equation(I) block attaches the value attribute (ProcessTime) to
each item. As seen in the equation, if the item’s ResRequirement
value is RR_2 from Wash Only Pool, the value of ProcessTime will
be 6; otherwise it will be 8.

• The Activity block (Car Wash) uses the value of each item’s ProcessTime attribute to deter-
mine how long to process each car.

Set the Queue
Since the attributes have already been set, the only thing left to do is to update the Queue
block. In the dialog of the Queue (Entry Line):

Change the Queue’s behavior to advanced resource queue

Define the resource ordering behavior as: Get resource requirement from: attribute
value: ResRequirement

Click OK to close the Queue’s dialog and save its changes

Run the model

As the model runs:

• The Queue (Entry Line) will use each item/car’s ResRequirement string attribute to deter-
mine if the cars are wash only or also wax.

• The Activity (Car Wash) will use each item/car’s ProcessTime attribute to determine how
long that activity will take.

The final model is labeled ARM Tutorial 3A Final; it is located at ExtendSim/Examples/Tuto-
rials/Discrete Event/Advanced Resources.

Tutorial 3: Use Attributes for Flexibility and Scalability 43
Part II: using an item’s attribute value for maximum flexibility
Conclusion
In the previous chapters, the items’ resource requirement was explicitly specified in each
Queue’s dialog. This meant that every item entering that queue had the same resource require-
ment. It also meant that you needed a separate Queue for each different resource requirement.

In this example, the Resource Manager determined the appropriate resource requirement for
each item by evaluating the value of the item’s ResRequirement attribute.

Note that the only additional work from how this model would be built using explicit resource
requirements are:

• Creating a string attribute (ResRequirement) to represent the Resource Requirement

• Linking the table of string attribute values to the “Resource Requirements” table of the
Advanced Resources database

• Choosing in the Queue that the resource requirement comes from the value of each item’s
ResRequirement attribute

Why the string attribute values are linked to an ARM database table
String attributes are managed in the Executive block’s Item Attribute tab. The attribute values
can be entered manually or, as was done here and seen in the Executive block’s Item Attribute
tab, dynamically linked to a database table.

Since each item in this model will use the value of its ResRequirement attribute to specify its
resource requirement, the best approach is to link the table of attribute values to the database
table for Resource Requirements. This protects your model’s integrity in case you subse-
quently add or delete resource requirements. When the attribute values are linked to the data-
base table, those attribute values will automatically and immediately change if any changes are
made to the database table.

☞ To learn more about ExtendSim databases and linking data tables to database tables, see the
separate document ExtendSim Database Tutorial & Reference.

Part II: using an item’s attribute value for maximum flexibility
In earlier chapters you created two resource requirements, one for each Pool value. And those
resource requirements had fixed quantities: 2 Washers from the Wash Only Pool or 2 Washer/
Waxers from the Wash & Wax Pool.

What if you wanted to run the model with a requirement of 3 Washers from the Wash Only
Pool or 1 Washer/Waxer from the Wash & Wax Pool? What if you had hundreds of pools,
rather than just two?

You could create numerous resource requirements with different quantities of resources from
different pools. Or you could create one flexible resource requirement that used each item’s
attributes to specify the pool and the quantity of resources wanted.

Open the model
Open the model ARM Tutorial 3B Final from the folder Documents/ExtendSim/Examples/
Tutorials/Advanced Resources.

44 Advanced Resource Management
Part II: using an item’s attribute value for maximum flexibility
About the model
This model is similar to model 3A in that:

• 75% of the cars need only washing while 25% also need waxing.

• There are 4 Washer resources who have the Pool property value of “Wash Only Pool” and 2
Washer/Waxers who have the Pool property value of “Wash & Wax Pool”.

However, there are differences from previous models:

• This model only requires 1 Washer per car, rather than the 2 Washers required in the previ-
ous model.

• This model has two new attributes.

By using attributes to dynamically specify some of the variables in a resource requirement, this
model shows how to reduce the number of resource requirements that have to be managed.
Specifically, this model uses attributes to dynamically specify the required resource pool and
the required quantity of resources from that pool.

Steps that were needed
Created two new attributes:

A string attribute named WashType with two string values:
Wash Only Pool (numeric value = 1) and Wash & Wax Pool
(numeric value = 2) as seen in the Item Attributes tab of the
Executive.

A value attribute named resQuantity used to specify how many Washers or Washer/
Waxer resources are needed.

Dynamically linked the WashType string attribute to the Pools table in the Advanced
Resources database, as indicated in the screen shot of the Executive’s Item Attributes tab
above and discussed on page 43.

Created a filtering condition that uses
the WashType attribute to specify the
resource pool. The filtering condi-
tion, “FC_Pool by WashType attrib”,
is displayed in the Requirements tab
of the Resource Manager block. See page 45 for how this was done.

Tutorial 3: Use Attributes for Flexibility and Scalability 45
Part III: associating a Pool property with an item attribute
Created a quantity expression that refers to the filtering condition, above, to specify the
required pool and uses the resQuantity attribute to specify the required quantity of
resources. The quantity expression “QE_resQuantity from Pool by WashType” is displayed
in the Requirements tab of the Resource Manager block.

Created a resource requirement that uses the above quan-
tity expression. See resource requirement
“RR_QE_resQuantity from Pool by WashType” in the Requirements tab of the Resource
Manager block.

Set the resource requirement
in the Queue block by
selecting the above resource
requirement from list select popup in the block’s dialog.

Used the Random Number block (Probability) in conjunction with a Set Attribute block to
specify the value of the WashType attribute; that attribute’s value is used to specify the
required pool—either Wash Only Pool or Wash & Wax Pool.

Used an Equation block to conditionally specify the value of the
resQuantity attribute based on the WashType. The value of the
resQuantity attribute is then used to specify the number of resources
required.

Added a History block (Value library) to help verify that the model is
working as expected—the items arriving to the Queue have the
expected attributes for pool and resource quantity.

Conclusion
This model accomplishes the following:

• There is only once resource requirement needed in this model and it can be selected from the
popup list in any Queue block that is set to be an advanced resource queue.

• The quantity of required resources can be changed either in the Equation block’s dialog or in
the clone of the equation as desired.

Externalizing inputs
For the ARM Tutorial 3B model the quantity of required resources is set in the dialog of the
Equation block. While not done in that model, it is good practice to externalize values when-
ever possible, at least in the first stages of creating and testing a model. For example, you could
use a Data Specs block and two Constant blocks (Value library) to externalize numbers for the
Equation block.

Externalizing values ensures name tracking plus you can see on the worksheet which values
are being input to the Equation blocks, instead of opening their dialogs.

Part III: associating a Pool property with an item attribute
As a non-techie person I had some difficulty with this concept. So I thought it would be helpful
to walk you through how to associate a Pool property with an item attribute.

☞ To compare to your work, a sample model named ARM Tutorial 3C Final is located at Docu-
ments/ExtendSim/Examples/Tutorials/Advanced Resources.

46 Advanced Resource Management
Part III: associating a Pool property with an item attribute
Create some resources and an attribute
To follow along, create a 3-block ARM model consisting of the Executive, the Resource Man-
ager, and a Set block:

Open a new model and place a Resource Manager and a Set block in it; both are from the
Item library.

In the Resource Manager block, create 4 Washer resources that have the Pool property value
of “Wash Only Pool” and 2 Washer/Waxers that have the Pool property value of “Wash &
Wax Pool”.

In the Set block, create a new string attribute named WashType.

After you name the string attribute, the Executive block’s Item
Attributes tab opens. In the Executive, enter the string values
Wash Only Pool and Wash & Wax Pool.

Use the string value table’s Link button to dynamically link the WashType attribute to the
Pools table of the Advanced Resources database.

Click the Save Changes button in the Executive’s Item Attributes tab and close the dialog.

Save your model.

Create the filtering condition
In the Requirements tab of the Resource Manager block, open the Filtering Conditions sec-

tion and select the popup menu for Choose filtering condition: new filtering condition

Choose to Filter using properties of: resources (the default)

Since you want the item attri-
bute to be associated with the
Pool property, from the Prop-
erty popup menu select Pool.
At this point the expression
should read as shown to the
right.

Don’t select a pool value yet!

Click on the arrow popup menu to the far right of the expression. (In
the above screenshot the arrow popup menu is to the right of the word Wash
& Wax Pool.) As shown here, the options in the arrow popup menu are to
Select from list (the default) or Use an attribute.

Choose Use an attribute. Since you haven’t selected an attribute yet, this causes the pool
value popup menu to change to None

Click on the word None (the pool value popup menu) and select the
string attribute named WashType; this is the attribute assigned to each
item before it enters the Queue block.

The expression should now read as “Property: Pool = WashType”.

• The blue text for WashType indicates that it is an attribute

• “Pool” tells ARM that the Pool property will be associated with the WashType attri-
bute—records in the Pools table will correspond to WashType attribute values.

Tutorial 3: Use Attributes for Flexibility and Scalability 47
Part III: associating a Pool property with an item attribute
Click Save As, save the filtering condition as FC_WashType Attribute, and click OK.

☞ When a property value is associated with an item attribute in a filtering condition, ARM will
use the current value of the attribute to determine which property value to use when the filter-
ing condition is executed.

48 Advanced Resource Management
Part III: associating a Pool property with an item attribute

ARM
Tutorial & Reference

Reference

Overview
This section provides additional information for using the ExtendSim Advanced Resource
Management (ARM) features.

☞ For additional and up-to-date information, see the Help of the Resource Manager block.

Other example models
In addition to the Tutorial models, there are other more advanced ExtendSim models that show
the use of ARM in real-world settings.

☞ The following models are located at ExtendSim/Examples/Discrete Event/Resources and
Shifts/Advanced Resource Mgt.

Semi-Conductor Fab
This is a model with 2D animation of a material handling system. By
using an attribute to specify the resource requirements for items, it
demonstrates how to minimize the number of Queues required in an
ARM model.

This technique enables the model to use a single ARM Queue for all of
the different resource requirements to allocate resources from the 9 dif-
ferent types of tool sets in the model. Because this model is focused on
presenting a 2D representation of parts moving and being processed in a
factory, the actual model structure is logical in nature and focuses on the generic processing
structure of requesting resources, waiting for them to become available, allocating them, pro-
cessing jobs and releasing resources.

This generic processing is encapsulated in a single hierarchical block and demonstrates how to
significantly reduce the complexity of an ExtendSim model's structure while still representing
a highly complex manufacturing process.

Auto Club Service
This model demonstrates how to set up complex requirements to represent the flexible alloca-
tion of resources based on both resource availability and proximity to where services are being
requested.

50 Advanced Resource Management
Comparison of explicit resource modeling methods
To accomplish this, the resource requirements in this model use compound expressions with
OR conditions (see below) such that if the most desirable resources for a service request are
not available, the model can attempt to use other specified resources in order to increase the
overall throughput of the system.

Dynamic Resource Qualification
This sophisticated model highlights a powerful feature—the ability to change, over the course
of the simulation, which resources are available to perform certain tasks. This is accomplished
by using database tables to store lists of the resources available for certain tasks, then modify-
ing the lists dynamically during the simulation. The model shows how to deal with a situation
in which resources in the same pool may or may not be qualified to perform the tasks at differ-
ent times during a model run.

The model has a resource requirement that filters on resources listed within database tables.
The tables contain lists of resources qualified to perform a specific task and are created by an
Equation(I) block using the current system state and the properties of the items passing
through.

The Equation(I) block sets a pointer to these tables in a DB Address attribute that is referenced
within the resource requirement being used in the ARM Queue. It does this using a DB
Address attribute to point to the list (database table). By allowing this type of filtering condi-
tion, you have huge flexibility to create open-ended resource requirements that can change on-
the-fly.

The Equation blocks completely con-
trol which resources get into the data-
base table used as a filtering list. For
example, in the Filtering Condition
shown here, selResourcesDBA is the
DB Address attribute that points to a
database table that contains a list of resources. Because the "IN" clause is used, this filtering
condition will only allow ARM to look at resources in the database table pointed to by this list.
Resources are referenced as record indexes in this list table.

☞ See also “Sorting criteria” on page 79.

Comparison of explicit resource modeling methods
As discussed in the User Reference, there are several ways resources can be modeled—explic-
itly, implicitly, and conceptually.

You can model resources explicitly using Resource Items, Resource Pools, or ARM. A sum-
mary of the differences between those methods are given in the table below.

• For a complete description of the similarities and differences between the ARM, Resource
Item, and Resource Pool methods, see the Discrete Event: Resources and Shifts chapter of
the User Reference.

• Also see the list on page 2 of this document describing when and why you should use ARM.

Reference 51
Resources
☞ The ARM system can co-exist with the other resource modeling approaches (e.g. items as
resource items and non-ARM resource pools). Thus ExtendSim models can use a mixture of
resource modeling methods.

Resources
A resource is a stock or supply of something that can be drawn on as needed for an organiza-
tion to function effectively. Resources are both the factors required to accomplish an activity
and the means by which process activities and operations are performed. Examples of
resources include equipment, personnel, space, energy, time, information technology, and
money.

Use in simulation models
In models, items will sometimes require resources before they can proceed to the next step in a
process. For example, a car might need an attendant to drive it through the car wash or a piece
of equipment might need to be assembled by a robot. Resources provide a service to the items
in a model; their lack of availability causes constraints on the flow of items.

One of the main reasons to model a process is to determine if there is sufficient resource capac-
ity to meet the desired performance of that process. Simulation models provide the means to
analyze how and when resources are being utilized and what impact resource availability has
on process performance. For example, a simulation model might be used to observe resource
utilization and availability over time in order to discover what the most effective resource lev-
els are to achieve the desired process performance level. It also can be used to study the impact
of increasing or decreasing demand on an existing system. So you might try to improve
resource utilization without causing overly long waiting lines or determine how to reduce wait-
ing lines without adding more resources.

ARM resources
As discussed on page 61, resources used in the Advanced Resource Management (ARM) sys-
tem have properties that distinguish them from each other. And they can be organized into
groups based on common sets of properties, as discussed on page 56. In the Advanced
Resources database, resources are represented as records in the Resources table and the fields
in that table represent the different properties that a resource has.

☞ In ARM every resource must be a member of one, and only one, pool. However, based on its
skill set or rank, a resource can be a member of multiple groups.

Capability Resource Items Resource Pools ARM

Dedicated user interface integrated with an
ExtendSim database

X

Resources have properties X X

Resources can be fractional X X

Resources can be shared across multiple items X X

Resources know which items are waiting X X

Remote resource allocation X X

Requires connections between blocks X

Logging of statistical results, transactions, etc. X

52 Advanced Resource Management
Resources
Creating resources
Resources for ARM can be defined and created:

• In the Resources
tab of the
Resource Man-
ager block (Item
library), as
shown at right
and described in
the tutorial that
starts on page 19

• Using an Excel
worksheet, as
shown in the tutorial that starts on page 31

• Directly in the Resources table of the Advanced Resources database

☞ Since you can’t specify the properties of resource in the Resources table, it is strongly sug-
gested that you use one of the first two methods rather than creating resources directly in the
Advanced Resources database.

When you create resources, you also specify default resource properties—which properties all
the resources in a specific pool will have. Once the resources have been created, you have the
option to change the properties of individual resources.

Fractional and multiple resources
When resources are created, each is by default one resource as indicated by its Maximum
Quantity property. However, the ARM system also supports:

• Fractional resources, where each record in the Resources table can represent a fraction of a
resource. This allows parts of one resource to be allocated to different items. For example,
fractional resources could be used to represent a multi-tasking situation. A worker might be
assigned multiple tasks concurrently where each task would require a different fraction of
the worker's total capacity.

• Multiple resources, where a number of resources with an identical set of properties are repre-
sented in a single record in the Resources table (note that there is a reduction of fidelity with
this option).

Two resource properties control fractional and multiple resources.

The Maximum Quantity property determines whether the
record in the Resources table represents one resource, a
fraction of a resource, or multiple resources. This prop-
erty is used by ARM to manage the quantities that
resources make available to the model—how many resources, or what fraction of a resource, is
represented by one record in the database. By default, this property is set to 1, indicating that
the resource is a single, whole resource. Changing that number to a fraction or to a number
higher than 1, results in fractional or multiple resources, respectively

Reference 53
Resources
Correspondingly, the Minimum Allocation Quantity property represents the smallest quantity
of a resource that can be allocated to a resource order. It is used by ARM to control how
resource quantities are allocated to items. By default this property is set to 1.

☞ Each resource’s Minimum Allocation Quantity must be less than or equal to its Maximum
Quantity.

The Available Quantity is a read-only field in the Resources database table that reports the
amount of the Maximum Quantity that is currently available for allocation to resource orders.

How ARM uses resources in the simulation
As the simulation runs, ARM uses internal policies such as resource recycling and resource
sharing.

Resource recycling
Resource recycling allows an item that is requesting resources to use busy resources that have
already been allocated to the item to fully or partially satisfy its resource requirements. When-
ever ARM receives a request by an item to satisfy a resource requirement, it will attempt to use
any of the busy resources allocated to that same item before trying to obtain idle resources. For
example, if a resource requirement needs 1 resource from Pool A and 1 resource from Pool B
and the item requesting to have this requirement satisfied already has 1 resource from Pool A
allocated to it from a Queue, when it gets to the next Queue ARM will only need to allocate 1
additional resource from Pool B in order to satisfy the resource requirement.

 Resource recycling is the default mode for ARM resource allocations.

To prevent ARM from recycling busy resources, add a filtering condition to resource require-
ments that prevents resources in the busy state from being considered for the resource require-
ment. See an example of how to create this filtering condition below.

54 Advanced Resource Management
Resources
Resource sharing
Resource sharing allows individual resources to be shared across multiple items at the same
time. Resources are shared by cloning (Unbatch block) or spawning (Query Equation block)
one or more items that are already associated with ARM resources. For each cloned/spawned
item, ARM creates a new resource order. These new resource orders become a copy of the
original resource order so that whatever resources were associated with the original resource
order become associated with new resource orders.

Resources are shared by spawning items from an inbound item with attached resources in a
Query Equation block or copying items from an inbound item with attached resources from an
Unbatch block in non-preserve uniqueness mode.

When resources are shared using the Query Equation block, ARM copies the list of resources
associated with the inbound item to the resource orders created for each spawned item. If there
is a pass through item, ARM preserves the resource order for that item. Otherwise, ARM
destroys the resource order associated with the inbound item and its resource order-item-
resources relations.

When the Unbatch block is used, ARM copies the list of resources associated with the inbound
item to the resource orders created for each cloned item and destroys the resource order associ-
ated with the inbound item and its resource order-item-resources relations.

When resources are shared across multiple resource orders, they remain in a busy state until
they have been explicitly released from all of the items they are associated with. ARM uses the
[Shared Count] field in the [Resources] table to keep track of how many times a resource has
been shared across items in a model. A shared count of 1 indicates that a resource is being
shared with one item and is thus associated with two items.

Reference 55
Pools
Resource reassignment
Resource reassignment allows ARM to reassign allocated resources from lower priority items
that are blocking higher priority items from having their requirements satisfied. Resource reas-
signment is enable by checking the “Enable allocated resource reassignment from lower to
higher priority items” checkbox in the Policies tab of the Resource Manager dialog.

If resource reassignment is enabled, whenever ARM is unable to satisfy the requirement of an
item’s resource order, it will search for allocated resources that are blocking the resource
order’s requirement from being satisfied. The conditions for resource reassignment are as fol-
lows:

1) An item (the waiting item) is unable to have its resource requirement satisfied

2) The resources that are blocking the item from having its requirement satisfied are allocated
to items that have lower priorities than the waiting item

3) The items that have allocated blocking resources reside in Activity blocks

4) These Activity blocks have Preemption enabled for resource reassignment from the
Resource Manager block.

When ARM is able to satisfy the 4 resource reassignment conditions, it sends messages to all
of the Activity blocks having resident items with blocking resources allocated to them. This
triggers the Activity blocks to release items with blocking resources and causes those items’
attached resources to have their status changed to “reassigned”.

To make these resources available to the higher priority items, the modeler must explicitly
release the reassigned resources from the preempted items. The preferred method is shown
below.

Pools
A pool is a required property of a resource. The pool property allows modelers to refer to a col-
lection of resources by a common organizational relation. ARM uses the Advanced Resources
database to explicitly represent and keep statistics for all of the distinct pools that have been
defined in a model.

☞ Every resource must have one (and only one) pool as one of its properties.

Except for the Skill Level and Rank properties, all the properties of a resource are associated
with a particular resource pool, as discussed on page 65. Pools can be grouped hierarchically in
a parent/child relation. Statistical information for pools, such as the total number of orders ser-
viced and utilization, are provided in the Resource Manager block’s Results tab.

56 Advanced Resource Management
Groups
To understand the link between Pools and resources, notice that the Pools database table is a
parent to the Resources table’s Pool field.

Checkbox to display groups, pools, and properties
When the Resources tab is in Create or Edit mode, a Display groups, pools, and properties
checkbox appears at the top of the tab. You can create a new pool when you define a new
resource in the Resource Manager’s Resources tab. Or you can create multiple pools by check-
ing that box.

When this box is checked, a secondary
frame appears to the right with a popup
menu for selecting Pools, Groups, or Prop-
erties.

For each of those, you can add new or
delete those that are selected. For example,
this is where you could add custom resource properties.

☞ If you delete a Pool that already has resources, the resources are also deleted.

Groups
A group is an optional method for organizing resources. Each group consists of a collection of
one or more resources where the resources can belong to the same or different pools. A
resource can be a member of none, one, or multiple groups.

A resource’s properties are represented by field values in the Resources table in the Advanced
Resources database. Because each record in this table has only one pool property value, each
resource record and consequently, all of the property values associated with that record, can
only be associated with one resource pool.

In many situations however, the capability of a resource needs to change depending on how it
is being used. In particular, a resource might have a different skill level depending on the type
of task it can perform. Groups are a cross-pool method for organizing resources based on spe-
cific criteria, such as skill level. In the Resources table, the Group field holds the group infor-
mation. The Group Resources table lists all the resources per group.

Groups are another way to control which resources get allocated to items. This is done by cre-
ating filtering conditions in resource requirements for resource groups and group properties.
Groups provide modelers with a mechanism for:

• Organizing collections of resources by the type of task they are capable of performing

• Varying the skill levels of resources as a function of the tasks they are performing

As discussed more on page 66, groups have properties and the resources in a group are distin-
guished by two group-level properties: 1) skill level and 2) rank.

☞ Although a resource can only belong to only one pool, it can be a member of many different
groups.

Creating groups and grouping resources
As mentioned in “Checkbox to display groups, pools, and properties” on page 56, you can cre-
ate new groups when the Resource Manager’s Resources tab is set in Create resources mode.
Another method is to change the mode to Manage groups, as discussed below.

To create a new group and include some resources in that group:

Reference 57
Groups
Go to the Resources tab of the Resource Manager block

Select Mode: Manage groups

Optional: in the Set resource filters frame at the top, choose filters to limit which resources
are displayed

In the Create/modify groups frame at the
right:

Choose Group: New resource
group

Name the new group

In the dialog that appears, choose whether or not the system should create a default
resource requirement for the group. This option is explained in “Default resource
requirements” on page 76.

In the Select resources to group frame on the left:

Check the Select box for each resource you want to include in the group

Click the arrow button (shown at right) that is located between the two frames
(Select resources for groups and Create/modify groups) at the bottom of the
dialog. Clicking the button causes the selected resources to become members
of the group.

☞ Like resources (see page 31), groups can also be defined in Excel. When group definitions are
imported into the Resource Classes database table, ARM automatically creates the groups
using information contained in the Group, Skill Level and Rank fields.

Assigning properties to groups
As discussed on page 66, each member of a group can
be assigned a Skill Level and/or a Resource Rank. When
a group requirement is executed, these group properties
can be used to filter and prioritize which resources to
select from the group.

☞ Any real number can be assigned to a group member as its Skill Level or Resource Rank.

Deleting groups or their members
Go to the Resources tab of the Resource Manager block

Select Mode: Manage groups

Optional: in the Set resource filters frame, choose filters to limit which resources are dis-
played

In the Create/modify groups frame on the right, choose the group you want to delete

To delete the entire group, click Delete Group

To remove only certain members, check the appropriate Select boxes and click Remove
Selected Members

☞ Deleting a group or removing individual members from a group, does not delete the resources.
Furthermore, you can’t delete a group if it is referenced by an existing filtering condition.
Before deleting a group, remove all filtering condition references to the group.

58 Advanced Resource Management
Status
Using a group in a resource requirement
A filtering condition can be created that filters on a group property, either Skill Level or
Resource Rank. That filtering condition can then be used as a component of a quantity expres-
sion, but only in conjunction with a second filtering condition that filters on a specific resource
group. For more information, see “Using group filtering conditions” on page 74.

Status
A resource’s status tells which particular state the resource is currently in and thus whether the
resource is available for allocation. The status is also used to record the time spent in a particu-
lar state; the time information is recorded in the Resources table of the Advanced Resources
database.

Each resource is given an initial status of either Idle (available for allocation to an item) or Dis-
abled (the resource is not currently used by the model). There are several additional states a
resource can be in while the simulation is running and (as discussed below) the resource can
transition back and forth between any of the states during the run.

Status settings
At any given time, resources are either available or unavailable to be allocated to items. ARM
uses four general categories (Idle, Allocated, Down, and Disabled) to represent whether a
resource is available or unavailable. Idle resources are available for item allocation while Allo-
cated, Down, and Disabled resources are unavailable.Within these categories, there are 9 dis-
tinct status values as indicated below:

1) Available

• Idle

2) Unavailable

• Allocated: Busy, Reassigned, Reserved

• Down: Off-Shift, Scheduled Down, Unscheduled Down, Failed

• Disabled (disabled resources not currently used by the model)

The Resource Manager’s Results tab gives information about the amount of time each selected
resource was busy, idle, and so forth.

 By default, ARM will attempt to recycle any Busy resources that have already been allocated
to a particular item to satisfy any new requests for resources by that item. To override recycling
behavior, create a filtering condition that excludes Busy resources from being selected by an
item’s resource requirement. See recycling on page 53.

Down status values
Resources can have a Down status due to:

• Being Off-Shift due to their association with a Shift block

• Experiencing a Scheduled Down or Unscheduled Down event due to logic being managed
by the user

• Being in a Failed state due to their association with the Shutdown block

Status transitions
During a simulation run, resources continuously transition between the nine different status
values discussed above. With few exceptions each status can transition to any of the others.

Reference 59
Status transitions
The result is that there are over 100 possible resource status transitions: Idle to Busy, Busy to
Off-Shift, Off-Shift to Down, and so forth. These status transitions are the mechanism ARM
uses to represent resource behavior.

Status transition events
Status transitions occur when an event occurs that causes a resource’s status to change. There
are a number of events that can cause an ARM resource to change its status:

1) Allocation events—a resource is allocated to an item.

2) Down events—a resource goes down for any one of several reasons. For example, it goes
off-shift, fails during an operation, is taken down for scheduled maintenance, etc.

3) Reassignment events—a resource becomes reassigned from its current resource order to a
higher priority resource order.

4) Disabling events—a resource is disabled from the current simulation run. For example, a
piece of equipment is brought off-line to ramp down production capacity due to decreasing
demand.

5) Enabling events—a resource is enabled, such as when a piece of equipment is brought
online to ramp up production capacity in order to meet increasing demand.

Transition timing
A transition is the result of a status transition event. The timing of when a resource’s status
value changes depends on the status of the resource when the event occurs.

• Some status transitions can occur at the same time as the associated event. These are referred
to as immediate status transitions. An example of an immediate status transition is a
resource that is in an Idle state becomes allocated to an item. In this case, the resource imme-
diately transitions from Idle to Busy.

• Other status transitions must wait until the event associated with the current resource status
expires. These are referred to as pending status transitions. ARM uses the pending status
property of a resource to postpone its status transitions until the current status expires.

Logging status transitions
To facilitate the verification and validation of models,
status transitions can be logged during a simulation
run. To do this:

Go to the Resource Manager block’s Event Log-
ging tab and check the box to Enable resource
transaction logging.

In the Transaction Types table check the box for
Resource status transition as shown here. This
causes the Status Transitions table to appear on the
right side of the dialog. It is shown below.

60 Advanced Resource Management
Transactions
Check the boxes in the Status Transitions table as
desired, causing ARM to log status transition event
information into the Resource Transaction Log table
during the simulation run.

As seen in the Status Transition table there are over 100
possible resource status transitions.

Each status transition consists of a from status (the sta-
tus a resource is currently in) and a to status (the status
the resources is transitioning to).

You can check individual boxes or use the
down arrow in the Select header to choose all, choose none, or toggle between
those you’ve checked and those that haven’t been checked.

☞ Use logging judiciously. Choosing all the transitions can significantly slow simulations.

Transactions
The Event Logging tab of the Resource Manager block is for specifying which types of trans-
actions to log during a simulation run. By default the information is gathered over the entire
run, but the tab provides fields where specific start and end times can be entered. You can also
choose that the table uses resource names instead of resource ID values.

There are several types of transactions that can be
logged, as seen in the screenshot at right. Selecting
Resource status transitions causes a second table to
appear on the right, as discussed in “Logging status
transitions” on page 59.

Click the desired Transaction Types or use the down
arrow in the Select header to Choose all, Choose
none, or Toggle. Selecting the Toggle option changes
the checked boxes from those you selected to those
you didn’t select, and back again.

Whichever choices have been made in this table and
in the Status Transitions table will cause simulation
data to be written to the Resource Transaction Log table in the Advanced Resources database.
Each transaction is represented by a separate record in that table.

☞ Use logging judiciously. Choosing all the transaction types can significantly slow simulations.

Transaction types
The Order Resources, Allocate Resources, and Release Resources transactions are most com-
monly selected. The details logged for these transactions are helpful when verifying that the
proper resources are being allocated to and released from items and at the correct time.

Reference 61
Properties
Properties
Individual resources, pools, groups, and items each have their own properties. Properties pro-
vide a means to distinguish between them and characterize their behavior. As the simulation
runs, information about properties is displayed in the Resource Manager’s Results tab.

Resource properties
Resource properties are used to distinguish resources from each other, control how resources
behave, and record the history of how resources have been used during a simulation run.

Transaction Type Description

Order resources Occurs whenever an item arrives at a queue block (set to advanced
resources mode) and makes a request for resources. When this transac-
tion occurs, a resource order ID is assigned to the item. This transac-
tion type only occurs once for each resource order ID.

Allocate resources Occurs at the time resources are allocated to an item. When the
resource requirement associated with an item’s resource order can be
satisfied and the item is able to depart from the queue it is in, the
required resources are allocated to the item.

Release resources Occurs at the time an item passes through a Resource Pool Release
block set for ARM. For this transaction, the specified resources being
released transition to their pending status.

Service waiting orders Occurs every time an attempt is made by the ARM system to satisfy
the resource requirement of a waiting item. This transaction occurs
when items first arrive in a Queue block and whenever resources tran-
sitioning to the idle state attempt to become allocated.

Reassign resources Occurs whenever resources that have been allocated to an item cur-
rently in an Activity block get reassigned to a higher priority item that
is waiting for resources.

Resource status transitions Transitions occur any time the status value of a resource changes. A
status transition consists of a from status (the status a resource is cur-
rently in) and a to status (the status the resources is transitioning to).

Renege waiting orders Occurs whenever an item is reneged from a queue block before
resources have been allocated to it.

Batch resource orders Occurs whenever items that have allocated resources are batched into
new items.

Clone resource orders Occurs whenever items with allocated resources pass through Unbatch
or Query Equation blocks and new items are created.

Start activity Occurs whenever items with allocated resources start their delay within
an Activity block.

End activity Occurs whenever items with allocated resources end their delay within
an Activity block.

Failed to service orders Occurs whenever an attempt to satisfy the resource requirement of a
waiting item is unsuccessful due to the unavailability of required
resources.

62 Advanced Resource Management
Properties
Resource properties are represented as fields in the Resources table of the Advanced Resources
database.

Resource properties are either pre-defined (discussed below) or custom (discussed on page 64).

Pre-defined resource properties
The ARM system provides over 40 pre-defined resource properties which are either ARM-
managed or user-managed.

• ARM-managed pre-defined resource properties can only be set and modified using ARM-
controlled interfaces, such as the dialog of the Resource Manager block; they cannot be
directly modified in the Resources database table. They are further divided into input and
output properties as shown in the tables below.

• User-managed pre-defined resource properties are managed during the simulation run
directly by the user through an external interface such as the Shutdown block (Item library).
See page 64.

ARM-managed pre-defined resource properties
These tables list the pre-defined input and output resource properties that are managed directly
in the dialog of the Resource Manager block.

☞ The Resource ID property is automatically assigned to each resource. It is not modifiable.

Input Resource Properties (ARM-Managed)

Resource ID (not modifiable) Cost Per Unit Time

Name Cost Time Unit

Pool Cost Per Use

Shift Initial Status

Maximum Quantity Skill Level

Minimum Allocation Quantity Rank

Available Quantity Shareable

Output Properties (ARM-Managed)

Total Orders Serviced Total Cost

Total Idle Time Total Failed Time

Total Busy Time Total Quantity Allocated

Total Busy Off-Shift Time Total Quantity Allocation Time

Total Reserved Time Total Reassigned Time

Total Down Time Total Scheduled Down Time

Total Off-Shift Time Total Unscheduled Down Time

Total Disabled Time Quantity Utilization

Reference 63
Properties
As shown on page 20, the first step in creating a resource is defining the input properties that
the entire pool of resources will have—which pool the resources are in and what other proper-
ties the resources will have by default. When the resources are actually created, those default
properties can be overridden for each resource. During the simulation run, ARM manages the
values of the input properties and calculates the values of the output properties. Both types of
properties are made available when creating or modifying filtering conditions.

• The Initial Status can be either Idle or Disabled, as discussed in “Status” on page 58.

• Shift is only available if the model contains at least one Shift block.

• Groups allow resources from one or more pools to be organized according to some common-
ality; they are discussed on page 56.

• The Maximum Quantity is used by ARM to manage the quantities that resources make avail-
able to the model—how many resources, or what fraction of a resource, is represented by
one record in the database. The Minimum Allocation Quantity is used by ARM to control
how resource quantities are allocated to items; this amount must be equal to or less than the
Maximum Quantity. These two properties support the use of fractional and multiple resource
features in ARM models, discussed on page 52.

User-managed pre-defined resource properties
The following resource properties are integrated with ARM functionality but are managed
directly by the user. Instead of using the ARM interface, the modeler uses an external interface
such as the Shutdown block (Item library) to manage these properties during the simulation
run.

Total Allocated Time Utilization

Status Resource Order ID

Status Start Time Reassigned Resource Order ID

Pending Status Shared Count

Pending Status Start Time Off Shift

Output Properties (ARM-Managed)

64 Advanced Resource Management
Properties
Custom resource properties
In addition to the pre-defined ARM resource properties, users can create custom properties and
add them to the list of resource properties. These properties are user-managed and can be mod-
ified before and during a simulation run by directly accessing the Resources database table.

Custom properties can be added and modified:

• Through the interface of the Resource Manager block, as shown below

• By defining them in an external application such as Excel, importing the definitions to the
Resources database table, and auto-generating them

• By directly accessing the Resources database table (Advanced Resources database).

A custom resource property can have relation with a parent field in an ARM database table.
For example, a custom property could be the location of a resource, while a Locations table in
the Advanced Resources database could contain a list of locations. To relate the custom prop-
erty to the Locations table, you can choose to make the custom property a child field with the
Locations table as the parent. This is good database practice as it ensures the data is normal-
ized, i.e., defined in one place only.

User-Managed Properties Description

Scheduled Down This Boolean checkbox field provides a means to change
the status of resources during a simulation run through
non-standard ARM mechanisms. If the box is checked
during the run, ARM updates the status of the resource to
be “scheduled down”. If unchecked, ARM transitions the
associated resources into their current pending status.

Unscheduled Down See description for Scheduled Down, above

Failed See description for Scheduled Down, above

Failure Progress Type Used by the Shutdown block to determine how the
resource progresses towards its next failure event. Prog-
ress types are either time-based or usage-based.

TBF Time between failures. Used when ARM is coupled with
the Shutdown block, which uses this field to control the
behavior of unscheduled down events for ARM resources.

TBF TTR Down Interruption Policy This field is used by the Shutdown block to control the
behavior of unscheduled down events for ARM resources.
This property specifies how the Shutdown block will
respond to an interruption of the progress towards the next
failure event or the current in-process repair, depending on
which state the resource is in. The options are: 1) preserve
the current progress, 2) ignore the interruption, or 3) reset
the progress.

TTR Time to repair. Used when ARM is coupled with the Shut-
down block, which uses this field to control the behavior
of unscheduled down events for ARM resources.

Reference 65
Properties
To create a custom resource property
using the Resource Manager block’s inter-
face:

In the Resource Manager’s Resources
tab, choose either Mode: Create
resources or Mode: Edit resources

Check the box to Display groups, pools, and properties

In the new frame that appears to the right side of the dialog, change its mode from Groups to
Properties

Click Add New and name the new property

Select a data type (number, string, etc.) from the popup menu,
shown here

Decide if the property should have a relation to a parent field in
the database

The new property is now available for any resource. In the Resource
Manager block it will be listed in the Resource tab’s Properties table
(when Display groups, pools, and properties is checked) and dis-
played in the Property popup menu when a resource filtering condi-
tion is created (Requirements tab).

☞ Custom resource properties can also be created directly in the
Resources database table, or defined in an external application such
as Excel and imported into the model for auto-generation.

Editing resource properties
To edit resource properties using the Resource Manager block’s interface:

Choose Mode: Edit resources in the Resource Manager’s Resources tab.

In this mode, the tab is divided into two sections–—the top is for narrowing the list of
resources that will be displayed in the table that is at the bottom.

• For individual resources, change the appropriate settings in that resource’s row

• To change one or more properties for several resources, in the Edit filtered resources section:

Choose whether column heading selections should apply only to the selected rows or to
all rows

If selected rows is chosen, check the boxes in the Select column for the resources to be
changed

Use the popup menu in the column heading to choose the new setting. For example to
change all of the displayed resources to the disabled state, choose that setting in the Ini-
tial Status column.

☞ The fields in the Groups column are only for information; they cannot be changed.

Pool properties
A pool can have an ID, a Name, and a Parent ID. The ID is assigned by the ARM system. The
Name (which must be unique) and the Parent ID are user-modifiable properties. Pools can be

66 Advanced Resource Management
Resource orders
structured hierarchically; if one pool is part of another pool, the Parent ID identifies the next
highest pool in that hierarchy.

To see a model’s pools and their properties, go to the
Resource Manager block’s Resources tab and check
the box to Display groups, pools, and properties.
Then choose Pools from the popup menu in the table
that appears on the right side of the dialog.

For a summary of each pool’s results from the simu-
lation run (total idle time, total utilization, and so
forth), see the Resource Manager block’s Results tab or the Pools table of the Advanced
Resources database.

Group properties
The group properties are Name, Skill Level, and Resource Rank, all of which are user-modifi-
able. While they are considered group properties, the Skill Level and Resource Rank are
assigned to the individual members (resources) of the group.

Group properties are useful when creating or modifying filtering conditions. Both the Skill
Level and the Resource Rank are used to prioritize which resource to select first from the
group, when a group requirement is executed. The Skill Level or Resource Rank can be any
real number.

The Groups table of the Advanced Resources database lists all of the model’s groups. The
Group Resources table displays all of the groups in the model as well as the properties and
Resource ID of each of their members. (Remember, a resource can be included in more than
one group.)

For information on creating and managing groups, see “Groups” on page 56.

☞ While the principle is the same, a group’s Resource Rank is not the same as a resource’s
Resource Requirement Rank.

Item properties
Every item entering a Queue set for advanced resources has a unique Resource Order ID (_AR
Order ID property) assigned to it. This is an item property the same as attributes and priority;
item properties are discussed in the Discrete Event section of the User Reference.

The ID refers to a record index in the Resource Orders table of the Advanced Resources data-
base. (See “Resource orders” on page 66.) When Resource Pool Release blocks in ARM mode
release all resources from a Resource Order item, the _AR Order ID property is set to Blank.
When an item passes through multiple ARM-based queues before releasing its resources, the
_AR Order ID will be the last property assigned to the item but ARM will keep track internally
of all the assignments.

While not an item property, resource requirements have a resource requirement rank that con-
trols the order in which idle resources search for waiting items to service. A resource require-
ment with a better rank will have first choice of any available items that require that resource.
For more information, see “Resource allocation policy” on page 78.

Resource orders
If each item could only have one resource requirement, and if each resource requirement could
only be selected by one item, statistical information could be obtained just from the resource

Reference 67
Resource requirement overview
requirement’s usage. Since that’s not how the real world works, the ARM system allows each
item to have multiple resource requirements and even the same resource requirement multiple
times but at different Queues. Additionally, several different items can each have the same
resource requirement. To track data and calculate statistical information, the ARM system uses
resource orders.

Definition
A resource order represents a specific request for resources by an item. The information asso-
ciated with a resource order is represented as a record in the Resource Orders table of the
Advanced Resources database. Whenever an item makes a request for ARM resources, a
resource order is created and the record index of the resource order in the Resource Orders
table is assigned to the item’s Resource Order ID (_AR Order ID property) as discussed in
“Item properties” on page 66).

Each resource order is associated with only one resource requirement. The resource require-
ment specifies which types of resources and how many of them are required by the item and
thus, by the associated resource order. When the required resources for a resource order
become available, ARM allocates the resources to the resource order.

A resource order remains associated with an item until all of the resources allocated to the
order have been released. Because items can make and accumulate multiple requests for
resources, they can be associated with multiple resource orders at the same time.

Process
When an item gets to a Queue, the Queue makes a request to the Resource Manager for the
resources specified by the item’s resource requirement. The Resource Manager then:

• Converts that request into a resource order

• Creates a corresponding record in the Resource Orders database table referring to the
resource request and identifying which queue the order came from, when it was ordered, and
so forth

• Assigns a Resource Order ID to the item

• Attempts to satisfy the item’s resource requirement

• When a resource is successfully assigned to an item, the Resource Order ID field in the
Resources table is updated. That information is used to track the resource’s last allocation.
When an item is accumulating multiple resource orders, ARM creates a hierarchy of the
resource orders created for the item. The _AR order ID property on the item is always the ID
of the last resource order accumulated by the item.

This architecture allows the ARM system to track data and calculate statistical information
such as when a resource was requested and the average length of time it took to satisfy.

For more detailed information, see “Primary transactions for ARM” on page 83.

Resource requirement overview
Resource requirements are a necessary component of the mechanism for allocating resources
to items. The resource allocation mechanism consists of the following three components:

1) A requester—an item

2) A requesting & holding location—a queue block in advanced resource behavior

3) A specification of the required resources—a resource requirement

68 Advanced Resource Management
Resource requirement overview
Resources are requested by items when they arrive in queue blocks which have their behavior
set for advanced resource. The items are held in the queue blocks until the resource require-
ments are satisfied.

Definition
A resource requirement is a set of instructions that specifies how many of what types of
resources to allocate to an item. Each resource requirement is composed of at least one filtering
condition (what type of resource) and one quantity expression (how many resources). Filtering
conditions are discussed on page 69 and quantity expressions are described on page 71.

Creation
Resource requirements are created:

• Manually through the Resource Requirements tab in
the dialog of the Resource Manager block as dis-
cussed on page 75and described in the tutorial that
starts on page 23.

• By default, as discussed on page 76 and shown in the
tutorial that starts on page 26 (the default is 1
resource with a single resource property).

• Manually using an external application, such as an Excel worksheet, as described in the tuto-
rial that starts on page 31.

Steps to take before creating
Before creating a resource requirement, it is helpful to perform the following steps:

1) Identify the components that will be needed:

a)Determine how many distinct collections of resources are required, where each collection
of resources is defined as being those resources sharing identical values for a specified set
of properties

b)Identify the properties and property values that are common to each resource collection

c)Determine the quantity required from each collection

d)Determine if alternative collections could be considered if the quantity cannot be
obtained from a particular collection

e)Identify the criteria for any of those alternative collections

f)Determine the quantity required from any of the alternative collections

2) Use the results of the process above to determine how many quantity expressions are
needed. A quantity expression will be required for each distinct resource collection from
which a quantity will be selected.

3) Once the quantity expressions have been identified, determine how many different filtering
conditions are needed to represent all of the distinct resource collections referred to in step
1. Filtering conditions are used in quantity expressions to generate the collection of
resources from which the specified quantity is selected.

☞ See “Tutorial 3: Use Attributes for Flexibility and Scalability” for examples showing how to
use item attributes to minimize the number of resource requirements a model needs.

Reference 69
Filtering conditions
Filtering conditions
Creating one or more filtering conditions is the first necessary step in defining a resource
requirement. Filtering conditions are the smallest component of a resource requirement. The
purpose of a filtering condition is to identify a collection of one or more resources that match a
specific criterion. Filtering conditions are based on a relation between a particular resource or
group property and values for that property. For example, a filtering condition could be that the
resource comes from a particular pool or that it costs less per use than a specific amount.

Saved filtering conditions are used in quantity expressions, discussed on page 71. When a
quantity expression gets executed, the resources it can use is limited to those that meet the cri-
teria of the quantity expression’s filtering conditions.

Types of filtering conditions
Each filtering condition filters on one, and only one, property of either a resource or group
member:

1) A resource filtering condition filters on one specific
resource property. All pre-defined and custom resource
properties are listed in the Property popup menu shown
in the screenshot to the right. Examples of resource
properties are: pool, total idle time, or a group. (See “Resource properties” on page 61.)

2) A group filtering condition filters on one specified group
property – either Skill Level or Resource Rank. (See
“Group properties” on page 66.) There must be at least one
group of resources in the model to enable group filtering
conditions.

Note that a group filtering condition is associated with a group property—either Skill
Level or Resource Rank—and not with a particular group. As discussed in “Using group
filtering conditions” on page 74, a group filtering condition must be used in conjunction
with a resource filtering condition that limits the collection of resources to a specific
group.

Creating a filtering condition
One way to create a filtering condition
is by using the Create/modify filtering
conditions frame in the Resource Man-
ager’s Requirements tab, shown here. Another method is to auto-generate the filtering condi-
tion either by defining it directly in the Advanced Resource database’s Resource Requirement
Expressions table or by using Excel or some other external application. Both approaches are
shown in the Tutorial 1 chapter. In addition, filtering conditions can be automatically created
by default when pools or groups are created, as discussed below.

☞ Each filtering condition filters for one condition of one property.

Conditional operators
Each filtering condition is composed of one con-
ditional operator applied to one property. The
possible conditional operators are: =, >, <, >=,
<=, != (not equal), BitAnd (a bitwise AND com-
parison discussed in the Technical Reference),

70 Advanced Resource Management
Filtering conditions
and In (for selecting the value of the property from a list of values, as shown here). As dis-
cussed above, the property can be a resource property or a group property.

Property value
To the right of the conditional operator popup is a field or table, depending on the property that
has been selected and what is chosen in the property value source popup, discussed below. This
field or table is where the property value is selected or entered. For example, in the above
screenshot there is a table listing the existing pools. In the section on “Types of filtering condi-
tions” on page 69, the two screenshots have fields after the conditional operator popups for
entering a number.

Property value source popup
Shown here, the single downward arrow button to the right of the property value
field is the property value source popup. Use this to select the source for the prop-
erty value.

The source options for string properties are:

• Select from a list. Use this option to specify a fixed value for the property from a list of the
existing values for the selected property. When this option is selected, the popup to its left
will contain the list of values to choose from. Select one of the values in that popup.

• Use an attribute. Use this option to get the property value from an item's attribute. When this
option is selected, the popup to the left will contain a list of the model attributes plus options
to create new attributes. Select an existing attribute from this list or create a new attribute to
get the property value from.

The source options for numeric properties are:

• Type a number. Use this option to specify a fixed numeric quantity for the property. When
this option is selected, a parameter box appears to the left of the property value source
popup. Input the value you want the property to be equal to whenever the filtering condition
is executed.

• Use an attribute. Use this option to get the property value from an item's attribute. When this
option is selected, the popup to the left will contain a list of the model attributes plus options
to create new attributes. Select an existing attribute from this list or create a new attribute to
get the property value from.

• Use a system variable. When this option is selected, the popup to the left lists the ExtendSim
system variables such as currentScenario, currentSim, and currentTime, For a complete list
of system variables, see the Technical Reference.

Default filtering conditions and resource requirements
When a Resource Pool block is used to create a pool, one filtering condition (as part of a
resource requirement) is automatically created for each pool. If a Resource Manager block is
used to create a pool or group, automatically creating a default filtering condition is optional.
Furthermore, whenever a new filtering condition is created there is an option to automatically
create a default resource requirement of 1 filtered resource. Default filtering conditions have
“FC_” before the name of the pool or group. See “Default resource requirements” on page 76.

Testing
Once the property and condition selections have been made, use the Resource Manager’s Test
button to apply the selections to the model’s resources. This opens a table displaying all the

Reference 71
Quantity expressions
resources that match the selected filtering condition. For a group filtering condition, every
resource that has the specified group property will be displayed, no matter which group it is in.

For the definition of a filtering condition, select it in the Choose filtering condition popup
menu of the Resource Manager’s Requirements tab. The settings will be for the selected filter-
ing condition.

Saving
A new or modified filtering condition won’t be available for use until the Save or Save As but-
ton has been clicked. Until the filtering condition is saved, or while it is being modified, its
name will be displayed in red.

☞ Saving the filtering condition saves it to the database. To save the database, save the model.

Deleting a filtering condition
If you try to delete a filtering condition, it may give an error message that it is being used by a
quantity expression. Before the filtering condition can be deleted, any quantity expressions that
use it must also be deleted. And before those quantity expressions can be deleted, any resource
requirements that use them must also be deleted.

Examples of filtering conditions
Examples of filtering conditions include:

• FC#1 – filter using a resource property Pool that has the condition = Pool 2

• FC#2 – filter using a resource property Total Idle Time that has the condition > 10

• FC#3 – filter using a group property Skill Level that has the condition = 2

• FC#4 – filter using a resource property Group that has the condition = Group A

As discussed below, saved filtering conditions are used to create a quantity expression.

Quantity expressions
Defining one or more quantity expressions is the second step towards creating a resource
requirement. A quantity expression is a logical statement that is used to select a certain quan-
tity of resources from an identified collection of resources. The collection of resources is lim-
ited by all the filtering conditions that are entered in the expression.

The expression can be quite complicated. However, for each quantity expression only the spec-
ified quantity of qualifying resources will be allocated to an item.

The three clauses of a quantity expression
Each quantity expression consists of three clauses:

1) A Quantity clause that specifies how many resources to
select from a resource collection. The quantity is entered
using the Quantity popup menu at the right of the
SELECT button. As seen in the screen shot to the right,
the choices for the popup menu are:

• All the resources

• A quantity determined from a named attribute

• A quantity that is user-input (the default)

72 Advanced Resource Management
Quantity expressions
Unless it is limited by a WHERE clause in the quantity expression, the selected number of
resources will be drawn from all the resources in the Resources table of the Advanced
Resources database.

2) A WHERE clause that contains the criteria that resources must satisfy in order to be
selected. The WHERE clause generates the resource collection; the criteria are specified
using one or more filtering conditions.

3) An optional Order By clause that is used to sort the collection of resources generated by the
WHERE clause. If chosen, any one of the resource properties listed on page 61 can be used
to sort the resources. The collection of resources is sorted based on the values (in ascending
or descending order) of a selected resource property. The resources at the top of the sorted
list will be used first.The default is that an ascending value of utilization is used to sort the
resources. This causes resources that are being utilized the least to be selected first.

When the simulation is run, the quantity expression will be applied as shown below:

How to create a quantity expression
There are several ways to create a quantity expression:

1) One method is to use the Create/
modify quantity expressions frame in
the Resource Manager’s Require-
ments tab.

2) Another method is to auto-generate the quantity expression either by defining it directly in
a table in the Advanced Resource database or by using Excel or some other external appli-
cation.

☞ The above methods are shown in the Tutorial chapters.

3) In addition, quantity expressions can automatically be created by default when pools or
groups are created, as discussed below.

How a quantity expression gets applied during the simulation run (“Order By” is optional)

Reference 73
Quantity expressions
No matter how created, each quantity expression specifies the quantity of resources to be
drawn from a set of resources defined by filtering conditions. The result is then saved as a
quantity expression for use when building a resource requirement.

☞ When a new quantity expression is created, a corresponding resource requirement is optionally
created. See “Default resource requirements” on page 76.

Default quantity expressions
When the Resource Pool block is used to create a pool, a single quantity expression with a
quantity of 1 is automatically created. If instead the Resource Manager block is used to create
a pool or group, default quantity expressions are optional.

☞ After a quantity expression has been created, the quantity can be changed to any of the three
choices shown below, as shown in “Change the quantity to 2 Washer/Waxers” on page 26.

Creating a quantity expression
To create a quantity expression using the Resource Manager block’s Requirements tab, check
the Create/modify quantity expressions frame to enable it. Then either choose an existing quan-
tity expression from the popup menu and modify it or create a new quantity expression.

To create a new quantity expression:

First determine if the expression should start with all the resources from the Resources table
or only a specified number of those resources—see the Quantity clause on page 71. (Option-
ally, you can also decide if the resources should be sorted by a property; see the Order By
clause on page 72). Resources at the top of the list will be chosen first.

Then click the SELECT button to place the quantity in the expression area.

At this point, the quantity expression requires a specified quantity (all or a number) of
resources. However, the collection of resources is still all the resources in the Resources table
of the Advanced Resources database.

☞ In models with large numbers of resources, it will speed simulation run times if the first part of
the expression uses a filtering condition that limits the search area to a pool or group.

To narrow the search area, click the WHERE operator. Then insert a filtering condition; typi-
cally this would be a resource filtering condition that references a Pool or Group (for example,
Property: Pool = Pool 2).

To use additional filtering conditions, use the AND/OR operators in conjunction with grouping
parentheses. The result is displayed in the expression area.

☞ See below if group filtering conditions are used.

Example
The quantity expression named Pool2_IdleResources is shown in the screen shot below. It was
created using a quantity of 3 and two of the filtering conditions (FC#1 and FC#2) that were
shown in “Examples of filtering conditions” on page 71.

The quantity expres-
sion states that 3
resources will be
required and that each
resource must come

74 Advanced Resource Management
Quantity expressions
from Pool 2 (FC#1 is True) and have a total idle time > 10 (FC#2 is True).

Changing the quantity in a quantity expression
The ARM system allows for changing the quantity in the quantity expression portion of a
resource requirement. This is particularly useful when:

• You have allowed the system to create a default resource requirement, which by definition
requires 1 resource, but you want a higher quantity (as in this tutorial).

• You want the default resource requirement to get its quantity from the attributes on items.

When creating a quantity expression, the
“Quantity =” popup menu gives three
options:

• All filtered resources

• Quantity from attribute

• Quantity from user input

By default, the expression will use any number you enter in the field at the right, as in this
example. However, it is more common that you would use an attribute value to specify a quan-
tity.

Using group filtering conditions
When creating a quantity expression that references a group, group filtering conditions must be
used in conjunction with a resource filtering condition that specifies a particular group. This is
accomplished by choosing Group as the property for the resource filtering condition.

For example, assume the members of Group A and Group B all have Skill Level = 2. If the
quantity expression includes a condition that filters on the group property (Skill Level = 2), it
must also include a second condition that filters on a resource property that is the Group (either
Group = Group A or Group = Group B).

☞ When creating a quantity expression, group filtering conditions must be used in conjunction
with a resource filtering condition that specifies a particular group. And the resource filtering
condition must be specified before the group filtering condition can be added to the expression.

Testing
The application of a quantity expression selects a specified quantity of specified resources. It is
then used to create the resource requirement. To determine if the expression selects the
resource that is wanted, use the Test button.

Saving
A new or modified quantity expression won’t be available for use until the Save or Save As
button has been clicked. Until the quantity expression is saved, its name will be displayed in
red.

☞ Saving the quantity expression saves it to a database. To save the database, save the model.

Deleting a quantity expression
If you try to delete a quantity expression, it will probably give an error message that the quan-
tity expression is being used by a resource requirement. Before the quantity expression can be
deleted, any resource requirements that use it must also be deleted.

Reference 75
Resource requirement creation
Resource requirement creation
The final step is to create the actual resource requirement. Resource requirements are logical
expressions consisting of one or more quantity expressions combined using AND/OR opera-
tors in conjunction with grouping parentheses. They describe the resources needed by an item
in order for it to perform a task in the model.

☞ See also “Resource requirement overview” on page 67.

Methods for creating a resource requirement
Resource requirements can be created:

• Manually through the Requirements
tab in the dialog of the Resource
Manager block as discussed below
and described in the tutorial that
starts on page 23.

• By default, as discussed on page 76 and described in the tutorial that starts on page 26 (the
default is 1 resource with a single resource property).

• Manually using an external application, such as an Excel worksheet, as shown in the tutorial
that starts on page 31.

Resource requirement rank
When it is created, each resource requirement gets a resource requirement rank. The resource
requirement rank must be 0; the default rank is 1. This ranking is used for sorting items that
are waiting for resources, as discussed in “Resource allocation policy” on page 78. It can be
overridden for a particular resource, as discussed in “Overriding the resource requirement
rank” on page 80.

Creating a resource requirement manually
On the Requirements tab, enable the Create/modify resource requirements frame. Then either
choose an existing resource requirement from the popup menu and modify it or create a new
one.

To create a resource requirement, either choose a quantity expression from the popup menu or
start with a grouping operator. Use the AND and OR operators between quantity expressions;
use the grouping operators to group quantity expressions. The resource requirement rank can
be changed from the default of 1.

Testing
To determine if the expression selects the resources that are wanted, use the Test button.

Saving
A new or modified resource requirement won’t be available for use until the Save or Save As
button has been clicked. Until the resource requirement is saved, its name will be displayed in
red.

☞ Saving the resource requirement saves it to the Advanced Resource database. To save the data-
base, save the model.

76 Advanced Resource Management
Resource requirement creation
Default resource requirements
Under certain circumstances the ARM system creates a default resource requirement. In some
cases this is done automatically and in other cases it is optional.

The circumstances when a default resource requirement could be created are:

• Every time a new pool is created using a Resource Pool block

• Optionally when a new pool is created using a Resource Manager block

• Optionally when a new group is created using a Resource Manager block

• Optionally when a new quantity expression is created using a Resource Manager block

• Optionally when a new filtering condition using a Pool is created using a Resource Manager
block

Created by default when a new pool or group is created
When a default resource requirement is created for a new pool or group, 3 components are cre-
ated:

1) A filtering condition named “FC_[name of pool or group]”, with the condition that:

• If a new pool is created, the resource must come from the new pool (“Filter using prop-
erties of resources, where the property = [the new pool]”).

• If a new group is created, the resource must come from the new group (“Filter using
properties of resources, where the property = [the new group]”).

2) A quantity expression named “1 from [name of pool or group]”, indicating that the require-
ment is for exactly 1 resource from the pool or group.

3) A resource requirement named “RR_[name of pool or group]”. (When a resource require-
ment is automatically created for a new pool or group, it is the same as the quantity expres-
sion.)

Because the default filtering condition is the newly created pool or group and the default quan-
tity expression is 1 resource from that pool or group, the default resource requirement is that 1
resource is required from the new pool or group.

☞ After a resource requirement has been created, the quantity in its quantity expression can be
changed as shown in “Change the quantity to 2 Washer/Waxers” on page 26.

Created when a filtering condition or quantity expression is created
If a default resource requirement has not already been created through one of the above mech-
anisms, the option will be given to create a corresponding default resource requirement when a
new filtering condition or quantity expression is created. The default resource requirement will
be the same as the filtering condition or quantity expression, but its name would be preceded
by “RR”. The name of the resource requirement can be changed before the requirement is
saved.

For example, when creating a new filtering condition the ARM system would ask if you want
to create a default resource requirement that is the same as that filtering condition with a quan-
tity of 1, such as 1 resource from the Wash Only pool. The quantity can be changed as dis-
cussed in “Change the quantity to 2 Washer/Waxers” on page 26.

Reference 77
Release rules
Using an external application to create a resource requirement
Resource requirements can be defined in external applications such as Excel, SQL Server, and
Access and imported into the model’s Advanced Resources database using the Data Import
Export block (Value library). The requirements are defined using the structure of the Resource
Requirement Expressions database table and adding content. After the definitions have been
imported, ARM creates the resource requirements either the first time the simulation is run or
when the resources are auto-generated.

This process is described in detail in “Tutorial 2: Resource Creation Part 2” on page 31.

Release rules
Release rules determine if and when resources are released from the items they’ve been allo-
cated to. Custom release rules are created in the Resource Manager block. Each Resource Pool
Release block can release resources using those custom rules or using other criteria set in its
dialog.

☞ The only way to release resources that have been allocated to an item is by passing the item
through a Resource Pool Release block (Item library).

Release Rules tab of Resource Manager block
This tab is for creating and modifying custom resource release rules. Custom release rules pro-
vide a user-definable mechanism for controlling which resources to release. These rules use the
same mechanism as resource allocation (the execution of a resource requirement), to select
from a collection of filtered resources. However, when a resource requirement is used by an
item entering or residing in a Queue, ARM uses the requirement to select viable resources to
allocate to the item from the list of resources in the Resources database table. Whereas when a
resource requirement is used in a custom release rule, ARM uses the requirement to select via-
ble resources to release from the item from the list of resources already allocated to the item.
Custom resource release rules can be based on any resource requirement and can be used by
any Resource Pool Release block anywhere in a model.

To create or modify a release rule:

Go to the Resource Manager’s Release Rules tab

Choose an existing resource release rule or create a new one

Select the resource requirement that the rule should be associated with

In the table, specify the Release Quantity by selecting from the popup menu—All, None, a
Value, or Get from an Attribute

Resource Pool Release block
When its release behavior is set to Release: advanced resources, the dialog of the Resource
Pool Release block gives three choices for controlling which resources to release when items
enter the block. The options are to release:

• All resources

• All resources from a specific resource order

• Resources using a custom rule

☞ Custom rules are created in the Release Rules tab of the Resource Manager block, discussed on
page 77.

78 Advanced Resource Management
Policies
Exclusion rules
The dialog of the Resource Pool Release block also pro-
vides customizable exclusion rules that give an addi-
tional level of control over which resources get released
from passing items. Exclusion rules allow modelers to
create exceptions to any of the above three resource
release options and prevent specified resources from being released from passing items.

Note that, if an item has not had all of its resource removed before being destroyed, e.g., enter-
ing an Exit block, the residual resources will remain in the busy state for the remainder of the
simulation run and will not be available for reuse. While this could be done intentionally to
represent consumable resources, in general it would be a modeling error that would produce
incorrect results.

Policies
The Policies tab of the Resource Manager block is for:

• Setting a policy that determines the order in which items are evaluated for resource alloca-
tion, as discussed below.

• Enabling allocated resources to be reassigned to higher priority resource orders.

• Overriding the resource requirement rank for individual resources, as discussed on page 80.

Resource allocation policy
The settings in the top section of the Policies tab control the order in which idle resources
search for waiting items before attempting allocation. This determines which items a resource
can allocate itself to when the resource becomes available for work.

An opportunity for resource allocation occurs when either of the following events occur:

4) An item arrives in an ARM-mode queue block and selects resources—push events. The
resource allocation policy is not used.

5) A resource transitions to being available for allocation and selects an item—pull events.
The resource allocation policy is used.

Push events
Resource allocations that result from item arrivals in ARM queues are referred to as “push”
allocations because the item is pushing itself to idle resources. Because there can be more
resources available than are required by an item, the item must decide which of the available
resources to select. This decision is made using the logic embedded in the associated resource
requirement. Consequently, push event-based allocations do not use the resource allocation
policy.

Pull events
Resource allocations that
result from resources transi-
tioning to idle are referred to
as “pull” allocations because
items waiting for resources
are being pulled to available
resources. When idle
resources pull waiting items,

Reference 79
Policies
they use the resource allocation policy to determine the order in which to search for waiting
items and when to terminate their search. The pulling resource searches the sorted list of wait-
ing items until one of the following occurs:

1) Either an item is encountered that can have its requirement satisfied by using the pulling
resource

2) Or the search termination condition is encountered

Creating an allocation policy
The Set resource allocation policy frame in the Resource Manager’s Policies tab contains the
controls for setting the resource allocation policy for “pull” allocations. The popups in this
frame determine the order in which idle resources search for waiting items to allocate them-
selves to.

Sorting criteria
At any time during a
simulation run, items
waiting to have their
resource requirements
satisfied are sorted
into a prioritized list.
The sorting is accom-
plished using item information and the settings in the “Set resource allocation policy” frame of
the Resource Manager’s Policy tab:

• The primary sorting key is: Allocate resources to waiting items by...

• The secondary sorting key is: Then by

These options tell ARM what item information to use when sorting the list of waiting items.

☞ The default is to sort items by the ranking of their resource requirements and then by the time
the item arrived to the queue.

Primary sorting key popup
The primary sorting uses one of the following criteria about the items:

• The resource requirement rank. As discussed on page 75, the resource requirement rank is
a property of the resource requirement. It is specified in the “Create/modify resource
requirements” frame of the Requirements tab; the default is 1. While a model is running,
each outstanding (unsatisfied) request for resources is associated with both a resource
requirement and a waiting item. Thus, each item waiting for resources has an associated
resource requirement rank that can be used for sorting.

• Item attributes. Any Value or DB Address attribute that is used for
sorting must resolve to a readable cell in any one of the model data-
bases.

• The item priority.

• The item’s queue arrival time. The queue arrival time is recorded in the resource order
record associated with a waiting item.

The popup next to the primary sorting key is for specifying whether the selected information is
to be sorted in ascending or descending order.

80 Advanced Resource Management
Policies
Secondary sorting key popup
The secondary sorting key popup is only made available when the “Resource requirement
rank” option is selected as the primary sorting key. This secondary popup has all of the options
the primary sorting key popup has, except for the resource requirement rank option. The sec-
ondary key can be sorted by ascending or descending order.

The checkboxes
By default, the “Resources continue searching...” checkbox is checked. This is used to control
when the search for waiting items is terminated.

• When it is checked, the Resource Manager searches all waiting items that the pulling
resource can service (be allocated to) until either one of the following is true:

• The resource is allocated to a waiting item

• Or, the end of the list of waiting items is encountered

• When this checkbox is unchecked, the Resource Manager searches all waiting items that the
pulling resource can service (be allocated to) until:

• The resource is allocated to a waiting item

• An item is encountered for which the resource requirement can’t be satisfied

Naturally, checking the this checkbox will increase resource utilization because ARM will cap-
italize on every opportunity to satisfy the requirement of a waiting resource. However, running
in this mode will cause resources to be allocated to lower priority resource orders. Either way,
ARM will always search to satisfy waiting resource orders in the order specified by the settings
of the popups in the “Set resource allocation policy” frame.

Overriding the resource requirement rank
As discussed in “Sorting criteria” on page 79, one of the properties that waiting items can be
sorted by is the resource requirement rank (RRR). When the RRR is specified as being part of
the resource allocation policy, the rank value of each waiting Resource Order’s resource
requirement is used to sort the list of waiting items before idle resources begin searching for a
waiting item to allocate themselves to. A resource requirement rank must be 0; the default
resource requirement rank is 1.

The original value of the RRR is entered on the
Requirements tab when the resource require-
ment is created. This value can be overridden
by individual resources such that, when search-
ing for waiting items to allocate themselves to,
the resources can use their overriding rank val-
ues to change how the list is sorted. This means
that, only for the specified resource, a resource
requirement’s rank will differ from the original value entered on the Requirements tab. Since a
resource requirement could be composed of multiple resources, each resource that is part of a
resource requirement can override the resource requirement’s rank with a different value.

Overriding is accomplished by changing the values in the RR Rank column in the table labeled
Override resource requirement rankings.

☞ The original ranking values are displayed in square brackets in the RR Rank column.

Wash/Wax resource requirement is ranked higher

Reference 81
The Advanced Resources database
The Advanced Resources database
The Advanced Resources database provides the architectural framework for the ARM system.
ARM uses the database to represent, manage, and track the status and properties of resources,
pools, and groups, as well as resource allocation and release rules. The database is automati-
cally created when a Resource Manager block is added to a model. It is easily accessed by
clicking the View Database button in the Resource Manager’s tabs or through the ExtendSim
Database menu.

There are several tables in the database. The most relevant to the modeler are described below.

Table Description

Resources The repository for all the resources in a model. Each
record represents a specific quantity of resources hav-
ing a common set of input and output properties. This
table is where resource status and thus, availability is
managed. It is also where utilization and the history of
time spent in each resource state is recorded.

Pools A summary of the Resources table from a pools per-
spective. Each record contains a summary of informa-
tion about all of the resources in a particular pool.
Summarizes the results from the simulation run (total
idle time, total utilization, and so forth) for each pool.

Resource Requirements Provides queuing, arrival, and departure statistics for
each resource requirement in the model.

Resource Classes Provides a dialog-independent mechanism for defining
all of a model’s resources, pools, groups and custom
resource properties in a single table. ARM uses this
table to automatically instantiate these components in a
model during model initialization. Because everything
needed to fully characterize the resources, pools,
groups, and custom resource properties can be speci-
fied in this one table, modelers can populate and import
the contents of this table from an external application
such as Excel, SQL Server, or Oracle.

Resource Requirement
Expressions

Provides a dialog-independent mechanism to define all
of a model’s resource requirements, quantity expres-
sions and filtering conditions in a single table. ARM
uses this table to automatically instantiate these compo-
nents in a model during model initialization. Because
everything needed to fully characterize the resource
requirements, quantity expressions, and filtering condi-
tions can be specified in this one table, users can popu-
late and import the contents of this table from an
external application such as Excel, SQL Server, or Ora-
cle.

Resource Transaction Log Depending on the settings in the Resource Manager’s
Event Logging tab, this table displays the transactions,
status transitions, and results of the simulation run.

82 Advanced Resource Management
Blocks that compose the ARM system
Also see “Primary transactions for ARM” on page 83.

Blocks that compose the ARM system
The Resource Manager block is central to the ARM architecture and several other blocks per-
form important functions.

Block
(Library) Function When Used With Advanced Resources

Resource Manager
(Item)

This block is the brain of the ARM system. It centralizes all of the
resource information in the model and uses this information to make all
resource allocation decisions. It provides an interface for managing
advanced resources, resource requirements (allocation rules), release
rules, and transaction logs. Use it to:

• Create, edit, and delete resources, pools, groups, and their proper-
ties

• Create resource requirements
• Define release rules
• Define policies for allocating idle resources to items
• Enable event logging
• View statistical results

Batch
(Item)

Takes all of the ARM resources that are attached to inbound items and
attaches them onto the outbound batch item.

Queue
(Item)

Controls the ordering and allocation of resources Note: Selected queue
behavior must be set to advanced resource queue.

Queue Equation
(Item)

The equation can be used to conditionally allocate requirements to items
released from the Queue Equation block. Note: Enable advanced
resources (AR) on the block’s Options tab.

Query Equation
(Item)

Can be used to share resources across multiple items when items are
spawned with attached ARM resources.

Resource Pool
(Item)

A shortcut for creating a pool of resources and a way to add or removere-
sources from Pools during or at the start of the simulation. Controls the
initial properties and number of resources in a pool and reports aggre-
gated results for its resources. Notes: 1) Selected behavior must be
advanced resource pool. 2) Since all its capabilities can be achieved
using the Resource Manager block, this block is optional. 3) Resource
Pool resources do not have properties unless the resources are advanced.

Resource Pool Release
(Item)

Controls the release of resources. Notes: 1) Selected behavior must be
release advanced resources. 2) This block provides the only mechanism
for releasing ARM resources from items.

Statistics
(Report)

Reports statistics for individual resources. Especially useful for exporting
data and for performing batch means and multi-run analyses.

Reference 83
Primary transactions for ARM
Primary transactions for ARM
The following diagrams and tables give an overview of how advanced resources are used in a
model. The explanation is divided into sections which describe what happens when:

• An item arrives at a Queue that is in ARM mode

• A Shift block used by the ARM system changes status

• A Resource Pool block in ARM mode gets a message to add or remove advanced resources

• An item passes through a Resource Pool Release block that is in ARM mode

☞ In the explanations, the Database Tables Used column has the following abbreviations: RO
(Resource Orders), RTL (Resource Transaction Log), and RR (Resource Requirements).

Shift
(Item)

ARM resources can be associated with a Shift block’s shift. Whenever
the status of a shift changes, the associated Shift block notifies the
Resource Manager block and the Resource Manager block updates the
status values of the affected resources. See the ARM Shift Changes using
Scenario Manager model located at examples/Discrete Event/Resources
and Shifts/Advanced Resource Mgt.

Unbatch
(Item)

Can be used to share resources across all of the unbatched items when the
inbound items have ARM resources attached to them.

Block
(Library) Function When Used With Advanced Resources

84 Advanced Resource Management
Primary transactions for ARM
Item-initiated ARM transactions
This part explains what happens when an item arrives at a Queue that is part of the ARM sys-
tem.

Description Message-
Sending Block

Message-
Receiving

Block

Database Tables
Used

1 An advanced resource item arrives in
the Queue.

Queue

2 The Queue orders resources from the
Resource Manager.

Queue Resource
Manager

3 The Resource Manager generates a
resource order and assigns a Resource
Order ID in the database and to the
item.

RO, RTL

4 The Resource Manager checks for
availability of required resources.

RO, Resources,
RR, RTL

1

3

5

9

2

7, ,

6,

8

10

11

QUEUE RESOURCE POOL RELEASE

RESOURCE MANAGER

INTERNAL DATABASE

4

Reference 85
Primary transactions for ARM
5 The Resource Manager notifies the
Queue when the required resources
are available for the item.

Resource
Manager

Queue

6 The Queue checks if it is blocked. If it
is not, it grants permission to the
Resource Manager to allocate the
resources to the item.

Queue Resource
Manager

RO, Resources,
RTL

7 The Resource Manager allocates the
resources and changes their status to
busy.

RO, Resources,
RTL

8 The item with the resources allocated
to it leaves the Queue and is released
to the model.

Queue

9 The item arrives in the Resource Pool
Release.

Resource Pool
Release

10 The Resource Pool Release sends a
command to the Resource Manager to
release resources from the item.

Resource Pool
Release

Resource
Manager

RO, Resources,
Resource
Release Rules,
RTL

11 The Resource Manager releases
resources from the item and changes
the status of the released resources
from busy to their new status (idle, off
shift, etc.)

RO, Resources,
RTL

Description Message-
Sending Block

Message-
Receiving

Block

Database Tables
Used

86 Advanced Resource Management
Primary transactions for ARM
Shift
When advanced resources use a Shift block, the transactions are as follows.

Description Message-
Sending Block

Message-
Receiving

Block

Database Tables
Used

1 The Shift receives a status change
message.

Shift

2 The Shift sends a shift status change
message to the Resource Manager.

Shift Resource
Manager

3 The Resource Manager changes the
status of all resources that use the
Shift.

Resources, RTL

4 If any resources have transitioned to
the idle status, the Resource Manager
attempts to service waiting items that
depend on those resources.

RO, Resources,
RR, RTL

5

2

QUEUE

RESOURCE MANAGER

INTERNAL DATABASE

4

6

3 7,

8

SHIFT

1

Reference 87
Primary transactions for ARM
5 If items can be serviced, the Resource
Manager notifies Queues with wait-
ing items that the required resources
are available.

Resource
Manager

Queue

6 The Queues check for being blocked.
If they are not, they grant permission
to the Resource Manager to allocate
the idle resources to their items.

Queue Resource
Manager

RO, Resources,
RTL

7 The Resource Manager allocates the
resources and changes their status to
busy.

RO, Resources,
RTL

8 The Queues release the items. Queue

Description Message-
Sending Block

Message-
Receiving

Block

Database Tables
Used

88 Advanced Resource Management
Primary transactions for ARM
Resource Pool-initiated ARM transactions
When a Resource Pool block receives a message during the simulation run that resources need
to be added or removed, the transactions occur as illustrated below.

Description Message-
Sending Block

Message-
Receiving

Block

Database Tables
Used

1 The Resource Pool receives a mes-
sage to add/remove resources.

Resource Pool

2 The Resource Pool notifies the
Resource Manager that the quantity
of pool resources has changed.

Resource Pool Resource
Manager

3 The Resource Manager changes the
quantity of resources for the pool.

Resources, RTL

4 If resources were added, the Resource
Manager attempts to service waiting
items.

RO, Resources,
RR, RTL

1

5

2

QUEUE

RESOURCE MANAGER

INTERNAL DATABASE

4

RESOURCE POOL

6

3 7,

8

Reference 89
What’s new in ARM since 9.0
What’s new in ARM since 9.0
ARM has been used for a few years now and many customers use this powerful tool to solve
real world problems. We appreciate their feedback, which allowed us to add more capabilities
to ARM since its original release.

☞ For additional and up-to-date information, see the Help of the Resource Manager block.

Fractional resources, resource classes, and multi-tasking
Prior to release 10, ARM required “one record = one resource”—each record in the
Resources table represented a single resource. ARM now supports:

• Fractional resources, where each record can represent a fraction of a resource, so parts of
one resource can be allocated to different items

• Multiple resources, where resources with an identical set of properties are represented in a
single record in the Resources table (note that there is a reduction of fidelity with this option)

New fields in the Resources table support the fractional resources, resource classes, and multi-
tasking features described above:

• Maximum Quantity: Specify how many resources are represented in the record.

• Available Quantity: A read-only field that reports the amount of Maximum Quantity cur-
rently available for allocation.

• Minimum Allocation Quantity; Define the smallest quantity of a resource that can be allo-
cated to a resource order. Must be equal to or less than the Maximum Quantity.

See also “Fractional and multiple resources” on page 52.

5 If items can be serviced, the Resource
manager notifies Queues with waiting
items that the required resources are
available.

Resource
Manager

Queue

6 The Queues check for being blocked.
If they are not blocked, they grant
permission to the Resource Manager
to allocate the idle resources to the
items.

Queue Resource
Manager

RO, Resources,
RTL

7 The Resource Manager allocates the
resources and changes their status to
busy.

RO, Resources,
RTL

8 The Queues release the items. Queue

Description Message-
Sending Block

Message-
Receiving

Block

Database Tables
Used

90 Advanced Resource Management
What’s new in ARM since 9.0
External definitions and auto-generation
Modelers can now define resources, pools, groups, custom resource properties, and resource
requirements in Excel, SQL Server, Access, and so forth, then use the Data Import Export block
(Value library) to import those definitions to the Advanced Resources database. A pre-defined
Excel template is included with ExtendSim. Any or all of the fields can be defined in that
workbook for importing to the Resource Classes and Resource Requirement Expressions
tables in the Advanced Resources database.

When resources and requirements have been externally defined, the Resource Manager’s Auto-
Generate button causes the imported information to automatically create ARM components.
This consists of pools, groups, resources, and custom properties from the Resource Classes
table and the filtering conditions, quantity expressions, and resource requirements from the
Resource Requirement Expressions table.

Ability to edit quantity in an existing expression
The quantity of an existing quantity expression can now be edited in the Quantity Expression
frame of the Resource Requirements tab.

ARM enhancements to other blocks
• The Resource Manager block now coordinates with the Data Import Export block to control

when data gets imported into Advanced Resources database tables. The Resource Manager
automatically triggers the imports of data for all Data Import Export blocks that are set to
import into the ARM database tables. These imports are triggered before the simulation runs
during PreCheckData to ensure that ARM database data is current before the Resource Man-
ager block performs its initialization. This coordination is necessary, in part, to enable the
new auto-generation feature discussed above.

• Enhancements to the Activity block allow items transitioning into certain states (off-shift,
scheduled or unscheduled down, and reassignments) to be preempted or shutdown. This
allows modelers to suspend progress towards the servicing of resource orders when the allo-
cated resources become unavailable.

• Batch and Queue Matching blocks now deal better with batched items that have associated
ARM resources. When those items are batched, a new AR Order ID is generated for each
outgoing item. All of the ARM resources associated with the batched items are transferred to
the new resource order and the items’ previous resource orders are destroyed. Preserve
Uniqueness must be off for this feature.

Reference 91
What’s new in ARM since 9.0
• Each item that has an ARM resource allocated to it is assigned a unique resource order ID
property named AR Order ID. Modelers now have direct access to the AR Order ID using
Equation, Equation(I), Read(I), Write(I), Get, Set, Queue Equation, Query Equation(I), and
History blocks. The property is listed as “_AR Order ID” under the item properties section
of all attribute popup lists.

• The Resource Pool Release block has been enhanced to provide that specific resources can
be excluded from being released. The exclusion is specified by designating a resource, a
resource requirement, or a resource status value.

Resource list queries
Modelers can communicate directly with the Resource Manager block from ModL code to
invoke queries to identify all the resources that are blocking a specified resource requirement
from being satisfied. The query is invoked by sending messages to the Resource Manager’s
BlockReceive7 message handler with the following arguments:

• SysGlobalInt30 = resourceRequirementRecord

• SysGlobalInt31 = itemIndex

• SysGlobalInt33 = AR_GetBusyRequirementResources_ActionType

Parent-child relations for custom resource properties
Custom properties can now have parent-child relationships. When a custom property is
defined, a dialog appears asking whether that property is a child of a parent field. If Yes, a sec-
ond dialog appears for selecting a parent table and field from within the Advanced Resources
database. This relating of a property to a field in a table is good database practice as it ensures
the data is normalized, i.e., defined in one place only.

Resource sharing
Resource sharing is a new feature that allows individual resources to be shared across multiple
items at the same time. See page 54 for more information.

Resource recycling
Previously, only idle resources could be used to satisfy an item’s resource requirement. Recy-
cling is a new default feature that allows modelers to satisfy an item’s resource requirement
using busy resources that have already been allocated to an item. See “Resource recycling” on
page 53 for more information.

Resource reassignment
Resource reassignment allows to ARM to reassign allocated resources from lower priority
items that are blocking higher priority items from having their requirements satisfied. See
page 55 for more information.

92 Advanced Resource Management
What’s new in ARM since 9.0

Index
Symbols
_AR Order ID 66, 67

A-C
Advanced Resource Management (ARM)

blocks in the system 82
definition 2
definitions of terms 16
framework 3
how it works 7
introduction 1
policies 78
release rules 77
resource orders 66
resource requirements 67
who should use 3

advanced resources 16
Advanced Resources database 81, 83
Allocate resources 61
Allocated 58
AR (advanced resources) 16
ARM system 1
ARM Tutorial 2 model 35
Auto Club Service model 49
Auto-Generate Components button 36
Available Quantity 53
Batch resource orders 61
Busy 58
Clone resource orders 61
conditional operators 69
Cost Per Unit Time 62
Cost Per Use 62
Cost Time Unit 62
Create/modify groups frame 57
custom resource properties 65

parent/child relations 64
Custom resource release rules 77

D-F
data type popup menu 65
Database (ExtendSim)

Advanced Resources 81, 83
DB Address attribute 50, 79
Delete Group button 57
Disabled 58
Down 58
Dynamic Resource Qualification model 50
Enable resource transaction logging 59
End activity 61

Event Logging tab 59
Select header 60
Status Types table 59
toggle 60
Transaction Types table 60

Excel
Expression Group ID 34
Property column 33
Resource Classes worksheet 33
Resource Requirement Expression worksheet 33

Excel for ARM Tutorial.xlsx 32
Excel Template for ARM 32
exclusion rules 78
Expression Group ID 32, 34
Failed 58, 64
Failed to service orders 61
Failure Progress Type 64
FC

name of pool or group 76
filtering condition

creating 69
default resource requirement 76
definition 16
for a group 74
name of pool or group 76
operators 69
types 69

filtering conditions
conditional operators 69

fractional resources 63

G-I
group filtering condition 69
groups

definition 16, 56
deleting 57
filtering conditions 69
properties 66
rank 57
resource rank 66
skill level 57
using in ARM 56

ID 65
Idle 58

M-N
material handling system 19, 41, 49
Maximum Quantity 52, 63
Minimum Allocation Quantity 53, 63
Mode

Create resources 20

Edit resources 65
Manage groups 57

multiple resources 63

O-P
Off-Shift 58
operators 69
Order By 72
Order resources 61
Parent ID 65
parent/child relations

custom resource properties 64
policies 78
pool

creating 20
pools

creating 56
definition 16, 55
properties 65

Pools table
definition 81

primary sorting key 79
properties

custom resource 65
definition 16
group 66
of resources 61
pool properties 65

Property column in Excel 33
property value 70

Q-S
QE

1 from name of pool or group 76
default resource requirement 76

quantity expression
1 from name of pool or group 76
changing the quantity 26
creating 71, 73
default 73
definition 16
Order By clause 72
Quantity clause 71
three clauses 71

Rank
resource 57, 66
resource requirement 80

Reassign resources 61
Reassigned 58
recycling 53
Release advanced resources 77
Release resources 61
release rules 77

settings in Resource Pool Release block 15
Remove Selected Members button 57
Renege waiting orders 61
Reserved 58
resource

definition 2, 51
resource allocation policy 78

primary sorting key 79
secondary sorting key 80

Resource Classes table 31
definition 81

Resource Classes worksheet 33
resource filtering condition 69
Resource Manager block

creating resources 21
filtering conditions 69
groups of resources 56
policies 78
quantity expressions 71
release rules 77
resource requirements 67, 75

Resource Order ID
assigned to item 84
associating an item with a resource 67
definition 17
item property 66

resource orders
definition 66

Resource Pool block 73
Resource Pool Release block 15

custom resource release rules 77
exclusion rules 78
release advanced resources 77

resource properties 61
Resource Rank 57, 66
resource reassignment 55
resource recycling 53
resource release rule 15

definition 17
Resource Requirement Expression worksheet

33
Resource Requirement Expressions table 32

definition 81
resource requirement rank 75

overriding 80
resource requirements

creating 67
creating manually 75
default 76
definition 17
name of pool or group 76
property value 70

Resource Requirements table
definition 81

Resource sharing 54, 91
Resource status transition 59
Resource status transitions 61
Resource Transaction Log table

definition 81
resources

advanced 16
allocation policy 78
filtering conditions 69
fractional 63
groups in ARM 56
multiple 63
properties 61
reassignment 55
recycling 53
sharing 54
status 58
using the Resource Manager block 21
why use in simulation 2

Resources table
definition 81

RR
name of pool or group 76

Scheduled Down 58, 64
secondary sorting key 80
Select from a list 70
Select header 60
Select resources to group 57
Semi-Conductor Fab model 19, 41, 49
Service waiting orders 61
Shift 63
Skill Level 57, 66
Specify default resource properties 21
Start activity 61
status

settings 58
transitions 58

status transitions 58
Status Transitions table 59

T-V
TBF 64
TBF TTR Down Interruption Policy 64
Toggle 60
Transaction Types table 59, 60
transition states 58
transitions

events (list of) 59
immediate status 59
pending status 59

TTR 64
Type a number 70
Unscheduled Down 58, 64
Use a system variable 70
Use an attribute 70

	Introduction
	Welcome!
	About this document
	Who should read this document
	Chapters in this reference
	Resource management
	Use in simulation

	ExtendSim Advanced Resource Management
	When you should use ARM
	Framework

	ARM features
	Where to get more information outside of this document
	User Reference
	Discrete Event modeling
	ExtendSim database
	Technical Reference
	Example models show you how

	Basics: Exploring ARM
	How Advanced Resource Management works
	Example model using ARM
	Open the model
	About the model

	Exploring the model
	ARM Blocks
	Advanced Resources database

	Resource Manager block
	Resources tab
	Requirements tab
	Release Rules tab
	Policies tab
	Event Logging tab
	Results tab

	Queue blocks
	Explore a Queue block
	Explore this model’s resource ordering behavior

	Resource Pool Release block
	Explore a Resource Pool Release block
	Explore this model’s release rules

	Running the model
	Definitions

	Tutorial 1: Resource Creation Part 1
	Overview
	A sample model
	Open the model
	Tutorial assumptions
	Add a Resource Manager block

	Create and configure the resources
	Open the Resource Manager block
	Create a pool of attendants who only wash cars
	Create resources for the Wash Only pool
	Create a second pool of attendants who only wash and wax cars
	Save the model
	What happened
	Set requirements for washers
	Create a filtering condition for the Washers
	Create a quantity expression for Washers
	Create a resource requirement for Washers

	Set requirements for Washer/Waxers
	Change the quantity to 2 Washer/Waxers

	Track some transactions
	Modify Queues to accommodate advanced resources
	Change the Wash Queue behavior for ARM
	Tell the Wash Queue which resource requirement applies to its items
	Set the Wash/Wax Queue to use ARM

	Add Resource Pool Release blocks
	Wash Bay
	Wash and Wax Bay

	Results
	Results tab of the Resource Manager block
	Event Logging tab of the Resource Manager block

	Next chapter

	Tutorial 2: Resource Creation Part 2
	Overview
	Defining resources and resource requirements externally
	Tutorial assumptions

	Working with the Excel workbook
	Specify the resources
	Specify the resource requirements
	Save your work

	Working with the model
	Importing definitions to the database
	Generate the information
	Verify the process

	Selecting the requirement in the queues
	Tell the Wash Queue where to get its resource requirement
	Tell the Wash/Wax Queue where to get its resource requirement
	Run the model

	Next steps

	Tutorial 3: Use Attributes for Flexibility and Scalability
	Overview
	Explicit methods
	Implicit methods
	Using attributes to specify values
	How ARM handles item attributes

	Part I: using an item’s attribute value to select a resource requirement
	Your task: use a scalable resource requirement
	Open the model
	About the model
	Set the Queue
	Conclusion
	Why the string attribute values are linked to an ARM database table

	Part II: using an item’s attribute value for maximum flexibility
	Open the model
	Conclusion
	Externalizing inputs

	Part III: associating a Pool property with an item attribute
	Create some resources and an attribute
	Create the filtering condition

	Reference
	Overview
	Other example models
	Semi-Conductor Fab
	Auto Club Service
	Dynamic Resource Qualification

	Comparison of explicit resource modeling methods
	Resources
	Use in simulation models
	ARM resources
	Creating resources
	Fractional and multiple resources
	How ARM uses resources in the simulation
	Resource reassignment

	Pools
	Checkbox to display groups, pools, and properties

	Groups
	Creating groups and grouping resources
	Assigning properties to groups
	Deleting groups or their members
	Using a group in a resource requirement

	Status
	Status settings
	Down status values

	Status transitions
	Status transition events
	Transition timing
	Logging status transitions

	Transactions
	Transaction types

	Properties
	Resource properties
	Pool properties
	Group properties
	Item properties

	Resource orders
	Definition
	Process

	Resource requirement overview
	Definition
	Creation
	Steps to take before creating

	Filtering conditions
	Types of filtering conditions
	Creating a filtering condition

	Quantity expressions
	The three clauses of a quantity expression
	How to create a quantity expression
	Creating a quantity expression
	Changing the quantity in a quantity expression
	Using group filtering conditions
	Testing
	Saving
	Deleting a quantity expression

	Resource requirement creation
	Methods for creating a resource requirement
	Resource requirement rank
	Creating a resource requirement manually
	Default resource requirements
	Using an external application to create a resource requirement

	Release rules
	Release Rules tab of Resource Manager block
	Resource Pool Release block

	Policies
	Resource allocation policy
	Creating an allocation policy
	Overriding the resource requirement rank

	The Advanced Resources database
	Blocks that compose the ARM system
	Primary transactions for ARM
	Item-initiated ARM transactions
	Shift
	Resource Pool-initiated ARM transactions

	What’s new in ARM since 9.0
	Fractional resources, resource classes, and multi-tasking
	External definitions and auto-generation
	Ability to edit quantity in an existing expression
	ARM enhancements to other blocks
	Resource list queries
	Parent-child relations for custom resource properties
	Resource sharing
	Resource recycling
	Resource reassignment

