

© 2024 ANDRITZ Inc. This program is protected by US and international copyright laws.

You may not copy, transmit, or translate all or any part of this document in any form or by any means,
electronic or mechanical, including photocopying, recording, or information storage and retrieval sys-
tems, for any purpose other than your personal use without the prior and express written permission of

ANDRITZ Inc.

License, Software Copyright, Trademark, and Other Information

The software described in this manual is furnished under a separate license and warranty agreement.
The software may be used or copied only in accordance with the terms of that agreement. Please note
the following:

ExtendSim blocks and components (including but not limited to icons, dialogs, and
block code) are copyright © by ANDRITZ Inc. and/or its Licensors. ExtendSim blocks
and components contain proprietary and/or trademark information. If you build blocks,
and you use all or any portion of the blocks from the ExtendSim libraries in your
blocks, or you include those ExtendSim blocks (or any of the code from those blocks)
in your libraries, your right to sell, give away, or otherwise distribute your blocks and
libraries is limited. In that case, you may only sell, give, or distribute such a block or
library if the recipient has a valid license for the ExtendSim product from which you
have derived your block(s) or block code. For more information, contact ANDRITZ at
Info.ExtendSim@Andritz.com or Support.ExtendSim@Andritz.com.

© 2024 ANDRITZ Inc. This program is protected by US and international copyright laws. Microsoft
is a registered trademark and Windows is a trademark of Microsoft Corporation. The copyright for
Stat::Fit® is owned by Geer Mountain Software. All other product names used in this manual are
the trademarks of their respective owners. All other ExtendSim products and portions of products
are copyright by ANDRITZ Inc. All right, title and interest, including, without limitation, all
copyrights in the Software shall at all times remain the property of ANDRITZ Inc. or its Licensors.

Acknowledgments

Extend was created in 1987 by Bob Diamond; it was re-branded as ExtendSim in 2007.

The contents of this document are the result of years of work by software architects, simulation en-
gineers, and technical writers and editors of ExtendSim products.

ANDRITZ Inc • 13560 Morris Road, Suite 1250 • Alpharetta, GA 30004 USA
770.640.2500 • Info.ExtendSim@Andritz.com

www.ExtendSim.com

Table of Contents

Introduction .. 1

Welcome! ..1
About this document...1
Who should read this document ...1
Chapters in this reference ...2
Introduction to reliability block diagramming..2
Two types of discrete event tools..3
Advantages of integrating RBD with PSS..4
When to use the Reliability module..5
Framework of the Reliability module...5
Reliability module features...6
Where to get more information...7

Basics: Exploring an RBD ... 9
Overview...9
The bicycle..9
Exploring an RBD model of the bicycle...10
Structure of the model ..13
Blocks used for the stand-alone RBD model..14
Descriptions of the blocks in the model ...14
RBD databases..20
Results of running the Bicycle RBD ..20
Next steps..21

Tutorial 1: Creating an RBD ... 23
Overview...23
Start a new model ...23
Set the simulation parameters...24
Create an RBD..24
Distribution classes...26
Event cycle classes ...28
Associate the event cycles with the nodes..30
Associate the interrupts...34
Availability ...37
Conclusion ..37
Run the model...37
Results...37
Next steps..39

Tutorial 2: Adding PSS to RBD... 41
The tutorial models in this chapter ...41
The 2A RBD Tutorial model...42
Change the event cycle progress type...43
Connect the process model to the RBD..44

Tutorial 3: Add Reliability to a Rate Model... 47

Reference... 49
RBD terminology ...49
Example models..50
Basics..51
..53

Reliability
Tutorial & Reference

Introduction

Welcome!
Thank you for using ExtendSim, the power tool for simulation modeling! We hope you enjoy
using ExtendSim and that you find this document helpful.

About this document
This document explores the ExtendSim Reliability module and shows how to use it as either:

• A standalone reliability block diagram (RBD) tool

• An RBD tool integrated with ExtendSim process simulation software (PSS) capabilities

Who should read this document
The availability of critical resources to perform work is often a key limiting factor in system
performance. Yet identifying which resource availabilities are most important, and to what
extent the timing and duration of their unavailability impacts the system, can be a complex
problem to solve.

Since the ExtendSim Reliability module can be used as either a standalone RBD tool or in con-
junction with ExtendSim simulation capabilities, this document will be helpful for:

• Anyone looking to explore the availability of an entire system and/or its individual
resources.

• ExtendSim modelers using the Item and/or Rate libraries of ExtendSim Pro to simulate sys-
tems. Since the Reliability module seamlessly integrates with those libraries, you can
explore the impact of resource availability on key process metrics such as throughput, pro-
duction costs, repair costs, utilization, inventory, service levels, and so forth.

See also “Advantages of integrating RBD with PSS” on page 4 and “When to use the Reliabil-
ity module” on page 5.

 This document assumes you already know how to launch ExtendSim and build a discrete event
model. If not, see either the Discrete Event or Discrete Rate Quick Start Guide (QSG). In addi-
tion, since building RBD’s is so integrated with the ExtendSim database, we suggest you read
the ExtendSim Database Tutorial and Reference.

2 Reliability Tutorial & Reference
Chapters in this reference
Chapters in this reference
1) Introduction to reliability (this chapter of the document):

2) Basic information: exploring a reliability model

3) Tutorial 1: building a stand-alone RBD of a bicycle

4) Tutorial 2: adding a discrete event process to the RBD

5) Tutorial 3: adding an RBD to a discrete rate model

6) Reference: a comprehensive catalog of Reliability features and capabilities

Introduction to reliability block diagramming
☞ For an in-depth explanation of RAM (reliability, maintainability, and availability) and other

concepts, see the last chapter of this document.

Reliability block diagramming (RBD) is:

• A methodology that graphically and statistically describes a system’s resource availability
over time as well as the impact it has on the system as a whole.

• A network of nodes that have been connected in series and/or in parallel, with one entry
point into the network, a single direction through the network, and one exit point from the
network.

Availability and down events
In the context of reliability, the term availability is defined as the percentage of time a resource
is available to perform work.

Factors that would cause a resource to become unavailable are categorized as either scheduled
or unscheduled down events:

• Scheduled down events represent planned downtimes for things like maintenance and off-
shifting.

• Unscheduled down events represent downtimes due to unintended and unexpected interrup-
tions (failures).

RBD
An RBD provides both a graphical and a statistical description of the availability of resources,
capturing complex availability behavior for individual resources and for entire systems.

Graphical description
An RBD is a directed acyclic graph of nodes and edges where interior nodes (also known as
components) represent resources that fluctuate between their up and down states while edges
describe how the nodes are related to each other.

A system represented by an RBD can be as simple as a one-component network or as complex
as a web of many nodes that have been placed both in series and in parallel.

• Components placed in series indicate that all the resources need to be in an up state in order
for the system to be in an up state, i.e. available to perform work.

Introduction 3
Two types of discrete event tools
• Alternatively, components placed in parallel indicate redundancy. As shown in the RBD
below, of the two parallel resources, only one needs to be up in order for the system to be
available for work.

Statistical description
Since each node in the graph contains information about its probability of being in an available
state, an RBD is also a statistical representation of the resources in the system. In other words,
each node contains one or more statistically defined event cycles (also known as fail modes)
that describe the resource’s availability behavior over time.

Advantages of RBD
Using RBD to describe both the individual resource and the overall system availability has the
following advantages:

1) Visual Logic. RBD’s are really good at visually describing the relationships between
resources. Instead of filling out tables by hand or writing code or logical statements, rela-
tionship logic can be captured with minimal effort in a visual graph.

2) Powerful. A high degree of complex reliability logic can be captured in an RBD without
having to write code.

3) Validation. Complex reliability logic can be visually validated rather than having to sift
through tables or decipher code.

Two types of discrete event tools
Discrete event tools model systems where the simulation clock moves forward in discrete
chunks of time, when an event occurs. These tools can be divided into two groups:

1) Process Simulation Software (PSS) tools, which model the dynamic behavior of the sys-
tem, simulating the process steps by which systems transform inputs into outputs.

2) Dedicated RBD tools, which graphically and statistically describe when individual
resources or entire systems of resources become available and unavailable over time.

Even though the RBD and PSS tools both employ discrete event modeling techniques to man-
age the simulation clock, the two technologies were historically developed to solve different
kinds of problems and evolved independently of each other. Consequently, very little cross-

4 Reliability Tutorial & Reference
Advantages of integrating RBD with PSS
pollination of ideas and capabilities transpired between them. As a result PSS and RBD tools
typically benefit from a different set of strengths and suffer from a different set of weaknesses.

Process simulation software
Discrete event process simulation
tools (e.g. ExtendSim and its Item
and Rate libraries) are ideally suited
for capturing the detailed behavior
of the complicated “process-based”
types of systems that often occur in
manufacturing, military operations,
and logistics, such as the emergency
department shown at right.

For example, assume you want to
determine the ideal conveyor speed
in a bottling plant that also uses manual labor. You would need to account for the impact that
changing speed would have on other critical resources. One such resource might be the labor
needed to restock consumables like stickers, caps, and bottles along the line. As conveyor
speeds increase, how much more labor is needed to keep up? To answer that question, the PSS
can literally map out the path walked by the workers and define the time needed to traverse that
path using a statistical distribution that changes during the course of a shift based on when
labor starts to get tired. Although you wouldn’t want to “over-model” the system, these kinds
of nitty-gritty details can be essential to understanding how the system currently works and to
planning how it could or should work. On the other hand, process simulation tools struggle to
capture the sometimes extremely complex nature of availability. They would typically be ill
equipped to model the complexity of hundreds of dependent and independent fail modes for
the bottling plant.

RBD tools
Dedicated RBD tools are very good at capturing availability over time, providing a sophisti-
cated level of reliability analysis. As discussed on page 3, RBD tools can visually capture and
validate complex reliability logic and the relationships between a system’s resources.

Going back to the bottling conveyor example, each machine on a packing line could have more
than 500 dependent and independent fail modes that are capable of bringing the packing line
down. RBD tools can quickly and easily model those types of complex failure behaviors. How-
ever dedicated RBD tools lack the ability to simulate the details of essential system behaviors
(such as conveyor speed or the contention for labor resources) and to model how those behav-
iors impact the system as a whole.

Advantages of integrating RBD with PSS
The Reliability module provides a Reliability Block Diagramming (RBD) tool that can also be
integrated with the powerful process simulation capabilities of ExtendSim.

Integrating the ExtendSim RBD capability with its process modeling modules supports high
fidelity modeling of processes characterized by random unscheduled downs and subsequent
repairs. This integration provides a number of compelling advantages:

1) More accurate component wearing. The process model can be used to define when and
what types of machine wearing is occurring on the resources in the RBD. This can lead to a
more accurate assessment of when wear-based failures occur.

Introduction 5
When to use the Reliability module
2) Detailed repair modeling. When a resource in the RBD fails, ExtendSim modeling capabil-
ities can be used to break out the repair process in as much detail as needed:

• Are the tools needed to make the repair currently available or are they allocated to
other tasks?

• What is the current level of spare parts inventory and supplier lead time?

• Are the labor resources qualified to make the repair currently available or are they per-
forming other work?

• Should we preempt key resources and redirect them to this higher priority job?

• If the resources required to make this repair are currently unavailable, should we out-
source the job?

3) The RBD’s ability to model when resources and/or entire systems are down can be used to
impact the movement of material through the simulated process. This allows the modeler to
explore the relationship between resource availability and system performance metrics like
throughput, production costs, repair costs, utilization, inventory, service levels, etc.

When to use the Reliability module
The Reliability module can be used as either a stand-alone RBD tool or in conjunction with
ExtendSim process simulation capabilities.

☞ In either instance, using reliability requires reliability-specific data to properly populate the
RBD’s. For example, you’ll need to determine which distributions to use to categorize the
resources’ failures, repairs, and so forth.

As a stand-alone tool
Use the Reliability module on its own any time you want to explore the availability of individ-
ual resources and the overall availability of the system.

In conjunction with PSS
An RBD is primarily an availability tool. In those cases where resource availability critically
impacts model results, the Reliability library will play an important role. Specifically, consider
integrating Reliability into your PSS models when the system being modeled possesses the fol-
lowing characteristics:

• Resource availability significantly impacts the model’s key metrics.

• The availability status of a particular resource impacts the availability of other resources
and/or the availability of the system as a whole.

• The system possesses key resources that go on/off shift, are prone to failure, and/or are taken
off line for scheduled maintenance.

In systems such as these, the Reliability module will provide meaningful benefits to your PSS
model building efforts and your post run analysis.

Framework of the Reliability module
The following components comprise the Reliability module.

1) ExtendSim RBD databases:

6 Reliability Tutorial & Reference
Reliability module features
• Contain all the information needed to
characterize the model’s RBD’s as you
build them.

• Can be used to control RBD behaviors
during the run.

• Store information that describes the cur-
rent state of the RBD’s.

• Document the results from model runs.

• Allow RBD’s to easily scale up.

2) Nodes for creating the graphical structure of the RBD:

• Start Node. The first block in an RBD, it is in charge of scheduling down or
up events for all components in its RBD. It is also responsible for determin-
ing the state of each individual node and the overall state of the RBD.

• Component. The interior of an RBD contains one or more Component
blocks that represent components (in RBD talk) or resources (in PSS lan-
guage), interchangeably. Failures, shift, maintenance, and other scheduled
events are used to change component availability status over time.

• End Node. The terminating node in an RBD. During the run it reports the
state of the RBD on its output connectors.

3) Other blocks:

• Distribution Builder. Creates classes of reliability-specific distributions and
stores them in an RBD database. These distributions are used to specify the
duration of time that an event cycle spends in its up or down state: time
between downs (TBD), time to downs (TTD), and time to ups (TTU).

• Event Builder. Creates classes of event cycles from distribution instances and
stores them in an RBD database. Event cycles control how components
(resources) move between their up and down states over time.

☞ Fail modes is a common term used in RBD. To be more inclusive, the term event cycles will be
used throughout this document to indicate shifts, maintenance, and other scheduled down
events as well as failures.

Reliability module features
The ExtendSim Reliability module has many features that make it a powerful tool for model-
ing resource and system availability and determining how to better manage the resources in
terms of redundancy and maintenance scheduling. In conjunction with a PSS tool, it is essen-
tial for analyzing the role resource availability plays in system performance.

This module includes:

• Graphical diagram/database builder. The Reliability module provides a graphical interface
for building RBD’s. As the user builds the diagram, the databases needed to support that dia-
gram are automatically built.

• RBD/PSS interface. The Reliability module is fully integrated and supports communication
between the RBD and PSS sections of the model.

Introduction 7
Where to get more information
• Distribution scaling. Since reliability distributions are stored in a generic format in the RBD
databases, importing distributions from an external source (such as Excel) is supported. This
means the number of distributions needed to support an RBD scales up easily.

• Multiple event cycles per node. To accurately model resource and system availability, any
number of different event cycles such as failures, shifts, and maintenance events can be asso-
ciated with a particular RBD node.

• Event cycle scaling. Since event cycles are stored in database tables, importing event cycles
that have been defined in an external data source is supported. This means the number of
event cycles needed to support an RBD scale up easily.

• Control logic. Optionally, the ExtendSim IDE can be used to write code to control all aspects
of a node’s behavior. For example, you can write code to control the speed at which a com-
ponent progresses towards its next down based on any number of factors including the status
of other related components, the state of the process model, seasonal policy changes, pro-
jected demand, and so forth.

• RBD databases. As mentioned earlier, these auto-built databases contain all the information
needed to characterize the structure and current state of the RBD’s in a model and document
all the results from model runs. Additionally, these databases can be used to control RBD
behavior during the run.

 By default the ExtendSim Pro product allows a maximum of 100 event cycles/failure modes
per model. As needed, additional event cycles can be purchased and added to ExtendSim Pro.

Where to get more information
The ExtendSim documentation, example models, and the video files and documents on the
ExtendSim.com website provide comprehensive help.

Quick Start Guides
The purpose of a Quick Start Guide (QSG) is to get new users quickly familiar with a specific
ExtendSim simulation methodology and aware of the ExtendSim features and capabilities.
There are three Quick Start Guides—Continuous Process Modeling, Discrete Event Simula-
tion, and Discrete Rate Modeling. Depending on the product purchased, one or more of these
will be installed as eBooks in the Documents/ExtendSim/Documentation folder.

☞ It is recommended that you read either the Discrete Event or Discrete Rate Quick Start Guides
before continuing with this document.

Tutorial & Reference documents
In addition to the Quick Start Guides, there are three Tutorial & Reference documents that are
included as eBooks in the Documents/ExtendSim/Documentation folder:

• ExtendSim Database. This internal relational database provides model developers with a
systematic way to manage information for the model and makes models scalable.

• Reliability (this document). Graphically capture and validate complex availability behavior.
Determine when scheduled and unscheduled downs occur for individual resources and what
impact that has on the availability of the system as a whole.

8 Reliability Tutorial & Reference
Where to get more information
User Reference
The ExtendSim User Reference has a lot of information you will find helpful when building,
using, and presenting models.

How To chapters cover general modeling and simulation topics
• Using libraries and blocks

• Performing analysis

• Enhancing presentations

• Creating a user interface

• Using equation-based blocks

• And much more

Appendices list menu commands and the ExtendSim libraries and blocks
Every menu command is explained; the main libraries are described block by block.

Technical Reference
You probably won’t build your own ExtendSim blocks, but it’s very common to use functions
and logical statements in an Equation block (Value library) in a model. The Technical Refer-
ence lists over 1,000 functions and has information about using include files and other pro-
gramming tools.

☞ The eBooks ship with the appropriate ExtendSim product. To access these documents, see the
Documents/ExtendSim/Documentation/folder or launch the books from the Getting Started
model that opens when ExtendSim launches. The User Reference and Technical Reference are
also available if you select the Help menu when using ExtendSim.

Example models and videos show you how
ExtendSim includes numerous tutorial models as well as videos and example models that
explain concepts discussed in the documentation.

Reliability
Tutorial & Reference

Basics: Exploring an RBD

Overview
This chapter discusses RBD terminology and describes RBD components while exploring an
ExtendSim reliability model.

The bicycle
Assume a bike-messenger wants to model the reliability of her bicycle.

Bicycle components
As pictured above, the bicycle has the following components, each with their own failure rates:

1) Front wheel

2) Rear wheel

3) Front brake

4) Rear brake

5) A drivetrain composed of five subcomponents:

• Chain

10 Reliability Tutorial & Reference
Exploring an RBD model of the bicycle
• Crank

• Dérailleur

• Freewheel

• Pedals

Assumptions
The bike-messenger:

• Has the tools and skills to make any repairs and has all the necessary spare parts on site,
except for the Crank.

• Services the drivetrain annually. During this event, every subcomponent of the drivetrain,
except the crank, is serviced.

• Services the front and rear wheels bi-annually.

• Can use the bicycle if either the front or rear brakes are working, but not if neither of them
are working.

☞ For this model, the wearing of the bicycle components is not modeled explicitly. Instead, wear-
ing is assumed to be occurring while the bicycle is in an up state as the simulation is running.

Why simulate the bicycle using RBD?
The purpose of running an RBD is to determine if the system (in this case the bicycle) is up
and available for work or if and how often one or more downed components are conspiring to
take the entire system down for some period of time. The bicycle is in an “up” state if one or
more paths through the network are up; otherwise it is down.

Exploring an RBD model of the bicycle
This section uses a model of the bicycle’s reliability to describe an RBD and its components.

Open the example model
Launch ExtendSim

Open the model Step 1 RBD Tutorial Final; it is located at Documents/ExtendSim/Exam-
ples/Tutorials/Reliability.

Basics: Exploring an RBD 11
Exploring an RBD model of the bicycle
The model worksheet
The model worksheet has ten icons, called blocks, seven of which are connected together.

• The set of seven connected blocks, starting with the Start Node and terminating at the End
Node, is the RBD. The blocks between the Start and the End are Components.

• The other three blocks in the model (Executive, Distribution Builder, and Event Builder) per-
form specific modeling tasks in reliability models.

• The model also has cloned dialog items that report the average availability of the system as
well as the standard deviation.

The blocks are discussed more starting on page 14.

Paths and redundancy
Notice that in this RBD the Front and Rear
Wheels are in series but the Front and Rear
Brakes are parallel to each other. The brakes
provide two paths through the model—either
the upper path that goes through the front
brake or the lower path that goes through the
rear brake.

Placing the front and rear brakes in parallel to
each other provides redundancy—if one of the
brakes is down, there is still an alternate path
through the RBD so the entire system isn’t down.

Conversely, if even one of the other components (e.g. either the front or the rear wheel) is
down, the system is down and the bicycle won’t work.

12 Reliability Tutorial & Reference
Exploring an RBD model of the bicycle
Run the model
Run the model by clicking the Run Simulation button or using the Run > Run Simulation

command.

To explore variability, the model is set to run 5 times (run num-
bers 0-4) each time you give the Run command, and each run is
set for 1,095 simulated days (3 years).

☞ To see status changes, run the simulation with animation on. If
the animation runs too quickly for you to see what is happening,
use the toolbar’s Animation Slider to reduce the speed. Or click the Pause button (which
replaces the Run Simulation button during the run), then click the Resume button to continue
the run.

Watch the RBD system go up and down
If a Component is down for any period of time during the simulation, its icon will change from
green to red. Whenever the End node is red, the entire system is down.

As shown below, the Drivetrain is down so the system is down, as reflected in the End node.

At the point in the simulation shown below, both brakes are down so the entire system is down.

Basics: Exploring an RBD 13
Structure of the model
Due to redundancy however, if only one of the brakes is down, the RBD is still up.

Structure of the model
Before exploring the results of running the RBD, it’s a good idea to learn about model struc-
ture. A reliability model is composed of blocks on the model worksheet that provide the visible
layout, or manage aspects of, the RBD, as well as a database that manages data “behind the
scenes” and is saved with the model.

☞ This model only has one RBD but a reliability model can have multiple RBD’s.

Blocks
Each of the icons on the model worksheet represents one block. A block is composed of an
icon, a dialog that is accessed by double-clicking the icon, and code that determines how the
block behaves over time as the model is run.

As seen in the screen capture on page 11, the model worksheet has 10 blocks:

• The seven nodes in this model (a Start Node, five Components, and an End Node) provide
the actual layout of the Bicycle RBD. In this model, the Component blocks represent the
mechanical parts of the bicycle described earlier.

• The Executive, Distribution Builder, and Event Builder blocks are used to manage aspects of
the RBD, such as scheduling events. Every reliability model has one, and only one, of each
of these blocks.

The model’s blocks are discussed in more detail starting on page 14.

RBD Database
This model contains an ExtendSim database, named RBD, that can be accessed at the bottom
of the Database menu. As RBD models are built, the database automatically stores and man-
ages the reliability data for the model.

14 Reliability Tutorial & Reference
Blocks used for the stand-alone RBD model
Blocks used for the stand-alone RBD model
There are 6 different blocks in the model of the bicycle RBD, described below.

Descriptions of the blocks in the model
☞ For a complete description of the blocks, see the last chapter of this document or the block’s

Help.

There is nothing fundamentally different about the structure of these different blocks. Any
block may create, modify, or present information, and many blocks perform more than one of
these functions.

Block Library Block Function See Page

Reliability Performs most of the RBD’s critical
tasks, manages the RBD’s behavior
over time, and can be thought of as the
brain of the RBD. Can alternate
between up and down states due to
event cycles associated with class
definitions in the Event Builder.

15

Reliability Represents resources. Over time,
Components exhibit life cycle behav-
ior, alternating between up and down
states due to event cycles associated
with class definitions in the Event
Builder.

16

Reliability Ends the RBD and reports its status. 16

Item Manages the events that have been
scheduled by the Start Node. Required
in every discrete event model.

17

Reliability Creates classes of event cycles for use
by the Start Node and Component
blocks to model an RBD’s up and
down states over time. The duration of
these states is defined by instances of
statistical distributions created in the
Distribution Builder block.

17

Reliability Creates, stores, and provides classes
of statistical distributions. These dis-
tributions define the duration of the up
and down states defined in the Event
Builder block: time-between-downs
(TBD), time-to-down (TTD), and
time-to-up (TTU).

19

Basics: Exploring an RBD 15
Descriptions of the blocks in the model
Start Node
A model can have multiple RBD’s; however, the Start Node is always the first node in each
RBD. It performs most of the RBD’s critical tasks, manages the RBD’s behavior over time,
and can be thought of as the brain of the RBD.

Icon
As with other blocks in the model, the Start Node has its ID and name above the icon. The ID
is assigned automatically; the name can be changed in the block’s dialog.

The icon of the Start Node has three modes. If the Start Node has:

1) None or 1 event cycles, the icon is a single circle as shown at the top of the
screenshot at right

2) Two or more event cycles in series, the icon is stacked to the right as the middle
icon shows

3) Two or more event cycles in parallel, the icon is stacked downward as seen in
the icon at the bottom

☞ Any node with multiple event cycles will have its icon similarly stacked.

Functions
The Start Node is responsible for the following functions:

• Documenting input and output information in the RBD database

• Associating event cycle instances with nodes in the diagram

• Scheduling up and down events for all nodes in the diagram during the simulation run

• Calculating all paths through the diagram

• Collecting all run results for the entire diagram

Block dialog
Double-click the icon of the Start Node to open its dialog.

☞ When its dialog is opened, a node’s icon turns yellow; the icon stays yellow until the dialog is
closed.

The Start Node has many tabs, which are described in detail later. For now:

Go to the Event Cycles tab. Depending on the popup choice, this tab displays either all the
event cycles that are associated with the RBD or just the event cycles for specific nodes.

In the Add/remove event cycle instances frame, select Show event cycles for: Front Brake

As seen here, the Component representing the Front Brake has an ID number of 3 and it uses
only one event cycle—the Brake Cycle (associated with the class definition in the Event
Builder block). Information about the Brake Cycle is stored in the RBD database (number 1) at
table 12, record 3.

16 Reliability Tutorial & Reference
Descriptions of the blocks in the model
Components
Every RBD must have at least one Component located between its Start Node and
its End Node. Components represent resources and are placed in series and/or par-
allel to each other.

Over time, Components exhibit life cycle behavior, alternating between up and down states
due to event cycles that are associated with event cycle classes defined in the Event Builder
block.

The RBD’s Components
As seen here, there are five
Components in this RBD:

• Front Wheel

• Rear Wheel

• Front Brake

• Rear Brake

• Drivetrain

Each Component represents a mechanical part of the bicycle and each has its own event cycles
to model its up/down behavior.

The Component for the Drivetrain represents the bicycle’s five subcomponents—chain, crank,
dérailleur, freewheel, and pedals—as discussed on page 9. Each of the subcomponents has its
own event cycle to model its own up/down behavior. The Drivetrain icon is stacked to the
right, indicating that the block has multiple event cycles in series.

☞ You can assign one or more event cycles directly to an individual Component in that Compo-
nent’s Event Cycle tab. However, if the event cycle would by definition cause the entire RBD
to go down, it is best practice to assign that event cycle in the Start Node. For example, it is
common to assign down events for maintenance in the Start node.

Block dialog
Open the dialog of the Component labeled Front Brake.

Go to the block’s Event Cycles tab. Notice that the Brake Cycle event for the Front Brake,
as shown in the Start Node block earlier, is also displayed in this dialog.

Dialog options
The tabs for a Component block (Around Me, Current State, etc.) are the same as for the Start
Node block.

End Node
Each RBD must end at an End Node. The main purpose of the block is to indicate an
end point for the RBD and to report RBD status on its output connectors. The General
tab in its dialog displays the same information that is displayed in the General tab of the Start
Node and Components.

Basics: Exploring an RBD 17
Descriptions of the blocks in the model
Executive
The Executive block (Item library) does event scheduling and provides for simula-
tion control, item allocation, attribute management, and more. Each reliability model
must have one and only one Executive block, regardless of how many RBD’s are in
the model. The Executive must be present on the leftmost side of the model work-
sheet.

For a reliability model, the Executive manages the events that have been scheduled by the Start
Node. Since the Executive handles this automatically, there are no settings to make in the dia-
log of the Executive block.

Event Builder
Each reliability model has one and only one Event Builder block (Reliability
library), regardless of how many RBD’s are in the model. It is used to define event
cycle classes.

Event cycles
An event cycle is a never ending sequence of up/down state transitions (events). This cycling
behavior is shown below.

The Event Builder block is used to create classes of event cycles which are stored in a table in
the RBD database. The Start Node and Component blocks use instances of these event cycle
classes to model their reliability life cycle behavior.

☞ The distributions that specify the duration of the up and down states are defined in the Distribu-
tion Builder block, discussed on page 19.

How the block works
Discrete events are the mechanism ExtendSim uses to cycle Start Node and Component blocks
through their up and down states over time. No matter how many RBDs are in a model, the
event cycle classes for an entire model are defined in the single Event Builder block.

18 Reliability Tutorial & Reference
Descriptions of the blocks in the model
When you add an Event Builder to the model, ExtendSim auto-creates an RBD database table
named Event Cycle Classes that is maintained by the block.

As each event cycle class is created, it is stored in the Event Cycle Classes table as a class defi-
nition—one record for each class definition. Each class definition can have many instances in
an RBD, where each instance is created when the class definition is associated with a particular
event cycle. This allows for a class to be defined once but used in multiple event cycles.

☞ As will be seen in next chapter’s tutorial, classes of event cycles can be defined in the Event
Builder block or in an external application such as Excel, then imported into the model using
the Event Cycle Classes database table.

The Event Builder block’s dialog
Double-click the Event Builder’s icon to open its dialog.

The database
The top part of the Event Builder’s dialog indicates that:

• The database for storing the Bicycle RBD’s event cycle definitions is named RBD

• Definitions for the event cycles are stored in the database table named Event Cycle
Classes

• The definitions of the distributions used to characterize the event cycles come from the
Distributions table of the RBD database

The Brake Cycle event cycle
Each bicycle component has one or more corresponding event cycles that were created in the
Event Builder block. To see the event cycle for the brakes:

In the Create/modify event cycle classes dialog frame, choose Event cycle name: Brake
Cycle. The Brake Cycle event is defined by two distributions:

1) A distribution that specifies how
long the brakes will be up—the
period of time from when the
brakes recovered after the last fail-
ure until they will fail again (the
time to down or TTD). For the
brake this distribution is named Failure Brake. It is a Weibull distribution with Scale = 80,
Shape = 50, and location = 0.

2) A second distribution that specifies how long it will take to
repair the brake (the time to up or TTU). As shown here,
the Brake Cycle uses a distribution named Repair Brake, a
Normal distribution with a Mean of 7 and a standard devi-
ation of 0.25.

These distributions are instances of the distribution classes that have been defined in the Distri-
bution Builder block, discussed below.

☞ There are three types of distribution classes that can be created in the Distribution Builder: time
to down (TTD), time to up (TTU), and time between downs (TBD). A TBD-based event cycle
schedules down events independent of repair and is typically used for calendar-based events
such as Maintenance; it is described in detail later.

Basics: Exploring an RBD 19
Descriptions of the blocks in the model
The bicycle RBD’s event cycle classes
You can see the event cycle classes for all of the bicycle’s components by accessing the Event
Builder block’s Event Cycle Classes database table or by looking in the dialog of the Start
Node.

Open the dialog of the Start Node and go to the Event Cycles tab

In the Add/remove event cycle instances frame, select Show event cycles for: All Nodes.

This table lists all the event cycle instances for the nodes in the RBD.

Distribution Builder
Each reliability model has one Distribution Builder block (Reliability library) which
is used to create, store, and provide statistical distribution definitions for time-
between-downs (TBD), time-to-down (TTD), and time-to-up (TTU). The Event
Builder block uses those definitions when creating event cycles.

How it works
No matter how many RBD’s are in a model, all the distributions for the model are defined in a
single Distribution Builder block. When you add a Distribution Builder to the model, Extend-
Sim auto-creates an RBD database table named Distributions that is maintained by the block.

As distributions are created, they are stored in the database table as class definitions—one
record for each class definition. Each class definition can have many instances, where each
instance is created when the class definition is associated with a particular event cycle. This
allows for a distribution to be defined once but used by the Event Builder in multiple event
cycles.

The block’s dialog
Double-click the Distribution Builder block’s icon to open its dialog.

The Distribution Builder block is for creating and modifying classes of distributions for use
when creating event cycles in the Event Builder block.

The database
The top part of the block’s dialog indicates that:

• The database for storing distribution definitions is named RBD

• The definitions of the distributions are stored the Distributions table of the RBD data-
base

20 Reliability Tutorial & Reference
RBD databases
A distribution
This is where the distribution classes for the Brake
Cycle were created. To view an existing distribution:

In the Create/modify distribution classes frame,
select Distribution name: Failure Brake. Its
parameters are shown here.

☞ As will be seen in the tutorial, classes of distributions
can also be defined in an external application, such as
Excel, and imported into the model using the Distri-
butions database table.

The Bicycle RBD’s distribution definitions
To see all the distribution classes for the Bicycle
RBD:

In the Distribution Builder’s dialog, click the Open button at the right of the Distributions
field.

A portion of the database table that stores the distribution definitions for the Step 1 model is
shown below.

RBD databases
While this model was being created, an RBD database was automatically created and popu-
lated with data. The structure, current state, and results from running the model get stored in
tables in this database.

For example, the Distribution Builder was used to specify random distributions for the TTD’s,
TBD’s, and TTU’s for each component. They are stored in the database’s Distributions table as
shown above.

Results of running the Bicycle RBD
Run the simulation. As noted earlier, the model is set to run five times, for a simulated dura-

tion of 3 years (1095 days) each run.

When it is run, a reliability model can generate a lot of information as you will see in the next
chapter. For now, just look at availability.

Basics: Exploring an RBD 21
Next steps
Availability
At the end of the simulation run, notice that the cloned dialog item (top right side
of the model) indicates that the average availability of the entire RBD was just
short of 100%. (The distributions are random so your numbers will be slightly
different than shown here.)

Note however that the availability number is essentially meaningless because the bicycle mes-
senger doesn’t know what the impact on her business will be. For example, the stand-alone
RBD doesn’t report how long it takes to deliver messages, how many messages were undeliv-
ered, what the revenues and costs are, and so forth. However, by integrating this stand-alone
RBD with a process model, she can start to understand what the availability really means.
You’ll see that in the Tutorial 2.

Next steps
The next chapter, Tutorial 1, shows how to build the RBD you’ve just explored. That’s lot
more fun than reading about it!

22 Reliability Tutorial & Reference
Next steps

Reliability
Tutorial & Reference

Tutorial 1: Creating an RBD
Overview

This chapter shows how to build the stand-alone bicycle RBD shown in the previous chapter.

 The tutorials assume you know how to launch ExtendSim, open a library, place a library block
on the model worksheet, and connect blocks. If you don’t already know how, see either the
Discrete Event or Discrete Rate Quick Start Guide.

Steps
1) Open a new model worksheet, then add and connect blocks to create an RBD

2) Create statistical distribution classes to define the duration for TBD’s, TTU’s, and TTD’s

3) Create event cycle classes based on the distribution classes

4) Associate the event cycles with the nodes

5) Run the RBD

Start a new model
Launch ExtendSim

By default, when you launch ExtendSim the Getting Started model opens as well as the major
ExtendSim libraries and their library windows. You can close the Getting Started model.

Open a new model worksheet
Use the toolbar button or the File

menu to open a new model.

By default the model opens with an
Executive block on the left side, as
shown here.

☞ Opening the major libraries on launch
and inserting an Executive on the work-
sheet are default options in the Edit >
Options menu.

24 Reliability Tutorial & Reference
Set the simulation parameters
Set the simulation parameters
The Simulation Setup command opens a window for entering global settings for the model,
such as how long and how many times the simulation will run.

Select the command Run > Simula-
tion Setup

In the dialog’s Setup tab, enter the
simulation parameters:

End time: 1095

Start time: 0 (default)

Runs: 5

Global time units: Days

Leave the other Simulation Setup settings at their defaults

Click OK to close the window

With these settings, the model will run five times, each for a simulated time of 1,095 days.

Save the model
Choose File > Save Model As and name the file My RBD.

Create an RBD
The goal is to create the model shown below.

Add the first three blocks
Go to the Reliability library

Place the following block on the worksheet:

1)Start Node. When the Start Node asks if it should ask for Com-
ponent names, say Yes.

☞ After asking about the Component names, the Start Node should
automatically place the Event Builder and Distribution Builder on
the worksheet. If so, skip the next two steps.

Tutorial 1: Creating an RBD 25
Create an RBD
2)Event Builder. If it isn’t already on the worksheet, add it. Note that if you place this
block on the worksheet before placing the Start Node and Distribution Builder block,
ExtendSim will automatically put the Distribution Builder on the worksheet as well.

3)Distribution Builder. If it isn’t already there, place this block on the worksheet.

No matter how many RBDs a model has, there must only one Event Builder and only one Dis-
tribution Builder.

☞ Don’t add any of the other nodes yet! You can always manually add, connect, and name the
nodes in your RBD. However, using the right-click connect procedure shown below is easier
and more fun.

Add the first two Components
As shown in the model worksheet on page 24, the
first two Components in your model should be in
series.

To add the first two Components, right-click
on the Start Node’s output connector

In the dialog that appears, select Multiple
Components in Series

In the next dialog, choose to add 2 Components (the default option)

As ExtendSim adds each Component to the model work-
sheet, it asks you to enter a name for the node:

Enter Front Wheel for the first Component

Enter Rear Wheel for the second Component

☞ Notice that there is now a question mark on the Start Node’s icon. It will stay that way until the
layout of the RBD has been completed.

Add the second set of components
According to the model assumptions, the next
two Components (the Front and Rear Brakes)
are in parallel with each other:

To add the two Components in parallel,
right-click on the Rear Wheel’s output
connector

In the dialog that appears, select Multiple
Components in Parallel

In the next dialog, choose to add 2 Components

When asked for the names of these new Components:

Enter Front Brake for the first Component

Enter Rear Brake for the second Component

Add the Drivetrain
The final Component is the Drivetrain.

26 Reliability Tutorial & Reference
Distribution classes
Select the icons for both the Front Brake and Rear Brake, as shown below

With both icons selected, right-click on the output
connector of either the Front Brake or Rear
Brake

From the dialog, select Many to one Component

Name the new Component Drivetrain

Add the End Node
The last step in building an RBD is to add an End Node:

Right-click on the Drivetrain’s output connector and select End Node

Save your model

At this point the RBD layout is complete and the question mark on the Start Node is gone.

Name the blocks
Use the label field next to each block’s Help button to label these 3 blocks:

• Executive

• Distributions

• Events

The names for the Start Node and
End Node must be usable by the
database. To enable this, enter their
names in the top frame of each dia-
log’s General tab, as shown here.

When finished labeling,
your model should look
similar to this.

Save your model

Distribution classes
The Distribution Builder
is used to define different
classes of statistical distri-
butions. The definitions
are stored in a Distribu-
tions database table that is
automatically created and
maintained by the block. Each record in the database table is a class definition for a particular
distribution and each definition can have multiple instances when the class definition is associ-
ated with event cycles.

In this model, the event cycles primarily use random distributions to define the duration for the
event cycles: TBD’s (time between downs), TTU’s (time to up), and TTD’s (time to down).
This section uses distribution classes than have been created in Excel and discusses how to
make those distributions available to the Event Builder for use in creating event cycles.

Tutorial 1: Creating an RBD 27
Distribution classes
Copying the definitions into the model
If you were only going to use one or two distributions, it would be easiest to just define them in
the dialog of the Distribution Builder. However, it is more likely that you will want many dif-
ferent distributions. The best way to do that is to define the distributions in an external applica-
tion, such as done here in Excel, then copy them into a database table in ExtendSim.

☞ See xxx on xxx for how to create a distribution class using the Distribution Builder’s UI.

Copy the definitions from Excel
Launch Excel and locate and open the Excel file named Data for RBD Tutorial.xlsx. The

file is located at Documents/ExtendSim/Examples/Tutorials/Reliability.

Go to the workbook’s Distributions worksheet, a portion of which is shown below.

Copy all the cells from rows 2 - 19 and columns A - J only. DO NOT copy the row num-
bers or the headers.

Open the Distributions database table
In ExtendSim, open the dialog of the Distribution Builder block

At the bottom of the dialog, click the Edit Distribution Classes Table button; this opens
the Distributions table of the RBD database as shown below.

With the Table as the active window, give the Database > Append New Records command
or click the Append New Records button in the table’s toolbar

In the Append Records dialog, enter the number 18 and click OK; this results in a database
table that can hold 18 records

Paste the definitions into the Distribution Builder
 Notice that the Distribution table’s first column (ID) is pink. Do not paste any data into that
first column as it is reserved for internal use.

In the database table, right-click in the cell of the second column (Name), at row 1

Give the Paste/Paste Cells command.

• You should get a message reminding you to click the Commit Distribution Class
Changes button after the definitions have been copied into the Distribution Builder.

28 Reliability Tutorial & Reference
Event cycle classes
• Pasting causes all the definitions to be copied into that database table, as shown here.

If you have enough room on the monitor, leave the database table open to see the changes as
you go through the next steps. Otherwise, you can close the table.

At the bottom of the Distribution Builder’s dialog,
click the Commit Distribution Class Changes but-
ton. This saves the data to the RBD’s other data
structures.

At the right of the Distribution classes table field, click the Open button to verify that the
ID field (the pink column on the left) has been written to as shown below, then close the
Distributions database table.

 Use the Commit button anytime you add records to the database. If you don’t click the Commit
button, the ID field (the pink column) won’t be updated, causing database errors.

Close the Distribution Builder’s dialog

Save your model; this saves the database changes with your model

The distribution classes have now been entered and the distributions will be available for use
by the Event Builder.

Event cycle classes
The Event Builder is used to define different classes of event cycles, which are discussed more
fully on page 52. The definitions are stored in an Event Cycles database table that is automati-
cally created and maintained by the block. Each record in the database table is a class defini-
tion for a particular event cycle and each definition can have multiple instances when it is
associated with a particular Start Node or Component block. This allows for an event cycle to
be defined once but used multiple times.

Event cycle table
As was true for the Distribution Builder, if you were only going to have one or two event
cycles you could just define them in the dialog of the Event Builder. However, in most cases
you will have multiple event cycles and it would be more efficient to define them in an external
application.

Tutorial 1: Creating an RBD 29
Event cycle classes
☞ See xxx on xxx for how to create an event cycle class using the Event Builder’s UI.

Copy the definitions from Excel
If it isn’t already open, launch Excel then locate and open the Excel file named Data for

RBD Tutorials.xlsx. The file is located at Documents/ExtendSim/Examples/Tutorials/Reli-
ability.

Go to the Excel workbook’s Event Cycle Classes worksheet, a portion of which is shown
below.

Copy all the cells from rows 2 - 10 and columns A - I only. DO NOT copy the headers or
row numbers.

Open the Event Cycles database table
In ExtendSim, open the dialog of the Event Builder block

At the bottom of the dialog, click the Edit Classes Table button; this opens the Event
Cycles Classes table of the RBD database as shown below.

Give the Database > Append New Records command or click the Append New Records
button in the table’s toolbar

In the Append Records dialog, enter the number 9 and click OK; this results in a table that
can hold 9 records

Paste the definitions into the Event Builder
 Notice that the Event Cycle Classes table’s first column (ECCP Record Index) is pink. Do not
paste any data into that first column as it is reserved for internal use.

In the database table, click in the cell of the second column (Event Name), at row 1

Give the Paste/Paste Cells command, causing the definitions to be copied into that table

You should get a message reminding you to click the Commit Class Changes button after
the definitions have been copied into the Event Builder.

If you have enough room on the monitor, leave the database table open to see the changes as
you go through the next steps. Otherwise, you can close the table.

30 Reliability Tutorial & Reference
Associate the event cycles with the nodes
At the bottom of the Event Builder’s dialog, click the Com-
mit Class Changes button. This saves the data to the RBD’s
other data structures.

At the right of the Event cycle classes table field, click the Open button to verify that the
ECCP Record Index field (the pink column on the left) has been written to such that each
record in the ECCP field contains a number.

Close the Event Cycles database table.

 Use the Commit button anytime you add records to the RBD database. If you don’t click the
Commit button, the ECCP Record Index won’t get updated, causing database errors.

Close the Event Builder’s dialog

Save your model

The event cycles classes will now be available for use as instances by the Start and Component
nodes.

Associate the event cycles with the nodes
The only thing left to do is to specify which class of event cycles each node will use during the
simulation. An event cycle class can have multiple instances, such as the Wheel Failure used
by both the Front Brake and the Rear Brake. And each node can use more than one event cycle;
for example, the Drivetrain has five event cycles—one for each subcomponent of the drive-
train.

You can associate an event cycle with a Component either directly using the Component’s dia-
log or using the Start Node’s dialog. This example uses the Start Node to add event cycle
instances for the Start Node as well as for the Components.

 If an event cycle will take the entire RBD down, it should be specified as a Start Node event.

Open the Start Node
Open the dialog of the Start Node

Select the block’s Event Cycles tab

Go to the Add/remove event cycle instances frame, shown below

Tutorial 1: Creating an RBD 31
Associate the event cycles with the nodes
Bicycle maintenance
The bicycle RBD has two event cycles that will cause the bicycle to be unavailable for a period
of time, no matter what else is happening:

1) The annual maintenance on the drivetrain.

2) The bi-annual maintenance of the front and rear wheels.

Note that the drivetrain and front/rear event cycles will happen at their appointed times regard-
less of any down events for other parts of the bicycle. And since both of these will affect the
availability of the bicycle, the event cycles for these maintenance events will be associated
with the Start Node.

☞ The maintenance of the wheels and drivetrain impacts when their next down events will occur.
For example, once the drivetrain is serviced, the event cycles for the drivetrain subcomponents
need to be reset to use new TTD’s. How this is accomplished will be shown in “Event cycle
induced interrupts” on page 35.

Drivetrain’s annual maintenance
The event cycle for the drivetrain is named Annual Maintenance. On page 29 you imported
this event, along with others, into the table in the Event Builder. Now you need to associate it
with the RBD.

In the Start Node’s Add/remove event cycle instances frame:

Choose to Show event cycles for: Start Node

At this point, there are no event cycles, so the field is empty.

At the bottom of the Add/remove event cycle instances frame, click the Add button

32 Reliability Tutorial & Reference
Associate the event cycles with the nodes
In the popup menu, select Annual Maintenance

For the message that appears (RBD-DE Interrupt) select Ignore. With
this choice, the RBD going down will not affect the timing of the Annual
Maintenance.

☞ As will be discussed in “Associate the interrupts” on page 34, the interrupt
settings define if, when, and how a specific event cycle can be interrupted if
the entire RBD (due to an RBD down event) or a node in the RBD (due to a
component down event) goes down. The bicycle’s maintenance events are going to occur inde-
pendent of RBD or node state changes, so you should choose to ignore any interrupts.

The list of event cycle instances for the Start Node should now look like this:

Wheels’ bi-annual maintenance
Both wheels get checked twice a year. Their event cycle is named Bi-Annual Maintenance.

Repeat the above steps, adding Bi-Annual Maintenance as a Start Node event cycle.

For the two interrupt messages that appear (Start Node
Interrupt and RBD Interrupt) select Ignore.

☞ As was true for the drivetrain’s annual maintenance, the
wheels will be checked twice a year independent of node or
RBD state changes. So those interrupts are ignored.

Start Node Down Event Interrupt (SN-DE Interrupt)
Notice that only one “interrupt” choice—the RBD-DE Interrupt—appeared when you entered
the event cycle named Annual Maintenance. Yet when you added a second event cycle, there
were two interrupt choices—one for the RBD and one for the Start Node. Also note that the
word “Undefined” now appears in the SN-DE Interrupts column for Annual Maintenance, as
shown below.

Tutorial 1: Creating an RBD 33
Associate the event cycles with the nodes
☞ If a component has only one event cycle, there are only two things that will cause that compo-
nent to have a down event: that event cycle or something else that causes the entire RBD to go
down. However, if a component has more than one event cycle, there are additional possibili-
ties for a down event because those other event cycles could affect each other.

When a component has more than one event cycle, you need to specify what effect that compo-
nent’s other event cycle instances will have. In this case, since the Bi-Annual Maintenance will
have no effect on the Annual Maintenance, so you should choose “ignore”.

Click on the popup arrow in the SN-DE Interrupts column for the Annual Maintenance, and
change the setting from Undecided to Ignore. (If you forget to do this, ExtendSim will
remind you when you close the block’s dialog.)

The Start Node should now have 2 instances of event cycles, as shown below.

☞ Notice that, since the event cycles are placed in series rather than in parallel, the
Start Node’s icon on the model worksheet is stacked to the right. Being in series
means that when either of those event cycles are in a down state, the Start Node (and
hence the entire RBD) will go down. If the two event cycles were to be placed in parallel, both
would have to be in a down state for the RBD to go down.

Drivetrain non-maintenance event cycles
You’ve associated the Drivetrain’s annual maintenance with the Start Node. However, the
Drivetrain also has 5 subcomponents—Chain, Crank, Dérailleur, Freewheel, and Pedals—and
each subcomponent has its own event cycle. Those event cycles need to be associated with the
Drivetrain. As before, you can do that from the Start Node’s dialog.

In the Start Node’s Add/remove event cycle instances frame, choose to Show event cycles
for: Drivetrain

Click the Add button each time to add the five Drivetrain event cycles—Chain Cycle,
Crank Cycle, Dérailleur Cycle, Freewheel Cycle, and Pedal Cycle—to the Drivetrain.

For each Comp-DE Interrupt message, select Preserve

For each RBD-DE Interrupt message, select Preserve

Since the Drivetrain has more than one event cycle, for whichever drivetrain subcomponent
you added first, change the Comp-DE Interrupt from Undefined to Preserve.

☞ Some of the event cycles need to keep track of their progress towards their next down events,
even if the RBD goes down. Choosing Preserve means that, when the RBD comes back up or if
the drivetrain goes down because another event cycle in the drivetrain had a down event, those
event cycles will pick up where they left off.

The event cycle instances for the Drivetrain should look as shown here:

34 Reliability Tutorial & Reference
Associate the interrupts
Click OK to close the Start Node’s dialog.

Save the model to save your changes.

Notice that the Drivetrain icon is stacked to the right, indicating that its associated event cycles
are in series. If even one of those event cycles has a down event, the Drivetrain will go down.
And since there is no redundancy or load sharing for the Drivetrain, the entire RBD will also
go down.

☞ The same event cycles shown for the Drivetrain in the Start Node will be displayed in the
Drivetrain’s Event Cycles tab.

Brakes
In the Start Node’s Add/remove event cycle instances frame, choose to Show event cycles

for: Front Brake

Click the Add button and add the Brake Cycle

For both the Component-DE Interrupt and the RBD-DE Interrupt popups, select Preserve

Duplicate the above steps to add the Brake Cycle to the Rear Brake

Wheels
In the Start Node’s Add/remove event cycle instances frame, choose to Show event cycles

for: Front Wheel

Click the Add button and add the Wheel Cycle

For both the Component-DE Interrupts and the RBD-DE Interrupts popups, select Preserve

Duplicate the above steps to add the Wheel Cycle to the Rear Wheel

Save the model

If you choose in the Start Node to show event cycles for all nodes, you should see:

Associate the interrupts
An event cycle’s normal down event scheduling can be interrupted when:

1) The RBD goes down

Tutorial 1: Creating an RBD 35
Associate the interrupts
2) A Component goes down

3) An event cycle in a Component or the Start Node affects another event cycle in that node

The options you selected for the interrupt settings in “Drivetrain’s annual maintenance” on
page 31, (SN-DE Interrupt and RBD-DE Interrupt) determine what happens if the RBD or the
Start Node goes down. Those events are ignored, since they would have no effect on when the
next annual maintenance would occur.

You might expect, however, that servicing the bicycle’s front wheel would cause that wheel’s
next down event to be postponed. That is an example of one event cycle affecting the timing of
another event cycle.

Event cycle induced interrupts
The occurrence of a down in one event cycle can interrupt the normal scheduling of other event
cycles’ down events. In the bicycle RBD, the down events from the drivetrain’s annual mainte-
nance and for the wheels’ bi-annual maintenance result in the drivetrain and wheel event
cycles needing to be “reset” to use a fresh set of TBD’s or TTD’s.

A table in the Start node is used to specify when and how these types of interrupts affect spe-
cific event cycles.

In the Start Node, go to the Event Cycles tab

Choose to show event cycles for the Start Node

Select the first row in the cycles table by clicking row heading #1, as shown below

This causes the frame at the bottom of the Start Node’s dialog (Event cycle–DE interrupts) to
display the table below. Notice that the interrupter is the Annual Maintenance.

This table is where you will:

• Choose which event cycles will be affected (interrupted) by the occurrence of a maintenance
down event

• Specify how and when the interrupt will affect the event cycle

Annual maintenance and the Drivetrain Chain Cycle
With the Annual Maintenance event
cycle selected as the interrupter:

In the Event cycle DE interrupts table, click the Add button

36 Reliability Tutorial & Reference
Associate the interrupts
From the popup menu that appears, select the Drivetrain Chain Cycle

In the DE-DE Interrupt popup that appears, select reset

Other event cycles affected by the annual maintenance
As mentioned in the assumptions, the Crank is not serviced as part of the
annual maintenance. However, the other subcomponents are serviced, which
affects their next down events.

Skipping the Crank, repeat the above steps for the remaining 3 drivetrain subcomponents:

Drivetrain Dérailleur Cycle

Drivetrain Freewheel Cycle

Drivetrain Pedal Cycle

Save your model

 Since it cannot be serviced as part of the annual maintenance, do not add the Drivetrain Crank
Cycle to the table. For Tutorial 2 you will simulate what happens when the crank needs repair.

The interrupts should appear as below:

Bi-annual maintenance and the wheels
Select the second row in the cycles table by clicking row heading #2, as shown below

In the Event cycle induced interrupts table, click the Add button

From the popup menu that appears, select Wheel Cycle - Front Wheel

From the popups, choose reset for the DE-DE Interrupt.

Repeat the above steps to add Wheel Cycle - Rear Wheel

The table should appear as below:

Close the Start Node’s dialog

Save your model

Tutorial 1: Creating an RBD 37
Availability
Availability
At this point you’ve entered all the information needed for the bicycle RBD. So that your
model looks more like the example model on page 10, clone the availability field from the
Results tab of the Start Node onto the model worksheet. This is the average availability of the
entire RBD as calculated for the 5 runs.

Conclusion
Your creation of the RBD is complete.

If you’ve followed all the steps, your model should be similar to the Step 1 RBD Tutorial Final
model shown below and located at Documents/ExtendSim/Examples/Tutorials/Reliability.

Run the model
Even though it runs five times for a simulated period of three years, the model may run too fast
for you to see changes. You can slow the model speed considerably by turning on animation
and setting animation speed at the slowest. This allows you to see when the nodes are up or
down and when the RBD is up or down.

Results
As mentioned in the Introduction, an RBD graphically and statistically describes when sched-
uled and unscheduled downs occur for individual resources and what impact that has on the
availability of entire system. You see the graphical description when you run the simulation
with animation on. The statistical description is reported in the Start Node.

38 Reliability Tutorial & Reference
Results
Overall RBD results section
Double-click the icon of the Start Node to open its dialog

Go to its Results tab.

☞ When a node’s dialog is opened, its icon turns yellow; it stays yellow until the dialog is closed.

The Overall RBD results frame at the top of the Results tab will be similar to what is shown
below. Since this model uses random numbers for its distributions, your results will differ.

The simulation is run five times and the results for each run are shown in the table in the RBD
statistics frame. The statistics at the top of the frame report the average for all the runs.

Notice that the sum of the Up Time and Down Time for each of the runs is 1095. This corre-
sponds to the model’s simulation time of 1095 days.

Database section
The Start Node’s Results tab also has a Database frame where you can access various reports.

Each subsequent table in the frame collects finer and finer detail about what happened in the
RBD. For example, the RBD Summary table is set to collect data for all runs and provides a
high-level picture of what happened to the RBD, while the Event Log records every event
during the last run or all runs.

The Node Summary table provides information about the Start Node and the five Components
in this RBD. As selected in the Collect Data column’s popup menu, the information is for the
last run (row 5 in the RBD Statistics table) rather than for all runs. (Simulation runs are num-
bered starting at 0, so the last run is run number 4.)

Tutorial 1: Creating an RBD 39
Next steps
The Event Summary table gives high level metrics for each individual event cycle associated
with the RBD. The Event Log provides a chronological record of every event that occurred
during each run.

Things to notice from the reports in the Database frame

☞ Your numbers will be slightly different, but the concepts are the same.

• The RBD Summary table gives information about the entire RBD, while the Node Summary
table gives information about each node.

• The Down Events for each run in the RBD Summary table will be the same as the sum of the
Down Events for that run in the Node Summary frame (57 for the last run, as shown above).

• However, as seen for the last run in the two windows, the sum of the actual Total Downs for
the RBD (40) is less than the Total Downs for all the nodes (54). This makes sense due to the
redundancy of the brakes; the RBD doesn’t go down unless both of the brakes are down so
there are fewer downs for the RBD itself than for the nodes.

• When there are downs for the Front and Rear Wheels it is due to failures, not to their bi-
annual maintenance. Since the entire bicycle is brought off line anytime maintenance is
done, the event cycles for bi-annual maintenance have been associated with the Start Node
rather than with the wheels.

• The simulation runs for 3 years. Each year there is an annual maintenance and two bi-annual
maintenances, resulting in three maintenance events per year. However, since the second bi-
annual maintenance occurs at the same time as the annual maintenance, there are only 2
Total Downs per year associated with the Start Node, for a total of 6.

Next steps
The next chapter shows how to integrate the RBD you just built with a discrete event model.

40 Reliability Tutorial & Reference
Next steps

Reliability
Tutorial & Reference

Tutorial 2: Adding PSS to RBD
The previous chapter showed how to create a stand-alone RBD. The purpose of this chapter is
to demonstrate how to integrate an RBD with a model built using the ExtendSim process sim-
ulation software (PSS). In particular, it shows how the RBD you built in the previous tutorial
can become more representational of the real system if it is combined with an item-based pro-
cess model of the message delivery business.

 If you aren’t already familiar with the ExtendSim Item library, see the Discrete Event QSG
(Quick Start Guide) located at Documents/ExtendSim/Documentation.

What PSS integration adds to the model
Adding process simulation to RBD leads to a better understanding of the impact that availabil-
ity has on overall system performance. In the bicycle example, integration provides more
information than the availability number provides, such as how changes in availability impact
the business’s ability to deliver messages.

In addition, the occurrence of down events in the stand-alone RBD must by definition be based
merely on the progression of time, since no other relevant factor is available. However, when
an RBD is integrated with process simulation, the process model can supply the RBD with
usage information that reflects the wearing of the components. This allows for a more realistic
representation of the process, showing that how much a component is used affects when its
next down event will occur.

☞ Integrating process simulation with RBD allows the RBD’s components to progress to a down
event based on factors other than the mere advance of time.

The tutorial models in this chapter
There are two parts to this tutorial:

1) Integrate an item-based process model (2A) with the RBD you created in the previous tuto-
rial.

2) Explore what happens if the wait for delivering the messages gets too long and messages
renege (2B).

☞ So that you can focus on the integration of RBD with PSS, both sections of the tutorial start
with a pre-built model that includes process simulation and an RBD.

42 Reliability Tutorial & Reference
The 2A RBD Tutorial model
The 2A RBD Tutorial model

Open the model Step 2A RBD Tutorial located at Documents/ExtendSim/Examples/Tutori-
als/Reliability.)

☞ Don’t open the “Final” model.

Save the model as MyRBDItems

What the model does
This model adds the RBD you built in the previous tutorial to a simple MM1 queuing model
that represents the message delivery process.

• In the process section of the model, messages that need to be delivered arrive randomly from
a Create block, sit in a Queue while they wait to be delivered, and are processed by an Activ-
ity block. The Activity represents the bicycle’s operation and it tells the RBD whether the
bicycle is being used or not.

• The RBD determines the bicycle’s availability (its up and down states) based on the wearing
of the Components. It reports that information to the Activity block, letting it know if and
when the bicycle is available to deliver messages.

• At the end of the simulation, the down events and the messages waiting for delivery are dis-
played on the graph.

Assumptions for the process portion
So that you can focus on the integration, the process portion of the model has already been
completed. As you can see in the dialogs of the Create, Queue, and Activity blocks:

• Messages arrive randomly at the Create block, represented by an exponential distribution
with a mean of 0.35 days

• They are stacked in a first-in-first-out (FIFO) order as they wait in the Queue for delivery

• The bicycle messenger can only deliver one message at a time. In the Activity block, the
delivery time is specified by a triangular distribution with the following parameters:

• Minimum: 0.10 days

• Maximum: 0.50 days

Tutorial 2: Adding PSS to RBD 43
Change the event cycle progress type
• Most likely 0.25 days

The RBD portion
The annual and bi-annual maintenance events are calendar-based and will occur at set times no
matter what. Thus the following TBD/TTD event cycles are the only ones that would be
affected by wearing:

• Brake Cycle

• Drivetrain subcomponents: Chain, Crank, Dérailleur, Freewheel, and Pedal cycles

• Wheel Cycle

As seen in the Event Builder’s Event Cycle Classes table, progress towards the next down
event for these components is time.

☞ Wearing can affect progress towards the next down event and thus the duration of the time-
between-downs (TBD) or time-to-down (TTD). However, it never impacts the time to up
(TTU). Thus only Progress Types that are TBD/TTD need to be changed.

Integrating the two portions
Your task for this tutorial is to:

1) Change the TBD/TTD progress type for the affected event cycles from time to wear

2) Connect the RBD and process simulation sections so they can exchange data with each
other

Change the event cycle progress type
There are two ways you can change the TBD/TTD Progress Type from time to wearing:

1) Modify an event cycle in the Event Builder’s dialog. In the
Time between downs (TBD)/Time to down (TTD) frame,
change the event cycle’s Progress from “Time” to “Usage”,
select Wear as the Usage type, and save the change. Repeat
for each event cycle and save the model.

2) Or, open the Event Cycle Classes table in the dialog of the Event Builder, make all the
changes there, and save your model. This is the approach you will use for this tutorial.

In the dialog of the Event Builder, open the Event Cycle Classes table. Notice that, in the
TBD/TTD Progress Type column, all event cycles are set to Time, as shown in the screen-
shot above.

44 Reliability Tutorial & Reference
Connect the process model to the RBD
In the TBD/TTD Progress Type column, for the Brake Cycle:

Use the popup menu to change its progress type from Time
to Wear as shown here

After the cell has switched from Time to Wear, copy the word
Wear as it is displayed in the cell

For the Drivetrain Chain Cycle, paste into the Progress Type cell
so that Time is replaced by Wear.

☞ Although copy/paste is fast, you could alternatively use the popup to select Wear for each event
cycle.

Paste Wear into the Progress Type cells
for the five remaining event cycles:

• Drivetrain Crank Cycle

• Drivetrain Dérailleur Cycle

• Drivetrain Freewheel Cycle

• Drivetrain Pedal Cycle

• Wheel Cycle

The table should now show all the event
cycles, except for the Annual and Bi-
Annual Maintenance, having a progress
type of Wear.

Close the database table, click OK in the Event Builder’s dialog to close it, and save the
model to save the changes you’ve made to the database.

☞ Since you haven’t added any records, you don’t need to Commit Event Cycle Class Changes,
you just have to save the model.

Connect the process model to the RBD
The easiest way for the RBD and the process model to exchange data is by drawing connection
lines between the blocks.

Activity
On the Activity block’s Shutdown tab:

Check the box to Enable shutdown.

Leave the other options as they are and click OK to close the dia-
log and save changes.

Notice that there is now an SD (shutdown) input connector at the top
of the Activity block’s dialog. This will allow the RBD to control
when the Activity (the bicycle) is able to deliver messages and when it
is not.

At the bottom of the Activity block’s icon, drag down on the variable
output connector to reveal the AS (Advanced Status) output as shown
here.

Tutorial 2: Adding PSS to RBD 45
Connect the process model to the RBD
End Node
In the End Node’s Connectors tab, choose to Show output connectors, then click OK to

save and close the dialog. This puts a variable output connector at the bottom of the End
Node’s icon.

Drag down on the variable connector until the up output connector is revealed.

Draw a connection line (or make a named connection) between the down (RBD) output of
the End Node and the SD input on the Activity

Start Node
In the Start Node’s Connectors tab, select to Show input connectors, then close the dialog.

Notice that this puts a variable input connector at the bottom of the Start Node’s icon and the
first input is wear.

Draw a connection line from the Start Node’s wear input to the AS output on the Activity.

Make named connections
Create a named connection named Up and use it in 2 places:

Connected to the up output of the End Node

Connected to the top input on the Chart block

Save the model to save your changes

Run the simulation
The graph should appear similar to the one shown below. This shows the affect that the bicy-
cle’s unavailability has on the buildup of messages in the Queue.

46 Reliability Tutorial & Reference
Connect the process model to the RBD
The 2B model

Need to tell them to do the Red Ball.

THIS SECTION IS NOT FINISHED

Reliability
Tutorial & Reference

Tutorial 3: Add Reliability to a Rate Model

THIS CHAPTER IS NOT FINISHED

48 Reliability Tutorial & Reference

Reliability
Tutorial & Reference

Reference
THIS CHAPTER IS NOT FINISHED

RBD terminology

Term Definition

Availability Percentage of time a resource is in an “up” state and available to perform work.

Component The nodes located between a Start Node and an End Node in the interior of an RBD.
Components represent resources and are placed in series and/or parallel to each
other. Over time, Components alternate between up and down states due to event
cycles.

Distribution A description of a random phenomenon that specifies the length of time a resource
will be in an up or a down state.

Down Event A Down event is the point in time when an event cycle switches from the up state to
the down state. Down events are either scheduled or unscheduled and can be due to
failure, off-shifting, maintenance, or repair.

Edges Edges describe how nodes in an RBD are related to each other. In ExtendSim, edges
are represented by the connection lines between nodes.

Event Cycle Describes an alternating behavior of cycling through up and down states over time.
Event cycles are sometimes called Failure modes, although that is a more limiting
term because not all downs are caused by failures.

Failure Mode The manner in which a design, process, product, or service will cycle through fail-
ure and non-failure states over time.

k of N The “k” defines the minimum number of upstream parallel components (N) that
need to be in an Up state in order for the “one downstream component” to be up.

Load Sharing A form of redundancy in which there is a parallel structure that supports the work-
load. If one of the load sharing components fails, it causes a higher share of the
workload for the remaining components, increasing the wear rate.

Nodes The interconnected shapes that form the structure of the RBD. They consist of a
Start Node, an End Node, and one or more Components.

50 Reliability Tutorial & Reference
Example models
For a pictorial representation of many of these terms, see “Event cycles” on page 52.

☞ By default ExtendSim assumes the system is in an up state at the start of the simulation.

Example models
☞ The following models are located at Documents/ExtendSim/Examples/Reliability/RBD Bicy-

cle. They are variations on the RBD model of the bicycle discussed in the tutorial chapters.

Parallel Nodes A set of Component nodes placed in parallel to each other indicates redundancy.
Unless the entire set of parallel nodes is down, that section of the RBD will be
available to perform work.

PSS Process simulation software. Event-based tools such as the ExtendSim Item library
for discrete event simulation or Rate library for discrete rate simulation.

RBD Reliability block diagram. A network of interconnected nodes that alternate over
time between up and down states in order to model the availability of the system as
a whole. A model may have more than one RBD; each RBD has a Start Node, an
End Node, and one or more Components.

Reliability The probability the RBD will remain in its up state for the entire duration of the run.

Resources The means by which process activities and operations are performed. Their lack of
availability can cause constraints on the system.

Scheduled Downs A planned Down event such as for maintenance or off-shifting.

Serial Nodes A set of Components that are placed one after the other. The entire set must be up
for that part of the RBD to be available to perform work.

Standby The case in which a component has a backup component in a Down (idle) state until
it is needed. Note that the backup component could have the same failure rate while
down as it does while up, causing it to be a “hot standby”.

TBD Time-Between-Downs. The period of time between the start of a Down event and
the start of the following Down event.

TTD Time-To-Down. The period of time between the start of an Up event and the start of
the following Down event.

TTU Time-To-Up. The period of time between a Down event and the following Up
event.

Unscheduled Downs An unexpected Down event such as a failure.

Up Event An Up event is the point in time when the event cycle switches from the down state
to the up state.

Term Definition

Reference 51
Basics
Basics

Up events and Down events
An Up event (UE) is the point in time when a resource becomes available. By default, Extend-
Sim assumes that all resources are available at the start of the simulation.

A Down event (DE) is the point in time when a resource becomes unavailable. Down events
are either scheduled or unscheduled and can be due to failure, off-shifting, maintenance, or
repair.

Model Description

Shift Blocks Same as the Step 1 RBD model discussed in Tutorial 1 except it uses Shift blocks
(Item library) to specify both the annual and bi-annual maintenance event cycles.

Item-Based Repair Demonstrates how to translate repair events into items that must travel through a
repair process before returning to the RBD in a fixed state. By default, repairs are
modeled using a random distribution to define how long the repair will take.
However, that black boxing of the repair process might not provide a high enough
level of fidelity. When the availability of the critical resources needed to make
repairs affects repair duration in meaningful ways, Reliability users have the
option to use the ExtendSim process modeling capabilities to model the repair
process with a higher level of fidelity.

Standby (A) Uses an Equation block (Value library) that is wired directly to the RBD to model
“Standby”. Standby is a general purpose reliability concept where a component
sits idle until it is called into service. In the model the rear brake is not used until
the front brake fails.

Standby (B) The same as the Standby “A” model except the Equation block is not wired to the
RBD with connection lines. Instead the ExtendSim internal database and Link
Alerts notify the Equation when the front or rear brake has gone into the failed
state. The Equation then issues the Standby directive (discussed above) to the
RBD via the database instead of via connection lines.

Load Share (A) Load share is another general reliability concept where two or more components
(in this case the front and rear brakes) share the load. When one of the compo-
nents goes down, the wear rate on the other component(s) speeds up. This model
uses an Equation directly wired to the RBD.

Load Share (B) The same as the Load Share “A” model but wireless. as discussed above for the
Standby (B) model.

k of N (A) The “k of N” is a general reliability concept used to define how many (k) of the
upstream parallel components (N) need to be in an up state in order for the “one
downstream component” to be up. In this model, k = 1, the upstream parallel
components are the front and rear brakes, and the “one downstream component”
is the Drivetrain. That is, the drivetrain will be considered “up” if at least 1 of the
2 brakes is up. This model uses an Equation block wired directly to the RBD to
determine how many of the parallel components are up and whether the “one
downstream component” should be up or down.

k of N (B) The same as the k of N “A” model but wireless, as discussed above for the
Standby (B) model.

52 Reliability Tutorial & Reference
Basics
Event cycles

An event cycle describes how a resource alternately cycles through its up and down states over
time. As shown below, this event cycle has multiple up and down cycles.

TTU’s and TTD’s
As seen in the graphic below:

• There is a period of down time that starts with a Down event (DE) and ends with an Up
event (UE). The time between those two events is determined by a distribution that spec-
ifies the Time-to-Up (TTU).

• There is a period of up time that starts with an Up event and ends with a Down event.
The time between these two events is determined by a distribution that specifies the
Time-to-Down (TTD).

Reference 53

54 Reliability Tutorial & Reference

Index
A-C
Add/remove event cycle instances frame 34
availability 21

definition 2
Bicycle model 10
Components 6

adding to the RBD 25
defined 16

components
in parallel 3
in series 2

D-F
Database frame 38
DE-DE Interrupt popup 36
definition of reliability block diagram 2
Distribution Builder 6

defined 19
down events 2
edges

definition 2
End Node 6

defined 16
Event Builder 6

defined 17
Event cycle induced interrupts 35
event cycles

definition 3, 6, 17
in series 33

Event Log 39
Event Summary table 39
example models 8
fail modes

compared to event cycles 6
definition 3

failures 2

G-I
How To chapters 8
Ignore 32
Interrupts

event cycle induced 35
interrupts 34

ignore 32
preserve 33

Item-Based Repair model 51

J-L
k of N 51

k of N (A) model 51
k of N (B) model 51
load share 51
Load Share (A) model 51
Load Share (B) model 51

M-N
model

example 8
Node Summary table 38, 39
nodes

definition 2

O-P
Overall RBD results frame 38
PFS 4

integrated with RBD 4
Preserve 33
process flow simulation 4
process flow simulation (PFS)

compared to RBD 3

Q-S
RBD

compared to process flow simulation 3
databases 5
definition 2
description 2
integrated with PFS 4
structure 13
terminology 49

RBD Summary table 39
RBD-DE Interrupt 32, 35
redundancy 3, 11
Reliability module

features 6
framework 5
when to use 5

reset 36
run parameters 24
Shift Blocks model 51
simulation

parameters 24
Simulation Setup command 24
SN-DE Interrupt 32, 35
Standby (A) model 51
Standby (B) model 51
Standby directive 51
Start Node 6

asks for Component names 24

Database frame 38
explained 15
icons 15
Overall RBD results frame 38

Start Node down event interrupt 32, 35
Step 1 RBD Tutorial Final model 37

T-V
User Reference

How To chapters 8

	Introduction
	Welcome!
	About this document
	Who should read this document
	Chapters in this reference
	Introduction to reliability block diagramming
	Availability and down events
	RBD
	Advantages of RBD

	Two types of discrete event tools
	Process simulation software
	RBD tools

	Advantages of integrating RBD with PSS
	When to use the Reliability module
	As a stand-alone tool
	In conjunction with PSS

	Framework of the Reliability module
	Reliability module features
	Where to get more information
	Quick Start Guides
	Tutorial & Reference documents
	User Reference
	Technical Reference
	Example models and videos show you how

	Basics: Exploring an RBD
	Overview
	The bicycle
	Bicycle components
	Assumptions
	Why simulate the bicycle using RBD?

	Exploring an RBD model of the bicycle
	Open the example model
	The model worksheet
	Paths and redundancy
	Run the model
	Watch the RBD system go up and down

	Structure of the model
	Blocks
	RBD Database

	Blocks used for the stand-alone RBD model
	Descriptions of the blocks in the model
	Start Node
	Components
	End Node
	Executive
	Event Builder
	Distribution Builder

	RBD databases
	Results of running the Bicycle RBD
	Availability

	Next steps

	Tutorial 1: Creating an RBD
	Overview
	Steps

	Start a new model
	Open a new model worksheet

	Set the simulation parameters
	Save the model

	Create an RBD
	Add the first three blocks
	Add the first two Components
	Add the second set of components
	Add the Drivetrain
	Add the End Node
	Name the blocks

	Distribution classes
	Copying the definitions into the model

	Event cycle classes
	Event cycle table

	Associate the event cycles with the nodes
	Open the Start Node
	Bicycle maintenance
	Drivetrain non-maintenance event cycles
	Brakes
	Wheels

	Associate the interrupts
	Event cycle induced interrupts

	Availability
	Conclusion
	Run the model
	Results
	Overall RBD results section
	Database section

	Next steps

	Tutorial 2: Adding PSS to RBD
	What PSS integration adds to the model
	The tutorial models in this chapter
	The 2A RBD Tutorial model
	What the model does
	Assumptions for the process portion
	The RBD portion
	Integrating the two portions

	Change the event cycle progress type
	Connect the process model to the RBD
	Activity
	End Node
	Start Node
	Make named connections
	Run the simulation

	Tutorial 3: Add Reliability to a Rate Model
	Reference
	RBD terminology
	Example models
	Basics
	Up events and Down events
	TTU’s and TTD’s

