

© 2024 ANDRITZ Inc. This program is protected by US and international copyright laws.

You may not copy, transmit, or translate all or any part of this document in any form or by any means, electronic
or mechanical, including photocopying, recording, or information storage and retrieval systems, for any purpose

other than your personal use without the prior and express written permission of ANDRITZ Inc.

License, Software Copyright, Trademark, and Other Information

The software described in this manual is furnished under a separate license and warranty agreement. The soft-
ware may be used or copied only in accordance with the terms of that agreement. Please note the following:

ExtendSim blocks and components (including but not limited to icons, dialogs, and block code)
are copyright © by ANDRITZ Inc. and/or its Licensors. ExtendSim blocks and components
contain proprietary and/or trademark information. If you build blocks, and you use all or any
portion of the blocks from the ExtendSim libraries in your blocks, or you include those
ExtendSim blocks (or any of the code from those blocks) in your libraries, your right to sell, give
away, or otherwise distribute your blocks and libraries is limited. In that case, you may only sell,
give, or distribute such a block or library if the recipient has a valid license for the ExtendSim
product from which you have derived your block(s) or block code. For more information,
contact ANDRITZ at Info.ExtendSim@Andritz.com or Support.ExtendSim@Andritz.com.

© 2024 ANDRITZ Inc. This program is protected by US and international copyright laws. Microsoft is a
registered trademark and Windows is a trademark of Microsoft Corporation. The copyright for Stat::Fit® is
owned by Geer Mountain Software. All other product names used in this manual are the trademarks of their
respective owners. All other ExtendSim products and portions of products are copyright by ANDRITZ Inc.
All right, title and interest, including, without limitation, all copyrights in the Software shall at all times
remain the property of ANDRITZ Inc. or its Licensors.

Acknowledgments

Extend was created in 1987 by Bob Diamond; it was re-branded as ExtendSim in 2007.

The contents of this document are the result of years of work by software architects, simulation engineers,
and technical writers and editors of ExtendSim products.

ANDRITZ Inc • 13560 Morris Road, Suite 1250 • Alpharetta, GA 30004 USA
770.640.2500 • Info.ExtendSim@Andritz.com

www.ExtendSim.com

Table of Contents

TABLE OF CONTENTS

TECHNICAL OVERVIEW

Introduction ..1
About the Technical Reference...2
Additional resources...3

Parts of a Block...5
The Example block...6
The block’s user interface—its dialog..6
The block’s structure ..6
Overview of block parts, by tab and pane ..7
Icon tab ...9
Script tab...11
Dialog tab ...13
Help tab ..14
Dialog items..14
Connectors..21

ModL Overview..25
ModL feature overview ..26
ModL compared to other programming languages ..27
ModL language terminology ..30
Differences between equation blocks and programmed blocks31
Structure of a block’s ModL code ..32
Accessing connectors from a block’s code ..34
Accessing dialog items from a block’s code ..35
Accessing code from other languages ..42
External source code...42

TUTORIAL

Creating a Block ...43
Building a simple block that converts miles to feet ...44
Adding user interaction and display features ...48
Adding an intermediate results feature...51
Adding 2D animation ...53
Other features you might have used ...54
Defining functions ..56

INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)

The ModL Language ..59
Names ...60
Data types: definitions and declarations...60
Scope of global, local, and static variables...62
Constant definitions..62
Constants that are pre-defined ..63

BLANK and NoValue .. 63
Numeric type conversion ... 64
Arrays... 65
Array-like structures .. 67
Operators.. 68
Control statements and loops ... 70
User-defined functions... 72
Message handlers ... 75
System variables .. 76
Global variables ... 76
Conditional compilation .. 76

Programming Tools...77
Script Editor ... 78
Debugging and profiling .. 81
Include files.. 81
Conditional compilation .. 82
External source code control.. 83
Extensions .. 85
DLLs .. 86
Sounds.. 89
Picture and movie files .. 90
Protecting libraries ... 90

Programming Techniques ...93
Data source indexing and organization.. 94
Equation block programs ... 94
Working with dialogs ... 95
Remote access to dialog variables ... 99
Working with connectors ... 102
Working with arrays... 103
Working with linked lists ... 111
Using message handlers... 111
Working with databases ... 113
Reading text blocks as commands ... 115
Changing data while the simulation is running ... 117
Scripting... 118
OLE and ActiveX Automation... 119

Animation Using ModL..127
2D animation.. 128

Simulation Architecture ..137
Running a simulation ... 138
How discrete event blocks and models work... 146
Globals in discrete event blocks .. 160
Creating blocks for discrete event models ... 165
How discrete rate blocks and models work ... 165
Globals in discrete rate blocks ... 165
Globals for ARM (Advanced Resource Management).. 167
Other reserved global variables ... 167

Debugging ..169
Debugging models..170
Profiling..170
Debugging block code without the Source Code Debugger ..171
Source Code Debugger...172
Debugger tutorial..172
Source code debugger reference...183

VARIABLES, MESSAGES, & FUNCTIONS

ModL Variables...189
System variables...190
Global variables..191

Messages and Message Handlers ...193
Summary of messages ..194
Simulation messages ..194
Model Status messages...196
Block Status messages..197
Dialog messages ...199
Connector messages ...201
Block to block messages ..202
Dynamic Link messages...203
OLE messages ..203

ModL Functions..205
ModL function overview ..206
Math functions..207
I/O functions...222
Animation ...250
Blocks and inter-block communications ..256
Models, notebooks, and libraries..293
Scripting ...300
Reporting ..308
Plotting/Charts..308
Database functions..318
Arrays, pointers, queues, delay, linked list, and string lookup table functions340
Miscellaneous functions ...358
User-defined functions for ADO ..371

APPENDIX

Menu Command Numbers..375

Upper Limits...379

ASCII Table ..383

INDEX

Technical Overview

Introduction
Where you learn where you need to begin

“‘Begin at the beginning,’ the King said, gravely,
‘and go ‘til you come to the end; then stop.’”

— Lewis Carroll

2 Overview
About the Technical Reference

O
ve

rv
ie

w

About the Technical Reference
The purpose of the Technical Reference is to reveal the ExtendSim integrated development
environment (IDE) so that you can:

• Use equations, logic statements, and function calls in equation-based blocks

• Create new blocks or modify copies of ExtendSim blocks

• Interface with ExtendSim using external code such as DLL’s or VBA

• Build and control models using scripting

This manual is a companion to the ExtendSim User Reference which is a guide for those build-
ing models.

ExtendSim IDE
The Technical Reference reveals the ExtendSim IDE, which has several components:

• The ModL language, a variation of C++ that has been customized for simulation
• An equation editor for creating logic statements, formulas, and programming code in equa-

tion blocks
• A script editor for modifying or creating custom-programmed blocks that are fully integrated

with ExtendSim
• A built-in compiler so the custom blocks you create are compiled into machine language and

saved in libraries. The blocks that ship with ExtendSim, and the blocks that you created, are
pre-compiled for use in models.

• A graphical user interface for building custom blocks, including an icon builder and a dialog
editing environment so you can modify or create custom dialogs

• Programming tools, such as include files and external source code capability, that support
and simplify your programming efforts

• A built-in source-code debugger that helps to locate errors in the blocks or equations you
create

☞ The Technical Reference presumes that you know how to create models in ExtendSim. See one
of the ExtendSim Quick Start Guides for model-building information.

How the Technical Reference is organized
The Technical Reference is organized into several sections:

• Overview

• “Parts of a Block” (which starts on page 5) describes the internal parts (structure) of
blocks. This chapter is also helpful for non-developers, to understand how the blocks in
their models work.

• “ModL Overview” (starting on page 27) gives an overview of the “action” part of a
block – the ModL code. If you use equation-based blocks — Equation and Optimizer
blocks (Value library), Equation(I) and Queue Equation blocks (Item library), or the
Buttons block (Utilities library) — you will also find this chapter helpful.

• Tutorial

• The “Creating a Block” chapter provides a tutorial on how to build a new block; the
chapter starts on page 44.

Introduction 3
Additional resources

O
verview
• Integrated Development Environment

• “The ModL Language” on page 59 describes ModL’s structure and constructs in detail.
It presumes you have read the chapters in the Overview module.

• “Programming Tools” describes all the tools, such as include files and external source
code control, that ExtendSim provides to help you program efficiently; it starts on
page 81.

• “Programming Techniques” gives procedures and suggestions for programming using
ModL and for interfacing ExtendSim with other languages, such as VBA. That chapter
starts on page 93.

• “Animation Using ModL”, starting onpage 127, describes the ExtendSim 2D capabil-
ity and features.

• “Simulation Architecture” gives important information about how ExtendSim runs
simulations and how discrete event and discrete rate models and blocks work. The
chapter starts on page 137.

• “Debugging”, which begins on page 170, discusses model and code debugging and
shows how to use the ExtendSim source code debugger.

• Reference

Starting on page 190 are three chapters that list and discuss all of the ExtendSim variables,
messages, and functions.

• Appendices

• Appendix A: upper limit values for ExtendSim

• Appendix B: an ASCII table

• Appendix C: menu commands and numbers for the ExecuteMenuCommand function

As you will see, programming blocks in ExtendSim is quite easy, especially if you have ever
programmed in any language.

Additional resources
ANDRITZ provides several resources to support your simulation experience.

1) Getting Started. The Getting Started model open when you launch ExtendSim. Use this
interface to explore sample models and to view tutorials on building and running models.

2) Online help:

• Access the electronic User Reference and Technical Reference by giving the command
Help > ExtendSim Help or press F1 on your keyboard.

• Use tooltips to identify interface elements.

• Get complete definition of how a block works, including descriptions of its dialog
items and connectors, by clicking a block’s Help button.

3) Web advice. FAQs are available at www.ExtendSim.com/Support.

4) Networking. Links for ExtendSim user forums, networks, and blogs are at www.Extend-
Sim.com. For example, the ExtendSim Exchange is a user forum for sharing ideas,
insights, and modeling techniques with other ExtendSim users. Use this forum to post

4 Overview
Additional resources

O
ve

rv
ie

w

issues and solutions, share blocks and models, and to talk directly to other people develop-
ing simulations. You must register to join, but access is free and available to all ExtendSim
modelers.

5) Complimentary support. Get technical assistance for installation issues, basic usage ques-
tions, and troubleshooting for the first year after purchasing a new product or upgrade.

Contacting Technical Support
 You must be registered to receive technical support. Support is complimentary for the first year
after purchase. After that, you must either subscribe to the ExtendSim Maintenance Plan or
purchase per-incident support.

To contact our support representatives, go to our website at www.ExtendSim.com, click the
Contact Us link, and fill out a support ticket.

 Be sure you are using the current version of ExtendSim. Software updates are available at our
web site (www.extendsim.com). Upgrades to newer versions may be purchased separately if
your license is not covered by a support plan.

Overview

Parts of a Block
An introduction to the internals of a block

“We shape our buildings;
thereafter they shape us.”

— Winston Churchill

6 Overview
The Example block

O
ve

rv
ie

w

This chapter discusses a typical ExtendSim block’s internal structure—its icon, dialog, code,
and more.

☞ The Technical Reference assumes you know how to build models since many of the concepts
used when building blocks assume an understanding of how blocks are used in models.

The Example block
The Example block is a good source for investigating the dialog and internals of a block and
will be used throughout this chapter. It is a copy of the Simulation Variable block (Value
library) that ships with ExtendSim.

 Any changes you make to a block in an ExtendSim library will affect that block in all existing
models and will get discarded whenever the library is updated. Thus, it is important that you
don’t make any changes to the blocks that are shipped with your ExtendSim product. Instead,
make a copy of the block and save it with a new name and in a new library, as was done
for this example.

Open a new model worksheet.

Open the Tutorial library located at ExtendSim/Documents/Libraries/Example Libraries.

From the Tutorial library’s library window, select the Example block and place it on the
model worksheet.

The block’s user interface—its dialog
Every block has a dialog, which may be as simple as just the OK and Cancel buttons or it may
be quite complex. A block’s dialog is its user interface—that is what modelers see when they
double-click the block’s icon.

Dialog of the Example block
Double-click the icon of the Exam-

ple block. This opens its dialog,
revealing two tabs:

• An Options tab dealing with
the system variables

• A Comments tab for user com-
ments

The frame, text, buttons, and entry
boxes that are seen in the tabs are col-
lectively known as dialog items.

In each block’s dialog, a Help button,
block label field, and View popup are
located at the bottom of the dialog and
to the left of the scroll bar, if there is one.

The block’s structure
A block’s internal structure is where the user-interface and block behavior is created and where
it’s icon, ModL code, dialog items, and other block components are defined. ExtendSim has
built-in editing tools for creating or modifying blocks.

Parts of a Block 7
Overview of block parts, by tab and pane

O
verview
How to open a block’s internal structure
There are three ways to access an existing block’s internal structure:

1) Select the block by clicking once on its icon in a model worksheet. Then choose Develop>
Open Block Structure.

2) Right-click the block’s icon in a model worksheet or in the library window. Then select
Open Block Structure.

3) Double-click the block’s icon on a model worksheet or the library window while holding
down the Alt (Windows) or Option (Mac OS) key.

Examining the internal structure of the Example block
Open the internal structure for the Example block using one of the methods from above.

The block’s Script tab opens in front by default.

• On the left side are tabs for Icon, Script, Dialog, and Help.

• For each of these tabs:

• The title bar displays the name of the block and the name of the library the block
resides in

• There are panes for Connectors and Dialog Item Names on the right

Overview of block parts, by tab and pane
A block is composed of many parts, which are created in the tabs of the block’s structure win-
dow. These parts comprise a block’s internal structure and are interconnected. For example, the
code reads information from the connectors, the help text is displayed through the dialog, and
so on. All of the block’s parts can be controlled by ModL code.

The parts are listed below, by tab, and discussed in more detail later in this chapter.

Script tab
This tab is where the block’s code is entered. The code is written in ModL, the ExtendSim pro-
gramming language. ModL is what makes the block work and determines how it behaves.

Icon tab
The Icon tab is for creating the icon and everything else in its environment. The icon is the
visual representation of the block as seen in a model. Icons can display 2D animation and most
often have connectors that facilitate the exchange of data between blocks.

Part Description Pages

ModL
code

 ModL code can read and write information via the connectors,
dialog, ExtendSim database, the model environment, and other
blocks, as well as control all the parts of a block. This pane is
also where you enter headings about the block and comments
about the code.

11

Functions This pane lists the message handlers (in all caps) and functions
used in the block.

12

Includes This pane lists and opens the includes that are used in the code. 12

8 Overview
Overview of block parts, by tab and pane

O
ve

rv
ie

w

Dialog tab
The Dialog tab is where the block’s dialog is created and, if wanted, tabs for grouping dialog
items. The dialog is the window that appears when you double-click a block’s icon.

Help tab

Connectors pane
This pane lists the names of the block’s connectors, if any. It is also used to edit the default
connector names so they can more closely represent their function. See “Editing connector
names” on page 22.

Part Description Pages

Icon Icons are created using the ExtendSim drawing environment or
a painting program, or by copying/pasting clip art.

9

2D
Animation

Objects for 2D animation are part of the icon environment but
can display anywhere in the model, even outside the icon’s
footprint. 2D animation can show motion, levels, and values,
and can alter an icon’s static look.

10

Connec-
tors

Connectors appear in the model as part of the icon. They are
used to transmit information to and from each block’s ModL
code. Connectors can be normal (single) or variable (a row of
single connectors).

☞ Blocks can also transmit information without using connec-
tors by sending messages to other blocks and by using
global variables, global arrays, or an ExtendSim database.

21

Icon views Icons can have one or more views such as a Forward and a
Reverse.

9

Show icon
positioner

Used if connection lines are out of alignment when a model
built in ExtendSim 9 or earlier is opened in ExtendSim 10+.

10

Part Description Pages

Dialog
items

When creating a block, you specify the frames, text, buttons,
tables, and entry boxes that go into the dialog (collectively
known as dialog items).

14

Tabs You can place all the dialog items in one dialog, or separate
them into functional groupings using tabs.

13

Dialog
Resizer

Allows you to set the default bottom and right-side edges for
each tab separately.

13

Part Description Pages

Help text The text that appears when you click the Help button to the left
of the dialog’s bottom scroll bar. When the Help dialog is open,
buttons at the bottom can be used to find a block, or display
information about blocks, in all open libraries.

14

Parts of a Block 9
Icon tab

O
verview
Dialog Item Names pane
This pane lists the names defined for the block’s dialog items. The name of a dialog item is
sent to the block code as a message when the dialog item is activated. By default, these names
are listed in order created; they can also be sorted alphabetically.

Icon tab
The Icon tab of the Example
block’s structure is shown at
right.

The area at the left of the
Icon tab is used to enter and
edit the icon(s) for the block
and to add animation
objects, block connectors,
and icon views.

The Example block’s icon
has one input connector on
the left of its icon and two
animation objects, numbered
1 and 2.

☞ The panes on the right of the
Icon tab are for Connectors
and Dialog Item Names as discussed on page 8.

Icon
A block’s icon is its most obvious aspect since it appears on the model worksheet. An icon
consists of a drawing or group of drawn objects, the block’s connectors, and possibly one or
more animation objects.

A block can have more than one icon; which one is shown is determined by which view is
selected, as discussed in “Icon views” on page 9.

There are two ways to create an icon:

1) With the ExtendSim drawing tools, as discussed in the User Reference. The Shapes and
Alignment tools provide a drawing environment for quickly creating icons.

2) By pasting drawings from the Clipboard. You can use a painting or drawing program to
create an icon. Then copy and paste it into the Icon tab.

Use the same tools for selecting objects in the icon pane as you would use to select graphic
objects in the model worksheet or notebook.

Icon views
The Icon views popup is located at the
top of the Icon tab. Each block has at
least one icon, which is its default. It is
also possible for blocks to display dif-
ferent icons. For example, a block
could have a Forward view icon and a
different icon with a Reverse view. Or

10 Overview
Icon tab

O
ve

rv
ie

w

the block could show a different icon depending on the type of machine it represents or based
on a selection in the block’s dialog. ExtendSim accomplishes this by facilitating the creation of
different views of a block’s icon.

The modeler selects icon views by right-clicking on a block or using the Views menu to the
right of the block’s label in its dialog, as seen on page 6.

Developers give a block additional icons using the Icon views popup in the Icon tab. The first
icon that is created becomes the default view. As each view is added, ExtendSim copies the
current icon. This gives the developer something to start with instead of having to redraw all of
the icon. The Rotate and Flip buttons in the Alignment toolbar facilitate creating a new view
that represents a flow in a new direction.

The IconViewChange message is sent when the modeler changes the icon view or when a
ModL function call from a block changes the icon view; see page 199. There are also several
functions for managing icon views; see “Icon views” on page 293.

Views can be deleted or renamed at any time by using the commands in the Views popup
menu. An example of a block with multiple views is the Select Value Out block (Value library).

☞ All views have the same number of connectors, but connectors can be selectively hidden in a
view when it is created, or hidden and shown dynamically using ModL functions. ExtendSim
automatically adds and deletes connectors from all views when the number of connectors on a
block is changed.

Icon positioner
When models that were built prior to ExtendSim 10 are converted to ExtendSim 10 or later, the
position of the model’s blocks could be slightly different, causing connection lines to be
unaligned. In those cases, the icon positioner can be used to adjust the relative location of the
icon within the Icon tab so that the connection lines to the block are correctly aligned.

This adjustment has already been made in the current ExtendSim libraries, but you may want
to use the positioner for any custom blocks that have been converted from earlier versions.

The Show icon positioner checkbox, located in the Icon tab of the block’s structure,
hides and shows the icon positioner, the pink icon shown here. By default, the icon
positioner is located at the upper leftmost position of the icon’s graphic items. The
Reset Icon Positioner button resets the location of the icon positioner to the default.

To use the icon positioner, first determine approximately how many pixels and in what direc-
tion the icon needs to move so that the connection lines are aligned. Then in the Icon tab select
the icon positioner and move it with the cursor or the keyboard arrow keys.

There is also a ModL function, blockAdjustPosition, that uses the location of the item posi-
tioner to shift the location of the block by the offset of the positioner location.

Connectors
See “Connectors” on page 21.

2D animation
In the Example block’s icon shown above, the white rectangles at the center of the icon
(labeled with the numbers 1 and 2) are animation objects. When the block is created, one or
more animation objects can be added to the icon using the Animation Object button in the Icon
toolbar.

Parts of a Block 11
Script tab

O
verview
The block’s ModL code interacts with animation objects, causing them to show various behav-
iors. Depending on how the objects are coded, the display could change due to user interaction
with the block (its dialog or connectors) and/or due to information received during the simula-
tion run. For the Example block, the animation object for the Example displays as text which
system variable has been selected in the block’s dialog.

There are several ways to animate a block using 2D animation objects:

• Typically, the block’s icon would be animated but it is also possible to animate outside the
icon’s footprint.

• Blocks can: show, hide, and change the colors of text and shapes; move a shape and increase
or decrease its size; show a changing level; show a picture or a movie; or move a picture
along connection lines between two blocks.

The Item and Rate libraries use 2D animation extensively.

For more information about 2D animation
• The ExtendSim User Reference gives an overview of 2D animation, including block-to-

block animation that flows along the connections in discrete event models.

• In this Technical Reference, the tutorial “Adding 2D animation” on page 53 shows how to
add 2D animation objects to a custom block.

• The section “2D animation” on page 128 has a lot more information about programming 2D
animation effects.

• ExtendSim has many functions that facilitate customizing animation depending on which
icon views are being selected by the modeler. See the functions for “Icon views” on
page 293.

Script tab

12 Overview
Script tab

O
ve

rv
ie

w

he Script tab of the Example block looks like the screenshot above. This tab is used to enter
and edit the block’s ModL code and comments. ModL is the internal programming language
for ExtendSim.

Unlike the other block parts, which can be seen by the modeler, ModL code can only be
accessed through a block’s structure window or in an equation-based block’s editor window.

☞ As shown on page 78 there is a Script dialog in the Edit > Options menu that is used to specify
characteristics for a block structure’s Script tab. For example, you can change the colors of
user functions or keywords. When the block’s Script tab is the active window, use Alt + O to
open the Script dialog.

ModL code
If you know a programming language, you will probably recognize the structure of the ModL
code. ModL is essentially C++ with some enhancements and extensions to make it more robust
for simulation modeling.

☞ When you build blocks using ModL, the block’s program is compiled to native machine code.

Layout
After the copyright and modification history information, the first lines are the declaration of
the types of variables used in the code. Following is the code which is grouped into sections,
where each section is either a message handler or a function. Lines that begin with “//”, “**”,
or “/*” are comments.

For more information about the ModL language
• “ModL Overview” on page 25

• A tutorial starting on page 44

• “The ModL Language” on page 59

Functions
This popup lists the message handlers (in all caps) and functions used in the block.

Selecting something from the list causes the code to scroll to the section that uses the function
or message handler. It also opens the include file if the function or message handler is used in
an include.

For more information
• “Messages and Message Handlers” on page 193

• “ModL Functions” on page 205.

Includes
Lists and opens the include files that are used in the code. Include files are standard header
files that are put in ModL code and can contain ModL commands such as definitions, assign-
ments, and functions. The purpose of an include file is to simplify maintenance when several
blocks use similar variable definitions and functions. Include files are discussed on page 81.

Parts of a Block 13
Dialog tab

O
verview
Dialog tab

The Dialog tab for the Example block’s structure looks like the screenshot shown here.

Dialog items
The buttons, parameter fields, check boxes, and so forth that comprise a block’s dialog are
known as dialog items.

☞ For a complete list and description of dialog items, see page 14.

Tabs
The block’s Dialog tab has two tabs at the top—Options and Comments.

Tabs in a dialog are used to group dialog items by function. When you create or modify a
block’s dialog you can:

• Add tabs to the dialog by clicking the + sign

• Add dialog items to a tab after bringing the tab to the front

• Rename a tab by double-clicking its name and choosing a new name in the window that
appears

• Delete a tab by clicking its close button, the X next to its name

• Move dialog items from one tab to another using the Cut, Copy, and Paste commands

 Be careful when deleting a tab with dialog items on it. See the caution on page 19 about delet-
ing dialog items from blocks that are used in models.

Dialog Resizer
Since they usually have different numbers and types of dialog items, a block’s tabs are often
different sizes. The Dialog Resizer allows you to position the right and bottom edges of each
tab separately. This determines what is visible for each tab when it becomes the active window.

14 Overview
Help tab

O
ve

rv
ie

w

Use the keyboard’s arrow keys, or drag the bottom right corner of the resizer, to set the default
size for each tab. ModL functions can also be used to set or reset the size of each tab in the dia-
log.

☞ The arrow keys can be used to change the position of the resizer’s bottom right corner.

Help tab
This tab is used to enter and edit the online Help for the block. This text appears when you
click the Help button in the lower left corner of a block’s dialog and is about the block and how
it can be used in a model. It is not available through the ExtendSim Help menu command,
which provides help for using the ExtendSim application.

You can add formatting to the text by selecting it and using the buttons in the Text toolbar.

☞ By default the block’s name and the first sentence of the text in the Help tab is displayed as a
tooltip when the cursor is hovered over the block. You can choose that just the block name, but
not the Help text, be displayed. To do this, turn off the “Include additional block information”
option in the Edit > Options > Model tab.

Dialog items
The frames, text, buttons, tables, and entry boxes that go into a dialog are collectively known
as dialog items. Dialog items are created on the Dialog tab using buttons from the Dialog Items
toolbar, shown below. Each dialog item is then configured or defined using options in its Prop-
erties window.

☞ See “Accessing dialog items from a block’s code” on page 35 for how dialog items are called in
ModL.

Types of dialog items
The buttons in the Dialog Items toolbar are shown above. The types of dialog items are sum-
marized in the this table in the same sequence as the buttons.

Type Description Page

Parameter
(Number)

Entry box that takes and/or displays a number. Users can
dynamically link parameters to a cell in an ExtendSim database
or global array instead of just entering data.

36

Popup
Menu

A shadowed rectangle containing a menu of items. Each item
in a popup menu has a label which can be changed using Modl
code. Note: popup menu indexes start at 1, not 0. Each item in
the list can have its text label formatted.

39

Checkbox Square buttons that have a check mark in them when they are
selected; the boxes are empty when not selected. Checkboxes
can have labels that appear as text to their right; the labels can
be changed using ModL code.

37

Button A button that can be clicked, such as an OK or Cancel button.
A button’s label appears as text inside the button; the labels can
be changed using ModL code.

38

Parts of a Block 15
Dialog items

O
verview
Radio
Button

Round buttons that appear in groups where each group has a
unique group number. Only one button in the group can be
selected at a time; this causes all the other buttons in the group
to become deselected. Radio buttons can have labels that
appear as text to their right; the labels can be changed using
ModL code.

37

Frame Used to group dialog items. Has an optional label that will
appear at the top of the frame. Does not require a dialog item
name. This dialog item can have its text label formatted.

40

Static Text
(Label)

Text that appears as a label in the dialog. Can be changed
through ModL code but not by the modeler. Can be formatted.

39

Dynamic
Text

Entry box that takes or displays text. Limited to 32,000 charac-
ters. This item uses an automatically resized dynamic array to
store the text. It is useful for larger amounts of text such as for
comments or for equations in the Equation and Optimizer
blocks.

36

Editable
Text

Entry box that takes or displays text. Limited to 255 characters.
Users can dynamically link editable text to a cell in an Extend-
Sim database or global array instead of just entering data.

36

Editable
Text 31

Same as Editable Text, above, but limited to 31 characters to
save memory.

36

Data Table A two-dimensional table with scrollbars and adjustable column
widths (similar to a spreadsheet) for holding numbers. If block
code provides for it, modelers can change the number of rows
and columns and can dynamically link tables to an ExtendSim
database or global array. Can have its text label formatted.

38

Text Table A two-dimensional table with scrollbars and adjustable column
widths (similar to a spreadsheet) for holding text. If block code
provides for it, modelers can change the number of rows and
columns and can dynamically link tables to an ExtendSim data-
base or global array. The text can be formatted.

 The Text Table uses a significant amount of memory and
searching strings is slower than searching data. If possible,
use the Data Table dialog item instead, especially if the
table is large.

38

Slider A control that allows you to select from a range of values by
moving a value indicator. You can manually drag the knob to
change a value or use ModL code to move the knob to show a
value.

41

Meter An output-only item that shows a needle in a meter. 41

Switch A switch that resembles a light switch. It has two values, 0 (off)
and 1 (on).

41

Calendar Takes an ExtendSim date value and displays it on a calendar. 42

Type Description Page

16 Overview
Dialog items

O
ve

rv
ie

w

 The Embedded Object dialog item is no longer used because embedded objects are not sup-
ported as of ExtendSim 10.

Properties of dialog items
To see the definition of a dialog item:

Open the block’s internal structure using one of the methods on page 7.

For example, open the structure of the Examples block (the block is located at Extend-
Sim/Documents/Libraries/Example Libraries/ Tutorial library)

In the structure’s Dialog tab, double-click the dialog item or right-click and select Properties

For example, double-click the “Add” dialog item of the Example block.

This opens the definition window for the designated dialog item. In this example, it opens
the properties for the dialog item labeled Add, as shown here.

Each properties window displays the properties of the selected dialog item. For the Add dialog
item, the information is:

• The dialog item is of the type Static Text; its button in the Dialog Items toolbar is shown to
the right of its type

• The variable name, for use in the script, is Static_Text8_lbl

• The dialog item’s dimensions and position in the dialog are given

• Its zOrder is 0

• The text label that appears in the dialog is Add

• The label is visible on this dialog tab, but not visible on all the block’s dialog tabs

Clock Displays the time component of an ExtendDate value on a digi-
tal clock.

42

Type Description Page

Parts of a Block 17
Dialog items

O
verview
Options in the dialog item’s properties window
Each dialog item’s properties window has multiple options, as discussed below. Not all options
are available for all dialog items.

☞ In addition to the options in the properties window, some dialog items can have their text or
labels stylized or aligned as discussed in “Stylizing and aligning dialog items” on page 20.

Option Description

Type A dialog item’s type (static text, frame, etc) is determined by which dia-
log item you choose from the Dialog Items toolbar and cannot be
changed through the properties window. Dialog item types are listed on
page 14.

Name A dialog item’s Name is the variable name or message name used by the
block’s code to interact with that item in the dialog, as discussed in
“Accessing dialog items from a block’s code” on page 35. As of Extend-
Sim 10 names are required for all dialog items; default names are entered
by the system for frames and static text. The name:

1) Must start with a letter

2) Cannot contain any non-alphanumeric characters

3) Can be up to 31 characters in length

X,Y,W,H By default, the fields (X, Y, W, and H) reflect the size and position of
dialog items as they are created. Their size and position can also be
adjusted after the dialog item created.

zOrder zOrder is the forward/backward position of dialog items. It's what is
effected by the Bring to Front and Send to Back buttons in the Alignment
toolbar. The zOrder numeric value gives programmers complete control
over the dialog item.

Format Parameters only. The number formats are: General, 2 decimal places,
Integer, Scientific, and Percent.

Fill Color Colors the text label. Works the same as the Fill Color tool in the Shapes
toolbar. For dialog items with multiple labels (such as the Popup Menu)
the selected color will be applied to all the labels.

☞ ModL code allows more control over dialog item appearance. For
example, use the SetDialogItemColor function to set a color, and
other functions to change the color or border depending on model
circumstances. See “Dialog items” on page 267.

Border Color Works the same as the Border Color tool in the Shapes toolbar. See
above note.

18 Overview
Dialog items

O
ve

rv
ie

w

Label Dialog items have optional text labels. These can be up to 255 characters
in length. If defined, labels are displayed as part of or along with the dia-
log item in the block’s dialog. For example, the text that appears to the
right of a checkbox is a label. For tables, labels are used to name the col-
umns.

☞ If a dialog item has a label that will be displayed in the block’s dia-
log, that label can sometimes be formatted using standard charac-
ters. See “Stylizing and aligning dialog items” on page 20.

 If you use the ampersand character (&) in the label of a Radio But-
ton, Checkbox, or Frame dialog object you will need to enter it twice
(&&). Otherwise, the character will not show on the label.

DI ID Upon creation, each dialog item is assigned a unique ID. Some functions
use this identification number in addition to the Name, to control the
item.

Tab Number Determines which dialog tab the dialog item is on. For dialog items that
are set to be visible on all tabs, the Tab Number is -1. For other items, the
numbering starts with 0, indicating the first tab.

Tab Order Many dialog items have a tab order number. This determines the order
dialog items will be selected when modelers tab between entry boxes on
the dialog. When the tab order is changed for one dialog item, the tab
order for the other dialog items is automatically adjusted.

 Be careful when changing the tab order of dialog items. If the block
is used in a model, changing a dialog item’s tab order can cause the
block’s cloned dialog items to become confused. In this case the clone
will present itself with multiple question marks; it must be deleted and
replaced.

Rows/Columns/Row
Height

Text Tables and Data Tables only. These numbers are for the body rows
and columns only; headers will be added automatically.

Option Description

Parts of a Block 19
Dialog items

O
verview
☞There are also functions that can control many dialog item properties. See “Dialog items” on
page 267.

Visible By default dialog items are visible in the tab in which they are created.
(See below for making a dialog item visible in all tabs.) Unchecking this
option provides a safe alternative to deleting a dialog item when you no
longer want it in an existing block.

 Deleting a dialog item from a block that is used in a model could dis-
rupt the order of the data in the dialog. The data will have to be reen-
tered for each instance of that block in all models that use it. Instead
of deleting the dialog item, hide it by unchecking the Visible option.

When the Visible option is unselected, the item will not appear in the dia-
log of the block in the model. It will, however, show in the Dialog tab as
a red rectangle without text. Hidden dialog items can be moved in the
Dialog tab. You can also revert a hidden dialog item by opening its prop-
erties and selecting the Visible option.

☞ You can also temporarily hide and show dialog items using the Hide-
DialogItem function; it is described in the dialog item function list
that starts on page 267. Also consider using the DIMoveTo and
DIMoveBy functions to move dialog items out of the way depend-
ing on dialog settings.

Visible in all tabs If a dialog has tabs, this option will cause the dialog item to appear on
every tab. This is common for static text that describes the purpose of the
block as well as the OK and Cancel buttons. For dialog items that are
visible in all tabs, their Tab Number (discussed above) is -1.

Display only Under normal circumstances, many dialog items are editable or respond
to clicks in the dialog. Checking the Display only option means that a
modeler can’t change the dialog item, or that a click will be ignored, in
the block’s dialog. Instead, it can only be set through ModL code.

This option is typically used to display results or to temporarily or per-
manently disable a dialog item depending on settings in the block.

In a block structure’s Dialog tab, display-only
items have a gray outer border instead of the
standard black border; this is shown at right.
They also appear as dimmed in the block’s dia-
log. Display-only dialog items can still be cop-
ied and cloned

☞ Using ModL functions, the state of any dialog item can be dynami-
cally changed between editable and not editable.

Add to right click
menu

Buttons only. Cause the block’s Button dialog items to appear in a menu when
a block on the model worksheet is right-clicked. These commands can then be
executed without having to open the block’s dialog to click the button.

Option Description

20 Overview
Dialog items

O
ve

rv
ie

w

Stylizing and aligning dialog items
In addition to the above property options, numbers, and colors, some dialog items can have the
style (and sometimes the alignment) of their text labels formatted in their Properties windows.

Dialog items that support stylizing and/or alignment

• Data tables

• Frames

• Popup menus

• Static text

• Text tables

Available formats
As indicated below, formatting is not case sensitive.

☞ For dialog items with multiple labels (such as popup menus or tables) set styles separately for
each label.

How to format the text label
To format a label’s style or alignment, in
the dialog item’s Properties window pre-
cede its text label with the initial(s) of the
desired format within angle brackets as shown here.

Combined formats.
To combine formats, put multiple initials within one set of angle brackets. For example, a label
that is bold, italicized, and right adjusted would be preceded by <bir>. The order of the initials
for combined formatting does not matter.

☞ Text label formatting will only appear in the block’s dialog, not in the Dialog tab. To see the
format implemented, close and compile the block, then open its dialog.

Dialog item tooltips on block dialogs and in the Dialog tab
As indicated in the table above, each dialog item can have a name. This is how the items are
referenced in equation-based blocks and in block code. If a dialog item has a name, tooltips
will provide that information without you having to access the dialog item’s properties win-
dow.

The command Edit > Options > Misc tab allows you to have tooltips show in the block’s dialog
and/or on the block structure’s Dialog tab. With tooltips turned on, resting the cursor above a
dialog item displays the name of the dialog item; the window will be blank if there is no dialog
item name.

STYLE ALIGNMENT

Bold: or Left: <L> or <l>

Italicized: <I> or <i> Right: <R> or <r>

Underlined: <U> or <u> Centered: <C> or <c>

Parts of a Block 21
Connectors

O
verview
For more information about dialog items, see:
• “Accessing dialog items from a block’s code” on page 35

• “Working with dialogs” on page 95

• “Block connectors and connection information” on page 260

Connectors
Most blocks have connectors that transmit information to and from ModL code. Connectors
and animation objects are added to a block in its structure window’s Icon tab using the Icon
toolbar shown below.

The Icon toolbar
The Icon toolbar is used to add connectors and animation objects to block icons, both for hier-
archical blocks and for the custom blocks you create. In both cases this is done in the Icon tab
of the block’s structure window.

Connector types
The first six buttons in the Icon toolbar are for selecting the type of connector.

• The ExtendSim User Reference describes the use of the first five connectors: value, item,
flow, universal, and array.

• The user-defined (or “diamond”) connector does not have any “special” properties, and is
provided for your convenience for custom applications. For example, if you design a new set
of blocks and want to be sure that modelers only connect those blocks to each other, you
would use this connector. If the modeler tries to connect a diamond connector to a value or
item connector, ExtendSim will not let them.

☞ By default new connectors are added to the icon as a normal (single/non-variable) connectors.
They can be changed to variable connectors (arrays of single connectors) using the connector
option tools, below.

Connector options
After the connectors, the next six buttons in the Icon toolbar are options for causing a connec-
tor to be variable rather than normal. While normal connectors represent one input or output,
variable connectors act like a row of single connectors, where the row can be expanded or con-
tracted to provide a required number of inputs or outputs.

The first five choices allow you to select, respectively, a variable connector that the modeler
can expand downward, to the right, upward, or to the left, or which cannot be manually
expanded or contracted (variable connector with no resize bar).

The sixth choice converts a variable connector into a normal connector. Use this if you selected
a variable connector by mistake.

In the block’s code, you can specify a maximum and minimum number of variable connectors
and change the number of connectors dynamically. An example of using normal and variable
connectors is the Math block (Value library). To work with variable connectors, see the writeup
on page 35 and the functions on page 264.

22 Overview
Connectors

O
ve

rv
ie

w

☞ Regardless of connector type (Value, Item, etc.), each connector can be normal or variable
depending on the option selected in the Icon toolbar. However, the entire row of a variable con-
nector must be of only one type of connector.

Animation object
The last button in the Icon toolbar is the Animation Object button. This is used to add 2D ani-
mation objects to a block’s icon environment as discussed in “2D animation” on page 10 and
“Adding 2D animation” on page 53.

Connector names
By default each connector is assigned a unique name which can be changed. The last part of a
connector name defines whether it is an input or output connector.

Connector names are shown in the Connectors pane of a block’s structure.
For example, the name of the connector for the Example block is as shown
at right. This block has one normal (non variable) value output connector
named VariableOut.

When you add connectors to the icon, they are all initially input connectors.
To make one of these connectors an output connector, change its name to
something that ends with “Out.

Rules for connector names
• Connector names are not case sensitive

• The name must start with a letter

• The name cannot contain any non-alphanumeric characters or spaces

• The name must be fewer than 32 characters in length

• Input connectors must end in some form of the word “In” (IN, in, In, iN)

• Output connectors must end in some form of the word “Out” (OUT, out, Out, ouT, etc)

Editing connector names
To change the name of a connector:

Double-click the connector name in the connector pane. ExtendSim highlights that connec-
tor in the icon pane so you can identify it.

Type a new name or edit the name.

Press the enter or return key or click anywhere else in the connector pane to save the edited
name.

☞ You can name a connector anything you want as long as it follows the rules above.

Adding connectors to the icon
To add a connector to an icon:

In the Icon toolbar (shown on page 21), click on one of the connector type buttons (Value,
Item, Flow, Universal, Array, or User Defined)

Then click in the block structure’s Icon tab at the desired position

This will place a connector in the icon pane. By default, the connector is a “normal” connector.

Parts of a Block 23
Connectors

O
verview
To change the default normal connector to a variable connector:

Select the connector in the Icon pane

Select one of the variable connector options (down, right, up, left, or
no resize) in the Icon toolbar

Changing connector types
If you selected the wrong type of connector (such as a value connector
when you wanted an item connector), you can easily change its type:

Click on the connector in the block structure’s Icon tab

Click on the correct connector type in the toolbar

 When you build blocks it is important that you use the above method to change connector
types, rather than deleting a connector. If you delete a connector for a block that is used in any
model, the order of the connections will be disrupted and existing connections to the block
might become incorrect.

Connector labels
A connector label is associated with a particular connector and makes a block’s inputs and out-
puts more understandable. Connector labels can be positioned, colored, and formatted, and are
especially helpful to distinguish one input or output from the others when using variable con-
nectors. Most ExtendSim blocks have one or more connector labels.

Connector label functions start on page 266. Connector labels are defined using the Connector-
LabelsSet function. The function’s arguments allow setting the position and color of the label.

To format a connector label, precede the label text with angle brackets (“< “and “>”) that
enclose the desired format, using the same techniques shown in “Stylizing and aligning dialog
items” on page 20. For instance, a bold, right-adjusted label named “want” would be entered as
“<rb>want” in the Script tab.

Connector tooltips
Tooltips can display custom text when the mouse hovers over a connector. This is helpful to
show additional information about the connector (including its value during the simulation)
and what it can be used for. See “Connector tool tips” on page 267 and the Equation block
(Value library).

For more information about connectors see:
• “Accessing connectors from a block’s code” on page 34

• “Working with connectors” on page 102

• “Block connectors and connection information” on page 260

24 Overview
Connectors

O
ve

rv
ie

w

Overview

ModL Overview
Creating ModL code and dialogs for custom blocks

“I must create a system,
or be enslaved by another man’s.”

— William Blake

26 Overview
ModL feature overview

O
ve

rv
ie

w

This chapter and the others that follow will teach you how to create new blocks, modify exist-
ing blocks, or call functions from equation-type blocks such as the Equation and Optimizer
blocks (Value library) and the Equation(I) and Queue Equation blocks (Item library).

☞ These chapters only describe creating standard blocks, not hierarchical blocks. Hierarchical
blocks contain ExtendSim blocks and are created through the user interface, without program-
ming, as described in the User Reference.

As you saw in the preceding chapter, there are many parts of a block, the most complex of
which is the ModL code. This chapter shows how a block’s code is laid out and the basic ways
that ModL code lets blocks interact with other blocks, with their own dialogs, and with the
general parameters of a simulation.

☞ This overview of the ModL language is a prelude to, and should be read before, the “The ModL
Language” reference chapter that starts on page 59.

ModL feature overview
As you will see, ModL is very much like C, although it is not as complicated and not case sen-
sitive. ModL also has some enhancements that will help you create block code:

• Block code is organized as message handlers and function definitions, rather than just func-
tion definitions. Message handlers and functions can be overridden (e.g. if they are from
include files) and can have local variables.

• The names of connectors and dialog items are treated as static variables that can be read or
set from within message handlers or functions. The dialog and connector changes take effect
immediately.

• Blocks can query, control, and send messages to other blocks, even if they are not connected.
• Blocks can have icon views facilitating the direction of model flow.
• The ModL language has several string data types. Strings can be up to 255 characters and

can be concatenated (strung together) with the + (plus) operator.
• ModL has subscript checking, causing the code to abort if you try to access an element

beyond the size of an array.
• There are over 1,200 ModL functions for performing general and simulation-specific tasks.

In addition, there are many global variables that can be accessed from ModL code as well as
some predefined constants.

• Including 2D animation in a block is easy. You do not need to do any graphics in your block
code. Instead, you can position animation objects on the icon and use animation functions to
show pictures or text within the objects.

• You can use multi-dimensional arrays (with up to five sets of dimensions). Arrays can be
passed to blocks or functions as entire arrays or as individual elements. ModL arrays can be
fixed (specified size) or dynamic (one dimension undeclared). You can use dynamic arrays to
hold values when you do not know how many elements will be needed.

• You can create ExtendSim databases, linked lists, and global arrays that are useful as in-
memory data repositories. You can also use ExtendSim blocks or code to access external
spreadsheets and ADO and ODBC compatible databases.

• ModL allows for efficient connectivity with other languages, so you can make use of other
features and technologies.

ModL Overview 27
ModL compared to other programming languages

O
verview
• ExtendSim has an internal source code editor (with code completion, syntax colorization,
and more) as well as a source code debugger.

• An external source code feature allows multiple people to efficiently and effectively work on
the code of blocks at the same time.

ModL compared to other programming languages
An ExtendSim block’s code is written in ModL, a programming language that is much like C
or C++ that has been enhanced for simulation purposes.

☞ DLLs and Shared Libraries provide a method for incorporating other technologies, such as
Visual Basic, Java, or Visual C++, into ExtendSim. For more information, see “DLLs” on
page 86.

If you code, and if you don’t
• If you have some familiarity with C or C++: Although ModL is specialized for simulation, it

uses many concepts from C++ and you can certainly program in ModL. Note that you do not
need to know much C/C++ in order to be completely comfortable in ModL. The table that
starts on page 27 lists major differences between ModL and C++.

• If you program in a language other than C/C++: ModL should not present much of a chal-
lenge. You can use your programming knowledge to program using ModL or write DLLs in
other languages and call them from within ExtendSim code. The table that starts on page 29
compares common constructs for ModL and for some other common languages.

• If you do not program: You can still use the equation-based blocks, make some modifica-
tions to existing blocks, and build simple blocks without programming experience.

☞ Whether you know programming or not, the equation-based blocks provide access to ModL
functions and variables. This is useful for accomplishing specialized tasks without having to
program a block. The equation-based blocks are listed in the User Reference.

ModL compared to C++
There are only a few differences between ModL and C++. They are:

ModL C++

case insensitive case sensitive

real or double (Mac OS and Windows: 16 significant digits) double

integer or long (32 bit) long

string or Str255 (255 characters maximum) typedef struct Str255
{
unsigned char length;
unsigned char str[255];
} Str255;

28 Overview
ModL compared to other programming languages

O
ve

rv
ie

w

Str15 (15 characters maximum)
Str31 (31 characters maximum)
Str63 (63 characters maximum)
Str127 (127 characters maximum)

typedef struct StrN
{
unsigned char length;
unsigned char str[N];
} StrN;

Array bounds subscript checking produces error messages
when array bounds are exceeded

No array bounds checking

Functions declared using ANSI declaration only (prototype
declarations).

Functions can be declared either
K&R or ANSI

Functions and message handlers can be overridden. Not available in C, but available
in C++.

“i++;” is a statement. It cannot be used as an expression. See
below.

“i++” is a statement which can
be used as an expression

Statements cannot be used as expressions. For example “a[++i]
= 5;” or “a[i=i+1] = 5;” are not allowed. Instead they must be of
the format “i++;”, or “i=i+1;” and “a[i] = 5;”, or “a[i+1] = 5;”

Expressions can be statements

The ModL “for” statement is:

for (statement; boolean; statement)

The C “for” statement is:

for (expression; expression;
expression)

^ is used as the exponentiation operator (like it is in BASIC and
spreadsheets)

^ is used as the exclusive-OR
operator in logical expressions

To concatenate a string use:

stringVar = stringVar+“abc”;

The C equivalent is:

strcat(stringVar, "abc")

To convert a number to a string:

stringVar = x;

The C equivalent is:

ftoa(x, str);

if (stringVar < "abc")
{
...
}

if (strcmp(stringVar, “abc”) < 0)
{
...
}

Resizable dynamic arrays (pointertypes can hold the address of
a dynamic array)

Pointers

Linked lists support complex data structures Structures

!= or <> are not-equal operators != is the not-equal operator

% or MOD are the modulo operators % is the modulo operator

Bit handling done by functions (such as BitAnd(n, m)) Bit handling done by operators
(such as n&m)

ModL C++

ModL Overview 29
ModL compared to other programming languages

O
verview
ModL compared to languages other than C++
The following table compares some of the common constructs in ModL to other languages.

☞ DLLs (Windows) and Shared Libraries (Macintosh) provide a method for linking languages
other than ModL to ExtendSim. For more information, see “Accessing code from other lan-
guages” on page 42 and “DLLs” on page 86.

#define, #include, #ifdef, #ifndef, #else, #endif can be used as
preprocessor directives to conditionally compile code if a sym-
bol of any type is defined (e.g. constant, variable, connector,
function, etc.). There is no macro definition.

Macro definition is allowed in
addition to preprocessor direc-
tives.

ModL Java Visual Basic FORTRAN

real a[10], x;

integer i;

for (i = 0; i < 10;
i++)
{
if (i == 5)

x = 3;
else

x = 5+i;
a[i] = x;

}

double[] a = new double[10];
double x;
int i;

for (i = 0; i < 10; i++){
if (i == 5) {
x = 3;

}else{
x = 5+i;

}
a[i] = x;

}

dim a(9) as single

dim i as integer

for i = 0 to 9
if i = 5 then
 x = 3
else
 x = 5+i
 a(i) = x
end if

next i

real a(9), x

integer i

do i = 0,9
if (i .EQ. 5)

then
x = 3

else
x = 5+i

end if
a(i) = x

end do

integer b[10][5]; int[][] b = new int[10][5] dim b(9,4) as inte-
ger

integer b(9,4)

switch (i)
{
case 0:

x = 3;
break;

case 1:
case 2:

x = 5+i;
break;

default:
x = 0;
break;

}

switch (i) {
case 0:
 x = 3;
 break;
case 1:
case 2:
 x = 5+i;
break;

default:
 x = 0;
break;

}

select case i
case 0
 x = 3
case 1
case 2
 x = 5+i
case else
 x = 0

end select

select case i
case (0)
 x = 3
case (1,2)

 x = 5+i
case default
 x = 0

end select

while (i < 10)
{
x = x+i;
i = i+1;
}

while (i < 10) {
x = x+i;
i = i+1;

}

while i < 10
x = x+i;
i = i+1;

wend

do while (i .LT. 10)
x = x+i;
i = i+1;

end do

ModL C++

30 Overview
ModL language terminology

O
ve

rv
ie

w

ModL language terminology
The following table describes the terms used in ModL coding.

do
{
x = x+i;
i = i+1;
}

while (i < 10);

do {
x = x+i;
i = i+1;

}while (i < 10);

do
x = x+i
i = i+1

loop while i < 10

10 x = x+i;
i = i+1;

if (i .LT. 10) goto
10

//comments
** comments

/* enclose multi-line
comments like this
*/

//comments

/* enclose multi-line comments
like this */

rem comments
' comments

(NOTE: only to end
of current line)

! comments

(NOTE: only to
end of current line)

strng = strng+"abc"; strng = strng+"abc"; strng = strng&"abc" strng = strng // 'abc'

strng = x; strng = double.toString(x); strng = Str(x) depends on imple-
mentation

if (strng < "abc")
 ...

if (strng.compareTo("abc") < 0)
{
 ...

if strng <"abc"
then
 ...

if (strng .LT. 'abc')
then

 ...

Term Description

array An indexed list of numbers or strings, with indices starting at 0 (zero).

Arrays can be fixed or dynamic. Dynamic arrays are static and cannot be locally
declared. Fixed arrays can be declared as static or local.

constant Value that does not change.

data type The type of storage used for the data: real, integer, string, pointertype

E notation or
scientific nota-
tion

Exponential number specified as a number raised to a power of 10. For example,
“6.3E3” means 6,300 and “5E-1” means 0.5.

function Predefined named group of code instructions with specified arguments that may
return a value (void functions don’t return a value) and can be called in a block’s
code. Can be overridden by defining the function in an include file which can
then be overridden in the block’s code.

global variables Variables that are used to pass information between blocks. They are predefined
by ExtendSim and can be viewed or modified by any block or equation. These
variables’ values are preserved between simulation runs and are saved with the
model. See “Scope of global, local, and static variables” on page 62 for more
information regarding the scope of those variables.

identifier Name that is entered.

ModL Java Visual Basic FORTRAN

ModL Overview 31
Differences between equation blocks and programmed blocks

O
verview
Differences between equation blocks and programmed blocks
The equation-based blocks in the Value and Item libraries provide access to over 1,200 ModL
functions; you can also use operators to enter logical statements, write compound conditions,
and specify loops. The equation is automatically compiled when you click OK in the block’s
dialog.

Using an equation-based block you can accomplish much of what can be done with a custom-
built block. However, there are some differences and limitations.

literal Number or string that is entered as a constant.

local variable Variable that is locally declared and is valid only within the message handler or
user-defined function in which it is defined. Note that these are temporary vari-
ables and their values are not preserved after exiting a message handler or func-
tion. See “Scope of global, local, and static variables” on page 62 for more
information.

 Do not give local and static variables the same name; local variables with
the same names as static variables override the static variables.

message han-
dler

Grouping of code that tells ExtendSim what to do in a particular circumstance
that is defined by the message. Can be overridden.

statement Section of code ending with “;”.

static variables Variable that is valid throughout the block’s code in which it is defined. The val-
ues for these variables are preserved and are stored with the model when it is
saved. See “Scope of global, local, and static variables” on page 62 for more
information.

 Use caution when deleting static variables for blocks already used in mod-
els. It has the same harmful effect as deleting dialog items (discussed in the
section on “Hiding/showing dialog items” on page 97).

system variable Provide information about the state of the simulation. Like global variables, sys-
tem variables are valid in any block in a model, are declared by ExtendSim, and
can be viewed or modified by any block or equation.

type declara-
tion

Defining a variable as a certain data type: real, integer, string, or pointertype.

Feature Equation-Based Blocks Custom Blocks

Custom dialog No Yes

Pre-defined input and output variables Yes No

Data type declarations (real, integer, string, pointertype) Yes Yes

Constant definitions (e.g. “Constant N is 5”) Not directly; use an include Yes

Pre-defined constants (Pi, Blank, True, False) Yes Yes

Dynamic arrays No Yes

Static fixed arrays Not directly; use an include Yes

Term Description

32 Overview
Structure of a block’s ModL code

O
ve

rv
ie

w

☞ Include files used with equations are normally saved in the same location as the model using
them; this makes it easy to move both the model and the includes it uses to a different location.
Include files used in block code should be saved in the Extensions/Includes folder.

Structure of a block’s ModL code
ModL is essentially C++ with enhancements and extensions to make it more robust for simula-
tion modeling.

Layout of the code
Like C programs, a block’s code starts with data type declarations and constant definitions
(see page 33). Because you declare these at the beginning of the code, before any message han-
dlers or user-defined functions, they are considered static or permanent variables. Unless over-
ridden by a local variable declaration, static variables are valid throughout the block’s code.
However, their scope does not extend outside of that block’s code. Global variables are pre-
defined and have a global scope, making them valid in every block.

☞ For more information about the scope of variables, see “Scope of global, local, and static vari-
ables” on page 62 for more information.

After the type declarations, there are function (and void function) definitions and many mes-
sage handlers (see page 33). This is where you write code and define the behavior of the block.
The functions and message handlers are just definitions; they need to be called in order to be
executed. They can also be overridden by re-declaring any number of times below the first
declaration.

• Message handlers begin with a line “on messageName” and tell ExtendSim what to do in
various circumstances; they are usually executed by the application. For example, a message
handler in every block begins with “on Simulate” and the code within the message handler
starts and ends with curly braces (“{“ and “}”).

Locally declared fixed arrays Yes Yes

Static variables Not directly; use an include or
declare as an input variable

Yes

Global variables Yes Yes

Locally declared variables Yes Yes

ModL functions Yes Yes

User-defined functions Not directly; use an include Yes

Message handlers Not directly; instead call
SendMsgToBlock()

Yes

Syntax coloring Yes Yes

Code completion Yes Yes

Conditional compilation Yes Yes

Debugger Yes Yes

Call include files Yes (see note) Yes (see note)

Feature Equation-Based Blocks Custom Blocks

ModL Overview 33
Structure of a block’s ModL code

O
verview
• Functions are of the form “type functionName(type argument, ...)” or “void function-
Name(type argument, ...)” depending on whether they return a value. Functions are called
within message handlers or from other parts of the block’s code.

When you type the first letters of ModL functions in the Script tab, code completion pops up a
window so you can get the correct spelling and arguments. As code is written, syntax coloring
gives visual cues about its structure.

Like C, ModL ignores blank lines and indentation. Of course, it is a good idea to indent code
with Tab characters and use comments. Single line comments are preceded by “//” or “**”.
Multi-line comments start with a “/*” and end with a “*/”.

Data types
There are four main data types in ModL:

Constants
Constant declarations can be of data type real, integer, or string, but not pointertype. The gen-
eral form for a constant definition is:

CONSTANT id IS literal;

ModL includes four general-purpose predefined constants: Pi, Blank, True, and False. For
more information, see page 62.

 Constants are not directly supported in equation-based blocks; use an include or set the value
from a Constant block (Value library).

Functions, message handlers, and local variables
ModL code has functions and message handlers that group the code into sections.

• Functions are procedures that do calculations and can be called from different points in the
code. Functions can return a value; void functions do not return a value.

• Message handlers interpret messages that come from the simulation, from another block, or
from user interaction with a block’s dialog. Message handlers begin with a line “on mes-
sageName”, where messageName is the name of the message. ExtendSim runs the message
handler whenever one of the messages is passed to the block.

• Local variables are variables that are declared in message handlers and user-defined func-
tions. Their scope is just the message handler or function in which they are declared.

 Message handlers cannot be declared in equation-based blocks; instead call SendMsgToB-
lock(). See the table onpage 31 for additional differences when using equation blocks.

Message handler structure
Message handlers are denoted by:

Data Type Page

Real or double 60

Integer or long 60

String (Str15, Str31, Str63, Str127, Str255 or String) 61

Pointertype 61

34 Overview
Accessing connectors from a block’s code

O
ve

rv
ie

w

on messagename
{

zero or more declarations and/or statements;
}

MessageName must be the name of one of the messages listed in the chapter “Messages and
Message Handlers”. The code of the message handler is contained between the curly braces
(“{” and “}”) and tells ExtendSim what to do in the specific circumstance. To exit from a mes-
sage handler before the ending brace, use a Return statement or an Abort statement.

For example, in a continuous model, the code in the “on Simulate” message handler is exe-
cuted for every step in the simulation. However, the code in the “on InitSim” message handler
is only executed once, at the beginning of the simulation.

 You can declare local variables at the beginning of a message handler. However, you should not
have a global and a local variable with the same name. The local variable is temporary and
loses its value when the message handler is exited. Also, within each message handler, local
variables can override static variables. (If a local variable is defined with the same name as a
static variable, any references to that name within that routine or message handler will change
or reference the local variable, and the static variable will not be modified.)

Overriding user-defined functions and message handlers
Message handlers and user-defined functions can be overridden by being re-declared any num-
ber of times below the first declaration. This is useful in that include files can have basic forms
of functions and message handlers which can then be re-declared and overridden in the main
block code. See “Include files” on page 81.

☞ Message handlers are discussed more in “Message handlers” on page 75 and “Using message
handlers” on page 111. For a list of messages, see the chapter “Messages and Message Han-
dlers” that starts on page 193.

Other ModL features
• Syntax coloring gives visual cues about the structure and state of a block’s code, making it

easier to follow the logic. See “Syntax styling” on page 78.

• Code completion speeds up the coding process by reducing typos and other common mis-
takes. See “Code completion and call tips” on page 79.

• Conditional compilation allows segments of code to be compiled only if certain conditions
are met. For more information, see “Conditional compilation” on page 82.

Accessing connectors from a block’s code
As discussed in “Editing connector names” on page 22, when you create a block each connec-
tor’s name must end in either “In” or “Out”. Connector names are used as variables in ModL
code.

☞ All connector names are real type variables. If you set a connector name to an integer, Extend-
Sim automatically converts the integer to a real.

☞ Typically, connectors pass values one at a time. As discussed in “Passing arrays” on page 104,
connectors can also pass arrays of multiple values. Passing arrays is an easy way to pass more
than one piece of information at a time through blocks.

There are several types of connectors as listed on page 21. No matter what their type, connec-
tors can be single (“normal”) or multiple (“variable”).

ModL Overview 35
Accessing dialog items from a block’s code

O
verview
Normal (single) connectors
By default a new connector is added as a normal (single or non-variable) input connector. That
connector can be changed to a normal output connector by adding “Out” to the end of its name.

• To read from an input connector, use its name in the right side of a statement. For instance,
read from an input connector called “firstConIn” with:

myNumber = firstConIn;

• To set the value of an output connector, assign it a value. For example, to set the value of an
output connector called “totalOut”, use:

if (myNumber > 0)
totalOut = 1.0;

Variable connectors
Each variable connector is actually a row of single connectors where the row expands and con-
tracts. This allows the developer and modeler to control how many connectors are displayed
for a particular purpose. They are described in the User Reference.

☞ See “Adding connectors to the icon” on page 22 for the steps required to change the default
(normal) connector into a variable connector.

Accessing a variable connector from code
• Use the function ConArrayGetValue to read from a variable input connector. Note that input

connector indexes start at 0.

• To set the value of an variable output connector, use the function ConArraySetValue. Note
that output connector indexes start at 0.

Setting the number of connectors
The number of variable connectors can be managed directly within the code with the functions
ConArraySetNumCons and ConArrayGetNumCons.

If the number of variable connectors changes, the application sends two messages to the con-
cerned block. The first message is ConArrayChanged followed with the ConArrayChanged-
Complete message.

For an example of how to access variable connectors from a block’s code and change the num-
ber of connectors based on what is needed, see the code of the Math block (Value library).

☞ The entire row in a variable connector must be of only one type (Value, Item, etc.) and must be
either an input or an output. Also, connector indexes start at 0 (zero).

Accessing dialog items from a block’s code
The section “Dialog items” on page 14 introduced dialog items, including their definitions,
options, and use.

Overview
The default dialog item names (OK and Cancel), as well as the names for any dialog items
added to a block, are listed in the Dialog Item Names pane of the block’s structure window.
Use the Edit > Copy and Edit > Paste commands to copy dialog item names from that pane to
use in ModL code.

36 Overview
Accessing dialog items from a block’s code

O
ve

rv
ie

w

 As of ExtendSim 10 names are required for all dialog items. The system supplies a default
name for static text and frames; it can be changed following the rules given in “Options in the
dialog item’s properties window” on page 17.

Using the names of the dialog items, you can read and set them as variables in the same way as
you do connectors. Dialog item names can also be used as message names for use with mes-
sage handlers.

☞ Any dialog name can be used in the ModL code as both a variable name and a message name.

Dialog messages
Message handlers were introduced on page 33. They interpret messages that come from the
simulation, from another block, or from modeler interaction with the dialog.

Dialog messages come from modeler interaction with a block’s dialog items. When a button in
a dialog is clicked or a parameter is unselected (for example, after it has been changed),
ExtendSim sends a message with the same name as the dialog item (e.g. on DialogItemName)
to the ModL code.

For example, assume a block has a Count button. When that button is clicked in the block’s
dialog, ExtendSim sends the “Count” message to the block. If the block has an “on Count”
message handler, it will be executed; if not, nothing happens.

Names assigned to a block’s dialog items are listed in the block structure’s Dialog Item Names
pane.

Parameters and editable text
Assume that a parameter dialog item has the name “numberOfRecords”. In the block’s code
you could have a statement such as:

myNumber = numberOfRecords/100;

Dialog items can also be set from inside the ModL code. For instance, to set the value shown in
the “numberOfRecords” field to “1000”, use the statement:

numberOfRecords = 1000;

The same methods work for editable text:

if (temp > 1500)
displayHeat = "Hot";
else displayHeat = "Cool";

Parameters and editable text dialog items have a limit of 255 characters; editable text 31 has a
limit of 31 characters and is used to save memory. In the dialog item’s properties window you
can choose the Display only option for a parameter or editable text dialog item. With this
option selected, the item cannot be changed directly in the dialog; it can only be changed in the
block’s code, using the same techniques just shown.

Dynamic text
Dynamic text items allow up to 32,000 characters, whereas editable text dialog items are lim-
ited to 255 characters each. Dynamic text is useful when you need more text area than an edit-
able text item can have. However, it is a little more complex to work with because ModL code
needs to be written to set it up before it is usable and accessible. This is commonly done in the
CreateBlock message handler (which occurs when the block is added to the model), but it can
be done at other times to suit the functionality of the block.

ModL Overview 37
Accessing dialog items from a block’s code

O
verview
Dynamic text items can be accessed directly via the string dynamic array assigned to the
dynamic text item or using the dynamic text functions (see “Dynamic text items” on page 283).
For an example of using dynamic text items, see the Equation block (Value library).

To declare the string dynamic array:

string aStringDynamicArray[]; // the dynamic array declaration
....

To set up the dynamic text item in the CreateBlock message handler:

myDynamicTextItem = DynamicTextArrayNumber(aStringDynamicArray);

To directly access the text:

first255Characters = aStringDynamicArray[0];

The example above shows a dynamic text dialog item attached to a string array. Dynamic text
dialog items can be attached to arrays of any size string.

Use the dynamic text functions to find and replace text. See “Dynamic text items” on
page 283.

Checkboxes and radio buttons
Checkbox and radio button dialog items return true/false values: true if the checkbox or radio
button is selected, false if not. They also send their dialog item name (as a message name) to
the block’s code when they are clicked. The code could have an “On DialogItemName” mes-
sage handler to process the message. The dialog item name could also be used as a variable to
query or set the dialog item’s value.

For example, if a block represents a teller in a
bank, instead of entering a number you could
use radio buttons to set the teller’s speed. The
dialog might look like the one shown at the
right.

The five radio buttons would have the dialog
names VSlow, Slow, Med, Fast, and VFast. To
make sure that only one of them can be
selected at a time, they must all have the same
Radio Group ID when they are defined. In this
example, the group ID was left at the default
(group 0).

To set the variable “theDelay” based on which
button was chosen, the code uses the state-
ments:

if (VSlow)theDelay = initDelay * 1.25; // v slow is 1.25 normal
if (Slow) theDelay = initDelay * 1.1;// slow is 1.1 of normal
if (Med) theDelay = initDelay * 1.0;// medium is 1 of normal
if (Fast) theDelay = initDelay * 0.91;// fast is 0.91 of normal
if (VFast)theDelay = initDelay * 0.8;// v fast is 0.8 of normal

The “if” statements are executed only if that button value is True (non-zero); of course, only
one of them can be true because they are all in the same radio button group. You could also
structure the checking with five message handlers, such as:

38 Overview
Accessing dialog items from a block’s code

O
ve

rv
ie

w

on VSlow // VSlow radio button was clicked
{

theDelay = initDelay * 1.25;
}

Note that in the first instance, the “if” statements would be executed during the simulation,
usually in the InitSim message handler. In the second instance, the VSlow button message han-
dler would be executed when you clicked the button labeled “Very slow.”

To specify that the “Medium” button should be pre-selected when the block is placed in a
model, the CreateBlock message handler contains:

Med = TRUE;

This also sets the other radio buttons in the group to FALSE.

☞ When setting the state of a radio button group in ModL code, always explicitly state which but-
ton is set to True so that the remaining radio buttons in the group will be set to False. Just set-
ting a radio button to False will not affect the state of the other radio buttons in the group. Thus
it is possible to have a condition in which all radio buttons in the group are initially set to False.
In most cases, this would be an error condition.

Use the DITitleSet function to change the title of a check box or radio button.

 If you use the ampersand character (&) in the label of a Radio Button, Checkbox, or Frame dia-
log object you will need to enter it twice (&&). Otherwise, the character will not show on the
label.

Buttons
When buttons are clicked, they send a message to the block’s ModL code. The most common
buttons in a block are OK and Cancel, which are handled automatically. If you add other but-
tons, such as shown later in this chapter, message handlers must be added for those buttons.

To change the text label of a button, assign the button’s dialog item name as a variable to a
string value in the code.

☞ The changed button text is not stored in the block. Thus the read value of the button’s text is
always what was originally entered when the dialog item was defined, even if the text is
changed by setting it to a different value in ModL code. If you use the dialog item name in an
equation, you will always get the text that was entered when the dialog item was created.

If you change the text label of a button, your code must set the text when the modeler opens the
block. Do this using the On DialogOpen message handler.

on DialogOpen
{
myButton = "desired button text"; // set it when the dialog opens
}

See also “Changing text in response to a user’s action” on page 96.

Data tables and text tables
A data table or text table dialog item represents a two-dimensional array of either real numbers
or text. Tables have an interface that allows modelers to type in any input and also, like all dia-
log items, allows you to display values generated in the code. If your block code provides for
it, modelers can change the number of rows and columns and can dynamically link tables to an
ExtendSim database or global array.

ModL Overview 39
Accessing dialog items from a block’s code

O
verview
You define the number of rows, number of columns, number format, and headings for the col-
umns, but all of these are changeable with ModL code, including the ability to create and
manipulate extremely large tables with up to 255 characters per cell.

The following code fragment shows how to read and write to a data table named “dataTable”
that has 4 rows and 3 columns. Data tables are treated as arrays, which are discussed in detail
in “Arrays, pointers, queues, delay, linked list, and string lookup table functions” on page 340.
As in the C language, array subscripts start at 0, not 1.

. . .
// Read the first row, second column cell into myValue.
myValue = dataTable[0][1];
. . .
// Set the fourth row, third column cell to myValue
dataTable[3][2] = myValue;

Data tables can be attached to dynamic arrays. They can also have variable columns and the
behavior of the columns can be extensively customized. For more information, see the descrip-
tion and functions in “Block data tables” on page 274 and “Formatting/interactivity using col-
umn and parameter tags” on page 284.

The text table allows you to type in text, numbers, or both. Since all entries are strings, to use
the numbers in ModL code you must first convert them to real values using the StrToReal
function.

The headers for data tables and text tables can be styled and aligned, as discussed in “Stylizing
and aligning dialog items” on page 20.

Static text (label)
Static text appears in a dialog as a label and is non-editable by the modeler. The system assigns
default names to static text; the names can be changed by the block developer according to the
rules given in “Options in the dialog item’s properties window” on page 17. Names can be
used in the ModL code to change the text label, show and hide it, and so forth.

☞ The changed text label is not stored in the block. Thus the read value of static text is always
what was originally entered when the dialog item was defined, even if it is changed by setting
it to a different text value in the code. If you use the dialog item name in an equation, you will
always get the text that was entered when the dialog item was created.

If you change the text of a label, your code must set the text when the modeler opens the block.
Do this using the On DialogOpen message handler.

on DialogOpen
{
myLabel = "desired text"; // set it every time the dialog opens
}

See also “Changing text in response to a user’s action” on page 96.

Popup menu items
When an item in a popup menu is selected, the menu’s dialog item name returns a value which
is the integer corresponding to the position of the item in the menu, where 1 is the value for the
first item in the list. For example, in a 5-item menu, the values of its dialog item name will be
set to 1, 2, 3, 4, or 5 based on which menu item the modeler chooses.

☞ For historical reasons, popup menu indexes start at 1, not 0.

40 Overview
Accessing dialog items from a block’s code

O
ve

rv
ie

w

Popup menus replace series of radio buttons. For
instance, instead of using several radio buttons
to represent teller speed, as shown in “Check-
boxes and radio buttons” on page 37, you could
use a popup menu. The dialog would look like
the screenshot at right.

This popup menu has the dialog item name
“MyMenu”. The five menu items have the titles
as shown above. Since “Very slow” is selected,
MyMenu is set to 1. If “Medium” were selected,
MyMenu would be set to 3.

To set the variable “theDelay” based on which menu item is selected, the code in the InitSim
message handler has these statements:

if(MyMenu == 1)theDelay = initDelay * 1.25;// v slow is 125% normal
if(MyMenu == 2)theDelay = initDelay * 1.1; // slow is 110% of normal
if(MyMenu == 3)theDelay = initDelay * 1; // medium is normal
if(MyMenu == 4)theDelay = initDelay * 0.91;// fast is 91% of normal
if(MyMenu == 5)theDelay = initDelay * 0.8;// v fast is 80% of normal

To specify that, when a block is placed in the model, the “Medium” menu item should be pre-
selected, the CreateBlock message handler contains:

MyMenu = 3; // defaults to the “Medium” menu item, third in the list

You can use the popup menu’s dialog name (for example, MyMenu) as the message handler
name (for example, On MyMenu) to perform specific actions when the modeler selects a menu
item. For instance, you could use this to report errors to the modeler, show or hide other dialog
items, or cause a sound to play.

The text in popup menus can be styled and aligned, as discussed in “Stylizing and aligning dia-
log items” on page 20.

☞ Using the column tag functions listed in “Formatting/interactivity using column and parameter
tags” on page 284, data tables can have popup menus in their columns.There are also functions
to dynamically popup a menu on the fly, whenever the modeler clicks something.

Frame
A frame allows you to visually isolate or
group dialog items by framing them with a
rectangular box. Once a frame has been
added to the Dialog tab, it can be resized and
positioned to surround the items of interest. If
present, the frame’s label is displayed in its
upper left corner, as shown at the right.

Frames are required to have names and the system assigns a default. The default name can be
changed following the rules discussed in “Options in the dialog item’s properties window” on
page 17. Names can be called as a variable in the block’s code. This is helpful for showing and
hiding the frame under different circumstances, dynamically repositioning it, or dynamically
changing its label.

The frame’s label can be styled and aligned, as discussed in “Stylizing and aligning dialog
items” on page 20.

ModL Overview 41
Accessing dialog items from a block’s code

O
verview
 If you use the ampersand character (&) in the label of a Radio Button, Checkbox, or Frame dia-
log object you will need to enter it twice (&&). Otherwise, the character will not show on the
label.

Switch
A switch looks like a standard light switch.

When you click on the side that is not down, it makes a small clicking sound,
changes to the other value, and sends a message to the ModL code.

The switch dialog name always returns either 0 (off) or 1 (on), depending on the value of the
switch. You can also control the switch by setting its variable name to 0 or 1 in the code.

Slider
A slider allows you to enter a value by dragging its knob along its length.

The minimum and maximum values can be set from ModL code; the modeler can
change the minimum and maximum values by clicking and editing them in the
block’s dialog. The current value can be set from the code and can also be set as the
model runs by dragging the slider up or down. In this way, you can use the slider
both for visual output and for input.

The slider is represented in a three-element array of reals that represent the minimum, maxi-
mum, and current values. Thus, if a slider is called “theSlider,” it could be initialized with the
lines:

theSlider[0]=0.0; // Minimum of 0
theSlider[1]=10.0; // Maximum of 10
theSlider[2]=3.33; // Starting value of 3.33

As the model runs, the value of the slider can be checked by reading the third array element:

theSetting = theSlider[2];

Meter
A meter allows you to view a value on a meter.

You set the minimum, maximum, and current values from the ModL code.

The meter is represented in a three-element array of reals that represent the mini-
mum, maximum, and current values. Thus, if your meter is called “theMeter,” you
might initialize it with the lines:

theMeter[0] = 0.0; // Minimum of 0
theMeter[1] = 30.0; // Maximum of 30
theMeter[2] = 10.0; // Starting value of 10

As the model runs, you can set the value shown on the meter in the third array element, such
as:

theMeter[2] = theSetting;

42 Overview
Accessing code from other languages

O
ve

rv
ie

w

Calendar
The Calendar dialog item takes an ExtendSim date value (discussed
in “Calendar Date functions” on page 362) and visually displays it in
a combination calendar/clock format. For example, assume a calen-
dar dialog item named MyCalendar has been added to a block’s dia-
log. That dialog item will display December 1, 2007 12:01 am when
the following line of code is executed:

MyCalendar = 39417.000694444;

The dialog item would then look like the screenshot to the right.

Clock
The Clock dialog item takes an ExtendSim date value (discussed in “Calendar Date functions”
on page 362) and visually displays the time component of that date value (hours, minutes and
seconds) in a digital clock format. For example, assume a clock dialog item named MyClock
has been added to a block’s dialog. That dialog item will display 12:01:00 when the following
line of code is executed:

MyClock = 39417.000694444;

If you need to display the complete date value, and not just the time component, consider the
Calendar dialog item, discussed above.

Accessing code from other languages
You can use other languages, such as Visual C++, Java, C++, and others, to provide additional
functionality to ModL or to make use of a legacy of pre-built code. For instance, you may
already have thousands of lines of C++ code which perform a specific calculation. You can add
this functionality to your block by recompiling the C++ code as a DLL (dynamic link library
for Windows) or Shared Library (external command for Mac OS). DLLs and Shared Libraries
are the standard interface technologies for communicating between programming environ-
ments. When you want to do the calculation, use the ExtendSim built-in function calls to call
the DLL or Shared Library.

One advantage of this method is that you don’t have to program the interface in the external
language. Instead, you can leverage the ExtendSim built-in interface and dialog creating capa-
bilities.

☞ Even though you are using an external language, the resulting block will fit seamlessly into the
ExtendSim environment and be indistinguishable from other blocks.

To learn more see “DLLs” on page 86 and “Sounds” on page 89.

External source code
ExtendSim supports a mechanism for saving the source code of individual blocks or libraries
of blocks as external files. This external source code feature is useful for situations where mul-
tiple developers work on the code of blocks and/or libraries at the same time. For more infor-
mation, see “External source code control” on page 83.

Tutorial

Creating a Block
Learn how to build an ExtendSim block

and save it in a library

“Knowledge is of two kinds. We know a subject ourselves,
or we know where we can find information upon it.”

— Samuel Johnson

44 Tutorial
Building a simple block that converts miles to feet

T
ut

or
ia

l

This chapter shows how to create a continuous block and have it perform some tasks. So you
have something to compare to, the final block, called “Miles”, is located in the Custom Blocks
library which is located in the folder ExtendSim/Documents/Libraries/Example Libraries.

Building a simple block that converts miles to feet
For this first section, the Miles block will have two value connectors, an input and an output.
The block will look at the value of the input connector (the number of miles), multiply it by
5280 (the number of feet in a mile), and copy the result to the output connector.

Create the block
Choose the command

Develop > New Block.

At the bottom of the dialog,
click the Create New
Library button.

Name the library Convert
and click Save. Notice that
in the pane on the left, the
new library is automati-
cally selected.

Enter the name Miles for
the new block, as shown at
right.

Be sure the correct library
is selected, then click the
Install in Selected Library
button.

ExtendSim creates the block and opens its structure window.

Dialog tab
By default, the structure’s Script tab opens in front so you can easily edit an existing block.
However, when building a new block it is best to start with the Dialog tab.

Bring the structure window’s Dialog tab to the front

The dialog is empty except for the OK and Cancel buttons, which are in every new block by
default, a frame to indicate the default size of the dialog, and tabs at the top.

Double-click the name of the first tab (Tab 1) and rename it to Converter

To add some explanatory text for this block:

If the toolbar is not already open, choose the command Tools > Dialog Items.

In the Dialog Items toolbar, select the Static Text dialog item.

Click on the structure window’s Dialog tab to create the Static Text dialog item.

Double-click the dialog item to open its properties window.

To set the properties for this dialog item:

Creating a Block 45
Building a simple block that converts miles to feet

T
utorial
To be consistent with the ExtendSim style guide, set X: 10, Y: 16, Width: 220, Height: 16.
(Alternatively you could resize and position the dialog item on the Dialog tab.)

In case you will add more tabs, check the box so that this text label will be Visible in all
tabs.

In the Label field, enter Converts miles to
another length. (As discussed on “Stylizing
and aligning dialog items” on page 20, enter-
ing “” in front of the text formats it as
bold; this style will appear once the block is
compiled.)

Leave the rest of the options as is and click
OK to close the properties window

With those coordinates, the label will be placed in the upper left corner of the Dialog tab. It
should now look like the screenshot here.

Save the block
It’s a good idea to save the block as you make changes to it. Since there isn’t any code in this
block yet, you should save it without compiling.

Choose File > Save Block

This saves the structure of the block without compiling the code. Alterna-
tively, you could close the structure window and, in the window that appears,
choose to Save Without Compiling.

☞ In the library window, uncompiled blocks are displayed with their names in red italics.

Icon tab
The Icon tab is for creating an icon and adding connectors.

Go to the structure window’s Icon tab

The Icon tab has a default icon

Icon and text
For the icon you could use the ExtendSim drawing environment or a painting program, or copy
clip art and paste it in. For this tutorial, just keep the default icon and add text.

Double-click on the Icon tab worksheet to create a text box:

Enter the text Miles->???

With the text selected, use the Bold command in the toolbar to
make the text bold and the Fill Color button in the Shapes toolbar
to make the text red

Position the text on top of the icon.

As needed, resize the icon and text using their resize buttons

The icon should now look similar to the one shown above.

46 Tutorial
Building a simple block that converts miles to feet

T
ut

or
ia

l

Connectors
The Miles block needs two value connectors, an input and an output. As discussed on page 21,
connectors can be either normal (a single connector) or variable (a row of single connectors).
The default is that connectors are normal, and that is what is required for the Miles block.

Adding connectors
If the Icon tool is not already open, choose the command Tools > Icon.

In the Icon toolbar select the Value connector, the first one in the list.

Click near the left side of the icon to add that value input connector. Notice that the name of
the connector (Con0In) is listed in the Connectors pane.

Select another Value connector from the Icon toolbar and place it on the right side of the
icon.

Select each connector and either drag it or use the arrow keys so that
the connectors are positioned on each side of the icon.

☞ To align the top of the connectors, either drag or use the arrow keys to
move one connector until its Y position (as shown in the Cursor Posi-
tion field of the ExtendSim toolbar) is the same as the other connector’s Y position.

Renaming the connectors and changing an input to an output
When connectors are added to an icon, they are by default all input connectors with the default
connector names Con0In, Con1In, and so on.

Connector names are not case sensitive. While input connectors must end in some form of the
word “In” and output connectors must end in a form of the word “Out”, the rest of the connec-
tor name can be customized as discussed on page 22.

In the Connectors pane at the right side of the Icon tab, double-click the connector name
Con0In.

Type MilesIn. This changes the name of the connector on the left of the icon.

Double-click the connector name Con1In and type UnitsOut. This
changes the connector on the right to an output connector, as shown.

Give the command File > Save Block. This saves your work without
having to compile the block.

When you select a connector name in the Connectors pane, the corresponding icon connector
gets highlighted.

☞ Because ModL is not case sensitive, the connector name “UnitsOut” could just as well have
been written as “unitsout” or “unitsOut” or “UNITSout”, etc.

Block help
This block has only one tab which is named Miles Converter. You could name another tab Help
or Information, and put text there to explain what the block does, who authored it, create and
modify dates, etc.

Script tab
☞ As shown on page 78 there is a Script dialog in the Edit > Options menu that is used to specify

characteristics for a block structure’s Script tab. For example, you can change the colors of

Creating a Block 47
Building a simple block that converts miles to feet

T
utorial
user functions or keywords. When the block’s Script tab is the active window, use Alt + O to
open the Script dialog.

Go to the structure window’s Script tab

As seen at the right, the Script tab is empty except
for a comment (“ModL code goes here”) and
three message handlers: Simulate, CheckData,
and InitSim.

These message handlers get automatically added
because most of the blocks you create will use
these messages and unused message are ignored.

For this block, the action happens in the Simulate message handler.The other default message
handlers can be left blank since there is nothing to check or initialize at the beginning of the
simulation run.

Below the opening bracket that follows the Simulate message, type: UnitsOut = MilesIn *
5280.0;
so that the code looks as follows:

on Simulate
{
UnitsOut = MilesIn * 5280.0;
}

☞ The spaces on each side of the operators are optional; the semicolon at the end of the state-
ment is not optional.

The code means that for each step of the simulation, ExtendSim reads the value at the input
connector, multiplies it by the real value 5280.0, and sets the output connector to that product.

Save and compile the block
After the code has been
entered:

Close the structure
window by clicking its
close box or giving the
command File > Close.

ExtendSim opens a
dialog for saving changes, seen at right. Click Save, Compile if Needed. This compiles the
ModL code and saves the changes to the block in the library.

If there are any compilation errors, ExtendSim will warn you.

☞ While not done for this block, the blocks you create can also be assigned categories, as
described on page 55.

Test the block
To test the Miles block:

Open a new model window if one is not already open.

If the model opens with an Executive block, delete the Executive block, since this isn’t a
discrete event simulation.

48 Tutorial
Adding user interaction and display features

T
ut

or
ia

l

Add your Miles block (Convert library) to the model worksheet.

Add a Constant block (Value library) to the left of the Miles block.

Connect the output of the Constant block to the input of the
Miles block.

In the Constant block’s dialog enter Constant value: 10.

Add a Line Chart block (Chart library) to the model.

Connect the output of the Miles block to the top
input of the Line Chart block as shown here.

Run the simulation.

As seen in the Line Chart block, the value 52800
(5280 x 10) should be output for the entire length of
the simulation. You can verify that the block works with other numbers by entering them in the
Constant block and running the simulation.

Adding user interaction and display features
If moving numbers between input and output connectors was all that ExtendSim did, it would
not be a very useful program. As you have seen in the User Reference, robust blocks:

• Let you change their parameters

• Give information about what is happening during the simulation

Dialog tab
The enhanced Miles dialog will have a popup menu for choosing a unit to convert to, parame-
ter fields for obtaining an input from the user and for displaying results, and a frame for orga-
nizing the dialog items.

Create a popup menu
Open the structure window for the Miles block, using one of the methods listed in “How to

open a block’s internal structure” on page 7.

Go to the block’s Dialog tab

If the Dialog Items toolbar isn’t already open, open it from the Tools menu

Click in the Dialog Items toolbar to select a Popup Menu and place it on the Dialog tab

Define the popup menu
Double-click the Popup Menu to open its prop-

erties and configure it as below:

Name: units_pop

X: 24

Y: 70

Width: 76

Height: 16

Label: Kilometers;Yards;Feet;Inches

Constant block connected

Test model completed

Creating a Block 49
Adding user interaction and display features

T
utorial
Close the properties window

☞ While not required, coding conventions help when creating blocks. For instance, the popup’s
dialog item name (units_pop) is more intuitive to work with in the code, as can be seen later.

Add a text frame
Frames are used to organize dialog items on the window:

Add a Frame dialog item from the Dialog Items tool-
bar and stretch its opening so it surrounds Popup
Menu.

In its properties window, enter:

Label: Convert miles to:

It is not necessary to change the dialog item name or any other properties for the frame.

The Dialog tab should now look like the one shown above.

Save the dialog changes
Give the command File > Save Block to save your work

☞ This is a quick way to save changes without closing the block’s structure.

Add two parameter fields
To add entry and reporting fields for the numbers:

In the Dialog Items toolbar:

Click once to select the Parameter dialog item, but then...

While holding down the Alt key, click twice on the Dialog tab to create two parameter
fields

Press the escape key to stop placing parameters on the Dialog tab

Move the parameter fields so that they are at the same
horizontal position and below the frame

☞ To create multiple instances of a dialog item, hold the Alt or Option key down while repeatedly
clicking on the Dialog tab; then use the Escape key to finish. Alternatively, once you’ve placed
one parameter on the Dialog tab, you could use the Edit > Duplicate command to add copies of
dialog items to the Dialog tab, or just get the dialog item from the Dialog Items toolbar again.

Configure the parameter fields
In the properties window for the leftmost parameter:

Enter Name: InNum_prm

Set the width to 60 and the height to 16.

Click OK to close the properties window.

In the properties window for the parameter on the right:

Enter Name: OutNum_prm and click OK to close its properties window

Set the width to 60 and the height to 16.

50 Tutorial
Adding user interaction and display features

T
ut

or
ia

l

Select the Display only choice. This will cause the parameter value to be displayed in
the block’s dialog without being editable.

Click OK to close its properties window.

Adding more static text labels
The next step is to define two more Static Text dialog
items.

For the first static text item:

Enter In: for the label. Click OK.

Move it to the left of the first parameter box
and resize as needed.

For the second static text item:

Enter Out: for the label. Click OK.

Move it to the left of the second parameter box and resize as needed.

Save and compile the block as discussed on page 47.

Script tab
The next step is to enter code in the structure’s Script tab.

Go to the block structure’s Script tab

Declare constants
At the top of the Script tab, before any message handlers, enter the following:

constant UNITS_KILOMETERS is 1;

constant UNITS_YARDS is 2;

constant UNITS_FEET is 3;

constant UNITS_INCHES is 4;

The constants are set to the values of the menu items (kilometers, yards, etc) in the popup
menu.

CreateBlock message handler
The CreateBlock message handler can specify one of the conversions as the default for the
block when it is placed in the model. For instance, to make feet the default, enter the following:

// feet is the default setting
on CreateBlock// this gets executed when the user gets a new block

{

units_pop = UNITS_FEET;// make the FEET choice TRUE

}

You can put the CreateBlock handler anywhere in the block’s code as long as it is after the dec-
larations.

☞ The CreateBlock message handler is invoked whenever the Miles block is placed on a model
worksheet. If you’ve already got the block on the worksheet, feet won’t be the default setting.

Creating a Block 51
Adding an intermediate results feature

T
utorial
Simulate message handler
For each step in the simulation, you want to update the input parameter and the output parame-
ter, check which conversion is being performed, multiply the numbers. To do this, replace the
current code in the Simulate message handler with the following:

on Simulate
{

InNum_prm = MilesIn;

if (units_pop == UNITS_KILOMETERS)

UnitsOut = MilesIn * 1.609344;

else if (units_pop == UNITS_YARDS)

UnitsOut = MilesIn * 1760.0;

else if (units_pop == UNITS_FEET)

UnitsOut = MilesIn * 5280.0;

else if (units_pop == UNITS_INCHES)

UnitsOut = MilesIn * 63360.0;

OutNum_prm = UnitsOut;

}

Notice that “units_pop” is the name of the popup menu defined on page 48. Also notice that if
“Yards” is selected in the block’s dialog, the statement “if (units_pop == UNITS_KILOME-
TERS)” evaluates false and its “else” clause is executed. The “if (units_pop == UNITS_-
YARDS)” statement then evaluates true and executes its statement, and the “else” clauses
following it will not be executed.

☞ The numbers multiplied by MilesIn can be reals or integers. ModL performs all necessary type
conversions automatically. However, since connectors are always of type real, you should use
reals for values that are used with connectors. That way, ExtendSim will not need to convert
integers to reals on each step. (For more information about type conversions, see page 64.)

Save and compile the block
After you have finished writing the code, close the block by clicking its close box. Choose
Save, compile if needed to compile the new ModL code and save the block in the library.

Test the Miles block as you did before, trying all the conversions. Notice that you can keep the
Miles dialog open during the test.

Adding an intermediate results feature
You may have noticed something missing from the Miles block: what if you just want to con-
vert a single number without running a whole simulation? As stated earlier, ExtendSim passes
dialog messages to a block even if a simulation is not running. It is thus easy to make this block
useful even outside of a simulation.

52 Tutorial
Adding an intermediate results feature

T
ut

or
ia

l

Add a button to the Dialog tab
Open the block’s internal structure.

In the Dialog tab, choose a Button dialog
item from the Dialog Items toolbar and
place it on the dialog.

Enter Calculate_btn as the dialog
name and CALCULATE for the button
label.

Make the width 80 and the height 20.

Click OK.

Drag this new button below the input
and output fields, as shown at right.

Add ModL code to the Script tab
Add the following message handler somewhere below the Simulate message:

on Calculate_btn// Display the values
{

if (units_pop == UNITS_KILOMETERS)

OutNum_prm = InNum_prm * 1.609344;

else if (units_pop == UNITS_YARDS)

OutNum_prm = InNum_prm * 1760.0;

else if (units_pop == UNITS_FEET)

OutNum_prm = InNum_prm * 5280.0;

else if (units_pop == UNITS_INCHES)

OutNum_prm = InNum_prm * 63360.0;

}

Save the block and compile the ModL code.

☞ See “Other features you might have used” on page 54 for how to avoid typing the same code
twice in the future.

To test this new functionality:

Place the block on a model worksheet and double click to open the block’s dialog. You may
need to resize it to show the new dialog items.

Type a number in the In: entry box.

Click the Calculate button.

Note that the number in the Out: entry box is updated with the correct data.

☞ See “Accessing code from other languages” on page 42 for an example of how to do this using
a DLL.

Creating a Block 53
Adding 2D animation

T
utorial
Adding 2D animation
The icon of this block indicates that it converts miles to something, but that’s not very informa-
tive. Displaying text on an icon is a convenient method to show block conditions – in this case,
what kind of conversion the block is performing.

☞ The ModL code will ensure that the animated text is displayed even if the modeler doesn’t have
Show 2D Animation selected; the display is also independent of the simulation run.

Change the icon and add the animation object
As discussed in “2D animation” on page 10, the Animation Object tool is used to add
animation to icons. This tool is the last one in the Icon toolbar, shown below.

Open the structure window of the Miles block.

In the Icon tab, delete the ??? part of the icon’s text.

Move the remaining text to the left side of the icon.

In the Icon toolbar, select the Animation Object tool; it is the last button in the toolbar.

Click on the icon to place the Animation Object to the right of
the text.

Expand the Animation Object to the right. This creates a rectan-
gular animation object. Since this is the first animation object, it
will have a “1” in it.

Expand the icon as necessary to provide enough room for the animation object.

Add code for the animation
☞ The code below contains a ModL function. It is easiest, and safest, to enter functions using

code completion, as described on page 79.

Add additional message handlers
Add the following message handlers to the end of the ModL code. Each message handler

receives a message when the corresponding radio button is clicked.

on units_pop

{

if(units_pop == UNITS_KILOMETERS)

{

AnimationTextTransparent(1, "KM");

AnimationShow(1);

}

else if(units_pop == UNITS_YARDS)

{

AnimationTextTransparent(1, "Yards");

AnimationShow(1);

Animation object added

54 Tutorial
Other features you might have used

T
ut

or
ia

l

}

else if(units_pop == UNITS_FEET)

{

AnimationTextTransparent(1, "Feet");

AnimationShow(1);

}

else if(units_pop == UNITS_INCHES)

{

AnimationTextTransparent(1, "Inches");

AnimationShow(1);

}

}

 The ModL compiler will give an error message if code containing “smart quotes” is copied into
the Code pane. To fix the problem, replace the copied quotes with new ones in the Code pane.

Createblock message handler
Replace the code in the “On CreateBlock” message handler to initialize the animation text.

// feet is the default setting
on CreateBlock
{

units_pop = UNITS_FEET;

AnimationTextTransparent(1, "Feet");

AnimationShow(1);

}

Close the block’s internal structure, saving and compiling the changes.

☞ Notice that the text will show only when a new Miles block is placed on the model worksheet.

Testing the block
To test this new functionality:

When you place a new Miles block in a model, the default setting (Feet)
should be displayed on its icon.

Changing the selected radio button in the block’s dialog should cause a
corresponding change on the icon.

The final Miles block is located in the ExtendSim/Libraries / Example Libraries / Custom
Blocks library. See below for additional features to consider when building custom blocks.

☞ Animation objects can be layered on top of each other, then called in block code to appear or
not depending on circumstances. Use each animation object’s zOrder to place it in the layer
you want. For more information, see “Creating 2D animation objects” on page 129.

Other features you might have used
The preceding example showed how to build a simple block. This section describes some addi-
tional ExtendSim features that could have been used when building this block.

Icon with animation

Creating a Block 55
Other features you might have used

T
utorial
Linking to a global array or ExtendSim database
Dynamic data linking (DDL) creates a link between a data table or parameter dialog item and
an internal data repository (global array or ExtendSim database). For instance, the Data Source
Create block (Value library) has a data table that is dynamically linked to a global array. To add
dynamic link capability to a block, see “Data table linking” on page 275 and “Dynamic link-
ing” on page 280.

To simply register a block so that it will be notified if there was a database change, see “Regis-
tered blocks” on page 113 and “Linking and notification” on page 337.

Block categories
It is common to build several blocks to put in a library. You can have all the blocks listed
alphabetically in the library, or you can specify a block category and cause blocks to be
grouped into submenus in the Library menu.

Each block has a 15-character string associated with it called the block category. The category
is used by ExtendSim to organize blocks into logical groups that perform a similar function.

Feature Description Page

Block categories Group blocks by category in the Library menu 55

Colors for dialog items Custom colors for text labels 17

Styles and alignment Some dialog items can have their style formatted 20

Tabs in dialogs Group dialog items by function 13

zOrder for dialog items Control the forward and backward position of dialog
items

17

Add to right-click menu Cause the block’s Button dialog items to appear when
a block is right-clicked

17

Dialog item tooltips Tooltips display dialog item names without having to
open the block’s dialog

20

Hiding/showing dialog items Use code to dynamically hide and show dialog items
based on model conditions

97

Icon views Multiple icons per block; user selectable 9

Variable connectors They act like a row of normal (single) connectors 21

Connector labels Tooltips display connector information such as results. 23

Connector tooltips Display custom text through tooltips 23

Column tags Put strings, checkboxes, buttons, dates, popup menus,
the infinity character, and so forth into a parameter
field or the cell of a data table

284

Programming tools Code completion, include files, debugger, conditional
compilation, and more

78

DLLs and Shared Libraries A legacy of code, or programming capabilities that are
outside of ModL’s range, can be accessed using DLLs
(for Windows) or Shared Libraries (on the Macintosh)

86
89

External source code control Saves the source code of blocks as external files so
multiple developers can work on it

83

56 Tutorial
Defining functions

T
ut

or
ia

l

For example, the Math block (Value library) performs basic math functions; therefore, its block
category is Math. ExtendSim uses the block category in two places: 1) to organize blocks
within the Library menu, and 2) to organize blocks within reports. Categories of blocks in
libraries and reports are discussed in the User Reference.

To set or edit a block’s category:

With the block’s structure window open,
select the command Develop > Set Block
Category.

In the Category dialog, either select an
existing category from the popup menu or
define a new one by entering it in the text
field.

Click OK.

The Edit > Options > Libraries tab has a
checkbox (List blocks in Library menu by category) that is used to determine how ExtendSim
will list this block within the Library menu. If checked, the block will be listed in a sub-menu
for the block category under the library name. If the box is unchecked, ExtendSim will not use
the category but will instead list the block alphabetically directly under the library name.

Defining functions
In the Miles block the Simulate and the Calculate message handlers have similar code. One
way to be more efficient and reduce errors would be to define a function to calculate the output
value and call it in the both the Simulate and Calculate message handlers.

Real CalculateOutput(Real inputValue)
{

InNum_prm = MilesIn;

if (units_pop == UNITS_KILOMETERS)

UnitsOut = MilesIn * 1.609344;

else if (units_pop == UNITS_YARDS)

UnitsOut = MilesIn * 1760.0;

else if (units_pop == UNITS_FEET)

UnitsOut = MilesIn * 5280.0;

else if (units_pop == UNITS_INCHES)

UnitsOut = MilesIn * 63360.0;

return(UnitsOut);

}

On Calculate_btn
{
OutNum_prm = CalculateOutput(InNum_prm);
}

On Simulate
{
InNum_prm = MilesIn;

Creating a Block 57
Defining functions

T
utorial
UnitsOut = CalculateOutput(MilesIn);
}

58 Tutorial
Defining functions

T
ut

or
ia

l

Integrated Development
Environment (IDE)

The ModL Language
A detailed description of ModL constructs and structure

“Knowledge is of two kinds. We know a subject ourselves,
or we know where we can find information upon it.”

— Samuel Johnson

60 IDE
Names

ID
E

ModL is the ExtendSim programming language; it is structured much like C++.

☞ To get the most out of this chapter, you should first read the chapter “ModL Overview”. A table
comparing ModL to C++ starts on page 27; a comparison of ModL to other languages starts on
page 29.

This chapter describes the ModL structure and constructs. It is intended as a reference to the
ModL programming language; it is not a programming tutorial.

The best introduction to programming with ModL is familiarity with programming in C or
C++. If you are familiar with programming in some other language, that will help as well. If
you have not programmed in any language, a beginning programming class or tutorial would
probably be a better starting point than trying to learn programming by building ModL blocks.

Names
Names for variables, constants, and functions:

• Can be up to 127characters

• Can have letters, numbers, and the underscore (_) character

• Must begin with a letter or an underscore (_) character

• Are not case sensitive

ModL is a case insensitive language. This means that the following identifiers appear the same
to the ModL compiler:

Myname MYNAME MyName myname

☞ Some names are reserved for system use, as described throughout this chapter.

Data types: definitions and declarations
As discussed more below, there are four main data types in ModL:

1) real or double

2) integer or long

3) string (Str15, Str31, Str63, Str127, Str255 or String)

4) pointertype

Real data types
Real numbers are stored as Extended IEEE floating point numbers with 16 significant digits.
Numeric literals containing a decimal point or E notation are assumed by the compiler to be
real numbers. The range of real values is approximately ±1e±308.

A ModL real/double variable is the equivalent of a double variable in C++. It occupies 8 bytes
of memory.

Integer data types
Integer numbers are stored as 32-bit integers. The maximum value is 2147483647, and the
largest negative value is -2147483648.

A ModL integer /long variable is the equivalent of a long integer variable in C++. It occupies 4
bytes of memory.

☞ ModL treats a non-zero value as TRUE and a 0 value as FALSE. The constant TRUE is defined
as 1 and FALSE is defined as 0.

The ModL Language 61
Data types: definitions and declarations

IID
E

String data types
StrXX may contain up to XX characters and Strings may contain up to 255 characters. String
literals (constants) are sequences of characters enclosed by quotes ("..."). The quote character
itself may appear in strings by using two adjacent quotes. For example:

"It's called ""ExtendSim"""

is evaluated as:

It's called "ExtendSim"

For a string literal that you want to extend past one line of the code, put a back slash (\) charac-
ter as the last character on the line. For example:

longString = "This is a very long string \
literal that is on more than one line";

A string variable is the equivalent of an unsigned char x[256] variable in C++. Str255 occupies
256 bytes of memory; smaller string types (StrXX) occupy XX+1 bytes of memory.

ModL strings are not accessed in the same way as strings in C++. To access the contents of a
ModL string beyond assigning its contents, you need to use ModL functions.

☞ ModL strings are internally stored as Pascal style strings, with a leading size byte. In most
cases you will not have to worry about the internal storage of the string. However, it does
become relevant when you pass a string to outside code through a DLL function call. In that
case, the ModL functions DLLPtoCString and DLLCtoPString will be useful - see the function
list that starts on page 245.

Pointertype data types
This data type contains the address of data that is held in dynamic arrays and compiled equa-
tions. A pointertype can be stored in a real, which means that you can store pointertypes in a
real type array or in an ExtendSim database for use by the model.

Declaration examples
For the real/double and integer/long data types, the identifiers are interchangeable. The type
declarations and constant definitions are set up like they are in C.

Some typical type declarations might be:

real nextTime;
real dataArray[], averages[10], theMatrix[10][10];
str15 str15Array[];
str31 str31Array[];
string strArray[], errorStrings[6], theError;
integer checkUsed, multiArray [][3][5][10][2];
pointertype p;

As you can see from the example above, ModL has fixed and resizable (dynamic) arrays, and
arrays can be up to five dimensions.

ModL already has some pre-defined variables that can be treated just like other static variables.
These system variables are described in the “ModL Variables” chapter that starts on page 190.

☞ Each variable type consumes a different amount of data, with integers using 4 bytes, reals using
8 bytes, strings using 256 bytes, and pointertypes using 8 bytes. At the same time, there is a
limit on the total amount of static data that can be declared. Thus if you define a string array as
string x[200] (which uses 200x256 or 51,200 bytes of memory), it will exceed the local or

62 IDE
Scope of global, local, and static variables

ID
E

static data limit of 32,767 bytes (not including dynamic arrays and pointertypes) and the com-
piler will report an error condition.

Scope of global, local, and static variables
Variables define memory that can store a value or values. There are several types of ModL
variables.

Whether a variable is global, static, or local defines what is known as its scope. The scope of a
variable determines where it can be accessed by code. The following information is important
to keep in mind when using variables in block code.

• Global variables are pre-defined in the IDE. A global variable’s scope is the entire model. In
a model, a global variable can be referenced from within any block’s code or within equa-
tion-based blocks.

• The scope of a static variable (a variable declared at the top of a block’s code) or dialog item
variable (the name of a dialog item) is the code of that specific block. This means that a
block’s static variable cannot be used directly in the code of other blocks or in the equations
used in equation-based blocks.

• A local variable’s scope is just the message handler or user-defined function in which it is
declared.

Static and local
Variables and constants must be declared before being used. Static and constant declarations
are made at the beginning of a block’s code and local declarations are made at the beginning of
a message handler or user-declared function.

The values of static variables are stored in the block and are saved in the model file. Thus, they
may be used to store data which must be preserved from one run of a simulation to the next.
However, they are not automatically initialized and must be initialized in your block code.

Within each block, and also locally within each function in block code, there is a limit on the
total amount of static data that can be declared. If you exceed this limit, the compiler will give
an error message when the block code is compiled. The total amount of data that can be
defined in static variables in the block, and in local variables within each routine, is 32,767
bytes of data. (See “Declaration examples” on page 61 for the amount of memory used by each
type of variable.)

This limitation is not an issue for most users because the more common and usually more use-
ful way to allocate large data structures is with dynamic array, global arrays, and database
tables. These structure are not subject to, or effected by, the static data limit.

☞ The advantages of using local variables are that they are not saved with the model and only use
memory when the function is called. The disadvantages are that the values of local variables
are not remembered after the message handler or function is left, and local variables can over-
ride static variables of the same name.

 Uninitialized static variables can be subtle but serious bugs. The value of an uninitialized vari-
able will take any random number, causing code to not work in unpredictable ways.

Constant definitions
Constants can be of data type real, integer, or string, but not pointertype. A constant definition
might be:

The ModL Language 63
Constants that are pre-defined

IID
E

constant maxPower is 52.5;

Note that in the constant definition the data type is implied by the format of the literal value. In
the above example, the type is real or double. However:

constant xstr is "x"; // quotes cause the constant to be string type
constant maxPower is 52 // data type is an integer or long

• For a constant to be real, it must either contain a decimal point or be in E notation

• A string must be enclosed in quotation marks

ModL includes four general-purpose predefined constants (Pi, Blank, true, and false); they are
discussed on page 63.

☞ Regardless of where they are defined in the ModL code, constants are always static

 Constants are not directly supported in equation-based blocks; use an include or set the value
from a Constant block (Value library). For a list of the differences between equation blocks and
custom blocks, see page 31.

Constants that are pre-defined
ModL includes four numerical predefined constants:

PI = 3.14159265358;
BLANK = (noValue);
TRUE = 1;
FALSE = 0;

Setting a dialog parameter to BLANK will make it display as an empty field. BLANK values
show nothing in a dialog’s text field and are NoValues for all math calculations.

☞ Do not compare the constant BLANK with a value to determine if the value is BLANK (that is,
NoValue). The result will always be FALSE. Use the NoValue function instead. This function
returns a TRUE if the value passed to it is a NoValue.

There are other predefined constants that are specific to functions, such as the color constants
used with the Animation functions.

BLANK and NoValue
The constant BLANK is a special value that represents “no value”. A NoValue can only be rep-
resented by a real variable, not an integer. Technically, it is not a number and appears in a dia-
log as a blank item. To make a variable a NoValue, assign BLANK to it (a = BLANK).

If a number and a NoValue are added, multiplied, divided or subtracted, the answer is always a
NoValue. Thus, if any of the values in any equation is a NoValue, the result will always be a
NoValue.

If a real value is divided by 0, the answer is a NoValue; the square root of a negative number is
also a NoValue. In fact, any operation on numbers that causes an undefined result or an infinity
produces a NoValue answer which can be tested with the NoValue function listed in the section
“Basic math” on page 207.

☞ To test for a NoValue, do not compare it to BLANK in an “if” statement. Instead, always use
the NoValue function:

if (myValue == BLANK) // WRONG! THIS WILL NOT WORK!

if (NoValue(myValue)) // this will always work

64 IDE
Numeric type conversion

ID
E

 NoValues can cause unexpected problems when converting reals to integers. It is a good idea
to screen for NoValues before converting reals to integers, as discussed in “Numeric type con-
version”, below.

Numeric type conversion
Generally, ModL performs all type conversion automatically. Thus, integer values can be
assigned to reals, and mixed-type arithmetic can be performed without explicit type conversion
beforehand.

☞ Because conversions are computer intensive, it is best to avoid numerical type conversions.
This is particularly true whenever there are repeated or often-used calculations.

ModL converts the arguments of function calls to the type needed by the function. For exam-
ple:

a = cos(integer);

Because the cosine function expects the argument to be a real value, the integer is converted
to a real value before the function is called.

Real to integer
Like all programming languages, converting from real numbers to integers in ModL is not
always exact. If a real number is also an integer, it will be exactly converted. Otherwise, the
conversion will cause the fractional value (mantissa) to be truncated. Thus, 0.001*1000.0 may
not equal 1 (the integer value), but may equal 0.99999... When this number is converted to an
integer, the answer is 0, not 1.

☞ In an operation between an integer and a real, the result is always a real.

NoValue to integer
As described above, setting a real value into an integer variable has a consistent result, namely
the truncation of the real value. This is true in all cases except where the real variable contains
a BLANK, or NoValue, value.

☞ If a real contains a BLANK or NoValue value, the NoValue will be too large to fit into an inte-
ger. Thus the integer will contain a meaningless value which could cause problems in calcula-
tions.

The best method for dealing with this potential problem is to screen the real values for NoVal-
ues before assigning them to the integer variable. The following code is an example of how to
do this.

Real realV;
integer intV;

if (NoValue(realV))
intV = 0; // Can’t convert NoValue to integer

// Meaningless result
else

intV = realV; // Can convert real to integer

Integer to real
There is no loss of information or special concerns when converting an integer to a real num-
ber.

The ModL Language 65
Arrays

IID
E

 However, using integer constants for real expressions is dangerous and can give the wrong
results.

For example, consider the following code:

z = 1/2*a;

In this case, z will always equal 0. The integer 1 divided by the integer 2 equals 0 because the
result of integer operations cannot be a fraction; it must be an integer. The statement should be
instead written as:

z = 1.0/2.0*a;

Integer or real to string
When the equation calls for it, ExtendSim automatically converts reals and integers to string
values. If a real variable is a NoValue, the resulting string will be an empty string.

☞ The result of an operation between any type and a string is a string.

This makes it easy to make strings that contain numeric results, such as:

anOutputString = "The answer is " + aRealNum + ".";

String to real or integer
The StrToReal function converts a string value to a real number. If the string contains non-
numeric characters, the result will be a NoValue.

 Do not assign a non-numeric string to an integer. This will assign an unusable value to the inte-
ger.

Arrays
You can use real, integer, or string arrays which can be fixed or dynamic. Any array can have
up to five dimensions, that is, up to five subscripts or indexes. Array indexes are limited to 2
billion elements. (There are also other array-structure types: linked lists and global arrays. See
“Array-like structures” on page 67.)

Array declarations
The number of dimensions and the magnitude of each dimension are determined by the array’s
type declaration. The magnitude of each dimension appears in the square brackets in the decla-
ration statement, and there must be one set of brackets for each dimension. The subscripts in an
array start at 0. The type declarations are of the form:

TYPE id[dim1][dim2]...;

Thus the declaration:

REAL MyArray[3][4];

declares an array of real numbers identified by the name MyArray. This is a two dimensional
array, with three rows and four columns.

Individual elements of arrays are treated just like variables in ModL. Thus, for an array
declared as

integer a[2][3]

you can assign the value 4 to the first row in the second column with:

a[0][1] = 4;

66 IDE
Arrays

ID
E

Remember that array subscripts start at 0 and end at 1 less than the number of elements in the
declaration (that is, there are n elements in 0 to n-1).

Fixed and dynamic arrays
ModL has both fixed and dynamic arrays.

Fixed arrays have specified sizes that cannot be changed in the code. The leftmost dimension
of dynamic arrays are variable in size and can be assigned a size or resized without changing
existing data. Dynamic array size is limited to two billion elements, and you can declare up to
254 dynamic arrays per block. Dynamic arrays can be passed between blocks or used globally.
See “Passing arrays” on page 104.

Dynamic arrays are declared in the same manner as fixed arrays, except that their first dimen-
sion value is missing. For example:

REAL MyArray[][4];

defines a two-dimensional dynamic array of real numbers. There is a varying number of rows
and exactly four columns (indexed 0 through 3).

Dynamic arrays must be static variables, not local ones. Thus, you cannot declare a dynamic
array variable in a message handler. However, you can resize dynamic arrays inside of a mes-
sage handler or in a user-defined function.

There are several functions for sizing dynamic arrays:

The GetDimension function can be used with any array, not just dynamic arrays. GetDimen-
sion returns the value of the first (leftmost) dimension, whereas GetDimensionColumns
returns the value of the rightmost dimension in a two dimensional array.

These functions are described fully in “Dynamic and non-dynamic arrays” on page 340. Also
see “Variable column data tables” and “Dynamic data table resizing” on page 275.

Function Use

DisposeArray Frees memory when you are finished with the array

DynamicDataTableVariableColumns Causes the right dimension to be variable. This is only useful for
data tables.

GetDimension Returns the size of the missing left dimension

GetDimensionByName Returns the size of the missing left dimension based on the block
number and the name of the array

GetDimensionColumns Returns the number of columns in a two dimensional array

GetDimensionColumnsByName Returns the number of columns in the two dimensional array,
based on the block number and the name of the array

MakeArray Sets the size of the missing left dimension

MakeArray2 Sets the size of the missing left dimension for an array in any
block, including a block other than the one calling the code. It
allows resizing of dynamic arrays passed in to functions as a string
name.

The ModL Language 67
Array-like structures

IID
E

Arrays as arguments to functions
When passing an array name to a function, it is necessary to differentiate between passing the
entire array and passing only an element of the array.

☞ To pass an entire array, supply only the array name, without subscripts. To instead pass only a
single element of an array, use a subscripted array name.

Many ModL functions take arrays as arguments. To pass an array that has the same dimensions
as the function needs, simply use the array’s name. For example, the arguments to the AddC
function must be arrays with two element; that is, declared such as real a[2]. Assume you have
three arrays declared as:

real x[2], y[2], z[2];

You would call the AddC function as:

AddC(x, y, z);

If you have an array with more dimensions than are needed by the function, you can specify an
array segment as an argument. An array segment is an array with fewer dimensions than the
full array. Array segmenting can only be done by specifying the leftmost dimensions, not the
rightmost dimensions. For example, assume that you had the following declarations:

real x[2], y[2];
real z[50][2];

To pass the fifth row of z (which contains two elements), to a function such as AddC (which
only wants an array of one dimension), you would use:

AddC(x, y, z[4]);

Array-like structures

Global arrays
There is another kind of array that can be set up using functions and is useful for data needed
globally throughout the model. Global arrays provide a repository for model-specific data.
Global arrays are dynamic arrays that, like global variables, can be accessed by any block in
the model. However, they differ from global variables in the following ways:

• Global arrays are accessed and managed through a suite of functions.

• You create and dispose global arrays as they are needed. There is no limit to how many
global arrays can be associated with a given model.

See “Using passed arrays to make structures” on page 107 for an example of using global
arrays to make structures. The global array functions start on page 342.

Linked lists
ModL has a suite of functions to support a linked list data structure. A linked list is an internal
data structure that allows the construction and manipulation of complex lists of data. These
queue-like, multiple type structures maintain internal pointers between the different elements,
speeding movement of elements (sorting) around within the list.

• Each structure element can simultaneously contain any number of integer, real, and string
data types, allowing the creation of complex sorted structures.

68 IDE
Operators

ID
E

• They are faster than their linear equivalent if their internal sorting functionality is taken
advantage of, as in a Queue block (Item library).

• They are owned by individual blocks but can be accessed globally from any block.

See “Linked lists” on page 349 for a suite of functions. See the queue blocks in the Item library
or the blocks in the Rate library for examples of using linked lists.

Database tables
ExtendSim database tables are array-like structures. For more information about the Extend-
Sim database see “Working with databases” on page 113. The list of database functions starts
on page 318.

Operators
ModL offers a full set of mathematical and logical operators, as shown below.

Assignment operators

Math operators

The + operator is used both to add numeric values and to concatenate strings. For example:

Operator Description

id = expression; assignment statement

id += expression; equivalent to id = id + expression

id -= expression; equivalent to id = id - expression

id *= expression; equivalent to id = id * expression

id /= expression; equivalent to id = id / expression

id++; equivalent to id = id + 1

++id; also equivalent to id = id + 1

id--; equivalent to id = id - 1

--id; also equivalent to id = id - 1

Operator Description

+ addition and concatenation

- subtraction

* multiplication

/ division

^ exponentiation. ModL (unlike C) uses ^ to
denote exponentiation, as in 2^4.

% modulo

MOD modulo

The ModL Language 69
Operators

IID
E

str = "My name"+" is Ralph";

returns the string “My name is Ralph”.

str = "Time = " + currentTime;

returns the string “Time = 5.65” if currentTime equals 5.65.

The % and MOD operators return the remainder after integer division. For example, 5 MOD 2
returns 1 and -5 MOD 2 returns -1. If the MOD operator is used on real values, they will be
truncated to integers before the operation is carried out.

☞ Any operation involving a noValue (BLANK) produces a noValue result. NoValue results
appear as blank entries in tabular data and are not reflected in plotted traces at all.

Boolean and magnitude operators

The three standard Boolean operators are not bit-wise logical operators, but only operate on
TRUE or FALSE expression values.

The standard magnitude operators return a Boolean value (1 for true and 0 for false) after com-
paring their arguments.

Operators in an expression are generally evaluated from left to right; however there is a hierar-
chy of precedence among the operators. The following list is in descending order of prece-
dence; within each group, operators have equal precedence.

☞ Putting any expression in parentheses ensures that it will always be evaluated first.

1) ()

2) - (negation)

3) NOT or !

4) ^

5) MOD or %, *, /

6) + (addition and concatenation), -

7) <, >, <=, >=, = =, <> or !=

8) OR or ||, AND or &&

Operator Type Description

AND or && Boolean (logical) combination

OR or || Boolean (logical) conjunction

NOT or ! Boolean (logical) inverse

!= or <> Magnitude not equal to

< Magnitude less than

<= Magnitude less than or equal to

> Magnitude greater than

>= Magnitude greater than or equal to

== Magnitude equal to

70 IDE
Control statements and loops

ID
E

Control statements and loops
ModL supports a full complement of structured programming control statements. In this table,
“boolean” evaluates to TRUE or FALSE. The control statements are:

Multiple statements can be grouped with braces:

Statement Use

Abort Abort;

Break Break;

Continue Continue;

Do-While Do
STATEMENT;

While (boolean); // Note semicolon

For For (init_assignment; boolean; incr_assignment)
STATEMENT;

GoTo GoTo label;
...
label: //note the colon
...

If If (boolean)
STATEMENT;

If-Else If (boolean)
STATEMENT_A;

Else
STATEMENT_B;

Return Return;
or
Return(value or expression);

Switch Switch (expression)
{
CASE integerConstant:

many STATEMENTS;
Break;

CASE integerConstant:
many STATEMENTS;
Break;

DEFAULT:
many STATEMENTS;
Break;

}

While While (boolean) // Note no semicolon
STATEMENT;

The ModL Language 71
Control statements and loops

IID
E

{
statement;
statement;
...
} // Note no semicolon here

Use the If statement for boolean comparisons such as

if (total < 0)
{
isNegative = TRUE;
findings = abs(total);
}

...

You can also use the If-Else construct if you have two paths to choose from:

if (total < 0)
{
isNegative = TRUE;
findings = 100 + total;
}

else
findings = 100 - total;

...

The FOR construct lets you set the initial value, continuing boolean condition, and action to
take on each step in the parentheses. For example:

for (i = 0; i <10; i++)
a[i] = i;

will set a[0] to 0, a[1] to 1, and so on up to a[9].

The While loop repeats the statement while the expression is true; the expression is evaluated
at the beginning of the loop. Thus,

x = 3;
y = 3;
while (y<3)

{
x++;
y++;
}

would leave x and y set to 3 because the loop is never executed.

The Do-While construct tests at the end of the loop, so

x = 3;
y = 3;
do

{
x++;
y++;
}

while (y<3);

would leave x and y set to 4 because the test occurs at the end of the loop, after x and y have
already been incremented.

72 IDE
User-defined functions

ID
E

The Switch statement is used to check values against integer constants and act on those cases.
Note that the integers in the CASE statement must be constants, not variables. For instance,

switch (numberOfRepeats)
{
case 0:

UserError("You didn't run it.");
wasOK = FALSE;
break;

case 1:
UserError("Thank you, it ran once.");
wasOK = TRUE;
break;

default: // any other number
UserError("You ran it more than once; please stop.");
wasOK = FALSE;
break;

}

The GoTo syntax is supported only within a message handler or user-defined function. Control
is unconditionally transferred to the statements after the label.

The Abort statement stops the current message handler. You can use this at any point, even
inside loops. For example, in a DialogOpen message handler, the Abort statement would pre-
vent the dialog from opening. The two most common uses of the Abort statement are in the
CheckData and Simulate message handlers

• In CheckData, it can be used to abort if the modeler’s data is bad.

• In the Simulate message handler, it aborts the current simulation if something goes wrong
with the calculations. (See the AbortAllSims function to abort multiple simulations.)

ModL also provides two control statements for exiting from loops and other control structures:

• Break immediately exits an enclosing For, While, Do, or Switch construct.

• Continue immediately sends control to the next iteration of an enclosing loop.

The Return statement is used to exit message handlers and user-defined functions.

• When returning from a message handler or user-defined function that does not return a
value, use:

Return;

• When returning from a user-defined function that returns a value, use:

Return(value or expression);

User-defined functions
In addition to the many pre-defined ModL functions that are included with ExtendSim, you
can define your own functions and override them by re-declaring them. User-defined functions
make ModL code more readable and allow you to create tools that can be reused. They are
defined and called as they are in C.

User-defined functions have the following form:

The ModL Language 73
User-defined functions

IID
E

TYPE (or VOID) name (TYPE id, TYPE id,…, TYPE id) // zero or more
arguments
{
optional local variable declarations

zero or more statements

Return(value);
}

In these definitions, VOID is a function that does not return any value and TYPE and VOID
can be integer, real or string. All arguments are optional. Arrays may be passed as arguments.

User-defined functions can be recursive, that is, they can call themselves.

Limitations
• Unless they are declared in include files, user-defined functions are local to the blocks in

which they are defined. To make one or more user-defined functions available for use by
multiple blocks, create an include file as discussed in “Include files” on page 81.

• User-defined functions are not directly supported in equation-based blocks; they must be
declared in an include file. See the other limitations of equation blocks on page 31.

Defining
User-defined functions must be defined before they are used since the ModL compiler needs to
know the types of the arguments for type conversion. (Type conversions are discussed on
page 63.)

If you define a function that calls another user-defined function, both cannot be defined first.
The solution is to have a declaration of the function before it is actually called in the ModL
code:

TYPE (or VOID) name (TYPE id, TYPE id,…, TYPE id); //Note the ";"

This is called a forward declaration and tells ModL the types of the function and arguments,
and that the function will be defined later. The form is exactly the same as a function defini-
tion, but instead of braces, it ends in a semicolon.

Exiting
Exit a user-defined function at any point with a Return statement for Void type, Return(value)
for other types, or the Abort statement (see Abort, above).

For example:

real MyCalc(real x1, real x2)
{
real sum; // declare a temp variable

sum = x1+x2; // the calculation
Return(sum); // return the sum
}
...
y = MyCalc(a, b); // calc using function
...

74 IDE
User-defined functions

ID
E

If Abort is called in a function that was otherwise going to return a value, the code is halted
completely and the return value is no longer necessary. That is, the code execution does not
return to the calling routine, so the return value of the function is moot.

Overriding user-defined functions
User-defined functions can be overridden by being re-declared any number of times below the
first declaration. In this case, the code that is executed is the final version of the routine. In the
code pane, the earlier versions of the routine will be colored brown to show that they have been
overridden.

Overriding is useful in that include files can have basic forms of functions and message han-
dlers which can be re-declared and overridden in the main block code. See “Include files” on
page 81.

Declaring arrays as arguments for user-defined functions
This section shows how to create a function that has arrays as arguments.

If the array size is not fixed, you can declare arrays as arguments to functions with the first
(leftmost) dimension blank; additional dimensions must have a value. This allows you to pass
either kind of array (fixed or dynamic) and any length of array to a user-defined function.

The following is an example of functions that add all of the elements of the rows in a variable-
sized array and return the sum.

real rowSum(real x[])
{
integer length, i; // Temporary variables
real sum;

length = GetDimension(x); // Returns first dimension
sum = 0.0; // Initialize sum

for (i=0; i<length; i++) // For all elements
sum = sum+x[i]; // Add element to sum

return(sum);
}

on Simulate
{
real valuesArray[36], mySum;
...
mySum = rowSum(valuesArray);
...
}

For more information
• “Block-to-block message” on page 112 for a method of defining “global” functions

• “Pass by value and reference (pointers)” on page 104 for information on passing arguments
to functions

• The user-defined ActiveX Data Object (ADO) functions listed on page 371

The ModL Language 75
Message handlers

IID
E

Message handlers
Message handlers group code into sections. They interpret messages that come from the simu-
lation, from another block, or from user interaction with a block’s dialog. While messages can
originate either from the ExtendSim application or from blocks, it is always a block that is on
the receiving end of a message.

ExtendSim runs the message handler whenever one of the messages is passed to the block

The format of a message handler is:

on MessageName
{
zero or more declarations and/or statements;
}

MessageName must be the name of one of the messages listed in the chapter “Messages and
Message Handlers”. The code of the message handler is contained between the curly braces
(“{” and “}”) and tells ExtendSim what to do in the specific circumstance. To exit from a mes-
sage handler before the ending brace, use a Return statement or an Abort statement, as
described above.

When you create a block, you can add message handlers that are executed at defined times,
such as when the dialog for the block is opened (so you can initialize the dialog’s contents),
when the simulation is stopped, when a dialog button was clicked, or when the block gets a
message from another block. No matter what happens, there is a message handler available to
perform an action.

Message handler example
The statements in the body of the message handler are in the same format as C functions. For
example, a simple message handler is:

on CreateBlock // The modeler added this block to a model worksheet
{

checkUsed = 1; // Static variable declared at top of the code
myNumber = 1; //Initial setting for dialog item

}

The statements in this message handler are executed when the block is added to the model
worksheet and thus receives the “CreateBlock” message from the ExtendSim application.

The variable “checkUsed” is a static variable for the block, defined at the top of the code. The
variable “myNumber” is the name of a parameter dialog item in the block’s dialog. This state-
ment initializes the parameter to 1 when the block is created (placed in the model).

 Messages and message handlers are not supported in equation-based blocks. See the table on
page 31 for additional differences when using equation blocks.

Overriding message handlers
Message handlers can be overridden by being re-declared any number of times below the first
declaration. In this case, the code that is executed is the final version of the message handler. In
the block’s Script tab the earlier versions of the message handler will be colored brown to show
that they have been overridden.

Overriding is useful in that include files can have basic forms of functions and message han-
dlers which can be re-declared and overridden in the main block code. See “Include files” on
page 81.

76 IDE
System variables

ID
E

 You can declare local variables at the beginning of a message handler. However, you should not
have a global and a local variable with the same name. The local variable is temporary and
loses its value when the message handler is exited. Also, within each message handler, local
variables can override static variables. (If a local variable is defined with the same name as a
static variable, any references to that name within that routine or message handler will change
or reference the local variable, and the static variable will not be modified.)

For more information about message handlers, see:
• “Using message handlers” on page 111

• The list of message handlers starting on page 194

System variables
System variables give you information about the state of the simulation. You can read or write
to these variables, but you should be careful when writing to any of them.

The list of system variables starts on page 190.

Global variables
There are two types of global variables:

• General use global variables have a name that starts with “global”. They can be used any
way you want.

• Reserved global variables start with the word “SysGlobal”. These system globals are con-
trolled by the libraries that are included with ExtendSim and are reserved for use with those
libraries.

The list of global variables starts on page 191.

Conditional compilation
ModL supports several preprocessor directives to bracket ModL code. This allows specific
parts of the code to be compiled depending on circumstances. For more information, see “Con-
ditional compilation” on page 82.

Integrated Development
Environment (IDE)

Programming Tools
Features and capabilities you can use

as you program in ModL

“In baiting a mousetrap with cheese,
always leave room for the mouse.”

— Hector Hugh Munro

78 IDE
Script Editor

ID
E

Writing ModL code takes much of the same talents as writing C/C++ programs. However,
ExtendSim provides tools to help make writing block code easier and safer, as discussed in this
chapter.

Script Editor
ExtendSim has an internal, integrated script (source code) editor for creating and debugging
source code.

Syntax styling
Syntax styling gives visual cues about the structure and state of a block’s code, making it easier
to follow the logic.

See the command Edit > Options > Script tab for the following:

• Colorization by syntax, as
shown to the right. The
colors can be customized
using the Change button.

• A Reset Defaults button.

• The ability to specify the
font and font size for the
text in the Script tab.

☞ When the block’s Script tab is the active window, use Alt + O to open the Script tab shown
above.

Syntax highlighting
• Smart highlighting. Selecting or double-clicking a string causes each instance of that string

in that window to be highlighted in green. (To find all the instances of a string in other win-
dows or files, see “Find in Files tab” on page 80.

• Brace matching. This feature highlights
matching sets of braces (square brackets,
curly brackets, or parentheses) to give imme-
diate feedback on misplaced brackets or
open-ended code segments. Click the cursor
to the right of an opening or closing brace
and it, as well as the corresponding brace,
will be highlighted in cyan.

• Matching #ifdef, #endif, and #else. Click on
the #ifdef line and it will highlight the closest
matching #endif or #else in cyan.

• Show end of line. The script editor places invisible characters at the end of each line. If this
option is selected in the Edit > Options > Script tab, those characters are made visible.

• Show white space. The script editor places invisible characters wherever there is a tab or
space. If this option is selected in the Edit > Options > Script tab, those tab and space charac-
ters are made visible.

Programming Tools 79
Script Editor

ID
E

• Show indentation guides. This option is selected by default in the Edit > Options > Script
tab. It causes vertical lines to be shown in the Script tab’s margin, indicating the tab indenta-
tion of the code. This is useful for seeing if you’ve indented the code correctly, especially for
long indented sections of code.

• Code folding. Click on a code folding marker in the Script tab’s left margin to selectively
hide and display sections of the code.

• Auto indentation. Entering a return at the end of a line takes you to the same indentation
level right below that line. Tab or backspace to change the indentation as wanted.

• Line numbers. Each line in the code is automatically assigned a number in the left margin of
the Script tab. Use the Go To Line button in the Script tab (or the menu command Develop >
Go To Line) to find a specified line.

Code completion and call tips
By reducing typos and other common mistakes,
code completion speeds up the coding process.
When you type the first letters for a ModL function
or message handler in the block’s Script tab, code
completion pops up a window with a list of func-
tions that start with those letters. Scroll through the
list and double-click to select the desired function.

Once the function has been placed in the script,
type an open parenthesis “(” immediately follow-
ing it. This causes the parenthesis to turn red and
call tips to display the function’s arguments as
shown here. The first argument will be bolded.
When you enter it, the parenthesis will turn black. As you enter each argument, subsequent
arguments get bolded until all are entered.

☞ The opening parenthesis will stay black until you’ve entered all the arguments and followed
them with a closing parenthesis. At that point both parentheses will turn cyan.

Customizing code completion
Code completion and call tips are customizable. All the ModL functions and message handlers
are listed in the application.ini file located in the ExtendSim/Extensions/CodeCompletion
folder. The script editor looks to this text file for the code completion feature.

If you define your own functions or includes and want them to be available for code comple-
tion, create a new text file that follows the format of the application.ini file. Append the “.ini”
extension on the file, then place that new file within the CodeCompletion folder.

☞ Do not change the application.ini file; instead, create a new file. Otherwise, your custom
entries will be overwritten when ExtendSim is updated.

80 IDE
Script Editor

ID
E

Search and replace
If the cursor is in the
Script or Help tab, the
Edit > Find command
opens the Find String dia-
log for searching and
replacing.

☞ The “Wrap around”
option is not available
when searching the Help
tab.

Use the dialog’s Find tab to find a string within the selected window. Or use its Replace tab to
replace one string with another within that window.

☞ By default the Find String dialog only searches within the window that has the cursor. For more
options, see the Find in Files tab, below.

Find in Files tab
Use the Find String dialog’s Find in Files tab to search through multiple files at once. The
options are to search the entire Includes folder, the source file folder, or only through includes
used in the block.

This process will find all instances of the searched for string, listing them at the bottom of the
dialog. To open a file to the location of the searched string, double-click its name.

Regular expressions
In addition to the normal search options such as matching case, the Find and Replace tabs
allow you to search regular expressions within the Script tab. This is a sequence of characters
that define a search pattern, such as searching for two spaces but only if they occur directly
after a period and before an upper case letter.

☞ The regular expressions search option is not available within a block’s Help tab nor within a
database table.

Regular expressions are useful in many contexts:

• Validating that a substring meets some criteria, e.g. is an integer or contains no whitespace.

• Advanced search capabilities based on a pattern. For example, match one of the words mail,
letter or correspondence, but none of the words email, mailman, mailer, letterbox, etc.

• Replace all occurrences of a substring with a different substring, e.g., replace all occurrences
of & with & except where the & is already followed by an amp.

For more information, we suggest Mastering Regular Expressions by Friedl.

Enter Selections command
The Edit > Enter Selection command provides an easy method for finding the next instance of
some text that is in the code. Selecting the text before giving the Enter Selection command
causes the selected text to be placed in the Search for box when you give the Edit > Find com-
mand.

☞ Alternatively, use smart highlighting— select or double-click a function or message handler in
the Script tab, and the script editor will highlight each instance that is in the code.

Programming Tools 81
Debugging and profiling

ID
E

Miscellaneous script editing features
• The Zoom In button in the Edit toolbar temporarily enlarges the Script pane. Use the Zoom

Normal button to return to the default. Note that font size for the script can be permanently
enlarged in the Edit > Options > Script tab.

• The Script tab’s Functions popup takes you to the first line that uses the selected function or
message handler. It also opens the include file if the function or message handler is used in
an include.

• The Go To Line button in the Script tab (or the Develop > Go To Line menu command)
causes the Script tab to scroll to that line number.

• To use the Develop > Go To Function/Message Handler command, select the name of the
function or message handler in the code, then give the command. This is equivalent to hold-
ing down the Alt (Windows) or Option (Mac OS) key while double clicking the function or
message handler name, or right-clicking on the function or message handler name.

• The Develop menu’s Shift Selected Code Left and Shift Selected Code Right commands let
you change the tabbed indentation on lines in ModL code. For example, if you copy lines
from another block’s code that are at a different indentation level, select the lines and use the
appropriate command to move them to the correct level.

• You can copy names from the Message pane of a block’s structure window for use in the
Script or Help tabs by right-clicking on the name and selecting Copy.

• The text on icons and the Help text can have character formatting. Select the text and give
commands from the Text toolbar. You can also specify a color for the text from the Graphics
toolbar’s Fill Color and Border Color tools.

Debugging and profiling
ExtendSim has a built-in source-code debugger, other debugging tools, and a profiling capabil-
ity that helps to locate code errors or inefficiencies. For more information, see:

• The Debugging Models chapter of the User Reference.

• “Source Code Debugger” on page 172, which works with the code of equation-based blocks
as well as with the blocks you build.

• “Debugging block code without the Source Code Debugger” on page 171, which discusses
how to use ExtendSim functions to do some debugging.

• “Profiling” on page 170. Profiling generates a text file that shows the percentage of time
individual blocks execute during a simulation, indicating if any of your custom blocks need
optimization.

Include files
Include files are standard header files. ExtendSim allows you to use include files in ModL
code; they can contain all ModL commands such as definitions, assignments, and functions.
They can also contain user-defined functions and predefined constants; the functions and con-
stants are accessible by any block that includes that file, including an equation-based block.

Like ModL in general, include files allow for the overriding of functions and message handlers
and can contain preprocessor statements for conditional compilation. Include files contain
user-defined functions and predefined constants; the functions and constants are accessible by
any block that includes that file.

82 IDE
Conditional compilation

ID
E

Using include files simplifies programming tasks that are repeated in multiple blocks, such as a
library of blocks that use similar variable definitions and functions.

☞ As discussed on page 72, unless they are in an include file, user-defined functions are local to
the block in which they are defined.

Creating an include file
To start a new include file, choose the command Develop > New Include File. This opens an
untitled include file window.

Type the statements you want in this window and choose the File > Save Include File As com-
mand. This saves the include file into the ExtendSim\Extensions\Includes folder.

Naming conventions
For all platforms, the include file’s name must end with “.h” (as for standard C include files)
and the file must be either in, or in a subfolder within, the Extensions/Includes folder that
resides in the same folder as ExtendSim.

Referencing in a block
To reference an include file from a block’s code, enter a line in the code in the format:

#include "filename.h" (or #include "subfolder\filename.h")

or

#include <filename.h> (or #include <subfolder\filename.h>)

For example, if the name of the include file is “New_Defs,” you would use the command:

#include "New_Defs.h"

You can have as many include files as you wish, as long as all of them reside in the Includes
folder within the Extensions folder.

For an example of how include files are useful, see the Data Import Export block (Value
library) which uses an include file named ADO_DBFunctions. The ModL-coded ADO func-
tions for that include file are described on page 371.

☞ Include files are also called header files because they are usually included at the top or head of
the file. This is the source of their .h extension.

Conditional compilation
With conditional compilation, segments of code are compiled only if certain conditions are
present. Preprocessor directives are used to bracket code segments, causing parts of the code to
be compiled only if a particular symbol has been defined.

A symbol can be any kind of variable, function name, dialog item name, or constant. As seen
below some preprocessor symbols have been pre-defined. You can also define your own sym-
bols using #define, as discussed below.

Preprocessor directives
ModL supports several preprocessor directives to bracket the ModL code that you want condi-
tionally compiled:

• #ifdef symbol. If the symbol is defined, compile the code following the #ifdef until you get
to a #else or a #endif.

Programming Tools 83
External source code control

ID
E

• #ifndef symbol. If the symbol is not defined, compile the code following the #ifdef until you
get to a #else or a #endif.

• #endif. Marks the end of the current preprocessor directive.

• #else. Used with #ifdef or #ifndef to give an alternative set of code to be compiled.

• #define symbol. Used to define your own symbols when you need to change your code based
on the existence of that new definition, for example within an include file. After defining a
new symbol, you can use it in the #ifdef and #ifndef directives. The syntax of the #define is:

#define myNewSymbol // define a new symbol

Pre-defined preprocessor symbols
The following preprocessor symbols have been defined in the compiler:

• Compiled_Debug. Defined only if a block has debugging code on (Develop > Set Break-
points and Add Debugging Code). It is only in release 10 and later.

• ExtendSim_10. This symbol is defined only if the application is release 10 or later.

• Platform_Windows_Defined_Symbol.

• Platform_Macintosh_Defined_Symbol

Examples
For example, you can create an include file that has code to modify a dialog item. But if that
dialog item isn’t used in a particular block, the code will be ignored by the preprocessor direc-
tives.

The following is an include file generalized for different blocks.

...
void AFunction(real anArgument)
{
...
#ifdef myDialogItem // Only if myDialogItem is present

myDialogItem = anArgument; // display result in the dialog
#endif
}

A common situation is to use #ifdef to compile a message handler only if a dialog variable
exists. For example, an include file may be used by many different blocks, only some of which
have the dialog variable MyValue_prm. To prevent the compiler from giving an error message
when a block does not include the dialog variable, add the following to the include file:

#ifdef MyValue_prm
On MyValue_prm
{

//message handler for dialog variable
}

#endif

External source code control
ExtendSim supports a mechanism for saving the source code of individual blocks or libraries
of blocks as external files. This external source code feature is useful for situations where mul-
tiple developers work on the code of blocks and/or libraries at the same time.

84 IDE
External source code control

ID
E

Normally the code of blocks is saved in the library file, along with the blocks’ dialog item defi-
nitions and icons. When blocks or libraries are recompiled with the external source code option
turned on, the library file does not contain the master source code. Instead, the source code is
saved in a separate subfolder inside the Libraries folder. It can then be used with a separate
source code control or management application.

Externalizing source code for a block
Open the block’s structure and go to the Script tab

Choose the command Develop > External Source Code

Close the block’s structure window

In the dialog that appears, choose Save, compile if needed

This causes the block to be recompiled with its source code in an external file.

☞ If source code has been externalized, the green initials CM (for code management) will be dis-
played on the block’s icon in the library window.

Restoring the block’s code to its structure
Open the block’s structure and go to the Script tab

Unselect the command Develop > External Source Code

Close the block’s structure window

Save and compile the block

Externalizing source code for an entire library
Give the command Library > Library Tools > Add External Code to Libraries

In the dialog, select the libraries you want to have external source code

Click Add External Code

This recompiles the library and causes block source code to be placed in an external file.

☞ In the library’s Library Window, the green initials CM (for code management) will be dis-
played to the right of each block’s icon.

Restoring the source code to the library file
Open the Library Window for the desired library

Give the command Library > Tools > Remove External Code in Open Library Windows

The consequences of saving the code externally
Using the external code option for a block will:

• Automatically create a folder named “Source” within the Libraries folder, if the Source
folder does not already exist.

• Place a folder with the name of the library inside that Source folder, if that library folder
does not already exist.

• Create a source code text file for each block that has been recompiled with external source
code and places it in the library name folder. Each file will be named with the block name
and end with a .cm extension.

Programming Tools 85
Extensions

ID
E

• Cause the green text CM (for “code management”) to appear on the icons in the library win-
dow, for each block that has been recompiled with external source code.

• Create a backup file, with the extension .ck, each time the block is recompiled.

Using the external source code with code management software
The primary reason for using the external source code option is in conjunction with a separate
source code control or management software. This allows multiple people to work on the code
of the blocks at the same time. For example, Subversion is an open source version-control sys-
tem that is available for download from the Web. The basic structure would be a situation
where Subversion or some other source code control software would maintain an archive on a
server and synchronize the source folders on each modeler’s machine with that central archive.

Because the source code for each block is saved in a separate .cm file, which is just a text file,
the source code control software can maintain the file and synchronize any changes made by
the modelers with what is in the central archive.

Cautions when using the external source code feature
 Unlike block code, block dialogs, icons, and help text are not editable by multiple developers at
the same time.

Managing non-code parts of blocks
With external source code turned on, the source code for each block is saved as a text file. This
facilitates the management of block code by multiple developers using source code control
software. However, the block dialogs, icons, and help text are not saved in the external files.
Instead, they are saved in the original library file.

When changes need to be made to block dialogs, icons, or help text, the library should be
“locked” using the source code control software. That way, no one else can modify those parts
of the block while they are being changed. After the changes have been made, unlocking the
library releases the blocks so other developers can work on them.

Sharing libraries with others
When you have recompiled a library with the external code option, you need to be careful
about how you manage and share that library. For example, if you give the library to someone
else without giving them the source code files, they will receive warning messages when open-
ing the structures of the blocks. Before giving the library to another person, recompile the
library with the external source code option turned off.

Extensions
Extensions are files of various types, such as text, sound, image files, or DLLs. When you
installed ExtendSim, you also installed an Extensions folder in the same folder as the Extend-
Sim models and libraries. The Extensions folder contains various files stored in subfolders,
such as DLLs, Includes, and Pictures. In addition to the files shipped with ExtendSim, you can
add your own extension files to the Extensions folder.

☞ Extensions should be stored in the appropriate subfolder. If there is no subfolder for the type of
extension you are adding, put it at the top level of the Extensions folder.

Supported file types
ExtendSim supports the following types of files:

• Text files, which are used for includes and code completion purposes

86 IDE
DLLs

ID
E

• DLLs

• WAV files

• Various kinds of image files, such as BMP, JPG, PNG

Macintosh resource files converted using the ExtendSim MacWin converter utility are sup-
ported as pictures for backwards compatibility with earlier versions of ExtendSim. The differ-
ent kinds of extensions are discussed individually later in this chapter.

Naming
Except for DLLs, the name referenced by the ModL functions will be the file name. For DLLs,
as described below, the name referenced will be the function name of the particular function
you are trying to call from the DLL.

For more information, see
• DLLs, below.

• “Sounds” on page 89

• “Sounds” on page 89

• “Picture and movie files” on page 90

• “Customizing code completion” on page 79

DLLs
As discussed in “Accessing code from other languages” on page 42, ExtendSim provides sets
of functions that allow you to call, from within a block’s ModL code, segments of code written
in a language other than ModL. This is handy if you want to access existing functions written
in another language or solve problems that are difficult in ModL. On Windows, these functions
are identified as DLLs or dynamic-link libraries.

 For ExtendSim 10 or later, the DLL must be built for 64-bit execution

Overview
DLLs are libraries of code written and compiled in any language. Their standardized interface
provides a method for linking between ExtendSim and languages other than ModL. In order to
access these code libraries, they must be stored in the ExtendSim Extensions directory, dis-
cussed on page 85.

The ExtendSim DLL functions allow you to call DLL code libraries from within a block's code
and use that code to perform operations. For example, you can use a DLL to calculate some
function, perform a task, or even access Windows API calls. DLLs can also be used to access
external devices, or to solve problems that might be difficult or impossible to solve in ModL.

DLL interface
The DLL functions allow you to access existing Windows DLLs. Because they have variable
argument lists, these functions allow you to call almost any existing DLL. See the DLL func-
tions on page 245 for a list of functions and specific information about this interface.

Turning code into a DLL
Taking existing code and turning it into an DLL involves the following:

Write or edit the DLL code using a Windows compiler that is capable of compiling DLLs.
For ExtendSim 10 or later, the DLL must be built for 64-bit execution.

Programming Tools 87
DLLs

ID
E

Modify the DLL code by adding the DLL calling interface.

After compiling the code, you will have a DLL file. Place this file in the ExtendSim Exten-
sions\DLLs directory.

Restart ExtendSim. This will allow you to call the external code using the DLL functions in
your block code.

You should also make note of the following:

• In the argument list, variables (other than strings or arrays) that are passed from the ModL
code to a DLL are passed by value.

• Reals are 8-byte double precision

• Integers are 4-byte long integers (converted to 8-byte for the DLL)

• Pointertypes are 8-byte integers

• In the argument list, strings and arrays are passed to DLLs as 8-byte pointers to data that has
been allocated by ExtendSim. Modifications to that data will affect the original information
in ExtendSim.

• Arrays that are passed to a DLL come through as pointers to the original data in
ExtendSim. Accessing and modifying the data is fine, but you should not try to resize
the pointer. If you do, ExtendSim will not be able to access the data and will probably
crash.

• Strings are passed to DLLs from ModL as Pascal strings, not C strings. This means that
the string is preceded by a size byte and is not terminated by a zero. For example, if
you pass a string to a DLL, the DLL will get a pointer to 256 bytes of data in which the
first byte contains the number of characters in the string. To convert strings to C strings
and back again, see the DLLCtoPString and DLLPtoCString functions in the function
list “DLLs” on page 245.

• The most common problem associated with building and using a DLL is making sure that
the names of the routines that you want to call are exported and that they are exported with-
out Name Mangling or Name Decoration. Name Mangling is an option for how names are
exported from a DLL; it adds information about the arguments to the exported name.

☞ When building a DLL for use with ExtendSim, the Name Mangling option should be off.

DLL example for Miles block
The following code calls a DLL that performs the same function as the ModL code (shown on
page 51) that you used to build the Miles block.

// Declare constants and static variables here.

88 IDE
DLLs

ID
E

long proc;
on Calculate_btn // Display the values
{
proc = DLLMakeProcInstance("convert");
if (proc > 0) // Check if proc>0 before you make the call

OutNum_prm = DLLDoubleCFunction(proc, inNum_prm,
kilometers_rbtn, yards_rbtn, feet_rbtn, inches_rbtn);

else
Beep(); // Couldn’t find the DLL function "convert"

}
// This message occurs for each step in the simulation.
on simulate
{
InNum_prm = MilesIn;/* Display the value input by setting the dialog

variable “InNum” to the input connector value */
proc = DLLMakeProcInstance("convert");
if (proc > 0)// Check if proc>0 before you make the call

unitsOut = DLLDoubleCFunction(proc, inNum_prm,
kilometers_rbtn, yards_rbtn, feet_rbtn, inches_rbtn);

else
Beep(); // Couldn’t find the DLL function "convert"

OutNum_prm = UnitsOut; /* Display the value output by setting the
dialog variable “OutNum” to the output connector value */

}

The code of the 64 bit DLL, written in C++, is:

double _export _fastCall convert(double x, long kilometers, long
yards, long feet, long inches)
{

if (kilometers)
return(x * 1.609334);

else if (yards)
return(x * 1760.0);

else if (feet)
return(x * 5280.0);

else if (inches)
return(x * 63360.0);

}

DLL example for DLL Add block
This section demonstrates how to call a DLL, written in different languages, from within an
ExtendSim block using DLLMakeProcInstance and the DLL calling function DLLDoubleC-
Function().

DLL Add block
The DLL Add Block (Libraries/Example Libraries/ModL Tips) calls a DLL
(Add.dll) that adds together the two numbers entered in the block's dialog. By
default the block calls a DLL written in C++; as required, the DLL is located at
ExtendSim/Extensions/DLLs.

ExtendSim ships with the source code, projects, and Add.dll's written in 4 languages (C++, C#,
Python, and VB.Net). The project folders are located at Documents/ExtendSim/Examples/
How To/Developer Tips/DLLs. These DLLs all do the same thing (add two numbers together);
they are just built in different languages. By changing which DLL is in the ExtendSim/Exten-

Programming Tools 89
Sounds

ID
E

sions/DLLs folder, you can explore how DLLs written in other languages are created and
called.

☞ Also see the DLL Add block’s Help for hints when calling DLLs.

Calling the C# DLL
By default the DLL Add Block calls a DLL written in C++. To instead have the block call the
C# DLL:

Quit ExtendSim

Go to the ExtendSim/Examples/How To/Developer Tips/DLLs folder

Open the folder named AddDllCSharp-Binary-Src-006 unblocked

Inside that folder, open the folder named Binary

Copy the three files (add.cs.dll, add.dll, and vcruntime140.dll) from the
Binary folder and paste them into the ExtendSim/Extensions/DLLs folder,
making sure that the existing add.dll gets replaced.

Launch ExtendSim and either:

Put the block named DLL Add Block (from the Libraries/Example Libraries/ModL Tips
folder) onto a model worksheet.

Or, open the model named Add.mox (located at the ExtendSim/Examples/How To/
Developer Tips/DLLs folder).

In the block’s dialog, enter numbers for X and Y, then
click the Add button.

See the block’s Help for additional information.

Calling other DLLs
To use the other DLLs supplied with ExtendSim, remove any Add DLL files you’ve placed in
the Extensions/DLLs folder. Then follow the same procedure as above for the C# DLL, copy-
ing the appropriate files from the project’s Binary folder to the ExtendSim/Extensions/DLLs
folder:

1) For Python, copy the files named “Add.dll”, “addm.py”, and “python37.dll”

2) For VB.Net, copy the files named “add.dll” and “add.vbnet.dll”

Target the DLL by name
You could use the DLLMakeProcInstance (string procName)
function to search for the procedure. However, for situations
where two different DLLs have the same procName, or to be
really sure which DLL you’re calling, it is safer to call the function DLLMakeProcInstanceLi-
brary. This function is similar to DLLMakeProcInstance except it has a libraryName argument
so you can specify which specific dynamic-link library (DLL) should be opened and searched
for the procedure.

Sounds
Depending on your operating system, ExtendSim has access to several sounds. You can play
sounds using the Notify block (Value library) or by calling the PlaySound function in the code
of a block.

90 IDE
Picture and movie files

ID
E

There are two sources of sounds that ExtendSim can access:

• ExtendSim contains a “click” sound extension.

• You can also use .WAV files created by other applications or obtained from user groups.

You must copy the sound file into the Extensions directory, as discussed on page 85.

Picture and movie files
Pictures and movies are used for specialized 2D animation. See the functions in “2D Anima-
tion” on page 250, for more detail. To see an example of using pictures and movies for anima-
tion, see “Showing a picture on an icon” on page 134.

Naming conventions and limitations for pictures
You can have any number of pictures in the Extensions folder. Pictures with names that start
with a “@” will not show up in the block’s animation tab popup menu. This prevents the ani-
mation tab menus from being filled with other, larger types of pictures that are not suitable for
animation between blocks.

As mentioned in “Extensions” on page 85, pictures must be stored as a file in the Pictures sub-
folder of the Extensions folder. The AnimationPicture function will recognize most picture for-
mats.

Protecting libraries
ExtendSim normally keeps both the ModL code and compiled code in the block; if you remove
the ModL code, the compiled code is still there. When you build custom blocks and do not
want others to have access to your block code, you can protect your libraries by removing the
ModL code of the blocks. When a modeler attempts to edit a protected block, ExtendSim dis-
plays a dialog message that the block is protected and cannot be opened. The structure of the
protected block is never shown.

A protected library can be used the same as any other library except that you cannot view or
alter the ModL code. This means that someone using the library has all the functionality of the
blocks in that library but no ability to see how the blocks work. This is a convenient way to
hide proprietary programming while still giving modelers full access to the power of the block.
Protecting the ModL code has the added benefit of preventing someone from changing the icon
or the block’s help text.

☞ After a library is protected, you can never un-protect it. Thus it is good practice to make a copy
of the original and store it on some other media.

The steps for protecting a library are:

Select the command Library > Library Tools > Protect Library.

When you give the Protect Library command, ExtendSim warns you that protecting a
library’s ModL code will permanently and irrevocably prevent access to block code.

In the dialog that appears, select and open the library you want to protect.

The Create New Library dialog allows you to rename the library. However, since models
will be expecting the original library name, it is suggested that you leave the library name as
is. The protected library will have the extension “.lbrpr” rather than the normal “.lbr”, so
your original library won’t be overwritten.

Programming Tools 91
Protecting libraries

ID
E

When the library is saved, ExtendSim protects the library’s ModL code by cutting it from
the block.

Any copies you make of this protected library will also be protected. You can easily show that
a library is protected by opening it and attempting to edit the structure of a block in the library.

92 IDE
Protecting libraries

ID
E

Integrated Development
Environment (IDE)

Programming Techniques
Procedures and suggestions for how to

create and modify ModL code

“In baiting a mousetrap with cheese,
always leave room for the mouse.”

— Hector Hugh Munro

94 IDE
Data source indexing and organization

ID
E

This chapter focuses on using ModL functions to create custom blocks and simulation effects
in ExtendSim.

Data source indexing and organization
Communicating between various types of data sources has been greatly assisted by standard-
ized technologies, such as the ability of diverse applications to exchange data through a stan-
dard text file format. However, it is important to keep in mind that each standard has its own
conventions. This can cause data-confusion when transferring data from one type of source to
another.

Transferring data between a data table and a spreadsheet
ExtendSim data tables have zero-based indexes and are organized by row and column. Spread-
sheets are also organized by row and column, but they are one-based. When transferring data
from an ExtendSim data table to an Excel worksheet, the row and column numbers for Excel
must both be increased by 1 compared to their location in the ExtendSim data table.

☞ The first row in an ExtendSim data table could be labeled as 0 or as 1. However, no matter how
the row is labeled, the index for that first row is still 0.

Transferring data between a spreadsheet and a database
Databases are one-based like spreadsheets, but are organized by fields and records (equivalent
to columns and rows) rather than being organized by the spreadsheet convention of rows and
columns.

Indexing and organization
The following table lists indexing and organization conventions for different data source types.

Equation block programs
The equation-based blocks are: Equation, Optimizer, Query Equation (Value library); Equa-
tion(I), Queue Equation, Query Equation(I) (Item library); and Buttons (Utilities library). The
ExtendSim User Reference discusses how to use the equation-based blocks and how to debug
them.

Equation blocks can handle more than just the definition of an equation—they are capable of
compiling and executing complex ModL programming logic. Think of the equation blocks as a
method for including small programs on the fly without having to create a new block.

Data Source Type Indexing How organized

ExtendSim Data Tables 0-based Row/Column

Spreadsheets 1-based Row/Column

ExtendSim Databases 1-based Column/Row
(Field/Record)

External Databases 1-based Column/Row
(Field/Record)

Arrays 0-based Row/Column

Text Files N/A Row/Column

Programming Techniques 95
Working with dialogs

ID
E

You can also use the functions described in “Equations” on page 218 to create your own blocks
that take in equations and even allow for debugging. For example, you might want to do this
when building scientific or engineering blocks and can’t predict ahead of time what formulas
you will need.

☞ To allow larger equations or programs into a block’s dialog, see “Equations” on page 218 for a
list of equation functions that support up to 32000 characters in a dialog item. Also, see the
Equation block (Value library) for an example of using a Dynamic text item and a syntax color-
ing window to edit a user-entered equation.

 Equation-based blocks can call any of the ExtendSim built-in functions. However, user-defined
functions and procedures cannot be defined directly in an equation-based block; they must be
defined in an include file. For a list of the other differences between equation-based blocks and
the custom blocks you might create, see “Differences between equation blocks and pro-
grammed blocks” on page 31.

Working with dialogs
With a bit of creativity, you can make dialogs that provide a great deal of information about the
state of a simulation or that help you debug models-in-progress.

 In addition to the following information, modifying and creating dialogs, as well as ModL code
interaction with dialogs, is described in more detail in “Accessing dialog items from a block’s
code” on page 35.

Changing text in dialogs
The Miles block example on page 44 showed the usefulness of keeping a dialog open and
watching the numbers in the entry boxes change as the simulation progresses. Dialogs can also
be used for displaying text or messages that might change during the simulation.

Changing text as the simulation runs
Changing the text displayed in a dialog is often more useful than displaying alerts since alerts
stop the simulation until the modeler clicks one of their buttons.

For example, assume that:

• You are modeling a factory that has three shifts, where the name of the shift (day, night,
swing) changes depending on the current time.

• You have a block with a static or editable entry box named Shift that you want to modify.

• Simulation times are in minutes.

You could display the time in the Shift dialog item as a number, but then you have to convert
the time to the shift name in your head:

Shift = (CurrentTime / 60) mod 24;

Instead, you could convert the time in the block’s code and display text in the dialog:

...
string name[2];
name[0] = "Day"; name[1] = "Night"; name[2] = "Swing";
...
Shift = name[((CurrentTime / 60) mod 24) / 8];

96 IDE
Working with dialogs

ID
E

Changing text in response to a user’s action
ModL lets you change the text and titles of dialog items at any time. This allows you to decide
what to show based on what is done in the dialog. An example of this is the Random Number
block (Value library), which displays different parameter labels depending on the statistical
distribution that is selected.

When a control item (radio button, switch, meter, etc.) is clicked, two things happen:

• The value of the radio button’s variable name is set to TRUE; switches and checkboxes are
toggled from FALSE to TRUE and vice versa; and sliders are changed in value. Plain but-
tons don’t have a value but their titles can be changed.

• ExtendSim sends a message to any message handler with the control item name. This allows
the ModL code to take a special action.

For example, assume that you want to show values as either octanes (for gasoline) or cetanes
(for diesel fuel). There are two radio buttons that let you decide which unit to show:

// ShowOctaneValues radio button was clicked
on ShowOctaneValues
{

// set static text label above data table
SetDataTableLabels(“dataTable”, “Octane Values”);

for (row=0; row<numRows; row++)
for (col=0; col<numColumns; col++)

dataTable[row][col] = octaneVals[row][col];
}

// ShowCetaneValues radio button was clicked
on ShowCetaneValues
{

// set static text label above data table
SetDataTableLabels(“dataTable”, “Cetane Values”);

for (row=0; row<numRows; row++)
for (col=0; col<numColumns; col++)

dataTable[row][col] = cetaneVals[row][col];
}

// When the dialog is opened by the modeler
on DialogOpen
{

// Static labels are not "remembered" when dialog is closed
// so, when the modeler opens the dialog, restore the titles here

if (ShowCetaneValues) // ShowCetaneValues was TRUE
SetDataTableLabels(“dataTable”, “Cetane Values”);// restore

// title
else // else ShowOctaneValues TRUE

SetDataTableLabels(“dataTable”, “Octane Values”); // restore
// title

}

See also “Buttons” on page 38 and “Static text (label)” on page 39.

Programming Techniques 97
Working with dialogs

ID
E

☞ If the octane and cetane arrays were dynamic, the DynamicDataTable function could be used to
switch the data table between the two dynamic arrays. This would execute more quickly and
require less code.

Hiding/showing dialog items
As discussed on page 19, by default dialog items are visible in at least one tab; they may be
hidden by unchecking the Visible checkbox. Dialog items where Visible is unchecked are
shown in red.

You can also choose to dynamically show and hide dialog items depending on a user action or
on the value of other dialog items. You do this using functions (such as HideDialogItem) in the
list that starts on page 267. When the dialog is opened by the modeler, you use a DialogOpen
message handler to show and hide certain items depending on the values of the controlling
items.

For example, the Decision block (Value library) has a parameter field for Relax that appears if
Use Hysteresis is checked. For more complex dialogs, see “Moving dialog items”.

In some cases you may want a dialog item to not be visible ever. This is common when you
don’t want to use a dialog item anymore, but shouldn’t delete it because the block is already
used in models. In this case, just uncheck the Visible checkbox.

 Use caution when deleting a dialog item if the block is being used in any model. Deleting the
item could disrupt the order of the dialog’s data. The data will have to be reentered for each
instance of that block in all models that use it. Instead of deleting the dialog item from a block
used in a model, hide it by unchecking the Visible checkbox in its properties window. (Since
they don’t store data, text frames and static text labels may be safely deleted.)

When you copy or duplicate dialog items
You can copy/paste or duplicate dialog items within a tab, from one tab to different tab within
the same block, or from one block to another. To do this, select the dialog item, then give the
Duplicate (or Copy and Paste) commands.

When you duplicate or copy/paste a dialog item, its Label stays the same but a number is
appended to the original dialog item’s Name. Unless you change it, the new name (with the
appended number), is how the copy of the dialog item will be referenced in ModL code. The
name and Label can be changed by double-clicking the dialog item to access its definition.

Moving dialog items
• To manually move a dialog item within a dialog tab:

• Either select and drag it to the new location within the same window or tab

• Or, double-click it and change its X and Y coordinates in the properties window

• To manually move a dialog item from one tab in the Dialog tab to another, first select the
item, then use the Develop > Move Selected Items to Tab command. Then select the tab to
move the item to.

• You can also write code that moves a dialog item depending on a block’s settings. This is
often easier and more organized than placing all the dialog items on top of each other and
then hiding and showing them depending on the setting. For instance, the parameter fields in
the Random Number block (Value library) move based on which distribution the user

98 IDE
Working with dialogs

ID
E

selects. The DIPosition functions, as well as DIMoveTo and DIMoveBy, can be used to
move dialog items. These functions are included in the list that starts on page 267.

Resizing dialog items
Many dialog items can be resized. Do this either through code or in the Dialog tab:

• Either select the item and drag one of its handles (the squares in the corners of the item)

• Or, double-click the item and change its W (width) and H (height) coordinates

• Or, through the code using the function DIPositionSet.

Changing the title of a radio button or checkbox
The function DITitleSet is useful for setting the title of a radio button or checkbox. ModL code
can thus change the title, and meaning, of the control at any time.

Changing and reading parameters globally from a block
The GetDialogVariable and SetDialogVariable functions can be used to read and set dialog
items by name for any block in the model from within one block. When you combine this with
the ability to read block names and labels, this feature can be used to build a block that can
globally control the model, gather statistics on a class of blocks, or change parameters within
all blocks that have a specified commonality.

☞ In addition to the GetDialogVariable function, see the GetStaticVariable function.

For example, as seen in the Get-Set Dialog Variable model located at Documents/ExtendSim/
Examples/Developer Tips, you can build a block that can cause specified Activity blocks (i.e.
Activity blocks whose labels include a specific wording, such as ABC) to double their entered
delay value. Below is sample code that does this:

Programming Techniques 99
Remote access to dialog variables

ID
E

on doAllButton // modeler clicked button to change the blocks
{
integer nBlocks, i;
real value;
string name, label, paramStr;

nBlocks = NumBlocks();
for (i=0; i<nBlocks; i++) // all the blocks in the model

{
name = BlockName(i); // get the name of the block
label = GetBlockLabel(i); // get the block’s label

// look for Activity at beginning (with no case sensitivity)
// AND look for ABC anywhere in label

if (StrFind(name, “Activity”, FALSE, FALSE) == 0 &&
StrFind(label, “ABC”, FALSE, FALSE) >= 0)

{
// Found them. now read the parameter for the delay
paramStr = GetDialogVariable(i, “waitDelta_prm”, 0, 0);

if (paramStr != ““) // not empty means it was found
{
value = StrToReal(paramStr);

// now set it to double value
SetDialogVariable(i, “waitDelta_prm”, value*2.0, 0, 0);
}

}
}

}

Remote access to dialog variables
Sometimes it is useful to allow a modeler to use a stand-alone block to get or set the value of a
dialog variable in a remote block. For instance, this is how modelers set model factors and get
model responses using the Scenario Manager block, discussed in the User Reference.

In ExtendSim there are three mechanisms for interfacing dialog variables between a stand-
alone block and a remote block:

1) Manually enter the remote block number’s and dialog variable name into the stand-alone
block

2) Clone-drop, using the Clone tool to drag the parameter onto the icon of the stand-alone
block

3) Shift-click a dialog parameter and select from the popup menu of available options to add
that parameter to the stand-alone block. This is especially helpful when one or more of the
blocks is within a hierarchical block.

The Find and Replace (Utilities library), Optimizer and Scenario Manager (Value library), and
the Statistics block (Report library) reference dialog variables in other blocks. And all of the
Value, Item, and Rate blocks have interfaces that support this feature. These interfaces are also
available to developers, and taking advantage of them requires only minor additions to your
custom block code.

100 IDE
Remote access to dialog variables

ID
E

Custom remote blocks interfacing with a stand-alone block
The blocks in the Value, Item, and Rate library have code that allows a stand-alone block to get
or set their dialog variables; they support all 3 of the above options. Your custom block can
also take advantage of this interface, allowing a stand-alone block to interface with your
block’s variables:

• Options 1 and 2 will automatically be implemented without any modification to your blocks.

• For option 3, you need to add the following code to your custom block:

Include MouseClick v10.h

#include "MouseClick v10.h"

Add the following code

On DialogClick // called whenever the modeler clicks a dialog item

{

if(do_keydown_mouse_click())

return;

}

☞ If you have additional code in this message handler, put it after this code.

Custom stand-alone block referencing remote dialog variables
If you create a stand-alone block that will reference (get or set) remote dialog variables in other
blocks, you can implement any or all of the above methods for collecting the information from
the remote block, as discussed below. (While it is also possible to develop your own interface,
using one or more of the ExtendSim interfaces will be easier and more consistent with existing
blocks.)

Manual data entry
Implementing a manual method for referencing from the list in a custom stand-alone block
depends on your particular implementation, interface, and needs. Some blocks, such as Find
and Replace (Utilities library), only work with one remote dialog variable at a time. Other
blocks, such as Statistics (Report library), have a list of remote dialog variables. For coding
examples, look at one of those blocks.

Clone drop
Adding a clone-drop interface to a custom block requires a DragCloneToBlock message han-
dler. This is called whenever a clone is dragged to the icon of that block.

Inside of this message handler, call GetDraggedCloneList. This function requires two argu-
ments – an integer dynamic array and a string dynamic array. It returns the number of clones
(usually 1) dropped onto the block. You then use this information to reference a dialog item in
another block.

Shift-click
The shift-click feature is more complicated to implement because it requires using a reserved
database (discussed on page 114) and an include file. The reserved database (_leftClickDB)
provides the necessary information for the shift-click action. The include file (MouseClick.h)
has two functions defined in it that are required for managing the reserved database:

Programming Techniques 101
Remote access to dialog variables

ID
E

1) RegisterBlockInLeftClickDB(String blockNumberDialogVariable, String staticStringVari-
ableForRemoteBlockName, String sStaticStringVariableforRowAndColumn, String pop-
upMenuLabel, integer optionNumber). Registers a block in the database of blocks that add
a popup to a shift-click action. This is called in the CreateBlock, PasteBlock and Open-
Model message handlers. See the MouseClick include file for an explanation of the argu-
ments.

2) UnRegisterBlockInLeftClickDB. Removes a block from the database of blocks that add a
popup to a shift-click action. This should be called in the DeleteBlock message handler.

Coding for Shift-click
The key to the Shift-click functionality is a hidden dialog variable in the stand-alone block.
When this dialog variable is set by the remote block, the stand-alone block receives a message
that it has been sent a reference to a dialog variable in the remote block. The name of the hid-
den dialog variable is stored in a table in the reserved database (_leftClickDB) by the Register-
BlockInLeftClickDB function.

The information sent by the remote block must be processed in the message handler for the
hidden dialog variable. This information has been set in static variables in the stand-alone
block by the remote block. The names of the static variables are set in the RegisterBlockIn-
LeftClickDB function. The information includes the block number, dialog variable name, and
database table’s row and column. These values can be found in the Dialog and Static variables
that are arguments to the RegisterBlockInLeftClickDB function.

In the following code example, the stand-alone block gets:

• The block number for the remote block in the dialog variable AddFactor_prm

• The name of the remote block's dialog variable in the static string variable DialogVarName

• The row and column of the remote dialog variable in the RowColumnDialogVar static string
variable

And the popup menu is labeled “Scenario Manager: Add Factor”. Because the Scenario Man-
ager has two options (one for adding a factor and one for adding a response), this is option 1.

On OpenModel

{

RegisterBlockInLeftClickDB("AddFactor_prm","DialogVarName",

"RowColumnDialogVar", "Scenario Manager: Add Factor", 1);

}

On AddFactor_prm

{

// Receive message from remote block and process hidden variables

// AddFactor_prm is the block number of the remote block

// DialogVarName is the dialog variable in the remote block

// RowColumn is the row and column in the remote block

}

102 IDE
Working with connectors

ID
E

Shift-click example
When the Optimizer block (Value library) is added to a model it
creates the reserved database _leftClickDB. The entries in the
database table cause options, such as Optimizer: Add Parameter,
to be added to a menu that appears when an appropriate dialog
item is Shift-clicked.

Through block code, the Shift-click action causes the selected
variable to be used in the Optimizer block. Using this type of
architecture makes it easy for developers to add their own block
options to the Shift-click menu.

Working with connectors
Most blocks have connectors. You add and change connectors using the connector tools in the
Icon Tools tool at the right of the ExtendSim toolbar.

☞ For information about connector types, options, and names, see the writeup that starts on
page 21.

Variable connectors
By default new connectors are added as a normal (single) connector. This works well for sim-
ple blocks, but often a block will need several inputs or outputs.

As discussed in “Connector options” on page 21, when you select a type of connector (Value,
Item, etc.) it is by default a normal connector. You can then change the connector to be vari-
able. Variable connectors act like a row of normal connectors, where the row can be expanded
or contracted to provide a required number of connectors. To work with variable connectors,
see the writeup on page 35 and the functions on page 264. For an example of how variable
connectors are implemented, see the Math block (Value library).

Initializing connectors
The value of a connector is used to determine whether the block is connected to another block
during the CheckData message handler, and thus cannot be changed there. All connectors are
initialized by ExtendSim to 0.0 after the CheckData message handlers are executed. To initial-
ize connectors before the simulation runs, do it within the InitSim or PostInitSim handler.

For example, to initialize a connector before the simulation runs:

On InitSim // Or use On PostInitSim
{
conOut = initialValue;
}

The blocks in the Item library initialize their connectors in the InitSim handler.

Deleting connectors or changing connector types
ExtendSim keeps an ordered list of the connectors on a block. If you delete a connector on a
block used in a model, it changes the connector order. This may cause unexpected results – the
connectors could become disconnected or connected incorrectly.

 For blocks used in existing models, changing connector order could cause a problem. When
you only need to change connector types, do not delete the connector. Instead, simply select it
and click on the correct connector tool. If you have to delete a connector on a block that is used
in a model, carefully examine the block’s connections afterwards.

Programming Techniques 103
Working with arrays

ID
E

Bidirectional connectors
All ExtendSim connectors are bidirectional. This is useful if you want blocks to communicate
back and forth.

For example, you may want to simulate a network or a bus in which blocks need to both send
to, and receive information from, the other members of the network. Because ExtendSim does
not allow multiple output connectors to be connected together, you could use only input con-
nectors for all the blocks in the network.

Or you may also want source and sink connections, where a source block can have its output
value changed by the sink blocks that are connected to it. This is useful in simulations where
one block’s reserves are depleted by the other blocks connected to it.

To implement these features in blocks, assign or modify the value of an input connector. This
feature makes input connectors bidirectional. When the value of an input connector is modi-
fied, all connected blocks will see this new value when they get their next Simulate message.

The concept of using an input connector for both input and output is shown in the Bidirectional
Flows model, which is located in the Documents/ExtendSim/Examples/How to/Developer
Tips folder. In that model a power station supplies energy to cities. Each city block has a single
input connector. The block code for the cities subtracts an amount from the input, called “Pow-
erIn”, with the statement:

PowerIn = PowerIn - amountUsed;

This affects the Power Station block by reducing the output power value stored in its output
connector. The power station can check its output connector value and see if it went to 0 or
became negative, signifying that its power reserves have been depleted by the towns:

if (PowerOut <= 0.0) // check the reserve power
{

// Out of power. Tell when this occurred.
UserError("Brownout occurred at time= "+CurrentTime);
abort; // Stop the simulation.
}

Working with arrays
Since you will typically use arrays to store any data which is more complex than a single vari-
able, you will probably use them fairly often. ExtendSim provides lots of features and func-
tions that use arrays, especially regarding discrete event modeling. Note that, while ModL does
not directly support arbitrary user-defined structures, it supports a rich linked list structure (see
“Array-like structures” on page 67 and “Linked lists” on page 349) and it emulates other types
of structures using arrays of arrays. You will find that working with arrays in ExtendSim is
simpler and safer than using the data structures that are available in C.

☞ As shown in the table in “Data source indexing and organization” on page 94, arrays use zero-
based indexing.

Memory usage of variables, arrays, and items
For most models, you do not need to worry about how much memory your variables take up.
You may need this information in some circumstances, especially if you are using huge arrays.

☞ There is no overhead for using arrays.

104 IDE
Working with arrays

ID
E

The total of all static arrays (non-dynamic arrays) and variables in a block, including any static
data tables in the block’s dialog (which are real arrays, 8 bytes per element), cannot exceed
32,767 bytes. Dynamic data tables are not included in static memory allocation. See “Block
data tables” on page 274.

When a user-defined function is called, its local arrays can have up to 32,767 bytes. The size of
dynamic arrays are not included in any of the above calculations and can have up to 2 billion
elements each.

If your arrays are small, use fixed dimension static arrays since they are easier to declare. If
your arrays are large, use dynamic arrays.

Pass by value and reference (pointers)
In C, you can pass variable arguments to functions by value or by reference (pointers). When
you pass a variable by value, the value of that variable in the outside environment is not
affected by anything that function does. When you pass by reference, however, the function
can modify the contents of the variable and those modifications are seen by the outside envi-
ronment.

In ModL, all non-array variables and single elements of arrays (such as myArray[i]) are always
passed by value and are therefore never modified. Arrays, however, are always passed by ref-
erence (such as “myArray”, with no subscripts) and therefore can have their contents changed
by a ModL or user-defined function. If you are writing user-defined functions, this feature
makes it easy to return more than one value. Simply pass an array to your user-defined func-
tion and change the values in the array. All changes you make to the array in your function can
be seen in the message handler when the function returns.

Passing arrays
Essentially, a passed array is a pointer assigned to a real variable with the PassArray function
and it is read from that real variable and converted back to an array with the GetPassedArray
function. (In ModL, pointers have more information than just the address of data, so real vari-
ables are used to hold them.) These functions are listed in “Passing arrays” on page 341. The
Passing Arrays model in the Documents/ExtendSim/Examples/How To/Developer Tips folder
illustrates how to pass, receive, and modify an array.

Passed arrays must be dynamic arrays but they can be any type (real, integer, or string). A
passed array has the same properties as an array that you use in a single block.

Type Memory used

Real 8 bytes (double)

Integer 4 bytes (long)

String or Str255 256 bytes per string containing up to 255 characters

Str15 16 bytes per string containing up to 15 characters

Str31 32 bytes per string containing up to 31 characters

Str63 64 bytes per string containing up to 63 characters

Str127 128 bytes per string containing up to 127 characters

Programming Techniques 105
Working with arrays

ID
E

☞ If you pass arrays, those arrays can only be resized or disposed of in the same block where they
were created.

You can use the SendMsgToBlock function and the BlockReceive message handler to tell the
originating block to resize the array. An example of this is the Executive block (Item library).

It is important to note that any changes made to data in a passed array affects all blocks that
reference that array, including the block that originated the array. If you want to make a change
to a passed array that is not reflected in previous blocks in the model, copy the values from the
passed array to a new array, make changes to that new array, and pass that new array. (You can
copy an array quickly with a “for” loop, as described later in this chapter.)

Passing arrays through connectors
The blocks built in this manual pass single values through their connectors. You cannot pass
arrays as easily as you can single values, but it is not difficult to add the few functions that let
you pass arrays through the connectors.

Because a connector is a real variable, you can pass arrays through connectors. To read a
passed array from a connector, use the GetPassedArray(connector, array) function. For exam-
ple, assume that you are receiving an array through the input connector called ArrayConnec-
torIn. Your message handler might look like:

real theArray[];
...
on Simulate
{

if (GetPassedArray(ArrayConnectorIn, theArray)) // is it
passed

{
. . . // Yes, use the array
}
else
{
. . . // The array did not arrive yet

// or it is not a passed array
}

. . .
}

All of the values in the passed array can now be accessed and changed by using the theArray
variable in your code.

The process for passing multidimensional arrays is exactly the same, with the exception that
you need to confirm that the fixed dimensions are the same for both the passing and receiving
blocks.

There are two different ways to pass an array to an output connector, depending on whether the
array was passed to the block or it originated in the block. If the array was passed to the block,
simply set the output connector to the same value as the input connector:

ArrayConnectorOut = ArrayConnectorIn; // pass the old pointer on

To pass an array that originated in the block, use the PassArray(array) function. You can assign
the value of this function to an output connector (or to a real variable in your ModL code that is
then assigned to an output connector). Assume that you had changed the values of theArray

106 IDE
Working with arrays

ID
E

in the example above and wanted to pass them out the connector named ArrayConnectorOut.
You would use:

ArrayConnectorOut = PassArray(theArray); // pass the new pointer

If you are just passing an array through a block without looking at it, you should not use Get-
PassedArray. Simply assign the output connector to the value of the input connector, and the
real number that holds the passed array will be handled with no overhead:

ArrayConnectorOut = ArrayConnectorIn; // pass the old pointer on

Passing arrays through global variables
You can use any real variable to hold passed arrays. This means that you can pass arrays
through the global variables global0 through global19 that are available to all blocks. If you
want an array to be globally accessible, pass it to one of the global variables and use GetPasse-
dArray to interpret the global variable when you want to get at the array values. Discrete event
blocks use this technique.

Precautions when passing arrays
The GetPassedArray function needs to be called before accessing a passed array. If an array is
created at the beginning of the simulation and the size is never changed and the array is not dis-
posed of during the simulation, then GetPassedArray only needs to be called once, at the
beginning of the simulation.

☞ If you pass arrays NOT during a run, call GetPassedArray() in any message handler that uses
those arrays before accessing those arrays.

However, GetPassedArray must be called again before accessing any passed array that may
have changed in size or been disposed of. Trying to access a passed array after the creator
block has disposed of or resized it can cause a crash if the GetPassedArray function is not
called immediately before access is attempted. When you resize or dispose of an array, its
memory location may change or otherwise become invalid. A crash can occur because the
block that received the array has a pointer to a specific location in memory, and will try to
access that memory point even if it no longer is a valid array location. Calling GetPassedArray
immediately before accessing the array will relink to the correct memory address if the array
has been resized and will return a FALSE value if the array has been disposed of.

Since GetPassedArray is extremely fast (because it only links the pointer of the array), the saf-
est action is to call it and test its return value before every series of accesses to the array.

☞ The following is an example of what NOT TO DO:

Block #1

integer x[];
on checkdata
{
Makearray(x, 10); // create the array
global9 = passarray(x);
}

on endsim
{
DisposeArray(x); // dispose of the array
}

Block #2 //this is not safe!

Programming Techniques 107
Working with arrays

ID
E

integer x[];
on initSim
{
GetPassedArray(global9, x);
}

on endSim //this is not safe!!!!
{
for(i = 0; I<10; I++) // This is dangerous! Is the array still
available?

x[i] = 0;
}

The above code could cause a crash if the code in Block #2 is executed later in the simulation
than Block #1. The problem occurs because Block #2 tries to access the array it thinks is in the
variable x, while the array referenced by x has actually already been disposed of by Block #1.

☞ It would be safer to use the following approach in Block #2:

integer x[];
on initSim
{
GetPassedArray(global9, x);
}

on endSim
{
if (getPassedArray(global9, x)) // This is safer. Get and test the
array first.

{
for(i = 0; I<10; I++)

x[i] = 0;

}
}

For the same reason, it is important to call the function GetArrays() (see “Functions in discrete
event blocks” on page 160) in your custom discrete event block code each time before you
access the ItemArrays.

Using passed arrays to make structures
ModL does not support structures directly, except for linked lists (see “Linked lists” on
page 349). It does, however, allow you to emulate structures using arrays of arrays. This is
safer than using pointers and structures in C.

Suppose you want to pass an array consisting of real, string, and integer values. Since arrays
can be passed to any real variable, many arrays can be passed into a real array, and that array
can be passed through a connector or global variable. The receiving block can get the passed
structure array and then get the individual passed data arrays from that array.

The following shows an example of using passed arrays to make structures.

108 IDE
Working with arrays

ID
E

// This block makes a structure and passes it.
// Declare the arrays at the top of the code.

real structureArray[]; // This is the structure
string stringValues[]; // Holds the strings
real realValues[]; // Holds the reals
integer integerValues[]; // Holds the logical values

on InitSim
{

// Give the arrays a size.
MakeArray(structureArray, 3); // Holds reals, strings, long.
MakeArray(stringValues, 10); // 10 elements for each array
MakeArray(integerValues, 10);
MakeArray(realValues, 10);

// Pass the arrays to the real structureArray.
// This needs to be done only once each simulation run.

structureArray[0] = PassArray(realValues);
structureArray[1] = PassArray(stringValues);
structureArray[2] = PassArray(integerValues);
}

on Simulate
{

// Put data into the realValues, stringValues,
// and integerValues arrays.
// For example, set one element of each array.

realValues[0] = 98.6;
stringValues[0] = "Octane rating";
integerValues[0] = TRUE;

// The data arrays were already passed to the structure-
Array.

// Now, pass the structureArray to the connector.
// This has to be done here because connectors are active
// only during "On Simulate".

DataOut = PassArray(structureArray);
}

The following is the receiving block’s code. This gets the passed structure array, then gets the
individual arrays from the structure array for use in the block:

// Declare the arrays at the top of the code.
real structureArray[]; // This is the structure
string stringValues[]; // Holds the strings
real realValues[]; // Holds the reals
integer integerValues[]; // Holds the logical values

Programming Techniques 109
Working with arrays

ID
E

on Simulate
{

if (GetPassedArray(ConnectorIn, structureArray))
{

// Get the reals
GetPassedArray(structureArray[0], realValues);

// Get the strings
GetPassedArray(structureArray[1], stringValues);

// Get the logicals
GetPassedArray(structureArray[2], integerValues);

// Use the array values
if (stringValues[0] == "Octane rating")

. . .
}

else
{

// The structureArray did not arrive yet
// or is not an array.

. . .
}

}

Working with global arrays
As discussed in “Global arrays” on page 67, global arrays provide a repository for model-spe-
cific data; they are accessed and managed through a suite of functions listed on page 342.
Global arrays can be referenced either by name or index value.

The following is an example of how to create, access, and dispose of a global array:

// Declare the arrays at the top of the code.
integer arrayIndex; // index value for the global array

on initsim
{
arrayIndex = GAGetIndex("myGlobalArray"); // see if global array
already exists

110 IDE
Working with arrays

ID
E

if (arrayIndex < 0) // if global array does not exist...
{
// Create a three column global array of real numbers named
// “myGlobalArray”. Assign array’s index to arrayIndex.
arrayIndex = GACreate(“myGlobalArray”, GAReal, 3);
// Resize array to contain 10 rows of data
GAResize(“myGlobalArray”, 10);
}

}

on simulate
{
real realNumber;
. . .
// Set second row and column of global array to realNumber
// (row and columns start at index zero)
GASetReal(realNumber, arrayIndex, 1, 1);
. . .
// Read third row and column of global array and assign to realNumber
realNumber = GAGetReal(arrayIndex, 2, 2);
}

On Endsim
{ // We are done with myGlo-
balArray.
if (GAGetIndex("myGlobalArray") != -1) // Only if myGlobalArray
still exists,

GADispose("myGlobalArray"); // dispose of it.
}

Copying arrays using “for” loops
Copying the elements of an array to another array is quite easy with the “for” loop construct.
The following copies a two-dimensional array that has 100 elements:

// Copy array a into array b.

integer a[10][10], b[10][10];
integer i, j;

for (i = 0; i < 10; i++)
for (j = 0; j < 10; j++)

b[i][j] = a[i][j];

Using arrays to import unknown rows of numbers
The Import function reads numbers into a real array. If you do not know how many lines are in
the file and you use a fixed-size array, you will lose lines if the array is too small or waste
memory space if the array is too long. Instead, use a dynamic array to be sure that you will get
all the rows without having to specify the dimension of the rows. The function returns the
number of rows read, so you can then reduce the size of the array after the call. For example:

Programming Techniques 111
Working with linked lists

ID
E

integer numRowsRead;
real fileArray[];
string theFileName, thePrompt, theDelim;
...
MakeArray(fileArray, 10000);
numRowsRead = Import(theFileName, thePrompt, theDelim, fileArray);
MakeArray(fileArray, numRowsRead);

The second call to MakeArray reduces the size of the array without disturbing the contents in
the rows left. Of course, if you import into a two-dimensional array, you have to specify the
size of the second dimension.

Working with linked lists
As discussed on page 67, linked lists are complex structures that can enable sophisticated sort-
ing rules. The concepts behind linked lists are beyond the scope of this manual. See “Linked
lists” on page 349 for a basic strategy in working with linked lists. Also, see the Queue blocks
(Item library) for actual linked list code.

Using message handlers
☞ Messages and message handlers were discussed on page 33 (introduction) and page 75.

ExtendSim uses a sophisticated messaging architecture to signal blocks into action. For
instance, when you add a block to a model, ExtendSim sends the “CreateBlock” message to the
new block. If the block’s code contains a message handler for the “CreateBlock” message (that
is, a bracketed set of lines that are preceded by “on CreateBlock”), the code is executed; if not,
nothing happens.

While messages can originate either from the ExtendSim application or from blocks, it is
always a block that is on the receiving end of a message. When you run a simulation, some
messages are sent to all blocks; others are sent only to a specific block. For instance, the “Cre-
ateBlock” message is sent only to the block that was added to the model. However, the “Init-
Sim” message, which tells the blocks that a simulation is starting, is sent to all blocks.

☞ The messages that a block’s dialog items uses are listed in the Dialog Item Names pane in the
block’s structure window. Use the Copy and Paste commands to copy the message names from
the pane to use in ModL code.

Categories of messages
While there are dozens of messages, they could be thought of as falling into one of three cate-
gories:

1) Messages that are sent to a block when the modeler interacts with the block’s dialog. For
instance, when the modeler clicks the block dialog’s Cancel button.

2) ExtendSim allows blocks to “call” other blocks by sending them a message, whether the
blocks are connected or not. Blocks use this feature to cause an action in another block,
such as having it perform a calculation or open a plot. For example, the UpdateStatistics
message is typically sent to an Activities block by the Statistics block (Report library)
when its statistical variables need to be recalculated and updated.

3) Messages that are typically sent from the application to one or more blocks. For instance,
when a block is added to the model, while the simulation is running, during interaction with
an ExtendSim database, and so forth. For example, the LinkContent message sends the
message that data has changed in an ExtendSim database.

112 IDE
Using message handlers

ID
E

☞ A complete list and description of ModL messages is in the chapter “Messages and Message
Handlers” that starts on page 193.

Message sent during user interaction with dialog
This example shows what happens when the modeler clicks a button in the dialog. The dialog
item name of the button is “MyExportButton”. (The text label of the button is “Export”; it is
not used in the code.)

// Sent when the modeler clicks a button in the block's dialog
on MyExportButton // The modeler clicked the Export Data button
{
MyExportFTP(); // Call my function to export the data to the web
}

☞ For examples of code for each dialog item, see “Dialog messages” on page 36.

Block-to-block message
When a button is clicked in the calling block, its code sends a message to the receiving block
and causes that block to return a value. Global variables are used to pass arguments to the
called block as well as to get results from the called block’s actions.

See the Item library for examples of blocks sending messages using connectors.

Calling block
on Button // called when the block’s Button is clicked
{
// globalInt0 contains the block number of the receiving block
// UserMsg0 is the message handler that calculates it
SendMsgToBlock(globalInt0, UserMsg0Msg); // Call it
myResult = global1; // Get the result of the call
}

Receiving block
on UserMsg0 // called from the calling block
{
global1 = 123.5; // assign value to global1
}

Message sent by the application
The following code uses the CheckData message that is sent by ExtendSim to all the blocks in
a model at the beginning of a simulation. If the block has a CheckData message handler, this
message tells the block to check the validity of its data before the simulation starts.

// Sent by ExtendSim to allow checking data before simulation
on CheckData
{
if (myParm < 0.0) // this parameter should not be negative

{
UserError("Data in " + MyBlockNumber() + " can't be negative.");
Abort; // Stop simulation and select the offending block
}

}

Programming Techniques 113
Working with databases

ID
E

Working with databases
As discussed in the User Reference, an ExtendSim database provides a repository for model-
specific data.

☞ See also the separate document ExtendSim Database Tutorial and Reference.

Using the database API to read and write
ExtendSim databases can be accessed and managed through the Read and Write blocks in the
Value and Item libraries. You can also use the database API (see “Database functions” on
page 318) to create databases via execution of a block’s code.

The following is an example of how to create and access a database to store output from a
model:

// Declare static variables
integer databaseIndex;// index value for the output database
integer tableIndex;// index value for the output table
integer fieldIndex;// index value for the output field
integer recordIndex;// index for setting our record values

on initsim// create the database, table, field if not there
{
// Creates database parts only if it doesn’t exist already
DBDatabaseCreate(“myDB”);
databaseIndex = DBDatabaseGetIndex(“myDB”);// get index
DBTableCreate(“myDB”, “myTable”);
tableIndex = DBTableGetIndex(databaseIndex, “myTable”);
DBFieldCreate(“myDB”, “myTable”, “myField”, DB_FIELDTYPE_REAL_GENERAL,
8, FALSE, FALSE, FALSE); // real number field

fieldIndex = DBFieldGetIndex(databaseIndex, tableIndex, “myField”);

// create records as we need them during the run
recordIndex = 0;// initialize record index
}

on simulate
{
recordIndex++;// increment our record index first (one based)

// append one record to our table
DBRecordsInsert(databaseIndex, tableIndex, 0, 1);

// write one data value to our database
DBDataSetAsNumber(databaseIndex, tableIndex, fieldIndex, recordIndex,
myDataValue);
}

☞ As shown in the table in “Data source indexing and organization” on page 94, databases use
one-based indexing. Keep this in mind when transferring data between databases and Extend-
Sim data tables, which are zero-based.

Registered blocks
Block registration is a method for keeping a block informed when there is a change in the
linked data source. Unlike user-defined or code-defined links (which link a particular dialog
item to a data source), block registration functions link an entire block to a data source.

The block registration functions start with DBBlockRegister or GABlockRegister (see “Link-
ing and notification” on page 337). Depending on the function chosen, the block gets a Link-

114 IDE
Working with databases

ID
E

Contents message if the content of the data source changes or a LinkStructure message if the
structure of the data source (such as the name of a table or the location of a field) changes.

An example of block registration for content changes is the Read block (Value library). When
Link Alerts is checked in its Options tab, the block registers itself so that it will be alerted if/
when changes are made to its source data.

Registered blocks can be located using the Find Links dialog (Edit > Open Dynamic Linked
Blocks) discussed in the User Reference.

 Use registered blocks judiciously. Due to the extra messaging, a registered block can signifi-
cantly slow the simulation run.

Reserved databases
ExtendSim databases are internal repositories for storing, managing, and controlling model
data. A reserved database is a specialized type of ExtendSim database that can be hidden from
the modeler. Reserved databases provide database capabilities without the modeler having to
use, or even be aware of, the reserved database.

Typically a database would be created by a modeler for a specific model. A reserved database,
on the other hand, is usually created by a programmer using the database API.

Example
A common use of a reserved database is to support the architecture
of a block. For example, when the Resource Manager block (Item
library of ExtendSim DE and ExtendSim Pro) is added to a model it
creates a reserved database named _rM_Database. There are numer-
ous tables in that database, each focusing on different aspects of the
block and how it functions. For instance, the Dialog Colors table,
shown here, stores the HSV values of the colors used for text labels
in the block’s dialog. Other tables track filtering conditions, store
resources with their ranking and skill levels, and so forth. When the
modeler enters data and makes selections in the Resource Manager block, these are tracked in
the reserved database. This process is invisible to the modeler.

The Optimizer block (Value library) is an example where a reserved database is used to pro-
vide a feature for the modeler. This is discussed in “Shift-click example” on page 102.

Creating and editing
Reserved databases are created and edited in much the same manner as you would create or
edit any ExtendSim database. Some differences are:

• To notify ExtendSim that the database is to be reserved, enter a leading underscore (_) at the
beginning of the database’s name. For example, the name would look like “_ARe-
servedDB”.

• To prevent modelers from accidentally writing to reserved databases, they require special
write functions. These are listed on page 327. An error message will be displayed if the spe-
cial write functions are used for non-reserved databases, and vice versa.

• Since they are intended for developers, ExtendSim doesn’t support using blocks (such as
Read or Write) to access reserved databases. It also doesn’t allow modelers to link dialog
items to a reserved database.

Programming Techniques 115
Reading text blocks as commands

ID
E

• When a block that requires a reserved database is added to a model, the code of the block
creates the database in the model. In most cases, unless a block that requires a reserved data-
base is placed in the model, the model will not have any reserved databases.

• If a model has reserved databases, they will not be displayed in the Database List or at the
bottom of the Database menu unless you first give the command Develop > Show Reserved
Databases. By default, this command is not selected. Furthermore, the command is re initial-
ized to off each time the model is opened.

• Even if a reserved database is not listed in the Database List or at the bottom of the Database
menu, it is always accessible through ModL functions.

 Changing anything in a reserved database is equivalent to changing the code of a block. It is
likely to corrupt any blocks that uses it.

Reading text blocks as commands
Since every piece of text that you add to a model gets its own number, text on the model work-
sheet can be accessed in a block’s code.

The BlockName function returns the name of a block for the specific block number. However,
blocks aren’t the only items on the worksheet that have numbers. Because each piece of text
gets a number, and the text is equivalent to a block’s name, you can use BlockName to read
text. This can be useful if you want to see how you have changed some text on the model.

Use this feature to globally change parameters in block dialogs. For example, assume you want
to give a command to the model to change a specific parameter in many blocks. Normally, you
would have to open all of the blocks and type the new parameter value. Here is a strategy that
allows you to type some text, such as “Speed=55”, on the model window that will cause all of
the speed parameters in all of the blocks to change when the simulation is run. Note that the
following function can be put in any block and can be called for each typed value that the code
needs:

116 IDE
Reading text blocks as commands

ID
E

real GetTypedValue(string name) // User defined function
{
integer nBlocks, i, position, nameLength;
string typedText, valuePart;
real valueFound;

nameLength = StrLen(name); // Number of characters
nBlocks = NumBlocks(); // Number of blocks

for (i=0; i<nBlocks; i++) // Loop thru all blocks
{
typedText = BlockName(i); // Get block name or text

// find the "name=" string
position = StrFind(typedText, name+"=", FALSE, FALSE);
if (position == 0) // Must not be part of a larger word

{
// Get numeric part of string (skip over "name=")

valuePart = StrPart(typedText, position+namLength+1,255);
valueFound = StrToReal(valuePart); // Convert to real
if (noValue(valueFound))

{
UserError("The value for "+name+" must be numeric");
abort; // Stop the simulation
}

else
return(valueFound); // Return the found value

}
}

// No "name=" was found
UserError("Your typed variable, "+name+", was not found");
abort; // Stop the simulation
}

// Get your values. If they’re not found or are bad,
// GetTypedValue stops the simulation with a message

on Checkdata
{

// SpeedValue & MassValue are names of dialog parameters
SpeedValue = GetTypedValue("Speed");
MassValue = GetTypedValue("Mass");
}

Global function block
// Before simulation runs, set up the block number so that
// other blocks can call it

on CheckData
{
globalInt0 = MyBlockNumber(); // Use a global integer variable
}

// A message from another block (a "global function" call)

Programming Techniques 117
Changing data while the simulation is running

ID
E

on BlockReceive0
{

// globalInt1 contains the number of the function

switch(globalInt1) // Which function did they want?
{
case 1: // The Hochmeister function

// global0 has the argument, result goes into global1
global1 = cos(global0)^2.0+sin(global0)^2.0;
break;

case 2: // The Lemski-Pemski factor
// global0 has the argument, result goes into global1
global1 = Sin(global0)/Cos(global0)-Tan(global0);
break;

}
}

Changing data while the simulation is running
Sometimes you need to change values in a block’s dialog while the simulation is running. In
most cases, ExtendSim handles this by allowing you to change the value, which is then used
immediately in the block’s code (usually in the Simulate handler). However, there has to be a
special initializing procedure if the block needs to calculate intermediate values based on that
new data. ExtendSim provides a mechanism to tell the block that its data has been changed.
Then the block can do a recalculation of intermediate data before the simulation resumes.

When any data is changed in a dialog during a simulation, ExtendSim sends a ResumeSim
message to that block before the simulation can resume. It also sends a ResumeSimAllBlocks
message to all of the blocks in the model. These are optional message handlers because most
blocks do not need to recalculate intermediate data, they just use the dialog values directly. But
if the block has a ResumeSim or ResumeSimAllBlocks message handler, it can take some
action before the simulation resumes.

Here is an example of a block that needs to do a lengthy calculation before the simulation
resumes after a change in parameters. It recalculates the coefficient when the modeler changes
the dialog parameter, but doesn’t zero out the accumulated value so the simulation can con-
tinue properly:

real coeffValue, accum;
real CalcCoeffValue(real theValue) // This function does the

// coeffValue calculation
{
real coeff;
integer i;

coeff = 0.0; // Initialize the sum
for (i=0; i<100; i++) // Loop a hundred times

coeff = coeff+cos(theValue*i); // Use theValue,calculate coeff
return(coeff); // Done, return it
}

118 IDE
Scripting

ID
E

on InitSim // Initialize values for beginning of simulation
{
coeffValue = CalcCoeffValue(dialogParameter); // Calc coeff and
accum = 0.0; // init to 0
}

// User changed dialogParameter during simulation.
on ResumeSim // Just calculate new coeffValue,

// don’t initialize accumulated value.
{
coeffValue = CalcCoeffValue(dialogParameter); // Just calc coeff,

// don’t zero accum
}

on Simulate // Calculate new values during the simulation
{
accum = accum+coeffValue*conIn; // Fast. Multiply input by coeff
conOut = accum; // Output accumulated value
}

Scripting
In ExtendSim, the process of building models typically relies heavily upon modeler interac-
tion. The standard process of placing blocks on the worksheet, connecting them together, and
filling in the appropriate dialogs (while graphical and intuitive), requires direct modeler partic-
ipation. However, models can also be built, modified, and controlled indirectly using Extend-
Sim’s scripting features.

Scripting is an extremely powerful feature which allows you to:

• Build, run, and control models from within another application

• Create custom wizards to simplify tasks or interact with modelers

• Develop self-modifying models

By using the scripting functions (see “Scripting” on page 300), you can tell ExtendSim which
blocks to place on the worksheet and where, how to connect the blocks together, and what val-
ues to use for the block’s dialog parameters. In addition, any menu command can be executed
by a function call, for instance to run a model. When used in conjunction with the IPC func-
tions (see “Interprocess Communication (IPC)” on page 229 or “OLE/COM (Windows only)”
on page 232), the scripting functions can be used to build and run entire models based on infor-
mation from another application.

The scripting functions can also provide a means for developing “wizards” – blocks that help
the modeler to perform a task by gathering information, then building or modifying a model
based upon that information.

You can also develop blocks that help models achieve desired results. You could build artificial
intelligence into your models by building blocks that query the model for specific metrics and
simultaneously modify the model based on those metrics. For instance, you would use this
self-modifying feature to automate the process of changing models in response to simulation
results or to build goal-seeking models.

See the Tutorial block (Example Libraries > ModL Tips library > Scripting category) for an
example of using the scripting functions.

Programming Techniques 119
OLE and ActiveX Automation

ID
E

OLE and ActiveX Automation
ActiveX automation is the process of using the ExtendSim OLE functions, or the scripting
environment of another application, to communicate with, exchange data with, or control the
other application or ExtendSim.

☞ ExtendSim supports ActiveX automation as either an automation server or as an automation
client.

☞ The Examples\How To\Developer Tips\OLE Automation folder contains code examples of
ActiveX Automation using VB.net and VBA. Also see discussions in this document on
page 120 (C++), page 125 (COM DLL using VB.net), page 125 (VBA), and page 125 (Visual
Basic).

Controlling Embedded Objects from ModL script
 As of ExtendSim release 10, embedded objects are no longer supported. The functions
that supported embedding in prior releases are noted in the Functions chapter of this
manual as being “obsolete”.

ExtendSim as an Automation Client
To use ExtendSim as an Automation Client, start with a call to the function OLECreateObject.
This will return a dispatch Handle to the OLE Automation Server. Once you have the base Dis-
patch Handle for the server, you can then use the functions defined in “OLE/COM (Windows
only)” on page 232 to control the object.

ExtendSim as an Automation Server
ExtendSim also supports a simplified version of Automation as a Server. This is the ability for
another application to control the ExtendSim application from outside via OLE.

The automation supported in ExtendSim as an Automation Server is five methods:

• Poke

• Request

• Execute

• BlockMsg

• GetObjectHandle (OBSOLETE AS OF EXTENDSIM 10)

These are used in a fairly simple single object model. Execute, Request, and Poke are the pri-
mary means of controlling ExtendSim via ActiveX/OLE Automation. BlockMsg and GetOb-
jectHandle (OBSOLETE AS OF EXTENDSIM 10) are slightly more obscure, but can also be
useful. See “C++ examples” on page 120 for an example of how these methods are used.

Object
For use with C++ or other related languages, the Object is the ExtendSim application, refer-
enced by the following GUID:

{E167B362-7044-11d2-99DE-00C0230406DF}

In Visual Basic, or other environments where ProgIDs are supported, this GUID can also be
referenced by the ProgID “Extend.application”. ProgIDs are a simplified and easier to remem-
ber way of accessing a GUID.

120 IDE
OLE and ActiveX Automation

ID
E

 Even though the application name is ExtendSim, for backward compatibility the ProgID is
Extend.application. In the future, the ProgID ExtendSim.application will be supported as well,
but at the time of this writing the correct ProgID is Extend.application.

Because ModL scripts can be executed with the Execute method, complete control of Extend-
Sim is available through the following methods:

Topic and Item
The Poke and Request methods require two strings (Topic and Item) to identify where the data
should be poked or where it should be requested from.

Topic is the name of the worksheet or model (or “system” if you don't need to specify a
model). If you specify system, the data will be poked to or requested from the top model.

The Item string is specified as follows:

"VariableName:#BlockNumber:RowStart:ColStart:RowEnd:ColEnd"

RowStart, ColStart, RowEnd, and ColEnd can all be set to zero if the item specified is neither a
data table object nor an array.

If the item is not a table, RowEnd and ColEnd can be left off. In this case the string would look
as follows:

"VariableName:#BlockNumber:0:0"

Starting in ExtendSim 7.0.2 there are new forms of the Item string which will allow you to
poke directly to, or request directly from, an ExtendSim database table or a global array. These
forms are as follows:

"GA:#GlobalArrayIndex:RowStart:ColStart:RowEnd:ColEnd"

"DB:#DBIndex:DBTableIndex:RecordStart:FieldStart:RecordEnd:Field-
End"

Note that the database case has an extra argument.

C++ examples
The following examples show how to access an IDispatch interface and use the five methods
(Poke, Request, Execute, BlockMsg, and GetObjectHandle) in C++. For examples using
VB.net and VBA, see the Examples\How To\Developer Tips\OLE Automation folder.

Retrieving the IDispatch interface
The following C++ sample code shows one possible way you could access an IDispatch inter-
face on an ExtendSim application.

DispatchID Method Name See Page

1 Execute 121

2 Request 122

3 Poke 122

100 BlockMsg 123

101 GetObjectHandle (OBSOLETE AS OF ES10!) 124

Programming Techniques 121
OLE and ActiveX Automation

ID
E

☞ The GetActiveObject code attempts to find a running copy of ExtendSim in the ROT (running
object table). The CoCreateInstance code creates a new instance of ExtendSim if the running
one is not found.

CLSIDFromString ("{E167B362-7044-11d2-99DE-00C0230406DF}", &clsid);
hr = GetActiveObject(clsid, NULL, (IUnknown **) &m_pUnknown);

if (hr == S_OK)
{
// JSL - found an existing instance
hr = m_pUnknown->QueryInterface(IID_IDispatch, &m_pDisp);
hr = m_pUnknown->Release();
}

else
{
theErr = GetLastError();
MessageBox (NULL, TEXT("GetActiveObject Failed, creating a new

Object"), TEXT("OleTest"), MB_OK);

hr = CoCreateInstance(clsid, // class ID of object
NULL, // controlling IUnkown
CLSCTX_LOCAL_SERVER,// context
IID_IDispatch, // interface wanted
(LPVOID *) &m_pDisp) ;// output variable

if (hr != NOERROR)
{
theErr = GetLastError();
MessageBox (NULL, TEXT("Create Instance Not Successful"),

TEXT("OleTest"), MB_OK);
FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM, NULL, theErr,

MAKELANID(LANG_NEUTRAL,SUBLANG_DEFAULT),
buf, sizeof(buf), NULL);

MessageBox (NULL, buf, "Error", MB_OK);
return;
}

}

Execute
The Execute method takes just a single argument that is the code to be executed. The dispID of
Execute is 1.

The Execute method is the most flexible method call, as the command that is passed to Extend-
Sim via this method is just a section of ModL script and can contain anything that can be put
into ModL script, including scripting functions. This means that by using the execute method
you can build models, run models, or do any of a number of things.

The C++ code you would use to call the execute method would look something like this (note
that this code will cause ExtendSim to display a userError statement with the value in user-
global0):

122 IDE
OLE and ActiveX Automation

ID
E

// Arguments are all passed as variants
bStr = SysAllocString((WCHAR *) L"userError(userglobal0);");
VariantInit(&vString);
vString.vt = VT_BSTR;
vString.bstrVal = bStr;

// Set the DISPPARAMS structure that holds the variant.
dp3.rgvarg = &vString;
dp3.cArgs = 1;
dp3.rgdispidNamedArgs = NULL;
dp3.cNamedArgs = 0;

// Call IDispatch::Invoke()
hr = m_pDisp->Invoke(executeID, IID_NULL, LOCALE_SYSTEM_DEFAULT,

DISPATCH_METHOD, &dp3, NULL, &ei, &uiErr);

Request
The Request method uses Topic and Item, as specified a in “Topic and Item” on page 120, and
returns a string value. The dispID of Request is 2.

The C++ code you would use to call the Request method would look something like this (this
code will return the value present in userGlobal0):

// Arguments are all passed as variants
requestVariant = malloc(sizeof(VARIANTARG) *2);
itemStr = SysAllocString((WCHAR *)

L"userglobal0:#0:0:0:0:0");
VariantInit(&requestVariant[0]);
requestVariant[0].vt = VT_BSTR;
requestVariant[0].bstrVal = itemStr;

topicStr = SysAllocString((WCHAR *) L"system");
VariantInit(&requestVariant[1]);
requestVariant[1].vt = VT_BSTR;
requestVariant[1].bstrVal = topicStr;

// Set the DISPPARAMS structure that holds the variant.
dp2.rgvarg = requestVariant;
dp2.cArgs = 2;
dp2.rgdispidNamedArgs = NULL;
dp2.cNamedArgs= 0;

var.vt = VT_EMPTY;

// Call IDispatch::Invoke()
hr = m_pDisp->Invoke(requestID, IID_NULL, LOCALE_SYSTEM_DEFAULT,

DISPATCH_METHOD, &dp2, &var, &ei, &uiErr);

SysFreeString(topicStr);
SysFreeString(itemStr);

Poke
The Poke method takes the three arguments Value, Topic, and Item and sets the value specified
in the Value argument into the item specified in the Item argument. Topic and Item are speci-
fied as in “Topic and Item” on page 120; Value is the string that is going to be poked into the

Programming Techniques 123
OLE and ActiveX Automation

ID
E

location specified by Topic and Item. The dispID of poke is 3. Value, Topic, and Item are all
strings.

The C++ code you would use to call the Poke method would look something like this (note that
this code will set the value of Global0 to 34.5):

pokeVariant = malloc(sizeof(VARIANTARG) *3);
valueStr = SysAllocString((WCHAR *) L"34.5");
VariantInit(&pokeVariant[0]);
pokeVariant[0].vt = VT_BSTR;
pokeVariant[0].bstrVal = valueStr;

itemStr = SysAllocString((WCHAR *)L"Global0:#0:0:0:0:0");
VariantInit(&pokeVariant[1]);
pokeVariant[1].vt = VT_BSTR;
pokeVariant[1].bstrVal = itemStr;

topicStr = SysAllocString((WCHAR *) L"system");
VariantInit(&pokeVariant[2]);
pokeVariant[2].vt = VT_BSTR;
pokeVariant[2].bstrVal = topicStr;

// Set the DISPPARAMS structure that holds the variant.
dp.rgvarg = pokeVariant;
dp.cArgs = 3;
dp.rgdispidNamedArgs = NULL;
dp.cNamedArgs = 0;

// Call IDispatch::Invoke()
hr = m_pDisp->Invoke(pokeID, IID_NULL, LOCALE_SYSTEM_DEFAULT,

DISPATCH_METHOD, &dp, NULL, &ei, &uiErr);

SysFreeString(topicStr);
SysFreeString(itemStr);
SysFreeString(valueStr);

BlockMsg
BlockMsg sends a message to a specific block in the active ExtendSim model. The DispID of
BlockMsg is 100. This message will execute a message handler in the block called OLEAuto-
mation.

The BlockMsg method takes two arguments:

• The first is a block number (integer) and specifies the block that is to receive the message.

• The second is a value (integer, real, or string) and can be used to communicate with the
block code.

ExtendSim will set the value of one of three globals to be equal to the value you pass in as the
Value argument. Which global will be set is based on which type of variable passed in. The
example below uses a string variable. The three globals are OLEGlobal, OLEGlobalInt, and
OLEGlobalStr.

 As reflected in the code below, the integer values used by the blockMsg method are long inte-
gers. However, by default an integer variable declared in Visual Basic is a short integer. So VB
programmers should take special care to declare the variables as longs in their VB code.

124 IDE
OLE and ActiveX Automation

ID
E

msgVariant = malloc(sizeof(VARIANTARG) *2);
VariantInit(&msgVariant[0]);
msgVariant[0].vt = VT_I4;
msgVariant[0].lVal = 23; // blockNumber
argStr = SysAllocString((WCHAR *) L"userText ");
VariantInit(&msgVariant[1]);
msgVariant[1].vt = VT_BSTR;// could be a long, or a real as well
msgVariant[1].bstrVal = argStr;

// Set the DISPPARAMS structure that holds the variant.
dp.rgvarg = msgVariant;
dp.cArgs = 2;
dp.rgdispidNamedArgs = NULL;
dp.cNamedArgs = 0;

// Call IDispatch::Invoke()
hr = m_pDisp->Invoke(msgID, IID_NULL, LOCALE_SYSTEM_DEFAULT,

DISPATCH_METHOD, &dp, NULL, &ei, &uiErr);
SysFreeString(argStr);

GetObjectHandle
GetObjectHandle returns the Dispatch Handle value for an embedded object within Extend-
Sim. This is useful if your outside code is dealing directly with Dispatch Handles, since it will
allow you to communicate directly with the embedded object inside the ExtendSim application
without going through the ExtendSim interface. The DispID of GetObjectHandle is 101.

 Embedded objects are no longer supported as of ExtendSim release 10. The functions that sup-
ported embedding in prior releases are noted as being “obsolete”.

getVariant = malloc(sizeof(VARIANTARG)*3);
argStr = SysAllocString((WCHAR *) L"Dialog Item Name");
VariantInit(&getVariant[0]);
getVariant[0].vt = VT_BSTR;// could be a long or a real
getVariant[0].bstrVal = argStr;

VariantInit(&getVariant[1]);
getVariant[1].vt = VT_I4;
getVariant[1].lVal = 23; // blockNumber

argStr2 = SysAllocString((WCHAR *) L"model-1.mox");
VariantInit(&getVariant[2]);
getVariant[2].vt = VT_BSTR;// could be a long or a real
getVariant[2].bstrVal = argStr2;

// Set the DISPPARAMS structure that holds the variant.
dp.rgvarg = getVariant;
dp.cArgs = 3;
dp.rgdispidNamedArgs = NULL;
dp.cNamedArgs = 0;

// Call IDispatch::Invoke()
hr = m_pDisp->Invoke(getID, IID_NULL, LOCALE_SYSTEM_DEFAULT,

DISPATCH_METHOD, &dp, NULL, &ei, &uiErr);
SysFreeString(argStr);
SysFreeString(argStr2);

Programming Techniques 125
OLE and ActiveX Automation

ID
E

COM DLL example
The “VB.net COM DLL example” model (Windows only) shows how to interface from
ExtendSim with a COM DLL created in VB.net. The COM DLL folder includes the model
plus an ExtendSim library with a custom block as well as the source code used to create the
COM DLL. ExtendSim is the Client in this automation example; this is the inverse of the Cli-
ent App example where VB is the Client.

☞ See the folder Documents/ExtendSim\Examples\How To\Developer Tips\OLE Automa-
tion\VB\COM DLL

Using VBA for ActiveX/OLE Automation
On page 120 you saw how to control ExtendSim using C++ and the five methods that Extend-
Sim supports. ExtendSim can also be controlled using Excel and VBA.

The workbook “Excel Client-Server Model Workbook.xls” (Documents\ExtendSim\Exam-
ples\How To\Developer Tips\OLE Automation\VBA) contains examples of how to communi-
cate with, send data to, and receive data from an ExtendSim model using Excel VBA and OLE
automation. For these examples, Excel is the Client application and ExtendSim is the Server
application.

☞ This workbook provides a form-based interface to drive communication between Excel and
ExtendSim.

The VBA code in this workbook contains numerous examples that illustrate how to use OLE
Automation to remotely interact with an ExtendSim model to perform the following:

• Start and stop the ExtendSim application

• Open and close a model

• Make ExtendSim run asynchronously

• Determine if ExtendSim is running or paused

• Change the end time of a simulation model

• Get a database component, (e.g. table or indexes) from an ExtendSim model's database

• Receive the contents of a database table into a range of worksheet cells

• Poke the contents of a range of worksheet cells into an ExtendSim database table

• Get the path and name of an ExtendSim model

• Get the current time of a simulation run

• Set a dialog parameter value in an ExtendSim model's block

Using Visual Basic for ActiveX/OLE Automation
On page 120 you saw how to control ExtendSim using C++ and the five methods that Extend-
Sim supports. ExtendSim can also be controlled using Microsoft Visual Basic (VB).

In VB, the syntax for creating or connecting to instances of ExtendSim and for controlling the
ExtendSim application is identical to Visual Basic for Applications (VBA) discussed above.
The primary difference between VB and VBA is that VB code can be compiled to create exe-
cutable and DLL files.

The executable file “ExtendSim OLE.exe” (/Documents/ExtendSim/Examples/Developer
Tips/OLE Automation/VB/VB Client App) is a VB program that creates an ExtendSim object
and uses ExtendSim’s execute, poke and request OLE methods to communicate with and con-

126 IDE
OLE and ActiveX Automation

ID
E

trol the ExtendSim application. This program starts ExtendSim (if necessary), loads a model,
sets a dialog parameter, executes a command, and gets a dialog parameter.

The VB source code and all of the Visual Studio files required to build “ExtendSim OLE.exe”
are provided in the same folder as the executable file. View the source code to see examples of
how to implement ExtendSim OLE methods and how to create and connect to instances of
ExtendSim using Visual Basic.

Integrated Development
Environment (IDE)

Animation Using ModL
Procedures and suggestions for how to

create and modify ModL code

“In baiting a mousetrap with cheese,
always leave room for the mouse.”

— Hector Hugh Munro

128 IDE
2D animation

ID
E

This chapter is specific to using ModL functions for performing 2D animation.

2D animation
The functions listed in “2D Animation” on page 250 make it easy to add 2D animation to
blocks. This section discusses the general procedures in creating 2D animated blocks, then
shows some examples of how you might add 2D animation to the blocks you build.

Overview
☞ Even if Run > Show 2D Animation is not selected, it is still possible to display 2D animation.

The Show 2D Animation command (Run menu) and the Show 2D Animation button in the
Model toolbar only control whether animation is shown during the simulation run. At all other
times, the block will still show animation if the block creator has coded it to do that. For
instance, animation is available when the modeler makes any changes in a block's dialog,
whether Show 2D Animation is selected or not and regardless of whether the simulation is run-
ning. (Of course, when the command Show 2D Animation is selected, animation is available at
all times.)

Showing animation outside of a simulation run is a powerful feature because it lets you build
blocks which show their initial status or final values without having to turn on 2D animation.
For example, if a check box is clicked, the dialog can send an “on myCheckBox” message to
the block and the block can animate the change on its icon, as seen for the Miles block in
“Adding 2D animation” on page 53.

Steps
As shown in “Adding 2D animation” on page 53 and described in detail below, the basic steps
for adding 2D animation to a block are:

1) Decide how you want the block to animate, including the shape and color that the anima-
tion objects should have.

2) Create the 2D animation objects in the Icon tab of the block’s structure window. Do this
either by placing an animation object on the Icon tab manually or dynamically through
block code.

3) Initialize the animation objects in the CheckData or InitSim handlers.

4) Add code to update the animation object at the correct times, including (if necessary) code
to slow the display so that it isn’t too fast to be seen.

• For continuous blocks, this code will be in the Simulate message handler.

• For discrete event or discrete rate blocks, this code will be in the function or message
handler appropriate for the data that you want animated. (For example, if you are ani-
mating an item entering a block, the code would go in the ItemIn message handler.)

Deciding how to animate the icon
There are several ways to animate a block’s icon. You can show and hide text or a shape (such
as a rectangle, oval, or level), move a shape within or outside of the icon (even along the con-
nection lines), show a changing level, stretch and reduce a shape’s size, show a picture, or
change colors or text.

The AnimationPoly function is especially useful. As shown in the Select Value In and Select
Value Out blocks (Value library), it allows the animation of an arbitrary shape.

Animation Using ModL 129
2D animation

ID
E

☞ Some animations (such as moving or stretching) will cause simulations to run slower than other
types (for example, changing color or text).

While it is common that icons are animated, it is also possible to animate in the area around
icons. See the Planet Dance model (located in the folder ExtendSim/Examples/Continuous/
Custom Block Models) for an example of a model that shows animation outside of the icon.
Also see the blocks in the Item library for examples of animating from one block to the other,
along connection lines.

Creating 2D animation objects
All 2D animation is done through the use of one or more animation objects that you put in the
Icon tab of the block’s structure. The animation object itself is a resizable rectangle with dotted
sides, identified by a unique number .

☞ Animation objects are always rectangles in the icon pane. As discussed below, the animation
functions in the block’s code determine the characteristics of the object, for example, the shape
and color that will show as the block is animated.

To create an animation object:

In the Icon toolbar, select the Animation Object button; it is at the bottom or right side of the
toolbar, depending on how the toolbar is oriented

Click in the Icon tab to place the object and resize as desired. Since this
is the first animation object, it will have a “1” in it, as shown at right.
You will use that object number in all of the animation functions that
call this object.

☞ 2D animation objects can also be created “on-the-fly” using the AnimationObjectCreate func-
tion.

Each animation object has a Proper-
ties dialog that can be accessed by
right-clicking on the object. This dis-
plays information such as the Object
ID and allows you to set the exact
position and dimensions of the object
directly in the structure of the block.
If animation objects are layered on top
of each other, the zOrder allows you
to set where in the layer each object
will be.

Initializing animation objects
In the block’s code, initialize the object in the InitSim message handler. If you always want the
animation object visible, even before an animation is run, put the same code in the CreateBlock
handler.

The initialization will generally consist of a call to one of the object definition functions (Ani-
mationOval, AnimationRndRectangle, AnimationPoly, and so forth), a call to AnimationE-
Color (to set the color for the object). It might also include a call to AnimationShow so that the
object is visible at the beginning of the simulation (for example, for showing initial text or
color). Here is an example:

130 IDE
2D animation

ID
E

on initSim
{

AnimationOval(1); // Set 1 to oval

//create an EColor value of red with an opaque alpha channel

Color = EColorFromHSV(0, 255, 255, 255);

AnimationEColor(1, color); // Set 1 to the EColor value
AnimationShow(1); // Optional

// makes object visible
}

☞ If you define the animation object in the code as an oval, and resize it on the icon as a square, it
will show as a circle. If you define it as an oval and resize it as a rectangle, it will show as an
oval.

The color of an animation object is set with numbers for hue, saturation, and brightness
(value), often called HSV. Use the Fill Color button in the Shapes toolbar to determine the
HSV values of any color.

If you want a block to see whether or not the Run > Show 2D Animation command is checked
(for example, to hide the animation object if animation is not on), use the AnimationOn system
variable in the CheckData or InitSim message. It is set to TRUE (1) if animation is on and
FALSE (0) if it is not. For example, instead of the preceding initialization, you might have:

on initSim
{

AnimationOval(1); // Set 1 to oval

//create an EColor value of red with an opaque alpha channel

Color = EColorFromHSV(0, 255, 255, 255);

AnimationEColor(1, color); // Set 1 to the EColor value
if (AnimationOn) // Animation is on

AnimationShow(1);// Optional: show 1 now
else // Animation is not on

AnimationHide(1, FALSE); // Hide object; it is not
// outside of icon

}

Updating the animation object
The Show 2D Animation command only affects 2D animation that is specified in the Simulate
message. As mentioned earlier, if Show 2D Animation is not selected, animation is still avail-
able except during the Simulate message. During Simulate, ExtendSim blocks check the state
of the Run > Show 2D Animation command to determine whether or not to perform animation.

In the Simulate message handler (for continuous blocks) or in the function or message handler
appropriate for the data being animated (for discrete event and discrete rate blocks), put the
code that checks whether you want to change the animation object (its position, color, or text).

☞ To speed execution of the block, be sure to only call an animation function when the object has
changed.

If the animation object shows too fast to be seen, you may want to include a call to the WaitN-
Ticks function. Note, however, that this will also slow down the simulation.

Animation Using ModL 131
2D animation

ID
E

Animating hierarchical blocks
To animate a hierarchical block’s icon, you have to include, in the hierarchical block’s sub-
model, a block that has code to control the animation on the hierarchical block’s icon.

The block in the submodel is used to read the values from other submodel blocks; its code con-
trols the animation of the hierarchical block’s icon based on those values. In order to do this, it
references the hierarchical block’s animation object using the negative of the object number.
For example, if the number of the animation object on the hierarchical block’s icon is 2, the
block in the submodel would reference animation object -2 throughout its ModL code.

Animating hierarchical blocks is the only time when you would use negative values to refer-
ence an animation object. As described in the User Reference, the Animate Value and Animate
Item blocks (Animation library) contain code that allows them to animate hierarchical blocks.

The block that controls the animating on a hierarchical block’s icon can be deeper than one
level in hierarchy. However, searching from the lowest to the highest level, that block will try
to animate the first animation object with the correct number that it finds.

☞ If more than one hierarchical block has an animation object with the same number, the lowest
one above the controlling block will be the one that is animated.

Showing and hiding a shape
An animation object could be displayed if an input value met some condition or became true,
or if an item arrived in the block or was being processed. Hiding the animation object would
then indicate the opposite condition. You could have a small object near the connector to indi-
cate item arrivals or meeting a condition, such as the Select blocks (Value library). Or you
could have a larger object indicating a true value or processing, such as the Activity blocks
(Item library).

This example uses the animation object drawn above. You want a solid red circle to appear in
the icon when a value is true (greater than 0.5) and you want to hide it when the value is false.
To do this, initialize the animation object and hide it in InitSim. Then put code in the Simulate
message to indicate when and how the object should change:

on initSim
{

AnimationOval(1); // Set 1 to oval

//create an EColor value of red with an opaque alpha channel

Color = EColorFromHSV(0, 255, 255, 255);

AnimationEColor(1, color); // Set 1 to the EColor value
AnimationHide(1, FALSE); // Hide object; it is not

// outside of icon
}

on Simulate // Or appropriate function or message handler
{
...;
if (AnimationOn && ConditionIsTrue) // if both true

AnimationShow(1); // Show object now
else

AnimationHide(1, FALSE); // Else hide object; it is not
// outside of icon

}

132 IDE
2D animation

ID
E

Moving a shape
Assume that you want the animation object drawn above to move between the original position
and a position 20 pixels higher than the original depending on the values received. The input at
the connector called “con1in” takes in real values from 0 to 1, with 1 indicating the highest
desired input. Since, in screen coordinates, up is considered negative relative to the starting
position, you must call AnimationMoveTo with a negative number to move the object up. Your
code might be:

integer obj1Loc; // Save the object’s location
real clipped;
integer testLoc;
. . .

on initSim
{
AnimationOval(1); // Set 1 to oval

//create an EColor value of red with an opaque alpha channel

Color = EColorFromHSV(0, 255, 255, 255);

AnimationEColor(1, color); // Set 1 to the EColor value
if (AnimationOn) // Animation is on

AnimationShow(1); // Show object now
else // Animation is off

AnimationHide(1, FALSE); // Hide object; it is not
// outside of icon

}

on simulate // Or appropriate function or message handler
{
clipped = Min2(con1in, 1.0); // Highest position is 1
clipped = Max2(clipped, 0.0); // Lowest position is 0

testLoc = int(clipped*-20.0); // Scale to range, upwards
if (testLoc != obj1Loc) // Do nothing if not change

{
obj1Loc = testLoc;
AnimationMoveTo(1, 0, Obj1Loc, FALSE); // Move to new location
}

}

Changing a level
Sometimes you want to display a changing level, such as in a water tank. For this example, use
the animation object drawn above. A simple block that displays a changing level when its input
connector varies between 0.0 (lowest level) and 1.0 (highest level) might look like:

on InitSim
{
// Initialize animation object number 1 as a “level” shape
AnimationLevel(1, 0.0); // Initialize level to low

//create an EColor value of red with an opaque alpha channel

Color = EColorFromHSV(0, 255, 255, 255);

Animation Using ModL 133
2D animation

ID
E

AnimationEColor(1, color); // Set 1 to the EColor value

if (AnimationOn) // Animation is on
AnimationShow(1); // Show level now

else // Animation is off
AnimationHide(1, FALSE); // Hide level; it is not

// outside of icon
}

on simulate // Or appropriate function or message handler
{
AnimationLevel(1, con1in); // Input connector value (0.0 to 1.0)

// controls the height of the level
}

To have the level reflect values other than 0 to 1, scale the input values to correspond to that
range. See the Holding Tank block (Value library) for an example of changing a level.

Stretching a shape
You can stretch an animation object horizontally or vertically, or both at
the same time (circular), relative to its original position on the icon. For
example, do this to show the relative size of an item (for instance, based
on an attribute value) or to indicate a direction of flow.

The following code stretches the object vertically inside the icon. This
method uses the exact size of the animation object as it is drawn on the
icon to determine the boundaries for the stretch. The input at the connec-
tor called “con1in” takes in real values from 0 to 1, with 1 indicating the
highest desired input. For this example, draw an animation object like the image shown here.

integer origWidth, origHeight; // Boundaries of the object
integer pixels; // How far to stretch
real clipped; // Amount to change
. . .

on InitSim
{
AnimationRectangle(1); // Set 1 to rectangle

//create an EColor value of red with an opaque alpha channel

Color = EColorFromHSV(0, 255, 255, 255);

AnimationEColor(1, color); // Set 1 to the EColor value
origWidth = AnimationGetWidth(1, TRUE); // Get original width
origHeight = AnimationGetHeight(1, TRUE); // Get original height

if (AnimationOn) // Animation is on
AnimationShow(1); // Show object now

else // Animation is off
AnimationHide(1, FALSE); // Hide object; it is not

// outside of icon
}

Object for stretching

134 IDE
2D animation

ID
E

on simulate // Or appropriate function or message handler
{
. . .
clipped = Min2(con1in, 1.0); // Highest position is
1.0
clipped = Max2(clipped, 0.0); // Lowest position is 0.0
pixels = clipped * origHeight; // Calculate stretch
// Subtract the pixels to go upward (negative is up relative to base)
AnimationStretchTo(1, 0, origHeight - pixels, origWidth, pixels,
FALSE);
}

To have the shape stretch outside of the icon, set the last argument in AnimationStretchTo to
TRUE and increase the value for pixels so it will stretch outside the icon. Stretching or moving
outside the icon slows animations considerably and might cause the icon to flash.

☞ See also the AnimationPoly function which can be used for animating an arbitrary shape or for
dynamically changing the shape of an icon. Examples are the Select Item In and Select Item
Out blocks (Item library).

Showing a picture on an icon
You can also have a picture show on an icon in response to some occurrence in the block. For
example, the code for a picture might look like:

on initSim
{
// Set object 1 to picture, not scaled
AnimationPicture(1, “MyPicture”, FALSE);
AnimationHide(1, FALSE); // Hide object; it is not

// outside of icon
}

on simulate // Or appropriate function or message handler
{
. . .
if (ConditionIsTrue)

AnimationShow(1); // Show picture
else

AnimationHide(1, FALSE); // Hide object; it is not
// outside of icon

}

☞ In order to use a picture, it must be a resource in the System, in ExtendSim, or in a file in the
ExtendSim/Extensions folder as discussed in “Picture and movie files” on page 90.

Moving a picture along the connection line between two blocks
A picture traveling along the connection line between two blocks is an effective way to ani-
mate individual items as they flow through a model. As shown above, you can assign a picture
to an animation object. By calling AnimationBlockToBlock, the animation picture can move
from one block to the next along the connection line.

☞ In order to use a picture, it must be a resource in the System, in ExtendSim, or in a file in the
ExtendSim/Extensions folder as discussed in “Picture and movie files” on page 90.

Arguments for AnimationBlockToBlock include the animation object number and the block
numbers and appropriate connector numbers of the two blocks you wish to animate the picture

Animation Using ModL 135
2D animation

ID
E

between. Typically you do not know how blocks will be connected until the model is built.
Therefore you must determine the values of these parameters by using function calls to
MyBlockNumber, GetConNumber, and GetConBlocks. You can call the functions from any
block, provided it knows which block is sending and which is receiving.

The following code example illustrates how to determine the appropriate parameter values and
make a call to AnimationBlockToBlock. In this example, AnimationBlockToBlock is called
from the “sending” block (the block from which the picture will start moving). The picture will
move to the “receiving” block connected to the con1Out connector of the “sending” block.

integer array[][2];

...

on InitSim

{

AnimationPicture(1, “MyPicture”); // Set object 1 to picture

myNumber = MyBlockNumber(); // determine “sending” block #

// determine “sending” connector #
outCon = getConNumber(myNumber, “con1Out”);

getConBlocks(myNumber, outCon,array); // what blocks are connected

// to con1Out?

rBlock = array[0][0]; // determine “receiving” block #

rConn = array [0][1]; // determine “receiving” connector #

}

on simulate

{

// animate picture between blocks

AnimationBlockToBlock(1,myNumber,outConn, rBlock, rConn, 1.0);

}

Changing a color
To use a change in color instead of motion, include a call to AnimationEColor with a variable
for one of the hue, saturation, or brightness (value) arguments:

on InitSim
{

hueVal = 0;
AnimationOval(1); // Set object 1 to oval

//create an EColor value of red with an opaque alpha channel

Color = EColorFromHSV(0, 255, 255, 255);

AnimationEColor(1, color); // Set 1 to the EColor value
if (AnimationOn) // Animation is on

AnimationShow(1); // Show object now
else // Animation is off

AnimationHide(1, FALSE); // Hide object; it is not
// outside of icon

}

136 IDE
2D animation

ID
E

on simulate // Or appropriate function or message handler
{
. . .
hueVal = hueVal+10; // Different colors

if (hueVal > 255)

hueVal = 0;

Color = EColorFromHSV(hueVal, 255, 255, 255);
AnimationEColor(1, color);
. . .
}

Changing text
You can also animate by changing text in the animation object created at the beginning of this
section.

☞ Using AnimationText() causes a white background around animated text. To not have this,
instead use the function AnimationTextTransparent() as is done below.

string objText;

on InitSim
{
AnimationTextTransparent(1, ""); // Set object 1 to blank text

//create an EColor value of black with an opaque alpha channel

Color = EColorFromHSV(0, 0, 0, 255);

AnimationEColor(1, color); // Set 1 to the EColor value

if (AnimationOn) // Animation is on
AnimationShow(1); // Show object now

else // Animation is off
AnimationHide(1, FALSE); // Hide object; it is not

// outside of icon
}

on simulate // Or appropriate function or message handler
{
. . .
if (temp < 1000) // Less than 1000

objText = "Cool";
else if (temp < 1500) // Between 1000 and 1500

objText = "Med";
else // Greater than 1500

objText = "Hot";
AnimationTextTransparent(1, objText); // Set the text
. . .
}

Animating pixels
You can generate a rectangle of pixels where each pixel can be a different color based on the
value for that pixel. For example, use this to generate a contour map or give visual display of
temperatures over a two-dimensional space. For an example of this, see the Mandelbrot model
located at Documents/ExtendSim/Examples/Continuous/Custom Block Models.

Integrated Development
Environment (IDE)

Simulation Architecture
Keep this information in mind as you
create and modify ExtendSim blocks

“In baiting a mousetrap with cheese,
always leave room for the mouse.”

— Hector Hugh Munro

138 IDE
Running a simulation

ID
E

This chapter describes how the ExtendSim simulation engine works and how discrete event
and discrete rate blocks pass messages and resolve logic issues. This is important information
when you are creating or modifying blocks, since you need to know:

• How the block will work with the ExtendSim simulation engine

• How the block will work with the other blocks that ship with ExtendSim

Running a simulation
It is useful to understand the steps that ExtendSim takes when it runs a simulation so you can
get a feeling for what parts of the process are relevant to models. The following sections give a
step-by-step breakdown of how ExtendSim runs simulations and how it decides what to do
next.

☞ Running continuous simulations starts on this page; running discrete event and discrete rate
simulations is discussed starting on page 142.

How ExtendSim runs continuous simulations
ExtendSim keeps many system variables handy so that it can compute how to run the model.

Five of the options in the Continuous tab of the Run > Simulation Setup dialog become vari-
ables that are used to determine how the model is run:

Before anything else happens in the simulation run, these variables are used to calculate an ini-
tial value for the DeltaTime or NumSteps variables. The variable that is calculated depends on
what is selected in the Simulation Setup dialog: if Number of steps is selected, ExtendSim cal-
culates the related variable DeltaTime; if Time per step is selected, ExtendSim calculates Num-
Steps. The formulas used are:

DeltaTime = (EndTime-StartTime)/(NumSteps-1);
NumSteps = Floor (((EndTime - StartTime) / DeltaTime) + 1.5)

This initial value is the value that the blocks see during the PreCheckData, CheckData, and
StepSize simulation messages.

Pseudocode of the simulation loop for continuous simulations
The following is a pseudocode description of ExtendSim’s continuous simulation loop.
Pseudocode is used by developers to describe the controlling logic of a program in a form that
is a cross between English and a programming language.

Option Variable

End time EndTime

Start time StartTime

Runs NumSims

Time per step (dt) DeltaTime

Number of steps NumSteps

Simulation Architecture 139
Running a simulation

ID
E

Calculate simulation order of blocks;

for CurrentSim = 0 to NumSims-1
{
if (continuing saved paused run) // this was saved while paused

{
CurrentTime = SavedCurrentTime;
CurrentStep = SavedCurrentStep;
Send ContinueSim message to blocks
}

else
{
CurrentTime = StartTime;
CurrentStep = 0;
Send PreCheckDataMsg to blocks;// Prepare for validation
Send CheckDataMsg to blocks;// Validate block variables
if (CheckDataMsg aborts)

Abort Simulation and select bad block;

Send StepSize to blocks;//Continuous models can change
// stepsize

Send InitSimMsg to blocks;// Initialize block variables
Send PostInitSimMsg to blocks;// Check initializations
}

for CurrentStep = 0 to (NumSteps-1) // In discrete event
{ // models, simulation time
Send SimulateMsg to blocks; // is controlled by the Executive

// block, not by this loop.
if (Abort was encountered)

{
Send AbortSim to blocks;
Jump out of loop to ExcecuteEndSims;
}

CurrentTime = CurrentTime+DeltaTime;
}

Send FinalCalc and FinalCalc2 to blocks;// Performs final stat
calculations

Send BlockReport to reporting blocks;// Report results
ExecuteEndSims:
Send EndSimMsg to blocks;// Clean up variables, dispose arrays
}

☞ The above comments indicate one purpose of the specific message handler, but each of them
can be used for a variety of purposes, as shown in the table on page 141.

The next several sections discuss the meaning of this pseudocode.

Simulation order
Simulation order defines the sequence in which messages are sent from the ExtendSim appli-
cation to the blocks in a model. The simulation order section of the pseudocode calculates the
simulation order, either flow or left-to-right, as discussed in the User Reference.

140 IDE
Running a simulation

ID
E

Initialization
The pseudocode:

for CurrentSim = 0 to NumSims-1

instructs ExtendSim to execute the contents of the “for” loop NumSims times. You set Num-
Sims in the Runs entry box in the Continuous tab of the Simulation Setup dialog. The value of
the variable CurrentSim varies from 0 to NumSims-1. This is the logic that defines the number
of simulations that will be run. If an Abort statement is executed during a simulation, it will
halt the current simulation, increment currentSim by 1, and run any remaining simulations.

When messages are sent
Different messages are sent, depending on whether the run is paused or is a new run:

• If the simulation was previously paused and saved before the run was completed, ExtendSim
will send a ContinueSim message to all of the blocks in the model. Since the model was
already initialized and only needs to set up its data structures to continue the previous run,
the ContinueSim message is sent in lieu of the PreCheckData, CheckData, StepSize, InitSim,
and PostInitSim messages that would follow if it were a new run, described below.

• If the run is a new run, the first thing done inside this loop is to send the PreCheckData and
CheckData system message to all the blocks in the simulation. These message handlers in
the various blocks should check the values of dialog items to see if they are valid. If any of
them abort, ExtendSim recognizes that fact and the simulation aborts with the block
selected. Connection status of the block can be tested during CheckData: Input connectors
that are connected will show a non-zero value, and unconnected input connectors will show
a zero value. This is useful in determining if a block’s inputs are actually connected in the
model.

The StepSize message is then sent to all blocks. In continuous models, StepSize is used to
manipulate the DeltaTime variable. The smallest value of DeltaTime specified by any block is
found and DeltaTime is set to that value. Note that this DeltaTime overrides the value initially
calculated. If AutoStep Slow was selected, the returned value of DeltaTime is then divided by
5 for more accurate simulation results. The Filter blocks (Electronics library) use the StepSize
message in this way because they need a calculated value of DeltaTime to get accurate results.

Finally, a new value of NumSteps is determined based on DeltaTime, StartTime, and EndTime.

The formula is:

NumSteps = Floor(((EndTime - StartTime) / DeltaTime) + 1.5)

This value is used to govern the actual simulation loop.

☞ Because DeltaTime is used to calculate NumSteps and a rounded value is used for the number
of steps, it is possible for the EndTime of the simulation to be exceeded slightly.

The InitSim message is then sent to all blocks. This message handler is used to initialize vari-
ables within each block. After the InitSim message has been sent to all blocks, the PostInitSim
message is sent and gives the developer a chance to initialize any variables that needed all of
the other blocks to be initialized first.

Table of message handler purposes
The following table lists the major purposes of the messages sent during the initialization loop
for Value library blocks. Notice that some purposes only apply if the Value library block is
used in a discrete event, rather than a continuous, model.

Simulation Architecture 141
Running a simulation

ID
E

☞ While the table lists the major purposes of the message handlers, a purpose can sometimes be
accomplished using a different message handler than the one indicated.

☞ For the Data Import Export and Command blocks, initialization message handlers can be
selected using options in the blocks’ dialogs.

Step loop
The inner loop:

for CurrentStep = 0 to (NumSteps-1)

is where Simulate messages are sent to all of the blocks in the order determined by the connec-
tions. In continuous simulations the loop is governed by CurrentStep and NumSteps only.
NumSteps is the variable that is used to end the simulation, and the actual number of Simulate
messages (steps) that occurs is NumSteps. That is, if 2 is entered for the Number of steps
option in the Continuous tab of the Simulation Setup dialog, NumSteps becomes 2, the simula-
tion step loop sends Simulate messages to the blocks for CurrentStep equal to 0, and than 1. (If
you want to run a simulation for only a single step, set Number of steps to 1.)

CurrentTime is incremented by DeltaTime for each step of the loop, but otherwise has no effect
on this loop. This means that you can change CurrentTime and DeltaTime without affecting the
loop. It also means that you can change CurrentStep or NumSteps to keep the loop running lon-
ger or stop it prematurely.

☞ You can set CurrentTime in any block to any value, although you might want to have some
logic in the ModL code to prevent conflicts between blocks setting CurrentTime after other
blocks have already changed it. Use the ExtendSim global variables to help establish some
safeguards against these conflicts. For instance, this is how the Executive block (Item library)
is able to control the progression of time in discrete event models.

Final messages
Upon completion of the simulation, ExtendSim sends out the FinalCalc and FinalCalc2 system
messages to all blocks. These message handlers are used to perform final calculations for all
time-dependent statistics.

Message Handler Purpose in Value Library Blocks

CheckData Check validity of parameters
Assign position in future events calendar (discrete event models)
Check to see which connectors are connected
Determine parameter links with database
Check for duplicate seeds
Determine if dialog variables are cloned

StepSize Throw and Catch Value blocks create data structures

InitSim Determine if model is discrete event or continuous
Turn off simulate messages in discrete event models
Schedule events in discrete event models
Initialize variables
Calculate local block seed value

PostInitSim Initialize connector values
Schedule events in discrete event models

142 IDE
Running a simulation

ID
E

The Report Manager block (Value library) then sends the BlockReport system message to any
blocks that have been selected for a report. This message handler is responsible for writing all
report data to the appropriate ExtendSim database tables.

Finally, ExtendSim sends the EndSim system message to all blocks. The EndSim message han-
dler is used for any “clean up” activities such as disposing of any dynamic arrays to free up
memory.

Aborting multiple simulations
If the Abort statement is executed during the simulation, it only stops the current simulation. If
you want to abort all simulations (for example, when you have specified in the Simulation
Setup dialog that more than one simulation should be run), use the AbortAllSims() function
instead of the Abort statement.

How ExtendSim runs discrete event or discrete rate simulations
ExtendSim keeps many system variables handy so that it can compute how to run the model.
Three of the options in the Setup tab of the Run > Simulation Setup dialog become variables
that are used to determine how a discrete event or discrete rate model is run:

For discrete event and discrete rate models, the DeltaTime and NumSteps variables (used in
continuous simulations and described on page 138) are ignored, because the Executive block
(Item library) calculates CurrentTime based on the time of the next event.

Pseudocode of the simulation loop in discrete event/rate simulations
The following is a pseudocode description of ExtendSim’s discrete event/discrete rate simula-
tion loop:

for CurrentSim = 0 to NumSims-1
{
if (continuing saved paused run) // this was saved while paused

{
CurrentTime = SavedCurrentTime;
CurrentStep = SavedCurrentStep;
Send ContinueSim message to blocks
}

else
{
CurrentTime = StartTime;
CurrentStep = 0;
Send PreCheckDataMsg to blocks;// Prepare for validation
Send CheckDataMsg to blocks;// Validate block variables
if (CheckDataMsg aborts)

Abort Simulation and select bad block;

Option Variable

End time EndTime

Start time StartTime

Runs NumSims

Simulation Architecture 143
Running a simulation

ID
E

Send StepSize to blocks;//Continuous models can change
// stepsize

Send InitSimMsg to blocks;// Initialize block variables
Send PostInitSimMsg to blocks;// Check initializations
}

// simulation Phase is controlled by the Executive block
// Do until simulation end reached
Do While (currentTime < EndTime or number of events)

{
Determine the block(s) with the next event time
Set currentTime to the next event time
Send message to every block whose nextTime == CurrentTime
Send message to every block that has posted a 0 time event

(rescheduled)

}

Send FinalCalc and then FinalCalc2 to all blocks;
Send BlockReport to all reporting blocks;
ExecuteEndSims:
Send EndSimMsg to all blocks;
}

☞ The above comments indicate one purpose of the specific message handler, but each of them
can be used for a variety of purposes, as shown in the table on page 144.

The next several sections discuss the meaning of this pseudocode.

Initialization
The pseudocode:

for CurrentSim = 0 to NumSims-1

instructs ExtendSim to execute the contents of the “for” loop NumSims times. You set Num-
Sims in the Runs field of either the Setup or Continuous tabs of the Simulation Setup dialog.
The value of the variable CurrentSim varies from 0 to NumSims-1. This is the logic that
defines the number of simulations that will be run. If an “abort” statement is executed during a
simulation, the abort will halt the current simulation, increment currentSim by 1, and run any
remaining simulations.

When messages are sent
Different messages are sent depending on whether it is a new run or the run is paused. In addi-
tion, the sequence of sending messages is block dependent. To see the order of messages being
sent, look at the block’s code.

☞ PostInitSim is the only message handler where messages can be passed through block connec-
tors.

Table of message handler purposes
The following table lists the major purposes of the messages sent during the initialization loop
for Item and Rate library blocks, as well as for the Executive block in discrete event and in dis-
crete rate models.

☞ While the following tables list the major purposes of the message handlers, a purpose can
sometimes be accomplished using a different message handler than the one indicated.

144 IDE
Running a simulation

ID
E

Message Handler Purpose in Item Library Blocks

PreCheckData Initialize Resource Pools

CheckData Check validity of parameters
Assign position in future events calendar
Check to see which connectors are connected
Determine parameter links with database
Check for duplicate seeds
Determine if dialog variables are cloned
Check the version of the Executive
Get Executive block number
Determine if costing is used in the model
Initialize DB Equation variables
Check Animation
Register blocks with ExtendSim database

StepSize Initialize attribute data structures
Initialize Animation
Initialize Shifts

InitSim Initialize variables
Initialize attribute animation conversion table
Schedule initial events
Set local block seed value

PostInitSim Initialize connector values
Check if a downstream block controls the flow of items (blocker)
Schedule initial events

Message Handler Purpose in Rate Library Blocks

CheckData Update the indexes of the global arrays used for the Rate library system
Update information about the flow and value connections
If the block starts a section, create the section in the appropriate global array
Determine if the type of Shift is On or Off
Assign position in future events calendar
Check parameters in the block

StepSize Initialize animation
Update the unit conversion factors (flow unit and time unit)
Initialize Shifts
Initialize attribute data structures in Interchange block

InitSim Initialize variables (static variables, dialog items)
Initialize next event
Initialize value connectors
Initialize attribute animation conversion table in Interchange block

Simulation Architecture 145
Running a simulation

ID
E

Simulation phase
The Item and Rate libraries rely on the Executive block rather than ExtendSim to control Cur-
rentTime and NumSteps. As opposed to continuous simulations, which rely on time being
incremented uniformly between each step, discrete event and discrete rate simulations are
event based. In discrete event and discrete rate simulations, NumSteps is modified constantly
and the Executive block monitors and manipulates CurrentTime based on the events the blocks
have posted in the Executive’s event queue.

At each simulation step, the Executive searches through a list of event-scheduling blocks and
finds the nearest future event time. The Executive then sends a message to each of the event-
scheduling blocks whose event time is equal to the nearest event time. This may cause other
blocks to post zero time events (rescheduling themselves). The Executive sends a message to
each one of the blocks on the zero time event list (see “Timing for discrete event models” on
page 146 for a detailed discussion).

☞ The code of the Executive can be seen by opening the block’s structure.

Final messages
Upon completion of the simulation, ExtendSim sends out the FinalCalc and FinalCalc2 system
messages to all blocks. These message handlers are used to perform final calculations for all
time-dependent statistics.

The Report Manager block (Value library) then sends the BlockReport system message to any
blocks that have been selected for a report. This message handler is responsible for writing all
report data to the appropriate ExtendSim database tables.

Finally, ExtendSim sends the EndSim system message to all blocks. The EndSim message han-
dler is used for any “clean up” activities such as disposing of any dynamic arrays to free up
memory.

Message Handler Purpose in Executive Block

PreCheckData Dispose Throw Flow and Catch Flow block information (discrete rate mod-
els)

CheckData Initialize system global variables
Post Executive block number
Send CheckData message through event message connector
Check for duplicate random number seeds
Create the global arrays used for the Rate system (discrete rate models)
Initialize the global variables (discrete rate models)
Rebuild and update Throw Flow and Throw Catch info (discrete rate models)

StepSize Initialize attribute data structures
From the beginning, propagate through each section (discrete rate models)
Create the Unit Groups in the model (discrete rate models)
Create the Lookup List for flow units and time units (discrete rate models)
Create and update global arrays linked to the sections (discrete rate models)

InitSim Initialize variables
Pass event arrays to other blocks

PostInitSim Launch and perform calculation of all effective rates (discrete rate models)

146 IDE
How discrete event blocks and models work

ID
E

Aborting multiple simulations
If the Abort statement is executed during the simulation, it only aborts the current simulation.
If you want to abort all simulations (for example, when you have specified in the Simulation
Setup dialog that more than one simulation should be run), use the AbortAllSims() function
instead of the Abort statement.

How discrete event blocks and models work
Discrete event blocks use some fairly complex code. The following explanation should be use-
ful to anyone trying to program their own discrete event blocks or alter the blocks that come in
the Item library.

☞ Always put copies of blocks from the Item library into your own library and alter the copies
rather than the originals.

The Make Your Own category of blocks in the Example Libraries > ModL Tips library have
sample code and comments that explain how the blocks work. You can use these blocks as
templates for your own discrete event blocks.

The following sections discuss the messaging system used to schedule events, transfer items
through the model, and resolve logic issues. To understand the details of the different types of
messages, some understanding of the simulation engine, the underlying data structures, and
event handling is necessary.

Timing for discrete event models
To make a model event-based, add the Executive block (Item library) to the model worksheet.
This block does two things:

1) It maintains a data structure of information about the items in the model

2) It takes control of the time clock from the ExtendSim application, scheduling events, send-
ing messages to the blocks that scheduled the event, and moving the clock forward to the
appropriate time for the next event.

In order to provide true discrete event operation, the simulation clock must move to the exact
time of each event. In order to do this, the Executive block uses three dynamic arrays to store
future events in the model.

• The TimeArray contains the event times

• TimeBlocks contains the block numbers of the blocks that post events

• TimeEventMsgType stores the constant for the message handler that is called when the event
time for a block is reached

The Executive block passes the arrays to the system globals with the statements:

SysGlobal0 = passArray(TimeArray);

SysGlobal7 = passArray(TimeBlocks);

SysGlobal13 = passArray(TimeEventMsgType);

☞ An important consequence of the Executive block controlling the time clock in the model is
that the variable numSteps, which in a continuous model represents the number of simulation
steps that will occur in the total run, is updated only by the Executive block and will always
have a value of one greater than the number of simulation steps that have actually occurred.

Simulation Architecture 147
How discrete event blocks and models work

ID
E

Scheduling events
Each block that needs to post an event at a specific time in the future needs to add itself to the
Executive block's TimeArray, TimeBlocks, and TimeEventMsgType arrays. This is done by
reserving a position in the arrays and then setting that position in TimeArray to the next event
time (this needs to be done each time a new event time is posted) and TimeBlocks to the block
number of the event scheduling block.

The position in the arrays is reserved in the CheckData message handler with the following
code:

on checkdata

{

// SysGlobalInt0 is current number of event posting blocks in model

// Reserves a position in TimeArray & TimeBlocks arrays

myIndex = SysGlobalint0;

SysGlobalint0 += 1;

}

SysGlobalInt0 has been initialized to 0. By incrementing SysGlobalInt0, each block will get a
unique value for myIndex.

In the InitSim message handler, the two arrays are passed in from the Executive, the block
number is assigned to this block's position in TimeBlocks, and the initial event time is assigned
to TimeArray:

on initsim

{

// get the pointer to the TimeArray and TimeEventMsgType arrays

if(getPassedArray(SysGlobal0, timeArray) > 0)

{
// blocks in de models do not get Simulate messages
GetSimulateMsgs(False);

// set the first event time to the start of the simulation

timeArray[MyIndex] = StartTime;

// get the pointer to the TimeBlocks array

getPassedArray(SysGlobal7,TimeBlocks);

// put this block's # in reserved position in TimeBlocks

TimeBlocks[myindex] = myBlockNumber();

//Get the pointer to the TimeEventMsgType array

getPassedArray(SysGlobal13,TimeEventMsgType);

//reserved position in TimeEventMsgType

TimeEventMsgType[myIndex] = BlockReceive1Msg;

}
else

GetSimulateMsgs(True);

}

148 IDE
How discrete event blocks and models work

ID
E

If this block is used in a continuous model, the GetPassedArray call will return 0 and the on
Simulate message handler will be called at every simulation step.

When the Executive sends this block a message (at the time specified in TimeArray), the block
will receive the message in TimeEventMsgType. If you do not set a value in TimeEventMs-
gType, the block will receive a BlockReceive0 message.

Put the event code in this message handler and reschedule the block for the next event time:

On BlockReceive1

{

// process event

ShowTime = CurrentTime;

// schedule event in the future

TimeArray[MyIndex] = CurrentTime + EventTime;

}

The Event block (ModL Tips library) illustrates the event scheduling procedure.

Residence, passing, and decision blocks
There are three types of item-handling discrete event blocks: residence blocks, passing blocks,
and decision blocks:

1) Residence blocks are able to contain or hold items for some duration of simulation time.
Some residence blocks post events and some do not. Examples of residence blocks are the
Queue and Activity blocks.

2) Passing blocks pass items through without holding them. These blocks implement model-
ing operations that are not time based and usually do not post future events. Examples
include setting an attribute or getting information from an item (Set or Information blocks).
Passing blocks may use the CurrentEvents array to reschedule themselves. In this case they
will receive a BlockReceive0 message. Rescheduling is necessary when the passing block
needs to return from a message. However, before the simulation clock advances, it also
needs to perform some additional processing. In this case a message is sent to the Execu-
tive and the block number is posted on the CurrentEvents array. The Executive sends a
BlockReceive0 message to every block entered in the CurrentEvents array.

3) Decision blocks control the flow of items in the model; they do not post future events.
Examples include limiting the number of items (Gate block) or selecting an output (Select
Item Out blocks). Note that some decision blocks can behave as passing or residence
blocks, depending on which options are selected for the particular block.

Blocks that post future events
Each block that posts events places its block number in a slot in the global TimeBlocks during
the initSim message handler. The slot number is an index number assigned in the checkData
message handler, called “myIndex”. Each block also places the time of its next event in a slot
in the global TimeArray. For example:

TimeArray[myIndex] = nexttime;

At the start of a simulation event, TimeArray (the event list) is searched to find the next event
time. A third dynamic array, NextTimes, is used to store all of the block numbers that have

Simulation Architecture 149
How discrete event blocks and models work

ID
E

posted an event at the next event time. The simulation clock is then advanced to the next event
time and a message is sent to each block in the NextTimes array, one block at a time.

After receiving its event message, each block processes its own unique code based on that
event type. For example, a Convey Item block will attempt to pull in an additional item when
the event for an open input occurs, or the Activity block will attempt to push an item out when
that item’s processing duration has completed. Some blocks will conditionally post an event
based on the options selected. An example of this is the Queue, which will post an event if
reneging is selected. Blocks do not have to process items for an event to occur – the Clear Sta-
tistics block (Value library) generates an event at the clear time when used in a discrete event
model.

Residence blocks that do not post future events:
Some of the residence blocks that do not post future events, such as the Queue Matching and
Resource Item blocks, also attempt to move items at event times.

If a residence block needs to return from a message but also needs to attempt to pull in or push
out items with the same time step, it will send a message to the Executive posting itself on the
CurrentEvents array. The Executive sends a BlockReceive0 to all of the blocks listed in the
CurrentEvents array. This “zero time event” (discussed below) ensures that the residence block
will receive an additional message before the next time step so that additional items can be pro-
cessed.

Zero time events
Sometimes a block needs to post two events at the same simulation time yet have those events
be sequential. In addition, the other blocks in the model need to be given a chance to complete
the posting of their own events after the second event.

An example of this is an Activity block that has just released its item after the specified time
delay. The Activity will need to do two things at the same event time: send the item out to the
next block (if that path is not blocked) and pull another item in (if an item is available). To do
this, it sends the item to the next block and then posts a “current” event to the Executive.
Before the simulation clock advances, the Activity will receive a BlockReceive0 message and
will then try to pull another item in.

To post a zero time event, the block assigns SysGlobalInt8 to its block number and sends a
BlockReceive3 message to the Executive. The Executive maintains a list of all the blocks that
have sent a BlockReceive3 message and before it advances the simulation clock sends a Block-
Receive0 message to each of these blocks in turn. In the example below, the “rescheduled” flag
is used to prevent the block from posting more than one zero time event at a time:

if (! rescheduled)

{

// remember block is scheduled as a zero time event

rescheduled = TRUE;

// set the block number for this block

SysGlobalInt8 = MyBlockNumber();

// send message to Executive for a zero time event

SendMsgToBlock(Exec,BLOCKRECEIVE3MSG);

}

150 IDE
How discrete event blocks and models work

ID
E

Item data structures and indexes
The Executive block stores information about each item in a discrete event model in a set of
dynamic arrays that it passes into the reserved global variables SysGlobal3, SysGlobal4, Sys-
Global6, SysGlobal9, and SysGlobal12 (see “Global variables” on page 191), as well as a set
of two global arrays (see “Global arrays” on page 342). The information in all of the arrays is
available to every block that needs to access it.

Each item in the model is identified by a unique number that is the index number used to look
up the item’s information in the dynamic arrays. This is the item’s index. The arrays contain
information about the items, such as values, priorities, attribute information, and so on. When
an item is passed through an item connector, it is really the index of the item that is passed.
Items are indexed from 1 to n-1, where n is the number of slots in the array. Index 0 is not used
as an item index, since a connector value of 0 indicates that no item is present.

Passing the index numbers through item connectors allows the blocks to pass a great deal of
information with a single number. It also means that all blocks in the model can access any
item. Each of the global variables is received into a local array within each block and, after
being received, is available in exactly the same way that data in any local array is available.

For example, if there are currently ten items in a simulation, the index number 5 might be
passed from one block in the model to the next. When a block receives index number 5, it
accesses the information in the Executive block’s arrays for item number 5. For instance, ite-
mArrayC[5][0] would tell if the item could accumulate a cost while itemArrayR[5][1] would
tell the item’s priority. When a block is done with an item, it passes the index value of that item
to the next block.

The Executive block maintains two arrays of real information (itemArrayR[][3] and itemAr-
rayC[][10]) and three arrays of integer information (itemArrayI[][5], itemArrayI2[][5], and ite-
mArray3D[][10]). These arrays are described below:

Real array
The real array itemArrayR[][3], passed through SysGlobal3, contains the following informa-
tion:

Cost array
The real array itemArrayC[][10], passed through SysGlobal9, contains information concerning
cost resources that are batched with the item. This information is used by residence blocks to
calculate the accumulated cost based on the cost rates and the amount of time the item spent in
the block.

Slot # Description

0 Quantity: The number of items that the current item represents. This is used, for exam-
ple, by the Set block (Item Library). Item quantities are used to copy items in queues and
resource blocks. They are also used by certain input connectors (such as on the Activity
block) to convey additional information to a block.

1 Priority: Used by the Set, Get, and Queue blocks. Note that in ExtendSim the lower the
number (including negatives), the higher the priority.

2 Reserved for future use.

Simulation Architecture 151
How discrete event blocks and models work

ID
E

Integer arrays
There are two integer arrays: itemArrayI and itemArrayI2.

The integer array itemArrayI[][5], passed through SysGlobal4, contains the following informa-
tion:

ItemArrayI2[][5] is passed through SysGlobal18 and has 5 columns:

Slot # Description

0 Item type: When considering cost, all items can be classified as an item that can accumu-
late costs (1) or a resource (2).

1 Resource Rate 1: The cost per time unit of a resource batched to the item using the batch
block.

2 Batch Number 1: Stores the amount of resource 1 batched to the item.

3 Resource Rate 2: The cost per time unit of a resource batched to the item using the batch
block.

4 Batch Number 2: Stores the amount of resource 2 batched to the item.

5 Resource Pool Rate: The accumulated cost per time unit of resources batched to the item
using the Queue block.

6 Unused

7 Original Cost: Used in calculating cost when unbatching items using the Unbatch block
(Item library).

8 Unused

9 Unused

Slot # Description

0 Free row flag. This is used by the Executive block for memory management. It has a
value of 1 if the row is free (that is, has no existing item associated with it), and a value
of 0 if the row is in use. See the Exit block (Item library) for an example of how to use
this to delete an item.

1 Batch ID. This is used by the batching and unbatching blocks to keep track of which
items are part of what batch.

2 User-defined integer value. This value is left untouched by the blocks in the Item library.

3 Unused except where needed to provide backwards compatibility with Extend 5 or ear-
lier.

4 Block number where item is.

152 IDE
How discrete event blocks and models work

ID
E

Item attribute global arrays
There are three global arrays that are responsible for item attributes:

• The first (_AttributeList) stores attribute names

• The second (_AttribType) stores the attribute type (value, string, or db address)

• The third (_AttribValues) stores attribute values

The attribute names are stored in a String15 type global array called “_AttributeList”. This
array is created whenever a block that uses attributes is placed in the model. Its single column
contains an alphabetized list of the attribute names entered into the blocks. All blocks that ref-
erence attributes use a popup menu to allow the modeler to select from a list of attributes that
have already been defined for the model or to create a new attribute. When the popup menu is
clicked, these blocks reference the AttribList global array to ensure that all of the attributes
defined in the model are available for selection in the popup menus. Each time a new attribute
is added, this global array is increased in size by one, the attribute name is appended to the list,
and the list is sorted.

The “_AttribType” global array is used to store the attribute’s type at the time the user defines
a new attribute. There are 3 types of attributes: value, string, and db address.

While building a model, it is possible to define attributes that end up not being used or refer-
enced in the model. Cleanup of unused attribute names is done at the start of the simulation.
The Executive clears the AttribList global array in its StepSize message handler. Each block in
the model that references an attribute name then adds all of its referenced attributes to the
AttribList global array in their StepSize message handlers.

In the InitSim message handler, the Executive sorts the new AttribList global array (which now
includes only attributes which are used in the model). In doing this, each attribute name is
assigned a sequential index (the row index) in alphabetical order. Each block then calls the
Attrib_GetColumnIndex procedure which searches the AttribList global array for the attribute
that is referenced by the calling block. This index is used when referencing the attribute value
during the simulation.

In addition, if either of the two costing attributes (“_cost” or “_rate”, as discussed in the User
Reference) are used in the model, they are assigned the index values at the end of the list of
user-defined attributes.

The attribute with index 0 stores the animation object for the item.

Slot # Description

0 Resource Order ID. If an item has requested at least one advanced resource requirement,
the integer held in slot 0 represents the record associated with the last requested require-
ment in the “Resource Orders” database table. Resource Order ID is used with Advanced
Resource Management (ARM).

1 Unique item ID used by the Report Manager block

2 Report Manager block’s log record index

3 RBD. Event item’s record index into “RBD event registry”

4 RBD. Event item’s record index into “RBD event occurrence log”

Simulation Architecture 153
How discrete event blocks and models work

ID
E

The third global array used for attributes stores the attribute values for each item. In the Exec-
utive’s InitSim message handler, the two-dimensional global array “_AttribValues” is created
to store the values of the attributes during the simulation. The number of columns is calculated
as the “number of user-defined attributes plus one” for the animation attribute and plus two for
the costing attributes (if costing is used in the model). The number of rows corresponds to the
number of items in the model and is increased if additional items are allocated. The attributes’
values can be referenced by using the attribute index as the column and the item index as the
row. For example: the following is pseudocode for setting an attribute:

AttribValueIndex = GaGetIndex("_AttribValues");

GaSetReal(Value1,attribValueIndex,itemIndex,AttribIndex);

where:

Value1 = the value of the attribute

AttribValueIndex = The index to the "_AttribValues" global array

ItemIndex = The index of the item

AttribIndex = The index of the attribute

Flow attribute global arrays.
The blocks in the Rate library use flow attributes which are implemented using the same logic
as discussed above for item attributes. The global arrays responsible for flow attributes are:

• The first (_FlowAttList) stores attribute names

• The second (_FlowAttType) stores the attribute type (value or string)

• The third (_FlowAttValues) stores attribute values

Basic item messaging
The actual moving of items between blocks is done through a messaging communication struc-
ture using item connectors and connections. This messaging system allows modelers to place
blocks in a more intuitive sequence.

Discrete event blocks send messages to each other during the course of a simulation run. These
messages are used for communication regarding whether items are available, whether they
have been taken, and whether a block is free to receive items.

For single connectors, messages are sent using the functions SendMsgToInputs(connector-
name) and SendMsgToOutputs(connectorname). For variable connectors, messages are sent
using SendMsgToInputs(connectorname, whichConnector) and ConArraySendMsgToOut-
puts(connectorname, whichConnector). Messages are received in message handlers that have
the name of the connector that received the message. For example the “On ItemIn” message
handler is called when a message is sent to the “ItemIn” connector.

Discrete event blocks have a function in their code called SendMsg. This function is just
included for clarity. It calls the two ModL functions mentioned above.

The SendMsgToInputs and SendMsgToOutputs functions only send messages. In discrete event
models, so that more information can be sent with each message, the global SysGlobalInt3 is
used as an argument to the messages, and the global SysGlobalInt0 is used as a return code
value. Note that some globals are used to perform different functions during the initialization
(CheckData and InitSim) phases of the simulation run.

154 IDE
How discrete event blocks and models work

ID
E

During the Simulate phase of the run, the meanings of the various values of SysGlobalInt0 and
SysGlobalInt3 are as follows:

Depending on how the message sequence is initiated, items can be either pushed or pulled
through the model. It is easiest to illustrate this with a series of simple examples. The following
figures show a Queue block connected to an Activity block with a single item capacity.

Push mechanism
When an item is pushed through the model, the upstream blocks (in this case, a Queue) try to
push their items out into any downstream blocks.

For example, assume that an item has just arrived at the
Queue and the Queue is attempting to pass that item along to
the Activity. The first action is for the Queue to send a wants
message through its item output connector to the Activity.
This is accomplished by setting SysGlobalInt3 to a value of 1
(wants) and calling the function SendMsgToInputs. This indi-
cates that the Queue wants to send an item to the Activity.

The Activity receives the message in its “on itemIn” message
handler. If the Activity in the above example is not currently
processing an item and thus is idle, it will return a needs
value to the Queue by setting SysGlobalInt0 to 3 (needs),
indicating that the item can be accepted.

If a needs value has been returned from the Activity, the
Queue then sends a needs message back to the Activity by
setting SysGlobalInt3 to 3 (needs) and calling the function
SendMsgToInputs. At this point the item would be commit-
ted to moving from the Queue to the Activity.

If the Activity is currently busy processing another item,
instead of a needs value it will return a rejects value . This is

Value Sending (SysGlobalInt3) Returning (SysGlobalInt0)

0 (rejects) (Not sent) Block rejects item

1 (wants) Does block want item? (Not returned)

2 (taken) Item has been taken (Not returned)

3 (needs) Item needs to be taken Block needs item

4 (query) What is the index of the next item? Item index for the next item (0 if no item is
found)

5 (notify) Item has been sent (Not returned)

6 (blocked) Is the downstream block blocking
us?

(Not returned)

7 (init) Used during initialization (Not returned)

Wants message sent to Activity

Needs value returned from Activity

Needs message sent to Activity

Simulation Architecture 155
How discrete event blocks and models work

ID
E

accomplished by setting SysGlobalInt0 to 0 (rejects). If the item is rejected, the message
sequence will be terminated.

The item is logically moved from one block to the next by
transferring its item index over the connection between the
blocks. To do this, the Queue sets its output connector value
to the item index.

When a block sets its connector value to the item index, the
connector value of any connected blocks will automatically
be set to that same item index value.

Since the output connector of the Queue is connected to the input connector of the Activity, the
two connectors will share the item index value. The Activity then sets its input connector to a
negative number and sends a taken message back to the queue to indicate that the item has suc-
cessfully moved. This is done by setting SysGlobalInt3 to 2 (taken) and calling the function
SendMsgToOutputs. In response to the taken message, the queue will update any internal sta-
tistics related to the departure of the item.

Pull mechanism
In addition to being pushed, as in the preceding example,
items can also be pulled through the model. If they have
remaining capacity, downstream blocks try to pull items
into their inputs. For example, when the Activity finishes
processing the item, it will attempt to pull in another item.
To do this, the Activity first sends a wants message to the
Queue indicating that it is requesting an item. The wants
message is sent by setting SysGlobalInt3 to 1 (wants) and
calling the SendMsgToOutputs function.

If an item is available in the Queue, its output connector will be assigned to that item’s index
value. The Activity will pull in the item and then send a taken message back to the Queue by
setting SysGlobalInt3 to 2 (taken) and calling the SendMsgToOutputs function. If an item is not
available in the Queue, a rejects value (0) will be returned and the message chain will be termi-
nated.

Passing blocks
Both of the blocks in the above examples are residence blocks and can hold items for some
period of time. Passing blocks do not have this ability and must pass the item through in 0
time.

The following example shows an Equation(I) block
reading multiple attribute and other property values to
calculate the delay needed for the Activity. The Equa-
tion(I) block does not affect the messaging communica-
tion between the Queue and the Activity. Since it is a
passing block, it transfers the initial wants and needs
messages between the Queue and Activity. Thus, any
number of passing blocks can be between any blocks that can hold items. Once the item moves
into a passing block, it will send a taken message to the upstream block.

Taken message sent back to Queue

Wants message sent from Activity

Passing block between Queue and Activity

156 IDE
How discrete event blocks and models work

ID
E

Blocked and query messages
One of the more complex message communication subsystems in this architecture is the com-
munication between blocks when a block needs information about an item that has not yet
arrived. This occurs when an item needs to know if it can move downstream before it starts to
move, or when it needs to determine which path it will take before it gets to the block that con-
tains the different paths.

If Predict the path of the item before it enters this block is selected in its dialog, the Select Item
Out block will use a special sequence of messages to determine which direction the item will
go before the item leaves any upstream residence blocks.

Traditional discrete event architectures would require dummy resources to overcome these
problems. The ExtendSim discrete event architecture, however, is able to determine the path of
an item before it moves into the decision logic and is able to block through decision points
without any additional modeling components.

In the example at right, the Equation(I) block reads mul-
tiple attribute and other property values to calculate the
one of three paths for that item to follow (Select Item
Out) based on the value of the properties for that item.
Without the ability to send a Query message, the Equa-
tion(I) block would read the value of the properties on
the item, but only after the item has already entered the
block. In this case, this could cause a problem as the Select Item Out block may be blocked
down the path that the item will need to travel. If the Select Item Out is blocked, and the item
has to move into the Equation(I) block to present its property values, then the item will be
stuck in the Equation(I) block. And since property-manipulating blocks are only meant to pass
items, not hold them, the Queue will understate the number of items available.

The solution to this problem is to use the Equation(I) block which can then look upstream to
see what the next item coming along will be, and not pull in the item until the downstream path
is free.

Blocked messages
The first part of this process involves sending a
blocked message downstream from the Equation(I)
to see if there are any blocks that could cause this
situation. This is accomplished by setting SysGlo-
balInt3 to 6 (blocked) and calling the SendMs-
gToInputs function. The Equation(I) does this the
first time it gets an incoming message (i.e. the first
time the Select Item Out block requests a calculated
value from the value out connector.) The Equation(I) sends a blocked message from its item
output connector in its on AttribOut message handler. (The on AttribOut message handler is
called when the value out connector on the Equation(I) block gets a message.) If the block
downstream is a potential blocker, it will return a TRUE value by setting SysGlobalInt6 to 1
(TRUE). If a TRUE value is returned in response to the message, then the Equation(I) block
sets a flag that records that it is blocked.

Select Item Out controlled by Equation(I)

Blocked message sent to Select Item Out

Simulation Architecture 157
How discrete event blocks and models work

ID
E

Query messages
If it has been determined that blocking can occur,
each time there is a request for a calculated value,
the Equation(I) block sends a query message
upstream by setting SysGlobalInt3 to 4 (query) and
calling the SendMsgToOutputs function. This mes-
sage is essentially a request for information about
the next item that is available. The message will be
propagated upstream by the blocks until it reaches
a block that can contain items, such as a queue.

The block responding to the query message will check to see what the item index of the next
item to be released will be and will return that value to the querying block by setting the global
SysGlobalInt0 to the item’s index value. The Equation(I) block will then access the property
values for that item. From this point on, each time that a property value is requested from the
Equation(I) block, it will send out the query message and check the property values of the next
item. It will not need to re-send the blocked message again.

ExtendSim will notify modelers if there are any logical ambiguities that will not allow the
model to operate properly. When this occurs, an error message is issued that recommends a
course of action that will resolve the ambiguity.

The Notify message
The final message used by this system is the notify message. This message is used to notify
other blocks that an item has just passed by a specified point in the model. A special sensor
connector receives this message. Sensor connectors do not pass items, they monitor the mes-
sage stream, processing only the notify message. Only a few blocks have sensor connectors,
although all of the blocks that process items will send the notify message through their item
output connector by setting SysGlobalInt3 to 5 (notify) and calling the SendMsgToInputs func-
tion.

In this example, the Gate block limits the num-
ber of items in the section of the model between
its output connector and the activity’s output
connector. It uses its sensor connector to deter-
mine when an item has passed the activity’s
output connector.

As an item travels from the Activity to the Set
block, a taken message will be sent to the Activity. In response to this message, the Activity
will send out the notify message. The normal item input connectors in the blocks will ignore
the notify message, but sensor connectors will respond to it and start processing information
about the item. In the above example, when a notify message is received by the sensor connec-
tor, the Gate block knows that another item has passed by and can allow an additional item into
the model section.

Value connector messages
In addition to item connectors, value connectors are used to relay model information. Value
connectors pass a single number from one block to another. Examples include a value output
such as length of a queue or an input such as a delay time. The use of these connectors allows
the combining of blocks that perform numerical calculations to provide a control structure and

Query message sent to Queue

Situation that requires a notify message

158 IDE
How discrete event blocks and models work

ID
E

logical information for the discrete event blocks. This provides additional modeling flexibility
without requiring user programming or complicated interfaces.

In the example that follows, two Random Number
blocks are added together to specify the delay for an
activity. Whenever an item arrives to the activity, the
Random Number and Math blocks will need to be recal-
culated. Whenever a discrete event block detects a con-
dition where an update to the input value of a connector
is needed (in this case, an item arriving to the activity),
it sends a message out its input value connector (in this
case, value input connector “D”) using the ConArray-
SendMsgToOutputs() function. This message propagates
backwards via the Math block and causes the Random
Number blocks to recalculate their output values so that
the Math block can add them and update its output con-
nector value for the Activity block to use.

Message emulation
A default feature (“message emulation”) for continuous blocks in a discrete event or discrete
rate model causes the messages to be propagated throughout all of the continuous blocks used
in the calculation. Message emulation is used whenever the block contains no message han-
dlers for any of its connectors. In that case, the “on simulate” message handler is used as a
default message handler for all connectors.

How message emulation works:

• If a message is received on an output connector:

• Echo to ALL input connectors to get their latest values.

• Send a SIMULATE message to the block to recalculate values to its output connectors.

• If a message is received on an input connector:

• Echo to all other inputs THAT HAVE NEVER RECEIVED A MESSAGE to get their
latest values.

• Send a SIMULATE message to the block to recalculate values to its output connectors.

• Echo message out the outputs.

• If Additional messages are received on any connector while processing current message:

• DON'T echo these additional messages.

• Send a SIMULATE message to the block to recalculate its latest values.

This message emulation capability improves performance and reduces redundancy.

The example code below illustrates an On Simulate message handler adding one to its input by
assigning the output connector (Con1Out) to the input connector (Con1In) plus one. There are
two cases:

The sum of two random variables
specifying an activity’s delay

Simulation Architecture 159
How discrete event blocks and models work

ID
E

• The block received a message from its input connector to recalculate, so it calls its Simulate
message handler and then propagates that input connector message by then sending a mes-
sage via its output connector to any connected block’s inputs so they can act on that mes-
sage.

• The block received a message on its output connector from a downstream block that needs a
new value. It first propagates the message backwards through its inputs so upstream blocks
can recalculate, then calls its Simulate message handler to recalculate its outputs for the
downstream block to use.

Whenever either connector receives a message, the Simulate message handler will be executed
and a message will be sent out the other connector through message emulation. This will prop-
agate messages where appropriate.

On Simulate

{

Con1out = Con1In + 1; // calculate the output value

}

Explicit connector messages
Overriding message emulation gives you, as a block developer, more flexibility in the behavior
of the block. If a generic block has one or more connector message handlers, message emula-
tion is automatically disabled and the connector message handlers are used to perform the cal-
culation instead. In this case, the generic block must send out messages to other value input
and output connectors explicitly. For example, a message must be sent out of the output con-
nector whenever a message is received on the input connector, and a message must be sent out
of the input connector whenever a message is received on the output connector.

The code below uses message handlers to make a block behave similarly to the message emu-
lation used in the above example. Both examples will perform identically in model operation.
Because message handlers have been explicitly specified for the connectors in the example
below, message emulation has been automatically disabled.

On Con1In
{

Con1Out = Con1In + 1;
SendMsgToInputs(Con1Out);

}

On Con1Out

{

SendMsgToOutputs(Con1In);
Con1Out = Con1In + 1;

}

On Simulate
{
}

160 IDE
Globals in discrete event blocks

ID
E

Functions in discrete event blocks
The following are some, not all, of the functions to be found in discrete event blocks. They are
the ones found in most of the blocks and help give an understanding of how the code is orga-
nized.

Globals in discrete event blocks
Several reserved global variables (sysGlobals) are used in discrete event blocks. This table lists
the reserved global variables with a brief description of their use during the Simulate message
(most have undefined values during the CheckData message). For more information, examine
the code of the blocks in the Make Your Own category of the Example Libraries > ModL Tips
library or the Executive block and other blocks in the Item library.

In addition to the global variables reserved by ITI, there are general use global variables. To
see the complete list of global variables, go to “Global variables” on page 191

☞ Global variables are integers if they contain the “Int” designation (SysGlobalIntX) and are
strings if they contain the “Str” designation (SysGlobalStrX). Otherwise, they are reals.

Use of system globals during Simulate message

Function Description

SendItem Attempts to pass an item out of the block. First it checks certain block variables to
see if an item is available, then it will output the index value of the item and send a
message to the receiving block (it calls SendMsg).

GetItem Attempts to get an item once a block determines that it is ready to get an item.
First it checks to see if an item is available, then it gets the index value, negates the
connector, and sends a message to the sending block.

PassItem Performs the actions of both the GetItem and SendItem functions. It is used in
blocks that pass items through without delaying them (passing blocks).

SendMsg Sends the messages out through the connectors. It sends out messages based on
the values of its arguments.

Global Used In Definition during Simulate message

SysGlobal0 DE blocks Used to access the TimeArray of posted events.

SysGlobal1 Blocks with
reports

Report file number.

SysGlobal2 Blocks with
traces

Trace file number.

SysGlobal3 DE blocks Used to access the real item array of discrete event item data.

SysGlobal4 DE blocks Used to access the integer item array of discrete event item
data.

SysGlobal5 Do Not Use DO NOT USE. (Was used in versions prior to 7.0.3 to pass the
TimeEventMsgType array between the Executive and event
scheduling blocks. Use SysGlobal13 instead.)

Simulation Architecture 161
Globals in discrete event blocks

ID
E

SysGlobal6 DE blocks Used to access the string item array of discrete event timer data.

SysGlobal7 DE blocks Used to access the TimeBlocks array of event posting blocks.

SysGlobal8 Resource
pools

Used in communication between the Resource Pool, Queue (in
Resource Pool mode), and Resource Pool Release blocks.

SysGlobal9 Costing
blocks

Used to access the cost item array for discrete event item data.

SysGlobal10 Global arrays Communicates the value, row, and column to other global array
blocks when a value in a global array has changed.

SysGlobal11 Throw and
Catch blocks
(Value
library)

Passes a value between blocks.

SysGlobal12 DE blocks Used to access the integer item array of discrete event itemAr-
rayI2 data.

SysGlobal13 DE blocks Passes the time event message type array between Executive
and event scheduling blocks.

SysGlobal14 Not used

SysGlobal15 Not used

SysGlobal16 Blocks with
attributes

Passes array containing names of attribute arrays.

SysGlobal17 Catch Item Passes Throw block nums array.

SysGlobal18 Not used

SysGlobal19 Proof Anima-
tion blocks

Passes ProofString as an array.

SysGlobal20 Executive Used in BlockReceive5 as a DB Address argument for the call-
ing block and used by the Executive as the return value.

SysGlobal21 Passes Resource Orders from Batch block to Resource Man-
ager

SysGlobal22 Item Log
Mngr

Used to pass arrays from Item Log Manager to satellite blocks
(e.g., the History block).

SysGlobal29 Not used

SysGlobalStr0 Blocking
blocks

Name of attribute being checked upstream.

SysGlobalStr1 Any block Used as an argument for the block table info (BlockReceive4)
message handler.

SysGlobalStr2 Blocks with
attributes

Name of new string attribute passed to Executive.

Global Used In Definition during Simulate message

162 IDE
Globals in discrete event blocks

ID
E

SysGlobalStr4-9 Not used

SysGlobalInt0 DE blocks Return code from the messages that discrete event blocks send
to each other.

SysGlobalInt1 DE blocks
that create
items

Index value for the first free row in the item arrays maintained
by the Executive block.

SysGlobalInt2 DE blocks Total number of rows of data that have been allocated to the
item arrays. This will always be rounded up to the next alloca-
tion level.

SysGlobalInt3 DE blocks Argument to the messages that discrete event blocks send to
each other.

SysGlobalInt4 Blocking
blocks and
priority

Tells whether the priority is being checked.

SysGlobalInt5 Used for v6
compatibility

Global batch count.

SysGlobalInt6 Blocking
blocks

Specifies whether or not there is a blocked block (see the Get
block).

SysGlobalInt7 DE blocks ID of the item currently being disposed.

SysGlobalInt8 DE blocks Used to pass the block number to the Executive when the block
is rescheduling itself in the CurrentEvents array.

SysGlobalInt9 Random
Number,
Holding Tank
(Value
library)

Flag when the graph is sending a message. (See the code of the
Line Chart, Scatter Chart, and Random Number blocks for
more information.)

SysGlobalInt10 Resource
pools

Used in communication between the Resource Pool, Queue (in
Resource Pool mode), and Resource Pool Release blocks.

SysGlobalInt11 Select Item
Out

Used to control whether or not a new random value is generated
in a connected Random Number block.

SysGlobalInt12 Throw and
Catch (Item
library)

Passes item index in Throw Item and Catch Item blocks.

SysGlobalInt13 Random
Number,
Equation, and
Select blocks

Set to TRUE if a new random number should be generated for a
select block.

SysGlobalInt14 Throw and
Catch (Item
library)

Used by Throw Item and Catch Item blocks to determine which
Throw block is sending the message.

Global Used In Definition during Simulate message

Simulation Architecture 163
Globals in discrete event blocks

ID
E

SysGlobalInt15 Resource
pools

Used in communication between the Resource Pool, Queue (in
Resource Pool mode), and Resource Pool Release blocks.

SysGlobalInt16 Blocks with
costing

Set to TRUE during CheckData message if discrete event
model is calculating item costs.

SysGlobalInt17 Blocks with
attributes

Holds the number of attributes in a discrete event model.

SysGlobalInt18 Blocks with
tables

Argument to BlockTableInfo message handler that chooses the
type of information to return.

SysGlobalInt19 DE blocks Used as an argument for blockreceive4 (on queueFunction
message handler).

SysGlobalInt20 Queues,
Resource
pools

Used in direct communication with queues and resource pools.

SysGlobalInt21 Queues,
Resource
pools

Used in direct communication with queues and resource pools.

SysGlobalInt22 Set, Get,
Executive

Executive and attribute blocks.

SysGlobalInt23 DE blocks Block number of the Executive.

SysGlobalInt24 Create, Set,
Get, Execu-
tive

Attribute info command number.

SysGlobalInt25 Set, Create,
Executive

Number of attribute name arrays in a block.

SysGlobalInt26 Any block Block number of item tracing block.

SysGlobalInt27 DE blocks Item index sent to tracing block.

SysGlobalInt28 Resource
Pool, Queues

List number when resource pool tries to send item. Used in
BlockReceive1 message.

SysGlobalInt29 Resource
Pool, Queues

Set in Queue in PreCheckData to tell Pools the Historical Log
has been turned on.

SysGlobalInt30 Resource
Mngr

Resource Requirement record.

SysGlobalInt31 Resource
Mngr

Item Index.

SysGlobalInt32 Resource
Mngr

Pointer to Resource method.

SysGlobalInt33 Item library Block number for Resource Manager.

Global Used In Definition during Simulate message

164 IDE
Creating blocks for discrete event models

ID
E

Use of Global variables during CheckData or InitSim messages
Some of the variables in the above table are also used in the CheckData and InitSim message
handlers and have a different meaning than when used in the Simulate message handler.

Creating blocks for discrete event models
A Make Your Own block (Example Libraries > ModL Tips library > Make Your Own cate-
gory) is useful for creating blocks that will be used in discrete event models that have item
inputs and outputs. However, you may want to create blocks that have value inputs and out-
puts, but are meant to be used in discrete event models. In that case, do not use the Make Your
Own block as a template. Instead, you only need to follow these two rules:

• Add SendMsgToInputs(connName) and SendMsgToOutputs(connName) functions to your
Simulate message handler for all input and output connectors on your block. Remember that
the argument to SendMsgToInputs is the name of the output connector on the block you are
creating; likewise, the argument to SendMsgToOutputs is the name of the input connector.

• To control how the block receives and sends messages, add at least one message handler
(which can be empty) with the name of one of your connectors. Otherwise, the block will

SysGlobalInt36 Resource
Mngr

Number of selected resources.

SysGlobalInt37 Unique
ItemID

Keeps a count of how many items have been created. Used to
assign a unique ID to items in ItemArrayI2.

SysGlobalInt38 Item blocks Msg type. Tells the remote satellite block what to do in Block-
Receive6 for item logging.

SysGlobalInt39 Item blocks The table index of the Item Log block's central log table.

SysGlobalInt40 Global setting for whether or not to track string attribute values.

SysGlobalInt42 Mean & Vari-
ance block

Track the number of blocks that have relative error turned on.
This makes sure that the simulation runs continue until the all
of the relative error conditions have been met.

SysGlobalInt43 Item & Rate True when the addition of a block is being scripted. Prevents
the automatic redrawing of connection lines.

Global Different definitions during CheckData/InitSim messages

SysGlobalInt0 Number of blocks posting events for the time array.

SysGlobalInt1 Block number of the Executive block.

SysGlobalInt8 Used by the Executive block during CheckData to check for duplicate Execu-
tive blocks.

SysGlobalInt11 Used to control random seed initialization.

SysGlobalStr1 Used by equation to send a value to Proof Animation.

Global Used In Definition during Simulate message

Simulation Architecture 165
How discrete rate blocks and models work

ID
E

emulate connector messages. Thus, if the name of one of the output connectors is “G1Out”,
you would add a message handler such as:

on G1Out
{
...
}

☞ Using options in the Run > Debugging command, you can cause models to display block mes-
sages as they run. This gives an idea of how messaging works in discrete event models.

How discrete rate blocks and models work
The blocks in the Rate library are for creating discrete rate models. LP technology, which has
global oversight over discrete rate models, as well as messaging in discrete rate models, is dis-
cussed in the User Reference.

Globals in discrete rate blocks
Several reserved global variables (SysFlowGlobals and others) are used in the Rate library
blocks. The table below lists those global variables with a brief description of their use in Rate
library blocks during the Simulate message (most have undefined values during the CheckData
message).

Global Definition during Simulate message

SysGlobalInt41 Rate library

SysFlowGlobal0 To store the maximum rate defined in the Executive

SysFlowGlobal1 To store the rate precision to be considerate as 0

SysFlowGlobalStr0 Used for the propagation of the name of the flow unit in a section

SysFlowGlobalInt0 Used to propagate the section# (= corresponding to the row# in _FlowSec-
tion global array)

SysFlowGlobalInt1 Used to propagate the row# in the _FlowAttValues global array for each
outflow connector that can change attributes

SysFlowGlobalInt2 Used to stop the propagation when the message is received twice in the
same block => count the LP calculations made in the Executive

SysFlowGlobalInt3 {1/2/3} Option defined in the Executive block to show or not the bias
order above the Merge and Distribute icons using a mode with bias order

SysFlowGlobalInt4 Used to get the type of propagation which is made in FlowBlockReceive0
and FlowBlockReceive3 messages

SysFlowGlobalInt5 Count the number of constraints in an LP calculation

SysFlowGlobalInt6 Row # in siListTCConnection_GA global array. Used to update when
change occurs in Throw Catch connections.

SysFlowGlobalInt7 {0/1} True if the Rate blocks have to update the state starved or blocked
after each new calculation of the rates

SysFlowGlobalInt8 Used to inform the block on the number of the section which is concerned
by the message handler (FlowBlockReceive0_1_3_4_6_7

166 IDE
Globals for ARM (Advanced Resource Management)

ID
E

Globals for ARM (Advanced Resource Management)
Advanced Resource Management (ARM) is a complete system for organizing resources, dis-
tinguishing between them, and allocating them throughout the model. It provides a convenient
and straightforward method for defining complex resource requirements for items as well as a
flexible set of rules for how resources get allocated to them. ARM is discussed in the User Ref-
erence and in the separate document Advanced Resource Management Tutorial and Reference.

Other reserved global variables
Mainly used for event monitoring and reliability.

SysFlowGlobalInt9 Used to inform which is the sense of the propagation when a message is
sent from a block

SysFlowGlobalInt10 Unused

SysFlowGlobalInt11 Used to inform from which connector number the message has been sent
(in FlowBlockReceive0 msg)

SysFlowGlobalInt12 Value of the popup menu in the Executive

SysFlowGlobalInt13 Used to inform on the option taken in the Executive for the merge percent
option

SysFlowGlobalInt14 Used to inform on the option taken in the Executive for the merge/diverge
bias order

SysFlowGlobalInt15 {0/1} True if the definition of the LP area is in process

SysFlowGlobalInt16 Unused

SysFlowGlobalInt17 Unused

SysFlowGlobalInt18 To stop the propagation of the FlowBlockReceive5 message in the block.
Each block has to express its constraints only once per LP resolution

SysFlowGlobalInt19 To know if there is a block in the area which requires the extra calculation
of an LP with downstream and upstream differentiation

SysFlowGlobalInt20 To count the number of slacks in the LP

SysFlowGlobalInt21 To inform from which type of connector (Flow or Throw/Catch) number
the message has been sent (in FlowBlockReceive0 message)

Global Definition during Simulate message

SysGlobalStr3 dB table name used to query if table fields can be expanded

SysGlobal23 Used to pass array pointers to the Resource Manager block

SysGlobal25 To enable updating of locked resource properties

SysGlobal26 To enable remote deletion of resources

SysARMGlobal0-19 Unused

Global Definition during Simulate message

Simulation Architecture 167
Other reserved global variables

ID
E

Global Definition during Simulate message

SysGlobal24 To pass array pointers to the Event Monitor block

SysGlobal27 To pass optional argument 1 to the Item Event Monitor block

SysGlobal28 Return value

SysGlobalInt44-52 Reserved for reliability

SysGlobalInt53 Event Monitor block number

SysGlobalInt54-56 Reserved for reliability

SysGlobalInt57 Argument used for passing “EventType” to the Event Monitor block

SysGlobalInt58 Argument used for passing “itemIndex” to the Event Monitor block

SysGlobalInt59 Argument used for passing “blockNumber” to the Event Monitor block

SysGlobalInt60-79 Reserved for reliability

SysDBNGlobalInt0-19 Unused

168 IDE
Other reserved global variables

ID
E

Integrated Development
Environment (IDE)

Debugging
A guide to debugging models and blocks

“We have gone beyond the absurd...
our position is ridiculous.”

— John Vacarro

170 IDE
Debugging models

ID
E

Debugging models
This section discusses ways to debug models and the code necessary to add Trace features to
blocks you build. These methods are also useful when you debug block code.

Features that are discussed in the User Reference
The Debugging Tools chapter of the User Reference has a list of blocks that are useful for
debugging models. These blocks display values, help validate item flow, and speed debugging
of a model. That User Reference chapter also contains other information for debugging models
such as showing simulation order.

Adding Trace code
The ExtendSim Trace feature can be useful in debugging a model. If you create your own
blocks, those blocks can take advantage of the ExtendSim tracing features. When building a
new block, you could include code similar to the following.

For the code that follows:

• For continuous blocks, such as those in the Value library, put the code in the Simulate mes-
sage handler

• For discrete event blocks, such as those in the Item library, put the code in the departure pro-
cedure

// SysGlobal2 is the file reference number for the Debug Trace
// template for trace: BLOCK NAME BLOCK NUMBER CURRENTTIME
if(SysGlobal2 != 0.0) // check for open file for TRACE

{
fileWrite(SysGlobal2,"myBlockName block number "+(myBlockNum-

ber()) + ". CurrentTime:"+currentTime+".","",True);
if(getBlockLabel(myBlockNumber()) != "")

fileWrite(SysGlobal1,"Block Label: "+
getBlockLabel(myBlockNumber()),"",True);

....

....
}

☞ The blocks that ship with ExtendSim contain all the necessary Tracing code.

Profiling
Use profiling to determine the amount of time that each block in a model is used, then use that
information to optimize the block’s code. Profiling a model generates a text file showing the
percentage of time individual blocks execute during a simulation. This helps developers who
want to determine if they should optimize custom blocks, although non-developers might also
use it to find the areas of their models that are most heavily used.

To generate a profile text file, choose the Run > Model Debugging > Profile Block Code com-
mand, then run the model. Be sure to run the model long enough (at least 5 seconds for each
block in the model) to compensate for extraneous events and get a good sample. It is also

Debugging 171
Debugging block code without the Source Code Debugger

ID
E

important to not move blocks in the model between runs if you repeatedly run the profile. For
example, the profile of a Bank Line model might look like:

You can use the information in this profile to look for anomalous results. For example, if one
of the three Activity blocks used a much higher percentage of the time than the other two, but
you had expected them to be about the same, you could use that information to see what it was
about that block that was different.

Note that only blocks that use 1% or more of the simulation time are shown in the profile. And
the percentages are approximate, so the sum of the percentages might not equal 100%.

Profile text files are opened, closed, and edited just like any other text file.

Debugging block code without the Source Code Debugger
The ExtendSim Source Code Debugger, discussed beginning on page 172, has a lot of advan-
tages in block debugging, offering conditional breakpoints, stack crawl, and viewing variable
values in specified blocks. The following methods may also be useful for debugging code.

Using DebugMsg functions
If you don’t want to use the Source Code Debugger, you can use the DebugMsg function to
insert a breakpoint and monitor variable values as the simulation runs. You specify a message
and variable values as this function’s string argument. When the function gets called, it dis-
plays the argument in an alert.

DebugWrite is the same as the DebugMsg function except that the data is written to a file so
the simulation run isn’t interrupted. The advantage of using DebugMsg or DebugWrite rather
than UserError is that ExtendSim warns if the Debug functions are present when the library is
loaded. See the functions in “Debugging” on page 367.

Viewing intermediate results
When developing a block’s code, there is an easy way to view intermediate results of calcula-
tions without any interruption of the model. Just add an assignment statement:

comments = myVar; // myVar will be visible as it changes

or add some more information and variables:

comments = “myVar = ” +myVar+ “, myVar2 = ” +myVar2; // more info

in your code after some calculations. Then open the block’s dialog, tab to the Comments field,
and run the model. Since “comments” is the comments box (editable text) item in the dialog,
any number assigned to it will be immediately visible in the dialog. This is different than using

Block Name Block Number Time (seconds) Percent

Create 0 2.42 9.30

Queue 2 7.65 29.50

Activity 3 2.27 8.80

Activity 5 1.15 4.40

Activity 6 1.82 7.00

Exit 7 4.15 16.00

Line Chart 8 5.83 22.50

Executive 10 0.62 2.40

172 IDE
Source Code Debugger

ID
E

the DebugMsg() function (discussed on page 171) to display data, as it doesn’t interrupt the
model for each new number displayed.

Source Code Debugger
No matter what the language, code often does not work the first time. This section shows how
the ModL Source Code debugger can save you time when locating the source of an error in one
of your blocks or the equations in equation-based blocks. It provides a tutorial that shows how
to step through lines of source code, examine values of variables, create breakpoints with con-
ditions, and analyze block problems. It also discusses the various Debugger windows and dia-
logs.

 In addition to being useful when creating or editing the source code of blocks, the Source Code
Debugger is available when using equations in equation-based blocks. See the How To:
Debugging Tools section of the ExtendSim User Reference for more information.

Overview of the debugger
A source code debugger makes it much easier to determine the causes of block malfunctions.
You can watch the execution of the ModL code and see its path and the effects it has on any of
the variables used in the block.

Definition of terms
A breakpoint is where the debugger will initially stop execution of the block’s code and open
the Debugger window. You can then manually step through lines of code to trace its execution,
and examine the effects on the variables defined in that code and in the block’s dialog and con-
nectors.

The breakpoint condition is the TRUE or FALSE boolean decision that causes the breakpoint
to break execution only under certain circumstances. This is valuable if there could be too
many breaks and an important break only occurs rarely, with certain values of variables.

☞ See also the descriptions of the Debugger windows and dialogs in “Source code debugger ref-
erence” on page 183.

Steps for debugging
As illustrated in the examples that follow, the steps to debug code are:

1) Use a menu command to recompile a block, a library, or several libraries in debugging
mode.

2) Add breakpoints (indicated by red circles) by clicking on the code markers in the left mar-
gin of the Set Breakpoints window. (To remove a breakpoint, click it again.)

3) Add a condition to the breakpoint in the Set Breakpoints window so that it will occur at the
appropriate time and model state. Conditional breakpoints display as blue circles.

4) Run the simulation. Or click an item in the block’s dialog to execute the code.

5) When the breakpoint is reached, step through the code and examine the variables.

6) After you have resolved the problem, use the menu command to remove the breakpoints
and any debugging code from the libraries.

Debugger tutorial
This tutorial shows how to add debugging code to a block and to an entire library as well as
how to use the Source Code Debugger to track down and fix an error in a block’s code.

Debugging 173
Debugger tutorial

ID
E

The Debug Tutorial model
Open the Debug Tutorial model located in the Documents/

ExtendSim/Examples/How To/Developer Tips folder. As
shown to the right, the model consists of three connected
blocks which generate data, process the data, and plot the
result.

Run the model. You
should see the error mes-
sage at the right, fol-
lowed by a second
message that stops the simulation.

Click OK to close those error messages.

Debugging one block
The error message indicates the offending code is in the Start block, so start with setting the
block to be in debugging mode.

On the model worksheet, right-click the Start block and choose Set Breakpoints and Add
Debugging Code (or select the block and choose that command from the Develop menu).

This recompiles the
block in debugging
mode and opens two
windows:

• The Breakpoints
window shows
the breakpoints
for all the blocks
in the model

• The Set Break-
points window is
for setting break-
points in the
selected block; in
this case, the
Start block

These windows are
described more in
“Source code debugger
reference” on page 183.

For now, since the debugger automatically stops at an error message, you don’t need to set
breakpoints. Close the Set Breakpoints window

Notice that on the model worksheet and in the Tutorial library window, the Start
block’s icon is now surrounded by a red border, indicating that the block is in debug-
ging mode. Blocks in debugging mode will execute more slowly—the red markings
are a reminder that you should remove debugging code when finished.

Debug Tutorial model

174 IDE
Debugger tutorial

ID
E

Going to the Debugger
Run the model again. You’ll get the same error message but it now

has an Go to Debugger button.

Click the Go to Debugger button. This opens the Debugger window shown below.

• The title bar indicates that the error occurred at currentTime: 8

• In the Source pane at the left:

• A green location arrow in the Breakpoint margin on the left points at line 16 (“b =
array[timeIndex];”).

• The variable Array is declared at the top of the script and has 10 members (Real
array[10]).

• In the Variables pane at top right, the index variable timeIndex has a value of 10. If you dou-
ble-click the Value for the Array variable, you will see that the number of members is
indexed from 0 to 9.

• The point where the error occurred ([0]Start MYFUNCTION, line 16) is selected in the bot-
tom right pane, known as the Call Chain pane.

In order to debug this, you need to find out how MyFunction got called and see the chain of
events that led to this error message.

Debugger window after error message

Debugging 175
Debugger tutorial

ID
E

Going up the call chain
In the Call Chain pane, select the “DATAOUT, line 32” entry (the top entry above the origi-

nally selected entry), as shown below.

Notice that the location arrow in the Breakpoint margin is now yellow for this entry, indicating
it is the previous entry in the Call Chain. The selected message handler is called DataOut,
which is the name of one of the connectors on the block. It indicates that a connector message
was received from a block that is connected to the Start block.

To see the code of the block that sent this message, you need to compile it in debugging mode
too. Then it can be seen in the Call Chain and you can click its entry to see the code that caused
the chain of events. But rather than setting individual blocks to debugging mode, it is often eas-
ier to set the entire library.

Debugging an entire library
If the Debugger window is open, stop debugging or close the Debugger window. That way

you won’t be in the middle of debugging code when the library is changed.

Choose the menu command Library > Library Tools > Add Debug Code to Libraries

In the window that appears, choose the libraries the model uses (in this case, only the Tuto-
rial library) and click Add Debugging Code

After ExtendSim finishes compiling all of the blocks in the Tutorial library, the three blocks on
the Debug Tutorial model will be outlined in red, indicating that they are in debugging mode.

Run the model again.

When the error occurs, click the Go To Debugger button to access the Debugger window.

Debugger window after clicking top entry in Call Chain

176 IDE
Debugger tutorial

ID
E

Following the Call Chain
The Source Code Debugger allows you to follow the chain of events that caused the error.

Click on the top Call Chain entry (Process SIMULATE, line 14); this is one that started this
whole chain of events.

In the Source pane’s Breakpoint margin, the yellow location arrow points to line 14, as indi-
cated in the Call Chain. There was a SendMsgToOutputs function call from the Process block
because its input (ProcessIn) was greater than 7.0. (The actual value can be seen in the Vari-
ables pane as 10.6046.)

Debugger window with top Call Chain entry selected

Debugging 177
Debugger tutorial

ID
E

Click on the second Call Chain entry (DATAOUT, line 32):

The Variables pane indicates that CurrentTime is 8. Line 32 of the Source pane shows that the
code called MyFunction with an argument equal to10.0 (CurrentTime+2.0).

Debugger window with message handler selected

178 IDE
Debugger tutorial

ID
E

Click on the bottom Call Chain item where the error occurred (MyFunction, line 16):

Since the error message indicated that Array was
indexed beyond its bounds, inspect Array by double-
clicking its value in the Variables pane.

In the Array window, shown at right, notice that the array
is indexed from 0 to 9. However, the code tried to index it
with a 10, which is outside its bounds, resulting in an error
message.

Fixing the block’s code #1
The model is being run from a CurrentTime of 0 to a Cur-
rentTime of 10, and the code could be adding 2.0 to the
CurrentTime in some cases. The way to fix the problem is
to increase the size of Array so that it can be indexed from
0 to at least 12.

Click the Stop Debugging and Edit Code button at the top of the Debugger window.

This takes you to the location of the error in the Start block’s structure window

Change the declaration of Array[10] to Array[13]

Close the block’s structure window and compile the block

Debugger window with error point selected

Array window

Debugging 179
Debugger tutorial

ID
E

Run the model again and note that this
time there is no error message. How-
ever, the plotter shows a drop off in val-
ues around time 7 and you know from
experience that the Smedley function is
supposed to be increasing.

To see what the problem is you need to set
breakpoints.

Setting breakpoints
To open its Set Breakpoints window,

right-click the Start block on the model
worksheet and select Set Breakpoints
and Add Debugging Code.

(Since the entire library already has its code set for debugging, this just reopens the Start
block’s Set Breakpoints window.)

To set a breakpoint, go to the Breakpoints margin on the left side of the Set Breakpoints
window and click on the code marker for line 16—the location of the B = array[timeIndex]
statement.

A red circle appears where you clicked. Running the model will now cause the simulation to
break (pause) at that point, opening the Debugger window.

Run the model

Start block debugging window

180 IDE
Debugger tutorial

ID
E

The Debugger window opens and the breakpoints margin has a green arrow on top of a red
circle. The green arrow indicates that this is the part of the code that will be executed next;
the red circle indicates that there is also a breakpoint there.

In the Variables pane, timeIndex is 0, which means the simulation is stopped at the beginning.

You can either:

Click the Continue button in the Debugger’s toolbar 10 times until the breakpoint
occurs at timeIndex 10

Or, set conditions as described below

Setting conditions
Clicking until a timeIndex of 10 is reached can get tedious. Instead, set a condition on the
breakpoint so the code only breaks when timeIndex is greater than or equal to 10.

Close the Debugger window or click the Stop Debugging button in the Debugger window’s
toolbar (this also stops the run)

Breakpoint reached

Debugging 181
Debugger tutorial

ID
E

Choose Develop > Open Breakpoints Window (or bring the Breakpoints window forward
if it is open)

The Breakpoints window has two columns: Breakpoint and Condition. Double-click in the
Condition column that relates to the breakpoint (in this case, there is only one breakpoint).

A new window appears for setting conditions:

In this window, do the following:

In the Variable A column, select timeIndex (long)

For the comparison, choose the radio button A>=B

Breakpoints window showing the breakpoint

Condition window

182 IDE
Debugger tutorial

ID
E

Below the Variable B column, check the checkbox Use constant for B and enter 10 as
the constant

Click OK to save your changes and close the Breakpoint Conditions window

Run the model again

When the breakpoint occurs, click the Step over button in the Debugger window’s toolbar to
see the value of b over time. (Note that, in this case, the Step over and Step into buttons do
the same thing, because there is no function call to step into.)

The calculated value of b at timeIndex 10 is zero. This should not happen because, as noted
earlier, we know that the value of the Smedley function should increase over time, not
decrease.

Fixing the block’s code #2
Double click the Array variable to look at its values – the result is

shown at the right.

In the array, elements 10-12 are zero, indicating that the Smedley
values for the new larger array have not been calculated. The code
should be changed so that no matter what the size of the array is, it
will be filled.

Changing the block’s code
Click the Stop Debugging and Edit Code button in the Debugger’s

toolbar. This closes the Debugger and opens the Script tab of the
Start block’s structure.

In the Start block’s code, change the Initsim message handler (line
43 to line 50) to read:

on initsim
{
integer i, length;
length = GetDimension(array); // get length of array
// initialize the array so we don’t have to recalculate it
for (i=0; i<length; i++)// use length to limit loop

array[i] = Log(GammaFunction(i+1));
}

Instead of hard coding i <10, this code calls a function to return the array length into a new
variable called length which is used to limit the calculation loop. Then any time the size of the
array is changed the entire array will be filled.

Close the block’s structure and Save and Compile the block.

Disabling and removing breakpoints
To temporarily disable a breakpoint, click once on the red circle in the margin of the Break-
points window. This turns the red circle into an empty circle.

To remove a breakpoint, select the breakpoint’s name in the in the Breakpoints window and
delete it. Or click once on the red circle in the left margin of the Debugger window.

Since the Debugger window has closed:

Debugging 183
Source code debugger reference

ID
E

Remove the breakpoint by selecting the breakpoint information (MYFUNCTION, line 16,
[0]Start) in the Breakpoints window and clicking the Delete key

Run the model again to see the correct output:

☞ Making Array a dynamic array and then resizing it in InitSim would allow the model to be run
for any EndTime value without overrunning Array.

Source code debugger reference
The following sections discuss the Debugger and its windows and dialogs.

Setting a block or library to be in debugger mode
In order for you to use the Source Code Debugger, ExtendSim has to generate debugging code
for a block or blocks.

• To add debugging code to one or a few blocks, select the block or blocks on the model work-
sheet and choose the command Develop > Set Breakpoints and Add Debugging Code (or
right-click the block). This automatically generates debugging code for the selected blocks
and opens a Set Breakpoints window for each block selected.

• To add debugging code to an entire library, choose the command Library > Library Tools >
Add Debug Code to Libraries. (This takes longer than setting a block to debugging mode.
But it is especially useful if you are trying to debug blocks in a discrete event model, since
the messages will be traceable back to their originators via the Call Chain in the Debugger
window.) After the library is in debugging mode, right-click the blocks on the model work-
sheet that you want to add breakpoints to, or select them and choose the Develop > Set
Breakpoints and Add Debugging Code command.

The well-behaved Smedley function

184 IDE
Source code debugger reference

ID
E

Debugger window

When the model is run and execution reaches the breakpoint, the Debugger window opens and
shows the ModL code, values of variables, the Call Chain, and (in the title bar) the current-
Time.

☞ The only way to access the Debugger window is to run a model with one or more blocks in
debugging mode, where there is also either an error message or breakpoints that have been set.

You can set a breakpoint in a block’s Debugger or Set Breakpoint window. However, since the
Debugger window is only open during the model run, it is more common to set breakpoints in
the Set Breakpoint window.

Toolbar
There are six tools at the top of the Debugger
toolbar. From left to right, they are:

• Continue continues execution until the next
breakpoint is reached.

• Step Over executes a function call without
stepping into the function code. It is used when you want the debugger to execute the line of
code with a function call, but not to trace the code of the function.

• Step Into steps into the function call. It is used when you want the debugger to trace the
actual function call, including the code of the function.

• Step Out continues execution until it gets to the caller of the function. It is used when you
want to complete the function or message handler that is currently executing and step back
to the calling function.

• Stop Debugging stops the debugging session and returns to the ExtendSim program.

• Stop Debugging and Edit Code stops the execution of the block, opens the block’s structure
window, and positions the cursor at the point where execution stopped. This is particularly
useful when you have found the error and want to edit the code to make a correction.

Debugger toolbar

Debugging 185
Source code debugger reference

ID
E

Popup menus
• The Functions popup menu can scroll to any function and shows which function you are in.

• The Includes popup menu shows which include files are used in the block. It allows you to
set breakpoints in an include by displaying its contents in the source pane.

Margin indicators in the Debugger window
At the left of the Debugger window, the Breakpoints margin provides the following indicators:

• Active, unconditional breakpoints are shown as a red circle

• A blue circle indicates an active breakpoint that has a condition

• An empty white circle indicates the breakpoint is temporarily disabled

• A green location arrow indicates where the code is going to execute next

• A yellow location arrow indicates where the previous entry in the call chain is going to exe-
cute

To add breakpoints, click on one of the code markers in the Breakpoints margin. To remove a
breakpoint, click it again. To add a condition to a breakpoint, use the Breakpoints window,
shown on page 186.

Set Breakpoints window

This window shows the ModL code and the breakpoints for the indicated block. The Break-
points margin, with code markers and any breakpoints, is on the left. The popup menus at the
top of this window are the same as for the Debugger window on page 184.

To add a breakpoint, click on a code marker in the Breakpoints margin. This places a red circle
on the code marker, as seen above. To remove the breakpoint, click its red circle in this win-
dow once so it returns to a code marker, or delete the breakpoint from the Breakpoints window,
discussed below.

186 IDE
Source code debugger reference

ID
E

Breakpoints window

The Breakpoints window shows breakpoints for the entire model as well as any conditions for
those breakpoints. It is used for enabling, disabling, and deleting breakpoints and for adding
conditions to breakpoints. For a model with blocks in debugging mode, the Breakpoints win-
dow is opened by the command Develop > Open Breakpoints Window.

• A red circle indicates an enabled breakpoint.

• To temporarily disable a breakpoint, click the red circle once– it becomes an empty white
circle. To return the breakpoint to active status, click the empty circle once.

• To delete a breakpoint, select its name from the Breakpoint column and click the Delete key.

• To enable a condition for a breakpoint, double-click in its Condition column, opening the
Breakpoint Conditions dialog.

Debugging 187
Source code debugger reference

ID
E

Breakpoint Conditions dialog

Conditions allow a breakpoint to be ignored unless the condition is TRUE. This is useful when
you get too many breakpoints and you are only interested in a breakpoint that occurs at a spe-
cific time or when a variable reaches a specific value.

The Breakpoint Conditions dialog makes it easy to construct a conditional breakpoint with no
coding. You can enter a currentTime value and/or any other comparison that might be helpful
in narrowing down the problem.

Accessing the dialog
To access the Conditions dialog, double-click in the Condition column of the Breakpoints win-
dow shown on page 186.

To enter a comparison:

Select a variable from column A

Click the desired comparison operator radio button

Choose a variable from column B or check the Use constant for B check box and enter a
constant in that field

Optionally you can enter a currentTime value and/or click the Ignore comparison and always
break check box so that your entered condition will be saved but ignored for the present.

188 IDE
Source code debugger reference

ID
E

WatchPoints
A WatchPoint condition detects when the variable A changes value and will break to the
Debugger whenever that occurs. To use this, select Watch(A) from the comparison operator list
between the Variable A and Variable B columns. This is most useful in finding a statement in a
different block that is changing a variable incorrectly, and the statement cannot be found easily
by normal means.

In order for watchpoints to work correctly, all blocks in a library should be compiled with
debugging code turned on. WatchPoints slow model execution as they have to be checked con-
tinuously while code is executed.

Arrays
If a variable used in a condition is an array, you need to specify which cell is being referenced.
Do this by filling out the Array Indexes section below the Variable A and/or Variable B col-
umns, as appropriate. For example, to watch the 2nd row and 3rd column of MyArray, you
would enter [1][2] in the Array Indexes field.

Ignore conditions checkbox
Check Ignore conditions and always break when you’ve met the condition once and may not
meet it again, but you want to keep exploring that breakpoint. This saves the conditions so you
can use them later.

Debugging tips
• To quickly debug a block, select the block and choose Develop > Set Breakpoints and Add

Debugging Code. This checks the block structure, recompiles the block for debugging, and
opens the Set Breakpoint window.

• To debug the sending of interblock messages, compile the entire library for debugging using
the Library > Library Tools menu. That way the Call Chain will contain the entire chain of
messages and it will be obvious which block sent what to whom.

• When a breakpoint occurs, click the Step over button in the Debugger toolbar to see how the
values of the variables change. To jump to a later CurrentTime, go to the Break Point Condi-
tions dialog.

• When finished debugging, you should remove all of the debugging code as it slows execu-
tion considerably. To do this, choose Library > Library Tools > Remove Debug Code from
Libraries.

• Be proactive and use the Debugger to step through code even when you think it is working
properly. Try different cases just to make sure that the block is working as you have
intended. This will give you confidence in what you have written.

Variables, Messages, & Functions

ModL Variables
A detailed description of the ModL variables

that can be used in your block code

“Knowledge is of two kinds. We know a subject ourselves,
or we know where we can find information upon it.”

— Samuel Johnson

190 Reference
System variables

V
ar

ia
bl

es

This chapter includes a complete list and description of the system and global variables.

• System variables provide information about the state of the simulation
• Global variables are used to pass information between blocks

System variables
System variables give you information about the state of the simulation. They are declared by
ExtendSim and can be viewed or modified by any block in a model.

☞ You can read or write to these variables, but you should be careful when writing to any of them.

Table of system variables

Name Description

AnimationOn Tells the state of the Run > Show 2D Animation command. If it is checked,
AnimationOn is TRUE (1), otherwise it is FALSE (0). (Note that closed hierar-
chical blocks always see a value of FALSE until they are opened. This speeds
simulations by preventing needless animation when the modeler can’t see it
anyway.)

AntitheticRan-
domVariates

If TRUE, ExtendSim's random number functions generate antithetic random
numbers.

CurrentScenario In models where the Scenario Manager is running a series of scenarios, this is
the current scenario number. This will be equal to the row in the Scenarios
table that is currently providing the factors to the model.

CurrentSense Used by the sensitivity analysis feature to determine the number of the simula-
tion run for changing sensitivity variables. It is initially set to 0 and is incre-
mented by 1 during each simulation, after ENDSIM. However, you may
choose to change CurrentSense to any value you want for whatever reason
during ENDSIM –ExtendSim will simply increment it after ENDSIM and use
that for its variable calculations. You should not change CurrentSim, and you
can always refer to that variable to find the actual simulation number.

CurrentSim Current simulation number. Its value starts at 0 and increments each step up to
NumSims-1. It only has a positive value if you set the Number of runs option
in the Simulation Setup or Sensitivity Setup dialogs to a value greater than 1.
CurrentSim has a value of -1 when there is no simulation running.

CurrentStep Current step number. In a continuous simulation, its value starts at 0 and incre-
ments each step up to NumSteps. In a discrete event simulation, the value starts
at 0 and increments with each event.

CurrentTime Current time during the simulation. In a continuous simulation, its value starts
at StartTime and increments at DeltaTime for each step in the simulation. In a
discrete event simulation, the Executive block (Item library) changes the Cur-
rentTime system variable only when processing an event.

DeltaTime Time increment per step. This value is initialized by the Simulation Setup dia-
log and represents the basic increment of time used in the simulation. Delta-
Time has no meaning in a discrete event or discrete rate simulation.

ModL Variables 191
Global variables

V
ariables
Global variables
Global variables are useful for passing information between blocks. They are predefined by
ExtendSim and stored within the model. They can be used by any block anywhere in a model.
The ExtendSim application never changes the values of global variables except to initialize
them when a new model is created.

Types
There are two types of global variables

EndTime Ending time for the simulation specified in the Simulation Setup dialog. This is
the time at which the simulation ends, unless a block stops the simulation with
an abort statement or a discrete event or discrete rate simulation runs out of
items or events.

GlobalProofStr Set by the Proof Animation code of a block.

ModernRandom Tells the state of the random number. If the current random number generator
is being used, ModernRandom is 1. If the previous version of the random num-
ber generator is being used (for backwards compatibility), ModernRandom is
0. (See “Random numbers” in the ExtendSim User Reference for a discussion
about the random number generator.)

MovieOn This legacy variable is currently unused.

NumScenarios In models where the Scenario Manager is running a series of scenarios, this is
the total number of scenarios that will be run.

NumSims Number of times the simulation will be repeated, as specified in the Simulation
Setup or Sensitivity Setup dialogs.

NumSteps The total number of steps that will be executed during a continuous simulation.
NumSteps is the number of steps entered in the Simulation Setup dialog. Num-
Steps has no meaning in a discrete event or discrete rate simulation.

OleGlobal, Ole-
GlobalInt, OleG-
lobalStr

These variables are set by the external application sending an OLEAutomation
message to a block. They act as arguments that the block can access when it
gets the message.

RandomSeed Sequence number used to initialize the random number generator; it is set in
the Simulation Setup or Sensitivity Setup dialogs. When debugging a simula-
tion, it is sometimes necessary to force the random number generator to pro-
duce a repeatable sequence of pseudo-random numbers.

SimDelay Tells the method of simulation order: 0 for Left to right, 2 for Flow order, 3 for
Custom order.

SimMode 0 for manual mode (deltaTime or numSteps values as entered in the Simulation
Setup dialog), 1 for autostep fast (use entered values unless model calculates
smaller deltaTime), and 2 for autostep slow (divide calculated deltaTime by 5),
as specified in the Simulation Setup dialog.

StartTime Starting time of the simulation at step 0. It is initialized in the Simulation Setup
dialog.

Name Description

192 Reference
Global variables

V
ar

ia
bl

es

• General use global variables have a name that starts with “Global”. They can be used any
way you want.

• Reserved global variables start with “SysGlobal”. These System Globals are controlled by
the libraries and features that are included with ExtendSim and their use is reserved.

 Never use the SysGlobal variables for your own purposes; always use the general use globals
(Global, GlobalInit, and GlobalStr) instead.

General use global variables
The following global variables are available for your use in equations or when creating blocks.

Reserved global variables
The system globals, which start with “Sys”, are reserved by ANDRITZ Inc. for our internal
purposes.

You can use the SysGlobal variables (for example, when creating discrete event or discrete rate
blocks), but you should only use them in the same way they are used by the ExtendSim appli-
cation.

☞ See “Globals in discrete event blocks” on page 160, “Globals in discrete rate blocks” on
page 165, and “Globals for ARM (Advanced Resource Management)” on page 167 for tables
that describe how ExtendSim uses the reserved globals during the Simulate, CheckData, and
InitSim messages.

Name Type Use

Global0 through Global19 Real General

GlobalInt0 through GlobalInt99 Integer General

GlobalStr0 through GlobalStr9 String General

Name Type Use

SysGlobal0 through SysGlobal39 Real Reserved for ITI

SysGlobalInt0 through SysGlobalInt99 Integer Reserved for ITI

SysGlobalStr0 through SysGlobalStr19 String Reserved for ITI

SysFlowGlobal0 through SysFlowGlobal4 Real Reserved for ITI

SysFlowGlobalInt0 through SysFlowGlobalInt29 Integer Reserved for ITI

SysFlowGlobalStr0 through SysFlowGlobalStr4 String Reserved for ITI

SysDBNGlobalInt0 through SysDBNGlobalInt19 Integer Reserved for ITI

SysARMGlobalInt0 through SysARMGlobalInt19 Integer Reserved for ITI

Variables, Messages, & Functions

Messages and Message Handlers
A detailed description of the ModL messages

“Knowledge is of two kinds. We know a subject ourselves,
or we know where we can find information upon it.”

— Samuel Johnson

194 Reference
Summary of messages

M
es

sa
ge

s
Messages and message handlers were introduced on page 33 and discussed more in “Message
handlers” on page 75 and “Using message handlers” on page 111.

The following table summarizes each category and type of ModL message. The three catego-
ries of messages (application, user interaction with the dialog, and block-to-block) are dis-
cussed on page 111. Note that while messages can originate either from the ExtendSim
application or from blocks, it is always a block that is on the receiving end of a message.

Summary of messages

Simulation messages
These messages are sent to all blocks during the simulation run in the following order:

Category Type Purpose Page

Application Simulation Sent to blocks in simulation order during a simu-
lation run

194

Application Model Status Sent to all blocks in a model when the model
changes state

196

Application Block Status Sent when clicking on a block or connector, when
placing, deleting, moving, or pasting a block, or
when a model is opened on a different computing
platform.

197

Dialog activity Dialog Sent when the modeler interacts with a block’s
dialog

199

Block to Block Connector Sent via the Connector Message functions, or by
the system when a modeler manually changes the
number of variable connectors, or when the mod-
eler connects or disconnects a block

201

Block to Block Block to block System and user-defined messages sent from a
block’s ModL code when communicating infor-
mation to other blocks

202

Application Dynamic Link Sent to subscribed blocks when there is a change
to the ExtendSim database or global array part
that they are linked to

203

Application OLE Sent in response to OLE conditions 203

Message When sent

ModifyRunPa-
rameter

Sent before the simulation run begins to allow changing the Simulation Setup
parameters via the SetRunParameter() function (see page 299). Note that this is
sent only once even for multiple simulation runs.

SimStart Sent after ModifyRunParameter and before all other simulation message han-
dlers. See the BlockSimStartPriority() function on page 291 for details.

PreCheckData Sent to prepare blocks for CheckData, below. Most blocks can ignore this mes-
sage.

Messages and Message Handlers 195
Simulation messages

M
essages
CheckData This is the best place to check whether all data that is to be used in the block is
valid. If the data is bad, you should execute an “abort” statement, so that
ExtendSim will select the block and alert you that the data is missing or bad.
During this message, connectors that are connected to something else in the
model always have a true (any non-zero) value and unconnected ones have a
false (zero) value. This makes it easy to check whether a block is connected
properly before running a simulation.

StepSize After all CheckData messages. If the code needs a particular StepSize, set it
here. In continuous models, set the DeltaTime system variable to the maximum
step size. ExtendSim queries all blocks and uses the smallest DeltaTime value
returned. This message is also used to set up the attribute global arrays in a dis-
crete event model.

InitSim Just before the simulation starts. If your block’s code uses DeltaTime (continu-
ous model only), check it here. Also, allocate any arrays that are dependent on
DeltaTime, NumSteps, or any other system variable. This is also a good time to
set any static variables, dialog items, or connectors that change when the simula-
tion starts. (Note that ContinueSim, below, is sent instead of InitSim when con-
tinuing a saved model’s run.)

ContinueSim This message is sent instead of InitSim if you are continuing a saved model’s
run. Set up any variables for continuing a saved model run.

PostInitSim Sent to give blocks another chance to initialize variables that could not be ini-
tialized until after the InitSim was sent to all blocks. Most blocks can ignore this
message.

Simulate Every step of the simulation. Note that this message gets sent over and over, not
just once. This is where most of the “action” in a block takes place. For instance,
you check and change the value of connectors in this message handler.
In continuous simulations, the first Simulate message gets sent with Current-
Time=StartTime and CurrentStep=0. For subsequent Simulate messages,
ExtendSim adds 1 to CurrentStep and adds DeltaTime to CurrentTime. The last
Simulate message occurs when CurrentStep=NumSteps-1 and Current-
Time=EndTime, so each block gets NumSteps Simulate messages.
In discrete event and discrete rate simulations, the first Simulate message gets
sent with CurrentTime = StartTime and CurrentStep = 0. For subsequent Simu-
late messages, the Executive block (Item library) controls how CurrentTime is
advanced. See the GetSimulateMsgs() function for how to turn off simulate
messages in a block under certain conditions.

AbortSim Sent only if an Abort occurred during the Simulate messages. This notifies the
blocks to clean up and lets them know that an abort occurred.

FinalCalc Sent after the Simulate messages are over and before the BlockReport messages.
Used for any final calculations that the block might need before the BlockReport
and EndSim messages.

FinalCalc2 Sent to all blocks after FinalCalc completes.

Message When sent

196 Reference
Model Status messages

M
es

sa
ge

s
Model Status messages
When the status of the model changes, these messages are sent to all blocks:

BlockReport Sent after the FinalCalc messages. If a block receives this message, it has been
selected for a report. To organize the reports by block category (see “Block cate-
gories” on page 55), ExtendSim cycles through each block category and sends
this message to any block selected for a report.

EndSim At the end of the simulation. Use this to clean up any memory that you used or
to reset values. This message gets sent even if the modeler or the block’s code
aborts the simulation.

SimFinish Sent after all other simulation message handlers. See BlockSimFinishPriority()
function at page 291 for details.

Message When sent

ActivateModel Sent to all blocks in a model when that model is brought in front of a different
model. This allows blocks to modify their data or appearance if the model is
activated.

AnimationSta-
tus

Sent to all blocks in a model when the 2D Animation command changes state.
This is useful to change a block's appearance according to the value of the Ani-
mationOn variable.

CloseModel Right before the model closes, this message is sent to all blocks in the model to
let them know that the model is closing.

ModelSave This message is sent to each block at the beginning of a save. You might use this
message handler to dispose of unneeded data before it gets saved.

OldFileUpdate Before the openModel message, if the file version is older than the application
version.

OpenModel Sent when a model is opened, or to a new hierarchical block that has just been
placed on the model worksheet. Use this message handler to set some block
variables to values that you only want to reset when a model is opened, not at
the beginning of a simulation.

OpenModel2 Sent after all of the blocks have received the OpenModel message, or after the
OpenModel message to a new hierarchical block that has just been placed on the
model worksheet. Use this message handler to set some block variables to val-
ues that you only want to reset when a model is opened, not at the beginning of a
simulation.

PauseSimula-
tion

Sent to ALL blocks when the modeler pauses the simulation. Contrast this to
ResumeSim which is sent only to the block that the modeler has changed, and
ResumeSimAllBlocks sent to all of the blocks in the model.

Message When sent

Messages and Message Handlers 197
Block Status messages

M
essages
Block Status messages
These messages are sent to individual blocks:

• When the block is clicked

• When a block is placed, deleted moved, or pasted

• When a block needs to communicate information to the model

ResumeSim This message allows the ModL code to respond to changes before continuing
the simulation. It is sent when the modeler:

• Either clicks dialog buttons during the simulation
• Or, edits a parameter and chooses Run > Resume (or clicks the Resume button
in the simulation status bar).

Note: This message is sent only to the blocks that have had dialog values edited.

ResumeSi-
mAllBlocks

This message allows the ModL code to respond to changes before continuing
the simulation. It is sent when the modeler:

• Either clicks dialog buttons during the simulation
• Or, edits a parameter and chooses Run > Resume (or clicks the Resume button
in the simulation status bar).

Note: This message is sent to all of the blocks in the model, as opposed to
ResumeSim, above, that is sent only to the blocks edited.

SimOrder-
Changed

Sent when the modeler changes connections, connects a new block, deletes con-
nections or blocks, or does anything that changes the simulation order.

SimSetup Sent when the modeler changes anything in the Simulation Setup dialog.

Message When sent

BlockClick Sent when the modeler clicks on a block. Use GetMouseX(), GetMouseY(), and
GetBlockTypePosition() to find out what portion of the block was clicked. See
the Mandelbrot model (Documents/ExtendSim/Examples/Continuous/Custom
Block Models) for an example.

BlockIdentify Reserved for use by ANDRITZ Inc.

BlockLabel Sent to the block that just had its Block Label changed, when the label becomes
deactivated. The block can then use the new value of the label.

BlockMove Upon completion of a move, sent to all blocks that moved. (See “Scripting” on
page 300.)

BlockRead This message must be used only with extreme caution – it can cause a crash if
used improperly. It is used to convert version 3.x block data tables to version 4.0
dynamic data tables. See the Information block (Value library) for an example.
Call only the GetFileReadVersion() and ResizeDTDuringRead() functions in
this message handler.

BlockRight-
Click

Sent when a block is right-clicked. Usually used to create a custom popup menu.
See the Math block (Value library).

Message When sent

198 Reference
Block Status messages

M
es

sa
ge

s
BlockSelect Sent when a block becomes selected. See also BlockUnselect.

BlockUndelete Sent to a block when its deletion is undone using the Edit menu Undo command.

BlockUnselect Sent to a block when it becomes unselected. See also BlockSelect.

Connection-
Make

Sent to all newly connected blocks when the modeler makes a connection on the
model worksheet. For hierarchical blocks, this is sent to all internal blocks. To
prevent the connection from being completed, you can call the Abort statement.

CloneInit When a clone is placed on the model, sent to the block that owns the clone so
that it can be re-initialized. This is useful for static text that needs to be re-ini-
tialized when cloned.

EquationCom-
pilePlatform

When an equation tries to execute and it is compiled on the wrong platform, this
message handler should just recompile the equation to fix it.

ConnectorRi-
ghtClick

Sent when the modeler right-clicks a connector. Used, for example, in the Item
library to create a popup menu that is used to add History blocks to a connection
when that connection is right-clicked.

Connector-
ShowHide

Sent when the modeler hides or shows the connectors, either from the toolbar or
the Model menu command.

CopyBlock Sent to all blocks selected before a Copy operation. Useful to dispose of a
dynamic array, create a dynamic array, or add a Global Array to the clipboard
using the GAClipboard() function, before the copy.

CreateBlock When the block is added to a model. This is the place to set initial values for the
dialog. Note that this message is only sent to the block when you add it to a
model. If you change the CreateBlock code for a block that already is in a
model, the changes won’t affect the existing blocks, only new blocks added to
the model.

DeleteBlock Sent when the modeler deletes a block from the model. For hierarchical blocks,
this is sent to all internal blocks.

DeleteBlock2 Sent to blocks after their connection lines to other blocks have been deleted,
right before the block deletion occurs.

DragCloneTo-
Block

This message gets sent when a modeler drags a clone onto a block and releases
the mouse button when the block is highlighted. If you want to get information
about the clones, call the GetDraggedCloneList() function. Used in the Opti-
mizer, Statistics (Report library) and the Scenario Manager and Find & Replace
blocks (Value library).

HBlockClose When a hierarchical block’s submodel or structure is closed. For hierarchical
blocks, this is sent to all internal blocks.

HBlockFrom-
Library

Sent to all enclosed blocks when the H-block from a library is placed on the
model. The OpenModel and OpenModel2 messages are then sent to the H-
block.

Message When sent

Messages and Message Handlers 199
Dialog messages

M
essages
Dialog messages
Dialog messages are the names of dialog items and are sent to the block whenever the dialog is
used. When a button in a dialog is clicked or a parameter is unselected (for example, after it has

HBlockHelp-
Button

This message is sent to all the blocks inside a hierarchical block when the H-
block Help button is clicked. This can be used to intercept the Help button mes-
sage for the H-block, and do something of your own implementation instead.
Aborting this message will prevent the message from getting to the rest of the
blocks in the H-block, and prevent the Help text from opening up.

HBlockMove Sent to all enclosed blocks when the enclosing H-block is moved.

HBlockOpen When a hierarchical block is opened, this message is sent to all blocks in its sub-
model.You can use this to correct animation in a hierarchical block that is open-
ing. If you don’t want the hierarchical layout or structure windows to open,
execute an Abort statement in the on HBlockOpen message handler in one of the
blocks in the submodel.

HBlockSave-
ToLibrary

Sent to all enclosed blocks when the H-block structure is saved to a library.

HBlockUpdate Sent to all enclosed blocks when the H-block structure is edited and closed.

HelpButton Sent when the modeler clicks the Help button in the block’s dialog. Executing
an Abort statement during this message handler will prevent the ExtendSim
Help from opening.

IconView-
Change

Sent when the modeler changes the icon view or when a ModL function call
from a block changes the icon view. If this message is stopped with an abort
statement, the change is not made to that view.

MakeSelec-
tionHierarchi-
cal

Sent after a selection of blocks is made into a hierarchical block using the menu
command.

MailSlotRe-
ceive

Sent repeatedly when there are mailslot messages waiting to be picked up. See
the mailslot functions for more information.

PasteBlock When the modeler pastes a block onto the model. For hierarchical blocks, this is
sent to all blocks within the hierarchical block.

PasteBlock2 Sent after the PasteBlock message has been received by all the blocks pasted.

PasteBlock3 Sent after the PasteBlock2 message has been received by all the blocks pasted.

Plotter0Close,
Plotter1Close,
Plotter2Close,
Plotter3Close

Sent when the modeler closes a plotter window.

PlotProperty-
Change

Sent to the plotter block when a user makes a change to a plot’s properties.

TimerTick Sent by the Timer chore started by the StartTimer function. (See the scripting
functions.)

Message When sent

200 Reference
Dialog messages

M
es

sa
ge

s
been changed), ExtendSim sends a message with the same name as the dialog item to the
ModL code.

For example, assume a block has a “Count” button in its dialog. When that button is clicked,
ExtendSim sends the “Count” message to the block. If the block has an “on Count” message
handler, it will be executed; if not, nothing happens.

Names for all the named dialog items in a block are listed in the Variables pane at the lower left
of the structure window. If a dialog item (such as static text) does not have a dialog item name,
it will not be listed in the Variables pane.

Message When sent

AbortDialog-
Message

If the modeler stops the execution of one of your own dialog message handlers
or that message handler executes an Abort statement, this message gets sent to
the block. Use this as an “exception handler” to clean up after an error occurs.

Cancel When the Cancel button is clicked. This restores the block to the state it was in
the last time it was opened, discarding changes to the dialog To keep this behav-
ior, do not change the name of the dialog item from “Cancel”.

CellAccept Sent to a block when the modeler finishes editing any cell in any of the block’s
data tables. You can use this to check the data entered in cells in a data table.

DataTable-
Hover

Sent to the block when the cursor is hovering over a data table.

DataTableRe-
size

Sent when the datatable resize button is clicked. Use this so the block can be
alerted to the new size and inform the modeler if the new size is not acceptable.
Use the function WhichDialogItemClicked to determine which datatable resize
button has been clicked. Use an Abort statement to prevent the resize.

DataTable-
Scrolled

Sent to the owning block when one of its data tables is scrolled.

DialogClick Sent when the modeler clicks on a dialog item, before the actual dialog item
message is sent to the block. Call WhichDialogItemClicked() to find the name
of the item that was clicked. This message is used, for example, to modify the
items in a popup menu at the time it is clicked on but before it opens to the mod-
eler.

DialogClose When the OK or Cancel buttons or the close box are clicked.

DialogItemRe-
fresh

Sent when a dialog item becomes visible, if it was set up by calling the
SetVisibilityMonitoring() function.

DialogItem-
ToolTip

Sent when the cursor hovers over a dialog item so that the block can customize
the tool tip (e.g format a value in a special way) that the modeler sees.

DialogOpen When the block’s dialog is opened. To display any static text labels that can
change based on what is happening in the simulation, set them here. If you don’t
want the dialog to open, execute an Abort statement – see also Plotter I/O block
code.

OK When the modeler clicks the OK button. No need to do any special handling in
this section unless you want to check input data. Use an Abort statement to pre-
vent the dialog from closing if data is not acceptable.

Messages and Message Handlers 201
Connector messages

M
essages
Connector messages
These messages are sent to individual blocks:

• Via the Connector Message functions

• By the system when a modeler manually changes the number of variable connectors

• When the modeler connects or disconnects a block

☞ The connector functions start on page 260.

TabSwitch This message is sent to a block when the block’s dialog is switched from one tab
to another. This will also be sent when the dialog is first opened, as that is basi-
cally treated as a click on the last tab that was previously opened. Use an Abort
statement to prevent the tab switch.

YourButton If you have created a button, radio button, or check box named “YourButton,”
this message handler is activated when the button is clicked. Use an Abort state-
ment to prevent the action if necessary.

YourItem Whenever the selection in a dialog is in a parameter or editable text dialog item
and you click another item or press the Tab key (taking the selection out of the
item), the message handler with that dialog item’s name is invoked. This is use-
ful if you want to check the value of the item after it might have been changed.
Use an Abort statement to prevent the value from changing.

Message When sent

ConArray-
Changed

Sent continuously when a modeler drags a variable connector to increase or
decrease the number of connectors in its array. Call ConArrayChangedWhich-
Con() to return the name of the connector, and then call ConArrayGetNum-
Cons() to find out how many connectors there are in the dragged connector.
Abort this message handler to prevent the modeler from adding too many or too
few connectors.

ConArray-
ChangedCom-
plete

Sent when the modeler finishes dragging a variable connector, to allow the
block to see the final number of connectors chosen.

ConArrayCol-
lapseChanged

Sent when the modeler collapses or expands the variable connectors.

Connection-
Break

Sent to all connected blocks when a connection is deleted. Note that a block can
receive multiple ConnectionBreak messages when blocks or right angle connec-
tions are deleted.

Connection-
Click

When a connection line is clicked, sent to all blocks connected so that they can
react (e.g. report a value). The function ConnectorToolTipWhich() returns the
connector number for that connection.

Message When sent

202 Reference
Block to block messages

M
es

sa
ge

s
Block to block messages
Model type dependent and user-defined messages sent from a block’s ModL code to communi-
cate information to other blocks:

Connection-
Make

Sent to all newly connected blocks when the modeler makes a connection on the
model. For hierarchical blocks, this is sent to all internal blocks. The function
ConnectorToolTipWhich() returns the connector number for that connection. To
prevent the connection from being completed, you can call the Abort statement
in this message handler.

Connector-
Name

Connector message. When the connector on a connected block receives a mes-
sage from another block using the connector message functions.

ConnectorRi-
ghtClick

Sent when the modeler right-clicks a connector. Used, for example, in the Item
library to create a popup menu that is used to add History blocks to a connection
when that connection is right-clicked.

ConnectorTool-
Tip

Sent when the cursor hovers over a connector so that the block can customize
the tool tip (e.g format a value in a special way) that the modeler sees.

Message When sent

AttribInfo Sent by the Executive block when attribute information has been changed.

BlockReceive0
through 9

Used by the Discrete Event library as system messages.

ClearStatistics When a block’s statistical variables need to be reset. This message is typically
sent by a Statistics block (Report Library). See the Activity block (Item library)
for an example of receiving this message.

DEExecutive-
ArrayResize

Sent by the Executive block to notify Item or Flow blocks that item arrays have
been resized.

BlockTableInfo Sent by some of the blocks to query data table size. Not sent by ExtendSim.

ProofAnima-
tion

This message is used by the blocks that are interacting with Proof Animation to
produce proof animation functionality.

QueueFunction Sent by the QueueTools block (Utilities library) and the Queue blocks (Item
library) to communicate with each other.

ShiftSchedule Sent by a block to all the blocks in the model when a shift schedule has been
changed.

UpdateStatis-
tics

When a block’s statistical variables need to be recalculated and updated. This
message is typically sent by a Statistics block (Report library). See the Activity
block (Item library) for an example of receiving this message.

UserMsg0
through 19

User-defined message that is not used by any ExtendSim libraries. Use the
SendMsgToBlock function to send these messages from another block.

Message When sent

Messages and Message Handlers 203
Dynamic Link messages

M
essages
Dynamic Link messages
When the part they are linked to changes, these messages are sent to individual blocks that are
subscribed to an ExtendSim Database or global array.

☞ Database functions start on page 318; global array functions start on page 342.

OLE messages
These messages that are sent to an individual block on particular events.

FlowBlock-
Receive0-
FlowBlock-
Receive19

Used by the Rate library to communicate information between blocks.

Message When sent

LinkContent If linked or subscribed to part of an ExtendSim Database or global array, this is
sent when the data changes within that part. This facilitates recalculation only
when the data changes.

LinkStructure If linked or subscribed to part of an ExtendSim Database or global array, this is
sent when the structure (e.g. number of fields, records, names, etc.) changes
within that part. Use the DILinkUpdateInfo() and DILinkUpdateString() func-
tions to find out what changed.

Message When sent

AdviseReceive Sent to the block when it receives updated data from an advise conversation (see
the functions for “Interprocess Communication (IPC)” on page 229).

OLEAutoma-
tion

Sent to a block when the BlockMsg automation method is invoked. See
“BlockMsg” on page 123.

Message When sent

204 Reference
OLE messages

M
es

sa
ge

s

Variables, Messages, & Functions

ModL Functions
A detailed description of the ModL functions

that can be used in your block code

“Knowledge is of two kinds. We know a subject ourselves,
or we know where we can find information upon it.”

— Samuel Johnson

206 Reference
ModL function overview

Fu
nc

tio
ns

This chapter includes a complete list of the ModL functions. These functions can be called in
the blocks that use equations (Equation, Equation(I), Queue Equation, and Optimizer) and
when creating new blocks.

ModL function overview
The rest of this chapter is a description of all the functions in ModL, listed by type. Within
types, the functions are grouped by category. Within categories, the functions are listed alpha-
betically.

☞ ModL functions are also listed in the ExtendSim Help command alphabetically and by type,
including their arguments. You can copy a function from there to use in your code.

Function Type Page Categories

Math 207 Basic math, Trigonometry, Complex numbers, Statistical and
random distributions, Financial, Integration, Matrices, Bit
handling, Equations

I/O 222 File I/O (formatted), File I/O (unformatted), Internet Access,
Interprocess Communication, OLE/COM, Mailslot, ODBC,
Serial I/O, Other drivers, DLLs, Alerts and prompts, User
inputs

Animation 250 2D Animation visible on the model worksheet.

Blocks and inter-block
communication

256 Block numbers/labels/names/type/position, Block connectors
and connection information, Variable connectors, Connector
tool tips, Dialog items and dialog items from other blocks,
Block data tables, Dynamic linking, Dynamic text items, Dia-
log item tool tips, Block dialogs (opening and closing), Mes-
sages to blocks (sending and receiving), Icon views.

Also see Scripting, below

Models, notebooks, and
libraries

293 Models, notebook, and library information, simulation param-
eters, DE Modeling Using Equation Blocks.

Scripting 300 Building and running a model remotely. Also see “Blocks and
inter-block communication” and “Models, notebooks, and
libraries” above

Reporting 308 Block reporting

Plotting/Charts 308 Functions for displaying graphs and data

Arrays, Queues, Delays,
Linked lists, and String
lookup tables

340 Dynamic arrays, Passing arrays, Global arrays, Queues, Delay
lines, Linked list data structures, and String lookup tables

Database 318 Manipulating databases and database data with the ExtendSim
database

Miscellaneous 358 Strings, Attributes, Calendar Date and time, Time units, Col-
ors, EColors, Timer functions, Debugging, ADO, Help, Plat-
forms and versions, and Application privileges.

ModL Functions 207
Math functions

Functions
Code completion
When you start to type a function or message handler name in the structure window or include
file of a block, it will come up with a list of possibilities. Click the one you want.

Once the function has been placed in the
script, type an open parenthesis “(”
immediately following it. This causes
the parenthesis to turn red and causes
call tips to display the function’s arguments as shown here. The first argument will be bolded.
When you enter it, the parenthesis will turn black. As you enter each argument, subsequent
arguments get bolded until all are entered.

Overriding
Functions can be overridden by being re-declared any number of times below the first declara-
tion. This is useful in that include files can have basic forms of functions which can be re-
declared and overridden in the main block code.

Type conversion of arguments
All ModL functions expect their arguments to be the data type specified in the function defini-
tion. If you use another type, ModL will automatically convert the argument to the expected
type before the function is called. For the functions that take no arguments, the parentheses are
still required.

Static data limits
Each function has a limit of 32,560 bytes of data for locally defined static data. Dynamic
arrays, global arrays, and database tables are not part of the count and are the more common
and usually more useful method used to allocate large data structures.

Function returns
Except for void functions, which do not return values, all functions return values that are real,
integer, or string. The type of value returned is indicated in the third column of the function
tables as:

Math functions

Basic math
These functions perform numerical operations on their arguments.

Return Meaning

R Real or Double (8 byte double)

I Integer or Long (4 byte long integer)

S String (up to 255 characters)

V Void function (no value returned)

208 Reference
Math functions

Fu
nc

tio
ns

Basic Math Description Return

Ceil(real x) Nearest integral real with a value greater than or equal to x. For
example: Ceil(1.3) returns 2.0, and Ceil(-1.3) returns -1.0

R

Erf(real x) Returns the erf value of the variable x. Erf is the Error function,
which is a special case of the incomplete gamma function. See
Numerical recipes in C.

R

Exp(real x) ex R

FFT(real
array[n][2], inverse)

Replaces the array with the real and imaginary parts of the fast
Fourier transform (see below).

V

FixDecimal (real
value, integer
fixFigs)

Sets the number of figures after the decimal point to fixFigs and
returns the result.

R

Floor(real x) Nearest integral real with a value less than or equal to x. For
example: Floor(1.3) returns 1, and floor(-1.3) returns -2.

R

GammaFunc-
tion(real x)

Gamma function for x. Do not confuse this with the Gamma dis-
tribution function.

R

Int(real x) Nearest integer after rounding toward 0. For example: Int(1.3)
returns 1, and Int(-1.3) returns -1.

I

Integerabs(i) Non-negative integer containing the absolute value of the integer
i.

I

Log(real x) Natural (base e) log of x. R

Log10(real x) Base 10 log of x. R

Log2(real x) Returns the log base 2 value of the variable x. R

Max2(real x, real y) Maximum of the two arguments. R

Min2(real x, real y) Minimum of the two arguments. R

NearlyEqual(real x,
real y, integer preci-
sion)

Returns true if the x and y arguments are close enough to equal
each other. The precision argument specifies the number of sig-
nificant figures to compare the two numbers.

I

NearlyGreaterT-
han(real x, real y,
integer precision,
integer equal)

Returns true if x is greater than y. If equal is TRUE, Nearly-
Equal() is used, with the precision argument, to give an equal or
greater result. If equal is FALSE, x has to be greater than y by the
precision number of significant figures. See the NearlyEqual()
function.

I

Nearly-
LessThan(real x,
real y, integer preci-
sion, integer equal)

Returns true if x is less than y. If equal is TRUE, NearlyEqual()
is used, with the precision argument, to give an equal or less than
result. If equal is FALSE, x has to be less than y by the precision
number of significant figures. See the NearlyEqual() function.

I

NoValue(real x) 1 (True) if x has no value (is blank) or 0 (False) if a value has
been assigned to x.

I

ModL Functions 209
Math functions

Functions
The FFT function replaces the real array argument with the real and imaginary parts of the
FFT. n must be a power of 2. If inverse is TRUE, the inverse FFT is calculated. The real values
are contained in array[n][0], and the imaginary values are contained in array[n][1] (these two
are denoted together as “array[n][i]”). array[0][i] is zero frequency. array [(n/2)-1][i] is the
most positive and most negative frequency. array[n-1][i] is the negative frequency just below
0. See the “four1” routine in Press, Numerical Recipes in C, for more information on this algo-
rithm.

Trigonometry
These functions assume that the argument represents an angle in radians.

Pow(real x, real y) xy. The same results may be achieved with the ^ operator, as in
x^y. Note that Pow(0,0) is undefined.

R

Realabs(real x) Non-negative real number containing the absolute value of x. R

Realmod(real x, real
y)

x modulo y (that is, the remainder of x divided by y). R

Round(real x, inte-
ger sigFigs)

Rounds x to the significant figures specified in the sigFigs argu-
ment.

R

Sqrt(real x) Square root of x. R

Trig Description Return

Acos(real x) Arccosine of x, where x is any real number between -1 and +1
inclusive.

R

Asin(real x) Arcsine of x, where x is any real number between -1 and +1 inclu-
sive.

R

Atan(real x) Arctangent of x, where x is a real number. The value returned is
between -/2 and /2 radians.

R

Atan2(real y, real x) Arctangent of y/x, where x is non-zero. The value returned is
between - and radians.

R

Cos(real x) Cosine of angle x. R

Cosh(real x) Hyperbolic cosine of angle x. R

Sin(real x) Sine of angle x. R

Sinh(real x) Hyperbolic sine of angle x. R

Tan(real x) Tangent of angle x. R

Tanh(real x) Hyperbolic tangent of angle x. R

Basic Math Description Return

210 Reference
Math functions

Fu
nc

tio
ns

Complex numbers
These functions operate on complex numbers composed of two-element real arrays (U, Z, and
result), where U[0] is the real part and U[1] is the imaginary part. All arguments and results are
complex numbers expressed as two-element real arrays:

real U[2], Z[2], result[2];

Statistics and random distributions
These functions can be used both to generate random inputs and to gather statistical informa-
tion from the results of simulations. In the following functions, the following are used as argu-
ments:

real prob, rate, mean, stdDev;
integer nTrials, kthEvent, kthSuccess;

Complex numbers Description Return

AddC(result, U, Z) result = U+Z V

DivC(result, U, Z) result = U/Z V

MultC(result, U, Z) result = U*Z V

SubC(result, U, Z) result = U-Z V

Statistics/
distributions Description Return

DBinomial(real
prob, integer
nTrials)

Number of successes out of nTrials, each with a probability of
success of prob.

R

DExponential(real
rate)

Interval between events. rate is the expected (mean) number of
events per period.

R

DGamma(integer
kthEvent)

Waiting time to the kthEvent in a Poisson process of mean equal
to 1.

R

DLogNormal(real
mean, real stdDev)

Positively skewed distribution. R

DPascal(real prob,
integer kthSuccess)

Geometric distribution if kthSuccess equals 1. This returns the
number of trials needed for the kthSuccess of an event with proba-
bility of prob.

R

DPoisson(real rate) Number of times an event occurs within a given period. rate is the
expected (mean) number of events per period.

R

Gaussian(real
mean, real stdDev)

Real random member of a Gaussian (normal) distribution with the
specified mean and standard deviation.

R

Mean(real array[],
integer i)

Arithmetic mean of the first i members of the single-dimensional
array.

R

ModL Functions 211
Math functions

Functions
Random(real i) Uniform pseudo-random integer in the range 0 to i-1 using the
random seed specified in the Simulation Setup dialog. For exam-
ple, Random(6) returns an integer in the range 0 through 5, inclu-
sive. Random(i) assumes that i is an integer. For the Integer
(uniform) function.

I

RandomCalculate
(integer distribu-
tion, real arg1, real
arg2, real arg3)

Returns a random number given a distribution and up to three
arguments. If a given distribution does not use all three argu-
ments, a zero should be entered for the unused argument(s). The
following numbers are used to define the distribution:

Beta 1
Binomial 2
Erlang 3
Exponential 4
Gamma 5
Geometric 6
Hyperexponential 7
Integer Uniform 8
Loglogistic 9
Lognormal 10
Negative Binomial 11
Normal 12
Pearsonv 13
Pearsonvi 14
Poisson 15
Real Uniform 16
Triangular 17
Weibull 18
ExtremeValue1A20
ExtremeValue1B 21
JohnsonSB 22
JohnsonSU23
Laplace24
Rayleigh25
InverseWeibull26
Logarithmic27
Hypergeometric28
Chisquared29
PowerFunction30
Cauchy31
Logistic32
InverseGaussian33
Pareto34

R

Statistics/
distributions Description Return

212 Reference
Math functions

Fu
nc

tio
ns

RandomCheck-
Param (integer dis-
tribution, real arg1,
real arg2, real arg3,
integer reportError)

Checks that the arguments passed in are valid for the given distri-
bution. The distribution argument is defined using the numbers
above. Displays an error message if reportError is TRUE and the
arguments are not valid. If reportError is FALSE, the function
returns the following:

 0 Successful
-1 Mean must be greater than 0
-2 Probability must be between 0 and 1
-3 Argument must be between 0 and 1
-4 Shape must be greater than 0
-5 Shape2 must be greater than 0
-6 Most likely value must be between Max and Min values
-7 Min must be less than Max
-8 Arg1 is negative or less than 1.0e-15
-9 Arg2 is negative or less than 1.0e-15
-10 Arg3 is negative or less than 1.0e-15
-11 Arg1 >= Arg2
-12 Arg1 > 1.0
-13 Arg2 > 1.0
-14 Arg3 > 1.0

I

RandomGetModel-
SeedUsed()

The actual seed used for the model. If the Simulation Setup dialog
had 0 entered for the seed, this will return the actual randomized
seed used, not 0. If a non-zero number was entered, this will
return that number. This is different than reading the RANDOM-
SEED global variable, which just shows the actual number
entered in the Simulation Setup dialog, including 0, and doesn’t
show the actual randomized seed used for running the model.

I

RandomGetSeed() Current seed value or current state of the random number genera-
tor. Used for saving and restoring the random state when using
different seeds. See RandomSetSeed() below.

I

RandomReal() Uniform pseudo-random real number x, in the range {0.0 <= x
<1.0} using the random seed specified in the Simulation Setup
dialog.

R

RandomSet-
Seed(integer i)

Sets the seed value or saved state of the random number genera-
tor. Used for saving and restoring the random state when using
different seeds. See RandomGetSeed() above.

V

SeedListClear() Clears the list of the seed values. V

SeedListRegis-
ter(real blockNum-
ber, integer seed)

Keeps a list of the seed values. Returns a BLANK for success,
meaning the item was entered in the list, or returns the blockNum-
ber of the block that already posted the seed value.
Note: Block number is a real so we can register DB cells that gen-
erate random numbers using a DB attribute. DB attributes will
appear as negative numbers.

R

StdDevPop(real
array[], integer i)

Population standard deviation of the first i members of the single-
dimensional array.

R

Statistics/
distributions Description Return

ModL Functions 213
Math functions

Functions
See “Random numbers” in the main ExtendSim User Reference for information about how
ExtendSim generates random numbers.

Financial
These functions calculate the unknown parameter in loan and annuity calculations given four
known parameters. The financial functions use standard financial arguments:

pv, fv, and pmt treat cash received as a positive value and cash paid out as a negative value.

Note that ratePer must match the length of the periods indicated by nPer. For example, if nPer
is the number of months, ratePer is the interest per month.

payAtBegin is a flag variable. If payAtBegin is TRUE (non-zero), payments occur at the
beginning of the period. If FALSE (0), payments occur at the end of the period.

StdDevSam-
ple(real array, inte-
ger i)

Sample standard deviation of the first i members of the single-
dimensional array.

R

TStatis-
ticValue(real prob-
ability, integer
degreesOfFree-
dom)

Returns an accurate approximation of the point on the students t-
distribution for a given single tail probability and number of
degreesOfFreedom

R

UseRandomized-
Seed()

Forces a randomized seed for the current simulation run, overrid-
ing any fixed seed entered into the Simulation Setup dialog. Must
be called in CHECKDATA message handler.

V

Argument Meaning

pv Present value of a cash-flow (real)

fv Future value of a cash-flow (real)

pmt Amount of one payment (real)

ratePer Interest rate per period (real)

nPer Number of periods (integer)

Financials Description Return

CalcFV(ratePer,
nPer, pmt, pv,
payAtBegin)

Future value R

CalcNPER(rate-
Per, pmt, pv, fv,

payAtBegin)

Number of periods R

Statistics/
distributions Description Return

214 Reference
Math functions

Fu
nc

tio
ns

Integration
These functions integrate a stream of values. For instance, you may want to integrate values
coming from inputs during a simulation. In the integration functions, the array used in the inte-
gration calculations must be declared a static array of four real values:

real array[4];
real initConditions, inputValue, deltaTime;

Matrices
Many intricate tasks can be written in just a few matrix operations. For example, solving
simultaneous equations, curve fitting data, finding the roots of a polynomial, and coordinate
transformations may all be done with matrices. For further information about matrices, see
Matrix Methods and Applications by Groetsch and King, (Prentice Hall, 1988).

The matrices used by these functions are in the form matrix[m][n], where m is the number
of rows and n is the number of columns. Vectors are of the form vector[n], where n is the
number of elements in the vector. Matrices are supported up to 1500x1500.

The complex numbers returned by the Roots and EigenValues functions are in an array that is
declared as array[n][2]. This makes array[k][0] the real part, and array[k][1] the imaginary
part.

CalcPMT(ratePer,
nPer, pv, fv,

payAtBegin)

Payment R

CalcPV(ratePer,
nPer, pmt, fv,
payAtBegin)

Present value R

CalcRate(nPer,
pmt, pv, fv,

payAtBegin)

Interest rate. If the rate cannot be calculated using the values of
the arguments, the function returns a noValue (BLANK) result.

R

Integration Description Return

IntegrateEuler(real
array[4], real input-
Value, real delta-
Time)

Value of a Euler integration in progress. The array must be initial-
ized with the IntegrateInit function. The algorithm is a backward
Euler: out = out + inputValue * DeltaTime.

R

IntegrateInit(real
array[4], real

initConditions)

Initializes the array for integration. Call this function in the Init-
Sim message handler if you are going to use the integration func-
tions during a simulation. initConditions specifies the starting real
value for the integration.

V

IntegrateTrap(real
array[4], real input-
Value, real delta-
Time)

Value of a Trapezoidal integration in progress. The array must be
initialized with the IntegrateInit function. The algorithm is a first-
order trapezoid: out = out + DeltaTime * (previousInputValue +
inputValue) / 2.

R

Financials Description Return

ModL Functions 215
Math functions

Functions
Complex versions of the matrix functions end in the letter C. All arguments to these complex
functions are complex.

Declarations for matrices are as follows:

real matrix[rows][columns]; // real matrix;
// also matrixA, matrixB, ma-

trixR
real vector[rows]; // real vector; also values
real matrixC[rows][columns][2]; // complex;

// also matrixAC, matrixBC, ma-
trixRC
real vectorC[rows][2]; // complex; also valuesC
real resultC[2]; // a complex number
integer n, m; // dimensions

Rows and columns can be bigger than needed. Just specify desired rows and columns when
calling functions.

Matrices Description Return

Conju-
gateC(matrixRC,
matrixAC, integer
m, integer n)

Returns the conjugate values of matrixAC in matrixRC. Both
matrixAC and matrixRC are m by n by 2 (complex) matrices.

V

Determi-
nant(matrixA, inte-
ger m)

Value of the determinant of matrixA, which is an m by m matrix.
If the matrix is singular, the function returns a
NoValue.

R

Determi-
nantC(resultC,
matrixAC, integer
m)

Complex version of Determinant which returns its complex result
in resultC. If the matrix is singular, the function returns a NoValue
in resultC.

V

EigenValues(Val-
uesC, matrixA,
integer m)

Eigenvalues of matrixA (m by m) are placed into the complex
array ValuesC. ValuesC is of length m by 2 (complex). matrixA
may be nonsymmetric. (This routine is based on the EISPACK
method of creating a Hessenberg matrix and iterating that matrix
into a diagonal matrix through similarity transformations). If the
matrix is singular, the function returns TRUE.

I

Identity(matrixR,
integer m)

Creates an m by m matrixR with 1s along the diagonal and 0s
above and below the matrix diagonal.

V

Identi-
tyC(matrixRC,
integer m)

Complex version of Identity. V

Inner(vectorA, vec-
torB, integer m)

Value of the inner or dot product of vectorA and vectorB of length
m.

R

InnerC(resultC,
vectorAC, vec-
torBC, integer m)

Complex version of Inner which returns its complex result in
resultC.

V

216 Reference
Math functions

Fu
nc

tio
ns

LUde-
comp(matrixR,
matrixA, integer m)

Returns the LU decomposition of input matrixA in matrixR. If the
matrix is singular, the function returns TRUE. Since LU factoriza-
tion in LUdecomp permutes rows to obtain the best pivots, the LU
matrix returned is only directly applicable to diagonally dominant
matrices. The result of LUdecomp can be used in general once the
permutation is accounted for.

I

LUde-
compC(matrixRC,
matrixAC, integer
m)

Complex version of LUdecomp. If the matrix is singular, the
function returns TRUE.

I

MatAdd(matrixR,
matrixA, matrixB,
integer m, integer
n)

Returns in matrixR the addition of matrixA to matrixB. m is the
number of rows, n is the number of columns.

V

MatAddC(matrixR
C, matrixAC,
matrixBC, integer
m, integer n)

Complex version of MatAdd. V

MatCopy(matrixR,
matrixA, integer m,
integer n)

Copies matrixA (of dimension m by n) into matrixR. V

Mat-
CopyC(matrixRC,
matrixAC, integer
m, integer n)

Complex version of MatCopy. V

MatIn-
vert(matrixR,
matrixA, integer m)

MatrixR is the inverse of matrixA, which is an m by m square
matrix. If the matrix is singular, the function returns TRUE.

I

MatIn-
vertC(matrixRC,
matrixAC, integer
m)

Complex version of MatInvert. If the matrix is singular, the func-
tion returns TRUE.

I

MatMat-
Prod(matrixR,
matrixA, integer
mA, integer nA,
matrixB, integer
mB, integer nB)

MatrixR (mA by nB) is created from the product of matrixA (mA
by nA) and matrixB (mB by nB). Note that nA must equal mB.

V

MatMat-
ProdC(matrixRC,
matrixAC, integer
mA, integer nA,
matrixBC, integer
mB, integer nB)

Complex version of MatMatProd. V

Matrices Description Return

ModL Functions 217
Math functions

Functions
MatScalar-
Prod(matrixR,
matrixA, integer m,
integer n, B)

This matrix scalar product creates matrixR by multiplying
matrixA by B. MatrixA is m by n, and B is a scalar (single num-
ber).

V

MatScalar-
ProdC(matrixRC,
matrixAC, integer
m, integer n, BC)

Complex version of MatScalarProd. V

MatSub(matrixR,
matrixA, matrixB,
integer m, integer
n)

Returns in matrixR the difference of matrixB from matrixA. m is
the number of rows, n is the number of columns.

V

Mat-
SubC(matrixRC,
matrixAC,
matrixBC, integer
m, integer n)

Complex version of MatSub. V

MatVectorProd(

vectorR, matrixA,
integer m, integer
n, vectorB)

Creates an m length vector (vectorR) by multiplying matrixA (m
by n) by vectorB (n).

V

MatVector-
ProdC(vectorRC,
matrixAC, integer
m, integer n, vec-
torBC)

Complex version of MatVectorProd. V

Outer(matrixR,
vectorA, integer m,
vectorB, integer n)

Creates an m by n matrix (matrixR) from the product of vectorA
and vectorB. vectorA is of length m and vectorB is of length n.

V

OuterC(matrixRC,
vectorAC, integer
m, vectorBC, inte-
ger n)

Complex version of Outer. V

Roots(real val-
ues[][2], real p[],
integer n)

Calculates the roots of polynomial p of order n. These roots are
returned in the complex array values. The coefficients of the poly-
nomial p are in an array beginning with the coefficient of the sec-
ond highest power. The coefficient of the highest power is
assumed to be 1. For example:

p[] -> x^n + p[0]*x^(n-1)+ p[1]*x^(n-2) ...+p[n-1]

Note that both values and p can be length n or greater. If the
matrix of the polynomial is singular, the function returns TRUE.

I

Matrices Description Return

218 Reference
Math functions

Fu
nc

tio
ns

Bit handling
The bit-handling functions return the integer value result of the operation. In these functions,
bit 0 is the most significant bit and bit 31 is the least significant bit of ModL’s 32-bit integers.

Declarations for bit handling are as follows:

integer bitNum, Count;

Equations
These functions let you create a block in which the user can enter equations built on ModL
code and the ExtendSim built-in functions. (Note that user-defined functions must be defined
in include files in order to be used in an equation block.) See “Dynamic text items” on
page 283 if you want to implement much larger (text edit boxes are initially limited to 255
characters) user-entered equations (up to 32000 characters). See the Equation block (Value
library) for an example of using these and the dynamic text item functions in building your
own equation block.

Trans-
pose(matrixR,
matrixA, integer m,
integer n)

Creates the transpose of matrixA in matrixR. The input matrix is
m by n and the result matrix is n by m.

V

Trans-
poseC(matrixRC,
matrixAC, integer
m, integer n)

Complex version of Transpose. V

Bit handling Description Return

BitAnd(integer i,
integer j)

Bitwise AND of the two integers. I

BitClr(integer i,
integer bitNum)

Sets the bit numbered bitNum in i to 0 and returns the result. I

BitNot(integer i) Bitwise NOT of the integer. I

BitOr(integer i,
integer j)

Bitwise OR of the two integers. I

BitSet(integer i,
integer bitNum)

Sets the bit numbered bitNum in i to 1 and returns the result. I

BitShift(integer i,
integer Count)

Shifts i by Count bits. If Count is positive, this shifts to the left
(multiply i by 2^Count); if Count is negative, it shifts to the right
(divide i by 2^Count). 0s are shifted in.

I

BitTst(integer i,
integer bitNum)

TRUE if the bit numbered bitNum is set to 1, FALSE if bitNum is
0.

I

BitXor(integer i,
integer j)

Bitwise Exclusive OR of the two integers. I

Matrices Description Return

ModL Functions 219
Math functions

Functions
See the EquationSetStatic() and EquationGetStatic() functions to use “remembered” values in
your equations.

☞ For cross-platform compatibility, if you build blocks that use the equation functions your code
needs to detect if the model is being opened on a different platform. Therefore, in addition to
your own specific tests, you should test dynArrayName in the CheckData message handler of
any block that uses the equation functions:

On CheckData
{
if (getDimension(dynArrayName) == 0)

EquationCompile(...);
...
}

☞ Because ExtendSim will detect a change of platform and will therefore dispose of dynArray-
Name, the code must check and recompile the equation again when the simulation is run. For a
detailed example, see the Equation block (Value library).

Equations Description Return

EquationCalcu-
late(real input1, ...,
real input 10, inte-
ger dynArray-
Name[])

Calculates an equation compiled by the EquationCompile func-
tion. The arguments can be integer or real values (such as input
connectors). This function returns the real value assigned to the
output variable. This function should be called whenever you
need a new value from the equation, and is usually placed in the
Simulate message handler. Also see “Dynamic text items” on
page 283 for larger equations than 255 characters. If you need
unlimited input and output variables, see EquationCalculateDy-
namicVariables, below.

R

EquationCalcu-
late20 (real input1,
real input2, ... real
input19, real
input20, integer
dynArrayName[])

This works the same as the EquationCalculate function, except it
allows 20 inputs. Also see “Dynamic text items” on page 283 for
equations larger than 255 characters. If you need unlimited input
and output variables, see EquationCalculateDynamicVariables,
below.

R

EquationCalculate-
Dynamic(real
arrayValues[], inte-
ger equationAr-
ray[])

Calculates a dynamic text equation using the input arguments
from the array arrayValues. Up to 20 input arguments are allowed.

I

EquationCalculate-
DynamicVari-
ables(real
inputDynArray,
real outputDynAr-
ray, integer code-
DynArray)

This function allows unlimited input and output variables. Input-
DynArray values and outputDynArray real array are used in the
equation like this example: outputsName[i] = inputsName[i];
Make sure that you have enough elements allocated in the input
and output dynamic arrays. See the Equation block in the Values
library to see how to use this function.

I

220 Reference
Math functions

Fu
nc

tio
ns

EquationCompile (
string inputVar-
Name1, ..., string
inputVarName10,
string output
VarName, string
equation, integer
tabOrder, integer
dynArrayName[])

Compiles an equation that is entered into an editable text item or
string variable in a dialog. The variables inputVarName1 through
inputVarName10, outputVarName, and equation are all strings;
tabOrder is an integer and dynArrayName is an integer dynamic
array. The user’s equation can use any valid ModL function or
statement, including defining new variables. The compiler outputs
error messages and puts the insertion point at the error in the dia-
log item identified by tabOrder if it is a dialog editable text item.
The compiler stores the machine code for the compiled equation
in dynArrayName. This function should be called only when the
equation or variable names are changed. Returns TRUE if there
was an error in the equation. Also see “Dynamic text items” on
page 283 for larger equations than 255 characters. If you need
unlimited input and output variables, see EquationCompileDy-
namicVariables, below.

I

EquationCom-
pile20 (string
inputVarName1, ...,
string inputVar-
Name20, string
output
VarName, string
equation, string
equation2, integer
tabOrder, integer
tabOrder2, integer
dynArrayName[])

This works the same as the EquationCompile function, except it
allows 20 inputs and two equation strings. Also see “Dynamic
text items” on page 283 for larger equations than 255 characters.
If you need unlimited input and output variables, see Equation-
CompileDynamicVariables, below.

I

EquationCompile-
Dynamic (str31
varNames[], string
dynamicTextAr-
ray, integer out-
putEquation[],
string labelOutput,
integer tabOrder)

Compiles a dynamic text equation. See EquationCompile20(), as
this is similar except that the input variable names are supplied in
the array VarNames. VarNames can be up to 20 arguments.

I

EquationCompile-
DynamicVariables
(string inputsName,
string out-
putsName, string
equationDynArray,
integer codeDy-
nArray, integer
tabOrder)

This function allows unlimited input and output variables.
InputsName and outputsName are used in the equation like this
example: outputsName[i] = inputsName[i]; where i will be the
index of that input or output variable. TabOrder is used to select
the correct text item when there is an error in the equation. You
can do a string substitution in the user’s raw equation to put it in
this indexed form. See the Equation block in the Values library to
see how to use this function. See also EquationCompileDynamic-
VariablesSilent.

I

Equations Description Return

ModL Functions 221
Math functions

Functions
EquationCompile-
DynamicVariables-
Silent (string
inputsName, string
outputsName,
string equationDy-
nArray, integer
codeDynArray,
integer tabOrder)

Similar to the EquationCompileDynamicVariables function,
except this function doesn't show the lines compiled progress dia-
log

I

EquationCompile-
SetStaticArray
(integer dynArray)

See the Equation block for use. The dynArray argument can be
any type as the equation compile functions set up the array to hold
any declared static variables.

V

EquationDebug-
Calculate(integer
debugEquationIn-
dex, real inputVar-
ValuesArray[], real
outputVarValue-
sArray[])

Calculates the equation using specified input values. The output
values for the result will be put into outputVarValuesArray.
Returns a TRUE value if an error occurs.

I

EquationDebug-
Compile(integer
debugEquationIn-
dex, string equa-
tionCodeArray[],
string varsInputAr-
ray[], string var-
sOutputArray[],
integer tabOrder)

Converts the equation code and variable names into block form so
it can be debugged. DebugEquationIndex is the previously
returned value from a previous call to this function for this equa-
tion, or -1 (minus one) when this function is called for the first
time with this equation. Returns a debug equation index to be
used in the other equation debugging functions. TabOrder is the
tab order of the text item with the equation. See the equation-
based blocks for how to use this function.

NOTE: DebugEquationIndex should be set to -1 if EquationDe-
bugDispose() (below) is called for that index OR this function is
called for the first time for this block.

I

EquationDebug-
Dispose(integer
debugEquationIn-
dex)

Disposes and releases the memory used by the hidden block spec-
ified by debugEquationIndex used to debug a particular equation.
This does not affect the visible equation block.

NOTE: The variable used for DebugEquationIndex should be set
to
-1 (minus one) after this function is called so it works correctly if
EquationDebugCompile(), above, is called after this call.

V

EquationDebugSet-
Breakpoints(inte-
ger
debugEquationIn-
dex)

Opens a “Set Breakpoints” window so the user can click to create
debugger breakpoints. Returns a True value if an error occurs.

I

Equations Description Return

222 Reference
I/O functions

Fu
nc

tio
ns

I/O functions

File I/O, formatted
Use these functions to manipulate formatted text files. Text files produced with the output
functions must be read in an application that reads text files such as a word processing or
spreadsheet program.

In these functions, if the pathname used is the empty string (""), ExtendSim prompts you with
a standard open or save dialog. This allows you to determine the correct file name at the time
of the simulation. File pathnames for specific files are specified as “driveLetter:\direc-
tory\directory\fileName” with each level separated by backslashes. If the volumeName and
folder names are left off of the pathname, the file name will come from the current folder. Note
that names of files can only be 31 characters long.

EquationGetStatic
(integer index)

Used in an Equation type block to allow static values to be
"remembered" and used in the equation. Need to define:

Real EquationStaticValues[100];

as a static variable at the top of the ModL script for the Equation
block (Value library). A shorter name for this function is EqGet().

The user calls this function with an index from 0 to 99 to get the
correct static value from this array to use in their equation. Used
with EquationSetStatic(), below.

R

EquationInclude-
Set(string theIn-
cludeName)

Called right before one of the equationCompile functions, this
puts the contents of the specified include file into the compiled
equation. Call this for each include desired.

V

EquationSetStatic
(integer index, real
value)

Used in an Equation type block to allow static values to be
"remembered" and used in the equation. Need to define:

Real EquationStaticValues[100];

as a static variable at the top of the ModL script for this Equation
block. A shorter name for this function is EqSet().

The user calls this function with an index from 0 to 99 to set the
value in the static array. Then the user can call EquationGet-
Static(index), above, to use that value in their equation.

V

IncludeFileEdi-
tor(string include-
FileName, integer
blockNumber)

Tags the specified include file to do the following: If you click the
close box, it will not close, but instead will send a message to the
block specified by blockNumber. Equation-based blocks use this
for their external code editor functionality; see the equation
blocks for examples. Returns 0 for success or a negative value to
indicate failure.

I

ShowFunction-
Help(integer alpha)

Brings up ExtendSim’s Help with a list of the functions and argu-
ments available for the equation functions. If alpha is TRUE,
brings up the alphabetical list of functions. If alpha is FALSE,
brings up the “Functions by type” list.

V

Equations Description Return

ModL Functions 223
I/O functions

Functions
The Import and Export functions let you define the column delimiter (separator) character in
the file to be read or written. In ExtendSim, Excel, Word, and most other tabular data applica-
tions, tabs normally delimit columns, and CRLFs (carriage returns, line feeds) always delimit
rows.

The colDelim argument to these functions is a string which specifies the separator character:

☞ There are two sets of functions. The Import and Export functions are used with files that have
numerical data; the ImportText and ExportText functions are used with files that have string
data.

The functions are:

"" The empty string (two quotation marks with nothing between them)
indicates a tab character

"," A comma character

" " A space character (multiple spaces are read as one space)

"(any character)" The character specified will be used as a column separator

File I/O (formatted) Description Return

Export(string path-
Name, string user-
Prompt, string
colDelim, real
array[][], integer
rows, integer col-
umns)

Writes the contents of a one- or two-dimensional real array or data
table to the file. Rows and columns specify the portion of the array
to be written and are integers. The function assumes that columns
are delimited by the colDelim string character. Single dimension
arrays must be read as one column by n rows. The function
returns the number of rows written to the file, or 0 if there is an
error.

I

ExportText(string
pathName, string
userPrompt, string
colDelim, string
array[][], integer
rows, integer col-
umns)

Writes the contents of a one- or two-dimensional string array or
text table to the file. Rows and columns specify the portion of the
array to be written and are integers. The function assumes that
columns are delimited by the colDelim string character. Single
dimension arrays are treated as one column by n rows. The func-
tion returns the number of rows written to the file or 0 if there is
an error.

I

Import(string path-
Name, string user-
Prompt, string
colDelim, real
array[][])

Reads the numerical data from the file into a one- or two-dimen-
sional real array or data table, then returns the number of rows
read (if an error occurs, it returns 0). The function assumes that
columns are delimited by the colDelim string character. Single
dimension arrays are read as one column by n rows. Note that you
should initialize the array before using this function. Otherwise,
any values beyond what was read from the file will have the old
values of the array.

I

224 Reference
I/O functions

Fu
nc

tio
ns

File I/O, unformatted
These are lower level file I/O functions. You can have up to 200 text (.txt) or HTML (.htm)
files open for general reading and writing. The files are specified in the functions with the inte-
ger fileNumber that is returned from the FileOpen and FileNew functions. The functions are:

ImportText(string
pathName, string
userPrompt, string
colDelim, string
array[][])

Reads the string data from the file into a one- or two-dimensional
string array or text table, then returns the number of rows read (if
an error occurs, it returns 0). The function assumes that columns
are delimited by the colDelim string character. Single dimension
arrays are treated as one column by n rows. Note that you should
initialize the array before using this function to prevent any values
beyond what was read from the file from having the old values of
the array.

I

File I/O
(unformatted) Description Return

Create-
Folder(string path-
Name)

Creates a new folder from the pathName. The pathName must use
backslashes (\) to separate folder names, “myDrive:\Extend-
SimX\myNewFolder” where “X” is the ExtendSim version.
Returns FALSE if successful, TRUE if there was an error.

I

DirPathFromPath-
Name(string path-
Name)

Returns the folder pathname part of a complete pathname. Also
see FileNameFromPathName(), below. For example:
“C:\myfolder\”

S

FileChoose(string
defaultFilename,
string Prompt)

Pops up the standard file selection dialog, with the prompt and the
default file name specified, and returns the file name of the file
the user selects. This differs from the fileOpen function, which it
otherwise resembles, in that it just returns the file name/path name
of the selected file without opening it. This allows the developer
to use that name however she chooses.

S

FileClose(integer
fileNumber)

Closes the file when you are finished writing or reading data to or
from the file. Files must be closed before they can be used as data
in other applications. Call FileClose in the EndSim message han-
dler to close files when the simulation is finished.

V

FileDelete(string
pathname)

Deletes the file. Use this with caution because deleted files are not
recoverable.

V

FileEnd-
OfFile(integer file-
Number)

TRUE if the end of file has been reached during the most recent
FileRead.

I

FileExists(string
pathname)

Returns TRUE if the file exists I

File I/O (formatted) Description Return

ModL Functions 225
I/O functions

Functions
FileGetDelimiter
(integer fileNum-
ber)

Type of delimiter found after the most recent FileRead. Returns
FALSE if a column delimiter (such as a tab character) was found
after the data, or TRUE if a CRLF (carriage line feed) row delim-
iter was found. Call this immediately after FileRead to find out
whether a column delimiter or CRLF followed the data.

I

FileGetPathName
(integer fileNum-
ber)

Returns the file’s path name. S

FileInfo(string
filePathName, inte-
ger which)

Returns information about the file specified in the filePathName
argument. The which argument specifies what information will be
returned:
1: created date
2: modified date
Dates are returned as ExtendSim date values.

R

FileIsOpen(string
pathName)

Returns TRUE if the file described by the pathName is open. I

FileNameFrom-
PathName (string
pathName)

Returns the filename part of a complete pathname.Also see Dir-
PathFromPathName(), above, to get the path name part of a com-
plete path name.

S

FileNew(string
pathname, string
userPrompt)

Opens a new or existing text (.txt) or HTML (.htm) file for writ-
ing and returns a fileNumber. If the pathName is an empty string
(""), ExtendSim prompts for a file name, displaying the user-
Prompt string. If the pathname cannot be found, or the Cancel
button has been clicked, FileNew returns FALSE (0). If the file is
already open, it returns the file’s fileNumber. Note that the File-
New function erases all information from an existing file. To
append data to an existing file, use FileOpen. Call FileNew in the
InitSim message handler to create files at the beginning of a simu-
lation.

I

FileOpen(string
pathname, string
userPrompt)

Opens an existing text (.txt) or HTML (.htm) file for reading or
writing, and returns a fileNumber for reference. If the pathname
cannot be found, or the file is unreadable, or the Cancel button has
been clicked, FileOpen returns FALSE. If the file is already open,
it returns the file’s fileNumber. If the file is written to after using
FileOpen, the new data is appended to the end of the file. Call Fil-
eOpen in the InitSim message handler to open files at the begin-
ning of a simulation.

NOTES: If you call this function with the following strings (e.g.
*.TXT) as the pathname, it will change the types of files that the
Standard File Dialog will be looking for:

*.TXT - text files, *.DAT - data files, *.ATF - Proof trace file,
*.LAY - Proof layout file.

Note that if pathname is an empty string (““), the user will be
prompted for a filename at run time.

I

File I/O
(unformatted) Description Return

226 Reference
I/O functions

Fu
nc

tio
ns

Internet access
These functions allow data and file access and manipulation using Internet protocols. The FTP
block (Libraries/Example Libraries/ModL Tips) is an example of the use of these functions in
FTP access.

The connection type handles used in these functions are:

FileRead(integer
fileNumber, string
colDelim)

Reads and returns a string read from the file, up to colDelim (a
column delimiter character) or to a CRLF (carriage line feed)
delimiter. To ignore the column delimiter, set colDelim to an
unused character (i.e. “@”). Reading past the end of file causes an
error message. You should test with FileEndOfFile before calling
FileRead. See FileGetDelimiter(), above.

S

FileRewind(inte-
ger fileNumber)

Resets the file to its beginning so that it can be reread. V

FileWrite(integer
fileNumber, string
s, string colDelim,
tabCR)

Writes the string or value into the file. If a number is used for s,
ModL will automatically convert the number to a string. If tabCR
is FALSE, a column delimiter character is written to the file after
s; if TRUE, a CRLF (carriage line feed) delimiter is written after
s. If the column delimiter is a plus sign (“+”), no delimiter is writ-
ten between the strings.

V

GetDirectoryCon-
tents (string path,
stringArray string-
data, longarray
longdata)

This function takes two dynamic arrays as arguments, calls Make-
Array() for them, and fills them with the names of all the files and
subdirectories in the specified folder. The first array will contain
the names of all the files/directories, and the second will contain
an integer value that will be zero for a file, and one for a folder. It
returns the number of row entries in the array. The pathname sep-
arator on a mac is a ":", on windows a "/".

I

GetFileReadMa-
chineType()

Returns the type of machine the currently active model was saved
on. (This is only useful if models have been moved from one plat-
form to another. Otherwise, it will be the same as the machine the
model is running on.) Type 2 is Windows, 1 is models built on
68k Macs, and 4 is models built on PPC Macs.

I

StripLFs (integer
strip)

Sets a flag in ExtendSim that determines if the fileread functions
will strip LF characters. This flag defaults to TRUE, so you
should call StripLFs(FALSE) if you find that meaningful LF char-
acters are missing from your data.

V

StripPathIfLocal
(string pathName)

Strips off the pathname if the file is in the same folder as the cur-
rent model. For example, this can remove non-portable path
names from a filename returned from FileOpen() function. If the
file is in the same folder as the model, no pathname is needed.

S

SessionHandle The handle to this entire Internet communication session.

FTPHandle The handle to a specific FTP session. You must use this handle to
access and manipulate files on a Server.

File I/O
(unformatted) Description Return

ModL Functions 227
I/O functions

Functions
SearchHandle The handle to a specific search operation.

InetHandle Any one of the above handle types.

Internet access Description Return

INetCloseHan-
dle(Integer inetH-
andle)

Closes an InetHandle. This function will close a handle created by
InetOpenSession(), InetFTPFileFirstFile(), or InetConnect().

V

INetConnect(inte-
ger sessionHandle,
string serverName,
string userName,
string passWord,
integer connection-
Type)

Creates an Internet connection type. The connectionType integer
can be

1:FTP (The only connectionType that allows you to access or
manipulate files.)
2:HTTP (Allows you to open a connection to a website location.
Cannot be used for accessing or manipulating of files.)
3:Secure HTTP

Returns a connection handle that needs to be closed with INet-
Closehandle when the connection is complete.

I

INetFileImport-
Text(integer hFile,
string format,
stringArray array)

Given an INet handle (most likely created by INetOpenURL) this
function will import data from the file represented by that handle
into the specified array.

I

INetFindNext-
File(integer search-
Handle)

Continues an Internet file search by moving the searchHandle on
to the next file. Returns a searchHandle.

I

INetFTPCreateDi-
rectory(integer
FTPHandle, string
targetName)

Creates a folder named targetName in the current folder. I

INetFTPDelete-
File(integer
FTPHandle, string
targetName)

Deletes the path\file targetName if it is found. I

INetFTPEx-
port(integer
FTPHandle, string
fileName, string
delim, real
array[][], integer
rows, integer cols)

Operates much like the Export function (see page 222) with the
exception that it writes to a path\file accessed via FTP.

I

INetFTPEx-
portGA(integer
FTPHandle, string
fileName, string
delim, integer
GAIndex, integer
rows, integer cols)

Writes out the contents of a Global Array to the FTP path\file. I

228 Reference
I/O functions

Fu
nc

tio
ns

INetFTPExport-
Text(integer
FTPHandle, string
fileName, string
delim, string
array[][], integer
rows, integer cols)

Operates much like the ExportText function (see page 222) with
the exception that it writes to a path\file accessed via FTP.

I

INetFTPFindFirst-
File(integer
FTPHandle, string
searchFile, inte-
gerflags)

Starts a search for files in the default folder. An empty string will
find the first file in the current folder with any filename. Returns a
search handle that needs to be closed with INetClosehandle when
the search is complete. Currently, flags should be set to zero.

I

INetFTPGetCur-
rentDirectory(inte-
ger FTPHandle)

Returns the path to the current FTP directory as a string. S

INetFTPGet-
File(integer
FTPHandle, string
targetName, string
fileName, integer
failIfExists, integer
fileAttributes, inte-
ger flags)

Copies a file from the remote site to the local machine. The
path\targetname specifies the name of the file to be retrieved. The
path\filename specifies the local name where the file should be
put. FailIfExists determines what happens if the local file already
exists. Currently, flags and file attributes should be set to zero.

I

INetFTPIm-
port(integer
FTPHandle, string
fileName, string
delim, real
array[][])

This operates much like the Import function (see page 222) with
the exception that it reads a path\file accessed via FTP.

I

INetFTPIm-
portGA(integer
FTPHandle, string
targetName, integer
format, integer
GAIndex)

Reads the contents of an FTP path\file into the Global Array. I

INetFTPImport-
Text(integer
FTPHandle, string
fileName, string
delim, string
array[][])

This operates much like the ImportText function (see page 222)
with the exception that it reads a path\file accessed via FTP.

I

INetFTPPut-
File(integer
FTPHandle, string
fileName, string
targetName, integer
flags)

Copies a local file to the Internet. Path\fileName specifies the
name of the local file. Path\targetName specifies the desired name
of the file on the Internet. Currently, flags should be set to zero.

I

Internet access Description Return

ModL Functions 229
I/O functions

Functions
Interprocess Communication (IPC)
Interprocess communication (IPC) provides a standard way in which one application can
directly communicate with another. These functions allow ExtendSim to act as a client applica-
tion by connecting to and requesting data and services from a server application. The server
application must support dynamic data exchange (DDE)). The IPC functions start with “IPC”.

 DDE is no longer supported as of release 10 of ExtendSim. Use OLE/COM instead.
The functions that are no longer available in ExtendSim10 are noted below.

INetFTPRemove-
Directory(integer
FTPHandle, string
targetName)

Deletes the specified directory path\targetName from the site. I

INetFTPRename-
File(integer
FTPHandle, string
targetName, string
newName)

Renames the file path\targetName to newName. I

INetFTPSetCur-
rentDirectory(inte-
ger FTPHandle,
string targetName)

Sets the current directory to path\targetName. I

INetGetFindFile-
Info(which)

Returns info about the current file in the FTP search. The only
allowed input is connectionType which=1 (FTP); it returns TRUE
if a directory, FALSE if a file.

I

INetGetFindFile-
Name()

Returns the name of the current file in the FTP search. S

INetOpenSession() Starts an Internet session. Returns a session handle that needs to
be closed with INetClosehandle when the session is complete.

INetOpenURL
(integer session,
string url)

Given a session handle (created by the INetOpenSession function)
and a URL, this function will open a connection to the site corre-
sponding to that URL

I

IPC & Publish/
Subscribe Description Return

IPCAdvise(integer
conversation, string
item, integer block-
Number, string dia-
logItem, integer
rowStart, integer
colStart, integer
rowEnd, integer
colEnd)

OBSOLETE AS OF ES10

(Windows only) Starts a DDE Advise loop with the application
that is the other side of the specified conversation. This function
will return an advise loop id, which needs to be used in the IPCS-
topAdvise Function when the advise loop is to be terminated.

I

Internet access Description Return

230 Reference
I/O functions

Fu
nc

tio
ns

IPCCheckConver-
sation(integer con-
versation)

OBSOLETE AS OF ES10

Checks the validity of an IPC conversation on Windows. (It
always returns TRUE on the Mac.) A TRUE value is returned if
the conversation is valid.

I

IPCConnect(string
serverName, string
topic)

OBSOLETE AS OF ES10

Initiates an IPC conversation between ExtendSim and a server.
The serverName argument is the DDE or AppleEvents name of
the server you are trying to connect to. (This name needs to be in
the format that is appropriate for the platform. For example, Excel
on Windows expects “Excel”, on the Mac OS it expects
“XCEL”.) The topic argument is typically the keyword “SYS-
TEM.” You can also use the name of the document you want to
communicate with, if you want the conversation to target a spe-
cific model. If successfully connected, this function returns an
integer value that is used in the other IPC functions as the conver-
sation identifier. If unsuccessful, it returns a zero. Note: the IPC-
Disconnect function must be used with IPCConnect so that
communication is terminated as soon as it is no longer required.

I

IPCDisconnect
(integer

conversation)

OBSOLETE AS OF ES10

Disconnects the specified conversation. This function is neces-
sary when using IPCConnect, and should be called immediately
when communication is no longer required. Returns a zero if the
disconnection was successful.

I

IPCExecute(inte-
ger conversation,
string execute-
Data, string item)

OBSOLETE AS OF ES10

Sends a command to be executed by the server in the specified
conversation. The executeData argument is the command to be
sent. The item argument is currently not used and should be set to
a blank string (""). This function returns a zero if successful, a -1
for a general error, a -2 for a time-out error, a -3 for an invalid
connection, and a -4 for an event not handled by the server.

I

IPCGetDocName() Returns a string that contains the name of the last file opened with
the IPCOpenfile() function. This is mostly used to return the
name of a file that the user selected when an empty string ("") was
passed into the IPCOpenfile function.

S

IPCLaunch(string
appName, integer
minimized)

Launches the application appName and minimizes it if minimized
is TRUE.

I

IPC & Publish/
Subscribe Description Return

ModL Functions 231
I/O functions

Functions
IPCOpenFile
(string fileName)

Opens the file (for example, a spreadsheet) in the Finder using
DDE (Windows) or AppleEvents (Mac OS). This function is
equivalent to the user double-clicking a file’s icon: it causes both
the file and the file’s application to open. The single argument is a
string which is the file name. Note that this function tells the Sys-
tem to open the file (that is, to launch the named application or
document) and is not at all related to ExtendSim’s FileOpen func-
tion. This function will accept a blank string ("") in the fileName
argument which will cause a File Open dialog to appear. The user
is then prompted to select the file which is to be opened. The
function returns zero if successful.

I

IPCPoke(integer
conversation, string
pokeData, string
item)

OBSOLETE AS OF ES10

Sends data to the server in the specified conversation. The poke-
Data argument is the data to be sent. The item argument indicates
where the data is to be put. For example, in Excel the item argu-
ment could be “R1C1” indicating that the data is to be sent to the
cell at row 1 column 1. Note that the syntax of the item argument
is dependent on the server. This function returns a zero if success-
ful.

I

IPCPokeAr-
ray(integer conver-
sation, string item,
string delim, string
array data)

OBSOLETE AS OF ES10

(Windows only) Pokes an array of data. The data from the
dynamic array data will be poked to the target application. The
return value will be zero for success, and nonzero for failure.

I

IPCRequest(inte-
ger conversation,
string item)

OBSOLETE AS OF ES10

Returns data from the server in the specified conversation. The
item argument indicates where the data is to be taken from. For
example, in Excel the item argument could be “R1C1” indicating
that the data is to be retrieved from the cell at row 1 column 1.
Note that the syntax of the item argument is dependent on the
server.

S

IPCRequestArray
(integer conversa-
tion, string item,
string delim, string
array data)

OBSOLETE AS OF ES10

(Windows only) Requests an array of data. The dynamic array
data will be filled with the results from the request. The return
value will be the number of rows of data that were returned.

I

IPCSendCalcRe-
ceive(integer prod-
uct, real sendValue,
integer sendRow,
integer sendCol,
string funcName,
integer receive-
Row, integer
receiveCol)

OBSOLETE AS OF ES10

Sends sendValue to the sendRow, sendCol of a spreadsheet file
that is already open. It then executes the macro called funcName,
or just recalculates if funcName is an empty string. The function
returns the value at receiveRow, receiveCol. Product specifies the
spreadsheet you are communicating with: use 1 for Microsoft
Excel or 2 for Lotus 123. See also the function IPCSpreadSheet-
Name.

R

IPC & Publish/
Subscribe Description Return

232 Reference
I/O functions

Fu
nc

tio
ns

OLE/COM (Windows only)
 Embedded objects are no longer supported as of ExtendSim release 10. The functions that sup-
ported embedding in prior releases are noted below as being “obsolete”.

The ModL functions below allow you to access, communicate with, and control other applica-
tions via OLE Automation.

OLE functions support SafeArray functionality where appropriate.

Start with the OLECreateObject function. This function will create an OLE object of the type
you specify, and return an IDispatch interface on that object. From then on you can use the

IPCSetTimeOut(
integer timeOut)

OBSOLETE AS OF ES10

Sets the Timeout value for the various IPC functions. This deter-
mines how long ExtendSim will wait for the other application to
respond to IPC requests. Values are in milliseconds. The default
value is 10000. Putting a –1 into this parameter will request
Async behavior.

V

IPCServerAsync
(integer async)

If async is TRUE, sets a flag in ExtendSim so that ExtendSim will
return from further Execute messages immediately instead of
waiting for the Execute messages to complete. Useful when used
in an Execute message from another application so that the other
application can continue to do other tasks while ExtendSim calcu-
lates.

V

IPCSpreadSheet-
Name(string
spreadSheetName)

OBSOLETE AS OF ES10

Used to establish a default spreadSheetName, and is only used in
conjunction with the IPCSendCalcReceive function. The
IPCSendCalcReceive function does not take a spreadsheet name
as an argument, and Lotus 1-2-3 requires a specific spreadsheet
name for DDE communication on Windows.

V

IPCStopAdvise
(integer conversa-
tion, integer
adviseLoopID,
integer block)

OBSOLETE AS OF ES10

(Windows only) Stops the specified advise loop within the speci-
fied block.

I

ServerOpen-
Port(integer port)

Initializes ExtendSim to listen on that port. If the port is the same
as previously set, the function just returns. If the port is 0 or nega-
tive, ExtendSim stops listening on the previously set port. Returns
zero in all cases.

I

UpdatePublishers() OBSOLETE AS OF ES10

(Mac OS only) Forces an update of publisher information, for all
publishers in the model. Note that this departs from Apple’s stan-
dard interface, where publishers are only updated when the model
is saved.

V

IPC & Publish/
Subscribe Description Return

ModL Functions 233
I/O functions

Functions
OLEDispatch functions described below to call methods or set and get properties on the
objects.

☞ Examples of using OLE in code include the Object Mapper block (Utilities library), the Data
Import Export block (Value library), and the Read and Write blocks in the Value and Item
libraries.

OLE (Windows
only) Description Return

OLEGetHelpCon-
text

(integer blockNum-
ber, string dialog-
Item, integer
dispID)

OBSOLETE AS OF ES10. Use OLEDispatchGetHelpContext.

Returns the Help context value of the specified dispID.

I

OLEActivate(inte-
ger blockNumber,
string dialogItem)

OBSOLETE AS OF ES10

Activates the specified embedded object. DialogItem is the dialog
variable name in quotes. Returns FALSE if successful.

I

OLEAddRef(inte-
ger interfacePtr)

OBSOLETE AS OF ES10

Addrefs the interface specified. Returns the refcount.

I

OLEArrayParam
(array data, integer
variants)

Puts the data in the array 'data' into a safeArray, packaged as a
parameter for an Invoke call. The variants argument determines
whether each data element will be packaged in a separate variant
or not.

I

OLEArrayParam-
VariableCol-
umns(short hNum,
array datatable-
Name, integer
numCols, integer
variants)

Specifies that the datatable array passed in will be used as an
argument for the next OLEInvoke call. The numCols argument
will define how many columns the function defines the data as
containing.

I

OLEArrayResult
(array data)

Retrieves the SafeArrray result data from an Invoke call, putting
the data into the array 'data'.

I

OLEArrayResult-
VariableCol-
umns(array
datatableName,
integer numCols)

Specifies that the datatable array passed in will be filled with the
result of the last OLEInvoke call. The numCols argument will
define how many columns the function defines the data as con-
taining.

I

OLECreateObject
(string objectRefer-
ence)

This function is the starting point for OLE Automation. It will
create an OLE object, or provide an interface to an application if
it is already running, and return an Idispatch interface to that
object that can be used with the OLEDispatch calls listed below to
allow the user to control other applications via OLE Automation.
The object reference string is the registry key associated with the
object you wish to embed. (As an example, Excel would be
excel.application.)

I

234 Reference
I/O functions

Fu
nc

tio
ns

OLEDB-
Param(integer
DBIndex, integer
tableIndex, integer
variants)

Passes the contents of the specified DB table as a safe array
parameter.

I

OLEDBRe-
sult(integer DBIn-
dex, integer
tableIndex)

Fills the specified database table with the results of an Invoke or
ParameterGet call that was just made.

I

OLEDeactivate
(integer blockNum-
ber, string dialog-
Item)

OBSOLETE AS OF ES10

Deactivates the specified embedded object. DialogItem is the dia-
log variable name in quotes. Returns FALSE if successful.

I

OLEDispatchGet-
CLSID(integer dis-
pHandle, integer
progID)

Returns the CLSID as a string. ProgID is FALSE to return the
CLSID, or TRUE to return the program ID.

S

OLEDispatchGet-
DispatchName
(integer dispHan-
dle, integer which)

Same as the function OLEGetDispatchName below (which is
obsolete as of ExtendSim 10), except it takes a dispatchHandle
instead of a blocknumber and a dialog item name.

S

OLEDispatchGet-
DispID(integer dis-
pHandle, string
theName)

Given a function/variable name, returns the DispID. Same as the
function OLEGetDispID below (which is obsolete as of Extend-
Sim 10), except it is expecting a dispatchHandle instead of a
block number and dialog item name.

I

OLEDispatchGet-
Doc (integer IDis-
patchHandle, string
returnDoc[], inte-
ger dispID, integer
which)

This function is a Dispatch handle version of the OLEGetDoc()
function (which is obsolete as of ExtendSim 10). For a descrip-
tion of the IDispatchHandle argument, see the OLEDispatch-
GetHelpContext() function.

I

OLEDispatchGet-
FuncIndex(integer
dispHandle, inte-
ger dispID)

Same as the function OLEGetFuncIndex (which is obsolete as of
ExtendSim 10), except it takes a dispatchHandle instead of a
blocknumber and a dialog item name.

I

OLEDispatchGet-
FuncInfo(integer
dispHandle, inte-
ger funcIndex, inte-
ger which)

Same as the function OLEGetFuncInfo (which is obsolete as of
ExtendSim 10), except it takes a dispatchHandle instead of a
blocknumber and a dialog item name.

I

OLE (Windows
only) Description Return

ModL Functions 235
I/O functions

Functions
OLEDispatch-
GetHelpContext
(integer IDispatch-
Handle, integer
dispID)

This uses an Idispatch handle, usually returned by the OLEDis-
patchResult or OLECreateObject functions defined above. This
handle will be the Dispatch interface to an object that is either
associated with an embedded object on the worksheet (obsolete as
of ExtendSim 10), or in the block dialog, or has been created via
OLE Automation in an remote application. See OLEDispatchRe-
sult() and OLECreateObject().

I

OLEDispatchGet-
Names (integer
IDispatchHandle,
Str31 names[], inte-
ger dispID)

See OLEDispatchGetHelpContext(). Same as OLEGetNames(),
which is obsolete as of ExtendSim 10, except uses a handle.

I

OLEDispatchIn-
voke (integer Idis-
patchHandle,
integer dispID)

See OLEDispatchGetHelpContext(). Same as OLEInvoke(),
which is obsolete as of ExtendSim 10, except uses a handle.

I

OLEDispatch-
Param (integer dis-
patchHandle)

OBSOLETE AS OF ES10

Adds a DispatchHandle to the argument list for the next Invoke
call. Note: arguments are listed in back to front order. Returns
FALSE if successful.

I

OLEDispatchProp-
ertyGet (integer
IdispatchHandle,
integer dispID)

See OLEDispatchGetHelpContext(). Use this function instead of
OLEPropertyGet(), which is obsolete as of ExtendSim 10.

I

OLEDispatchProp-
ertyPut (integer
IdispatchHandle,
integer dispID)

See OLEDispatchGetHelpContext(). Use this function instead of
OLEPropertyPut(), which is obsolete as of ExtendSim 10.

I

OLEDispatchRe-
sult()

Returns an IdispatchHandle from the last Invoke call. (If a return
value is available.) This handle can be used in the other OLEDis-
patch calls listed above. This handle will be the Dispatch interface
to an object that is associated with an embedded object on the
worksheet (obsolete as of ExtendSim 10), or in the block dialog.

I

OLEGAParam
(integer arrayIndex,
integer variants)

Copies the data in the global array defined by arrayindex into a
SafeArray, packaged as a paramaeter for an Invoke call. The vari-
ants argument determines whether each data element will be
packaged in a separate variant or not.

I

OLEGAResult
(arrayIndex)

Retrieves the SafeArrray result data from an Invoke call, putting
the data into the global array referred to be arrayIndex.

OLEGetCLSID
(integer blockNum-
ber, string dialog-
Item, integer
progID)

OBSOLETE AS OF ES10. Use OLEDispatchGetCLSID.

Returns the CLSID as a string. ProgID is false to return the
CLSID, or TRUE to return the program ID.

OLE (Windows
only) Description Return

236 Reference
I/O functions

Fu
nc

tio
ns

OLEGetDis-
patchName (integer
blockNumber,
string dialogItem,
integer dispID)

OBSOLETE AS OF ES10. Use OLEDispatchGetDispatchName

DialogItem is the dialog variable name in quotes. Returns the
name associated with the specified dispID.

S

OLEGetDispID
(integer blockNum-
ber, string dialog-
Item, string
theName)

OBSOLETE AS OF ES10. Use OLEDispatchGetDispID

DialogItem is the dialog variable name in quotes. Returns the Dis-
patch ID for the function/variable theName.

I

OLEGetDoc (inte-
ger blockNumber,
string dialogItem,
string returnDoc[],
integer dispID,
integer which)

OBSOLETE AS OF ES10. Use OLEDispatchGetDoc

DialogItem is the dialog variable name in quotes. Returns the
internal documentation from the type library in string array
returnDoc. returnDoc will be resized as needed if the text is larger
than a single string. This function accesses text that is in the
objects Type Library. What information is available, and whether
any is available, is object dependent.

Which takes the following values.

0: name (DispID property/Method name)

1: doc (Any available Documentation on the DispID.)

2: file name (FileName of the help file associated with the
dispID.)

I

OLEGetFuncIndex
(integer blockNum-
ber, string dialog-
Item, integer
dispID)

OBSOLETE AS OF ES10. Use OLEDispatchGetFuncIndex

Returns the function Index used in OLEGetFuncInfo that corre-
sponds to the dispID.

I

OLE (Windows
only) Description Return

ModL Functions 237
I/O functions

Functions
OLEGetFuncInfo
(integer blockNum-
ber, string dialog-
Item, integer index,
integer which)

OBSOLETE AS OF ES10. Use OLEDispatchGetFuncInfo

DialogItem is the dialog variable name in quotes. Returns func-
tion information for the function specified by index. Implementa-
tion of this function is object specific, so your results will vary
dependent on how the developers of the object have implemented
it.

if which is 0: INVOKEKIND
returns 1 for INVOKE_FUNC
returns 2 for INVOKE_PROPERTYGET
returns 4 for INVOKE_PROPERTYPUT
returns 8 for INVOKE_PROPERTYPUTREF
if which is 1: cParams
returns Count of total number of parameters
if which is 2 : cParamsOpt
returns Count of optional parameters
if which is 3 : returns DispID (sometimes called memberID).

Note that index is not the same as the dispID. It is just a sequential
index value from 0 to n-1 where n is the number of functions sup-
ported by the object.

I

OLEGetGUID() OBSOLETE AS OF ES10

Pops up the standard insert item dialog, and returns the GUID of
the object you select as a string. The objects that appear on the
standard insert item dialog are just those objects that have been
defined as ‘Insertable’ in the registry, and will not necessarily
include all of the objects that you can use with ExtendSim.

S

OLEGetInterface
(integer blockNum-
ber, string dialog-
Item, integer
whichInterface)

OBSOLETE AS OF ES10

DialogItem is the dialog variable name in quotes. Returns a
pointer to an interface on the object. The whichInterface argument
currently only supports a zero value for the IDispatchInterface.

I

OLEGetNames
(integer blockNum-
ber, string dialog-
Item, Str31
names[], integer
dispID)

OBSOLETE AS OF ES10

DialogItem is the dialog variable name in quotes. Puts the name
of the function/variable into the first row of the dynamic array
names. The later rows contain the names of any arguments to the
function. The return value is the number of names returned.

I

OLEGetRefCount
(integer inter-
facePtr)

OBSOLETE AS OF ES10

Returns the RefCount on the Specified interfacePtr. Note that this
does nothing more than an AddRef and a Release, so there is no
reason to call this routine if you are already using addref and
release.

OLE (Windows
only) Description Return

238 Reference
I/O functions

Fu
nc

tio
ns

OLEInsertLicense-
dObject (integer
blockNumber,
string dialogItem,
strng guid, integer
xPixel, integer
yPixel, string lic-
String)

OBSOLETE AS OF ES10

Same as the OLEInsertObject function, below, with the exception
of the last argument, which allows you to pass a license string to
the object to be inserted. This is used for activeX objects that
allow licensed execution as runtimes. See the function OLEReq-
uestLicKey for additional information.

I

OLEInsertObject
(integer blockNum-
ber, string dialog-
Item, string guid,
integer xPos, inte-
ger yPos)

OBSOLETE AS OF ES10

DialogItem is the dialog variable name in quotes. Inserts an object
into the indicated location. If you specify the dialog item, and the
block number, it will be inserted into that dialog item, ignoring
xPos and yPos. If the dialog item name is an empty string, the
object will be inserted onto the active worksheet at pixel location
xPos and yPos. If xPos and yPos are both 1, the item will be
inserted at the "current" position on the worksheet (i.e. the last
mouse click or the last created block position).

I

OLEInsertObject-
FromFile(integer
blockNumber,
string dialogItem,
string guid, integer
xPixel, integer
yPixel, string lic-
String, string file-
Path)

OBSOLETE AS OF ES10

Inserts an Object into an embedded object dialog item, or onto the
worksheet, like OLEInsertObject. It takes the additional Argu-
ment licString, the usage of which is defined in OLEInsertLi-
censedObject. It also takes a filepath Argument, which allows the
coder to define an object based on a file, as is done in the standard
Object insertion dialog.

I

OLEInvoke(inte-
ger blockNumber,
string dialogItem,
integer dispID)

OBSOLETE AS OF ES10. Instead see OLEDispatchGetHelp-
Context()

DialogItem is the dialog variable name in quotes. Invokes (calls)
the method/variable specified by dispID. You must call Param
functions to set up the arguments to the method. Returns a WIN
API error code if it fails, zero if success.

I

OLELongParam
(integer value)

Adds an integer value to the argument list for the next Invoke call.
Note: Arguments are listed in back to front order. Returns FALSE
if successful.

I

OLELongResult() Returns an integer value from the last Invoke call, if a return
value is available.

I

OLEObjectIsReg-
istered(string clsid)

Checks to see if a specific CLSID is already registered. Returns
TRUE if the CLSID is already in the registry and FALSE if it is
not.

OLE (Windows
only) Description Return

ModL Functions 239
I/O functions

Functions
OLEProperty-
Get(integer block-
Number, string
dialogItem, integer
dispID)

OBSOLETE AS OF ES10. See instead OLEDispatchProperty-
Get.

DialogItem is the dialog variable name in quotes. Gets the prop-
erty specified by dispID. You must call Result functions to
retrieve the value.

I

OLEProperty-
Put(integer block-
Number, string
dialogItem, integer
dispID)

OBSOLETE AS OF ES10. See instead OLEDispatchPropertyPut.

DialogItem is the dialog variable name in quotes. Sets the prop-
erty specified by dispID. You must call Param functions to set up
the arguments to the method.

I

OLERealParam
(Real value)

Adds a real value to the argument list for the next Invoke call.
Note: Arguments are listed in back to front order. Returns FALSE
if successful.

I

OLERealResult() Returns a real value from the last Invoke call, if a return value is
available.

R

OLERelease(inte-
ger interfacePtr)

Releases the interface pointer specified. Returns the refCount. I

OLEReleaseInter-
face (integer inter-
facePtr, integer
whichInterface)

OBSOLETE AS OF ES10

Releases the interface pointer returned by OLEGetInterface.
Returns FALSE if successful.

I

OLERemoveOb-
ject(integer block-
Number, string
dialogItem)

OBSOLETE AS OF ES10

Removes the OLE object from the dialog item.

I

OLEReq-
uestLicKey(string
guid)

OBSOLETE AS OF ES10

This function requests a license key from a licensed activeX con-
trol on your machine. This can be used with OLEInsertLicensed-
Object, above, to allow the user to retrieve the license key to be
used when inserting a licensed runtime activeX Control.

S

OLESetNamed-
Param (integer par-
amID)

Specifies that the first named parameter is the parameter Para-
mID. If the Idispatch interface you are using specifies named
parameters, then they are the first parameters by definition. All
this function does is specify which named parameters you are
using. The first time you call it, it specifies what the paramID of
the first named parameter is, the second time the second, and so
on.

I

OLEStringParam
(string value)

Adds a string value to the argument list for the next Invoke call.
Note: Arguments are listed in back to front order. Returns FALSE
if successful.

I

OLEStringResult() Returns a string value from the last Invoke call, if a return value is
available.

S

OLE (Windows
only) Description Return

240 Reference
I/O functions

Fu
nc

tio
ns

Mailslot (Windows only)
Mailslots are a messaging functionality supported by the windows API. They are unidirec-
tional messages that are sent from a given machine to a specified mailslot.

The MailSlotReceive message handler will be called periodically when there is a waiting mes-
sage available in one of the mailslots created by these functions.

☞ Because mailslot technology is a “polling” system, there will be a time delay between when a
message is sent to when a message is actually received.

☞ If you send out a single message to a mailslot, the mailslot may receive multiple copies of that
message depending on your network configuration. This is a expected behavior of the Micro-
soft implementation of mailslots. If you need to uniquely identify messages, the simplest way
would be to concatenate a unique identifier onto the beginning or the ending of the message
and then ignore the duplicates.

See the Windows API documentation for more information about mailslots.

OLESupressIn-
vokeErrors(integer
supressErrors)

Used to stop those pesky error messages from appearing during
an invoke of an OLE object.

V

OLEVariant-
Param(string value)

Adds a variant pointer value to the argument list for the next
invoke call. Note: Arguments are listed in back to front order.

I

OLEVari-
antResult(integer
which)

Returns a string value from the specified variant pointer argument
of the last Invoke call. Which specifies which of the arguments of
the invoke call you are referring to, it would be one for the first
one entered, two for the second, and so on (If the specified argu-
ment was a variant pointer argument.)

S

WinRegSvr32(inte-
ger registerObject,
string fileName,
string dir)

Runs the RegSvr32 command line tool used to register .dll files as
components in the windows registry. The registerObject integer is
a flag that determines if you want to register (true) or unregister
(false) the object. FileName is the name of the dll file. Dir is the
path name to the directory containing the dll.

NOTE: also works correctly for 64bit.

I

Mailslot (Windows
only) Description Return

MailSlot-
Close(integer
index)

Closes the specifed mailslot. Returns FALSE if successful. I

MailSlotCreate
(string theSlot-
Name)

Creates a mailslot with the specified name. Returns the index
number of the mailslot, or a zero if the call failed.

I

MailSlotRead(inte-
ger index)

Reads the next message from the specified mailslot. This function
will return an empty string if there are no messages waiting.

S

OLE (Windows
only) Description Return

ModL Functions 241
I/O functions

Functions
ODBC
ODBC stands for Open Database Connectivity. This Microsoft API allows data connectivity
between applications that support it, and databases that support it. The following functions
allow MODL access to the ODBC API. The following diagram shows the basic sequence of
commands that you would use to connect to a database, and retrieve data.

If you are trying to change data in the database, or add data, you could substitute the ODB-
CInsertRows, and/or ODBCSetRows calls for the ODBCExecuteQuery,
ODBCBindColumn, and ODBCFetchRows combination. The information listed here is about
the MODL implementation of functions that allow access to the ODBC API.

To use these functions effectively, you will need documentation on ODBC, SQL, and the data-
base you are targeting as well as this documentation. The Microsoft documentation on ODBC
can easily be found by doing an Exact Phrase search for "ODBC API Reference" on the
MSDN Online Search site.

☞ There is a sample block in the ModL Tips library) in the Input/Output category that shows the
syntax of these commands. The block is called ODBC, and can be used as an ODBC scripting
tutorial, or as a test of the ODBC functionality.

MailSlotSend
(string theComput-
erName, string
theSlotName,
string message)

Sends a message to the specified mailslot(s). TheComputerName
field specifies exactly which machine to send the message to. If
this field is a star "*", this message will be broadcast to all
mailslots with the specified mailslot name in the primary domain
of the sending computer. If this field is a domain name, the mes-
sage will be sent to all mailslots with the specified name in that
domain. The SlotName field must contain the name of the speci-
fied mailslot, and cannot be wildcarded. Returns FALSE if suc-
cessful.

I

Mailslot (Windows
only) Description Return

ODBC sequence of operations

242 Reference
I/O functions

Fu
nc

tio
ns

ODBC Description Return

ODBCBindCol-
umn (integer state-
ment, integer
whichCol, string
data[])

Associates an array with a column in the specific dataset. Which-
Col defines which column of the dataset you wish to bind the
array data with. The contents of that column will be different
dependent on dataset, and how it was derived. This does not actu-
ally retrieve the data, just specifies where the data will go when it
is retrieved. Returns FALSE (0) if unsuccessful. (See ODB-
CFetchRows below.)

I

ODBCColAttri-
bute (integer state-
ment, integer
column, integer
which)

Returns the value of the specified attribute of the specified col-
umn. This function just filters directly through to SQLColAttri-
bute, check the ODBC documentation for additional information.
This function can be called as soon as there is a defined dataset.

I

ODBCColumns
(integer connec-
tion)

Executes a standard query that returns a dataset containing the
names of all the valid columns in the data source. Returns a State-
ment Handle. (Note: it is important to free all statements before
disconnecting the connection, otherwise, the disconnection may
fail.) Returns FALSE (0) if the query fails. See your ODBC docu-
mentation (SQLColumns) for a list of the meanings of the col-
umns of the resulting dataset.

I

ODBCCol-
umns2(integer
hdbc, string cata-
log, string schema,
string table, string
column)

This function works the same as the ODBCColumns function
except that it adds four string arguments. See your ODBC docu-
mentation (SQLColumns) for additional information about the
meaning and use of these arguments. Please note that the argu-
ments are strings, so you cannot pass in the NULL values that are
defined in the SQLColumns specification. For this function,
we've defined an empty string "" to be interpreted as a NULL, so
just use empty strings for unused arguments where NULL is nor-
mally used.

I

ODBCConfigData-
Source(integer fRe-
quest, string
szDriver, string
szAttributes)

Calls the Windows API SQLConfigDataSource() function with
the entered arguments

ODBCConnect
(string szDB-
Name, string szUs-
erName, string
szPassword)

Connects to an ODBC source. Returns a connection Handle.
(Note: It is very important to disconnect this connection before
quitting ExtendSim, otherwise a crash may result.) Returns
FALSE (0) if the connection fails. You need to have created a
valid ODBC Data Source to connect with before using this call.

I

ODBCConnect-
Name ()

Returns the string name of the current connection. S

ModL Functions 243
I/O functions

Functions
ODBCCountRows
(integer connec-
tion, string table-
Name, string
columnName,
string whichCondi-
tion)

Uses the SQL COUNT statement to return the number of rows in
the specified column of the specified table. The statement exe-
cuted will be SELECT COUNT (ColumnName) FROM "table-
Name" WHERE whichCondition. ColumnName will default to
‘*’ if it is blank. WhichCondition will specify a selection condi-
tion, if it is blank, all rows will be counted. See your SQL docu-
mentation for additional information about this query.

I

ODBCCreateTable
(Integer connec-
tion, string table-
Name, stringarray
columnNames,
string column-
Types[])

This function will create a table in the specified database with col-
umns named as the values in the columnnames array, and types as
specified in the columntypes array. Returns FALSE (0) if unsuc-
cessful.

I

ODBCDriverCon-
nect(string szCon-
nectString)

Connects to an ODBC source, putting up a system source selec-
tion dialog. Returns a connection Handle. (Note: it is important to
disconnect this connection before quitting ExtendSim, otherwise
a crash may result.) Returns FALSE (0) if the connection fails.
You need to have created a valid ODBC Data Source to connect
with before using this call.

I

ODBCDisconnect
(integer connec-
tion)

Disconnects the specified connection. Returns FALSE (0) if
unsuccessful.

I

ODBCExecuteAr-
ray(integer hdbc,
string array[])

See the description for ODBCExecuteQuery() below. This func-
tion allows a query that contains more than 255 characters by
allowing you to pass in an array of strings instead of just one
string.

I

ODBCExecute-
Query (integer con-
nection, string
theQuery)

Executes the specified SQL query string. Returns a Statement
Handle. (Note: it is very important to free all statements before
disconnecting the connection, otherwise the disconnection may
fail.) Returns FALSE (0) if the query fails.

I

ODBCFetchRows
(integer statement)

Fetches the data from the dataset, and stores it in the variables that
have been bound by ODBCBindColumn. Returns the number of
rows. (See ODBCBindColumn above.)

I

ODBCFreeState-
ment (integer state-
ment)

Frees the specified Statement Handle. Returns FALSE if success-
ful.

I

ODBCInsertRow
(Integer connec-
tion, string table-
Name, string
columnNames[],
string values[])

This Function add a row of data with the specified values to the
indicated table. Returns FALSE (0) if unsuccessful.

I

ODBCKey-
word(string word)

Returns a TRUE value if the string word is an ODBC reserved
keyword. Otherwise returns a FALSE value.

I

ODBC Description Return

244 Reference
I/O functions

Fu
nc

tio
ns

Serial I/O
These functions allow ExtendSim to interact with serial ports. For Windows the port argu-
ments are from 1 through 4 for COM1 through COM4, respectively.

You can, for example, set up a simulation that will cause a modem attached to a computer to
dial up a remote database, collect data, run a simulation, and send the results to another loca-
tion over the modem. Likewise, an ExtendSim simulation can be controlled by a modem from
a remote location.

The SerialRead and SerialWrite functions are asynchronous, meaning that they return immedi-
ately without waiting for a response from the modem. SerialRead reads from the input buffer,
not from the modem, and SerialWrite writes to the output buffer.

ODBCNumResult-
Cols (integer state-
ment)

Returns the number of resulting columns in the specified dataset.
This function will only return useful information after an ODB-
CExecuteQuery, ODBCTables, or ODBCColumns call has estab-
lished a dataset.

I

ODBCSetRows
(integer connec-
tion, string table-
Name, string
columnName,
string IDName,
string dataArray[],
string IDArray[])

Copies the data from the data array into the columnName array,
using the IDArray values to determine which cell each item goes
into. That is, the variable named in the IDName field will be com-
pared to the values in the IDArray array, and each row of the
columnName variable will be updated based on the database row
selected by the values in the IDArray array. Returns FALSE (0) if
unsuccessful.

I

ODBCSetRows-
Type(linteger hdbc,
string tableName,
string colName,
string IDName,
string y[], string
x[],

integer varTypeX,
integer varTypeY)

See the description for the ODBCSetRows function. Whereas the
SetRows function defaults the types of the values of both string
arrays to SQL_CHAR, the SetRowsType function allows you to
specify the types of the variables in the y and x arrays. Type val-
ues are:

SQL_UNKNOWN_TYPE 0, SQL_CHAR 1, SQL_NUMERIC 2,
SQL_DECIMAL 3, SQL_INTEGER 4, SQL_SMALLINT 5,
SQL_FLOAT 6, SQL_REAL 7, SQL_DOUBLE 8, SQL_DATE-
TIME 9, SQL_VARCHAR 12, SQL_TYPE_DATE 91, SQL_-
TYPE_TIME 92, SQL_TYPE_TIMESTAMP 93

I

ODBCSuccessInfo
(integer ShowSuc-
cessInfo)

Sets a flag that determines if warning error messages are shown,
or not.

V

ODBCTables (inte-
ger connection)

Executes a standard query that returns a dataset containing the
names of all the valid tables in the data source. Returns a State-
ment Handle. (Note: it is very important to free all statements
before disconnecting the connection, otherwise the disconnection
may fail.) Returns FALSE (0) if the query is unsuccessful. See
your ODBC documentation (SQLTables) for a list of the mean-
ings of the columns of the resulting dataset.

I

ODBC Description Return

ModL Functions 245
I/O functions

Functions
DLLs

Working with DLLs
Working with DLLs will be a lot easier if you make note of the following:

• DLLs called by ExtendSim must be built for 64-bit execution.

• The DLLs are stored in the ExtendSim/Extensions/DLLs folder.

• Unless the variables are strings or arrays, variables passed from the ModL code to a DLL are
passed by value:

• Reals are 8-byte double precision

• Integers are 4-byte long integers (converted to 8-byte for the DLL)

• Pointertype (64 bit) variables are 8-byte integers

• Strings and arrays are passed to DLLs as 8-byte pointers to data that has been allocated by
ExtendSim. Modifications to that data will affect the original information in ExtendSim.

• Arrays that are passed to a DLL come through as pointers to the original data in
ExtendSim. Accessing and modifying the data is fine, but you should not try to resize
the pointer. If you do, ExtendSim will not be able to access the data and will probably
crash..

• Strings are passed to DLLs as Pascal strings, not C strings. This means that the string is
preceded by a size byte and is not terminated by a zero. For example, if you pass a
string to a DLL, the DLL will get a pointer to 256 bytes of data in which the first byte
contains the number of characters in the string. To convert strings to C strings and back
again, see the DLLCtoPString and DLLPtoCString functions.

• The most common problem associated with building and using a DLL is making sure that
the names of the routines that you want to call are exported and that they are exported with-
out Name Mangling or Name Decoration. Name Mangling is an option for how names are
exported from a DLL; it adds information about the arguments to the exported name.

 When building a DLL for use with ExtendSim, the Name Mangling option should be off.

Serial I/O Description Return

SerialRead(integer
port)

Returns a string if there is any read data, or an empty string if data
is not available. If there are more than 255 characters in the serial
port buffer, it returns the first 255 characters. Successive Serial-
Read calls will return the rest of the characters in the buffer.

S

SerialReset(integer
port, integer baud,
real stop, integer
parity, integer data,
integer xonXoff)

Sets up one of the serial ports for communications. baud can be
300, 600, 1200, 2400, 4800, 9600, 19200, or 57600; stop can be 1,
1.5, or 2; parity is 0 for no parity, 1 for odd parity, or 2 for even
parity; data can be 5, 6, 7, or 8 data bits. Set xonXoff to TRUE for
XON/XOFF handshaking or FALSE for CTS handshaking.

V

SerialWrite(integer
port, string s)

Writes the string s to the serial port buffer. V

246 Reference
I/O functions

Fu
nc

tio
ns

☞ See “DLLs” on page 86 for some DLL coding examples.

About the functions
These function calls are called with variable argument lists. The first argument in each case is
the Proc-Address for the procedure, which is a 4-byte integer (not a 64-bit Pointertype). This is
returned by the function DLLMakeProcInstance. It is recommended that you call DLLMake-
ProcInstance once (in On OpenModel or in On InitSim), and save the return value in a vari-
able, rather than call it each time you call the specific function.

 It is critical that you match the argument list and the calling convention in the ModL code with
the argument list and calling convention in the DLL, otherwise a crash could result.

 ProcAddress is not a 64-bit Pointertype variable. Instead, it is a 32 bit (4-byte) integer index
that points to a pointer internal to ExtendSim. This makes the 32 bit block code used in previ-
ous releases compatible with the 64 bit code of ExtendSim 10.

All of the DLL calls below are translated into 64-bit fastcalls, which is the only call allowed in
64-bit systems.

DLL/Shared
Libraries Description Return

DLLBoolCFunc-
tion(integer pro-
cAddress,)

Calls a DLL routine referenced by procAddress and returns a
Boolean (translated into an integer by ExtendSim). Accepts a
variable argument list. Assumes a C calling convention.

I

DLLBoolPascal-
Function(integer
procAddress,)

Calls a DLL routine referenced by procAddress and returns a
Boolean (translated into an integer by ExtendSim). Accepts a
variable argument list. Assumes a Pascal calling convention.

I

DLLBoolStdcall-
Function(integer
procAddress, ...)

Calls a DLL routine referenced by procAddress and returns a
Boolean (translated into an integer by ExtendSim). This function
is the same as the other DLL functions except it assumes a Std-
Call calling convention.

I

DLLCtoPString
(string theString)

Converts a C string to a V string that is usable by ModL, as
ExtendSim/ModL internally can use only V (Pascal) strings. In
some cases pre-established DLLs will expect and return C format
strings in the passed parameter string pointer, and this function
can convert the string type safely within the pointer space. See
DLLPtoCString below to convert back to C strings.

V

DLLDoubleCFunc-
tion(integer pro-
cAddress,)

Calls a DLL routine referenced by procAddress and returns a real.
Accepts a variable argument list. Assumes a C calling convention.

R

DLLDoublePascal-
Function(integer
procAddress,)

Calls a DLL routine referenced by procAddress and returns a real.
Accepts a variable argument list. Assumes a Pascal calling con-
vention.

R

DLLDoubleStd-
callFunction(inte-
ger procAddress,
...)

Calls a DLL routine referenced by procAddress and returns a real.
This function assumes a StdCall calling convention.

R

ModL Functions 247
I/O functions

Functions
DLLLoadLibrary
(string pathName)

Loads the specified library. This is for people who need to access
routines in a DLL that is not present in the Extensions folder.
After loading the library, attempts to access DLL routines that are
in that library should succeed. See also DLLUnloadLibrary.

I

DLLLongCFunc-
tion(integer pro-
cAddress,)

Calls a DLL routine referenced by procAddress. Returns a 64 bit
integer that can be saved as a ModL integer (32 bit) or, if needed,
as a pointertype (64 bit integer/pointer). Accepts a variable argu-
ment list. Assumes a C calling convention.

I

DLLLongPascal-
Function(integer
procAddress,)

Calls a DLL routine referenced by procAddress. Returns a 64 bit
integer that can be saved as a ModL integer (32 bit) or, if needed,
as a pointertype (64 bit integer/pointer). Accepts a variable argu-
ment list. Assumes a Pascal calling convention.

I

DLLLongStdCall-
Function (integer
procAddress, ...)

Calls a DLL routine referenced by procAddress. Returns a 64 bit
integer that can be saved as a ModL integer (32 bit) or, if needed,
as a pointertype (64 bit integer/pointer). This function assumes a
StdCall calling convention.

I

DLLMakeProcIn-
stance (string proc-
Name)

Returns the ProcAddress expected by the other calls as an argu-
ment. Requires a procedure name. This function will search all
open libraries for the named procedure, so it is advisable to call it
once and save the returned value. Function will return a zero if
procName was not found.

I

DLLMakeProcIn-
stanceLibrary
(string
libraryName, string
procName)

Similar to DLLMakeProcInstance except it has a libraryName
argument so you can specify which library should be opened and
searched for the procedure.

I

DLLPtoCString
(string theString)

Converts a V string to a C string that is usable by a DLL, as
ExtendSim/ModL internally can use only V (Pascal) strings. In
some cases pre-established DLLs will expect and return C format
strings in the passed parameter string pointer, and this function
can convert the string type safely within the pointer space. See
DLLCtoPString above to convert back to V strings.

V

DLLUnloadLi-
brary (string name)

Unloads the DLL from memory. See also DLLLoadLibrary. I

DLLVoidCFunc-
tion(integer pro-
cAddress,)

Calls a DLL routine referenced by procAddress and returns noth-
ing. Accepts a variable argument list. Assumes a Pascal calling
convention.

V

DLLVoidPascal-
Function (integer
procAddress,)

Calls a DLL routine referenced by procAddress and returns noth-
ing. Accepts a variable argument list. Assumes a Pascal calling
convention.

V

DLLVoidStdcall-
Function (integer
procAddress, ...)

Calls a DLL routine referenced by procAddress and returns noth-
ing. This function assumes a StdCall calling convention.

V

DLL/Shared
Libraries Description Return

248 Reference
I/O functions

Fu
nc

tio
ns

Alerts and prompts
These functions can be used to display results and diagnostics as well as to prompt for input
data.

Because of the automatic type conversion provided in ModL, and because they provide an easy
way to display the contents of variables, these functions are also useful for debugging block
code. For example:

Alerts & Prompts Description Return

Beep() Causes the computer to beep using the beep sound selected in the
Control Panel.

V

IntegerParameter
(label, default)

Similar to NumericParameter, except it returns an integer value
and displays the parameter to the user as an integer.

I

IntegerParameter2
(label1, default1,
label2, default2,
resultArray)

Similar to NumericParameter2, except it returns integer values
and displays the parameters to the user as integers.

I

NumericParame-
ter(string message,
real default)

Similar to the userParameter function, except that this returns a
real value. This function will return a NOVALUE if the user
clicks on the cancel button. See also userParameter.

R

NumericParame-
ter2 (string mes-
sage1, real default,
strng message2,
real default2, real
array[])

Similar to the numericParameter function, except that this func-
tion returns two values in a real array declared as real array[2];

The return value of the function itself will be a zero if the user
successfully input one or more numbers, or a –1 if they canceled.
See also numericParameter2 and userParameter.

R

PlaySound(string
soundName)

Plays the sound named in the argument. Returns FALSE if no
error, TRUE if the sound is not found. See “Sounds” on page 89
for important details.

I

Speak(string s) (Mac OS only) Speaks the string if the speech manager is present. V

UserError(string s) Opens a dialog with an OK button displaying the string s. V

UserParameter(
string prompt,
string default)

Opens a dialog to get a value. Displays the prompt string and
default string, then returns either the entry typed, or the default
string if there was no user entry, or the empty string (““) if Cancel
was clicked. After getting a string with UserParameter, you can
convert the string to a real with the StrToReal function described
later in the section on strings. See also numericParameter.

S

UserPrompt(string
s)

Opens a dialog with an OK and a CANCEL button displaying the
string s. The function returns TRUE if the OK button is clicked
and FALSE if the Cancel button is clicked.

I

userPromptCus-
tomButtons(string
str, string button1,
string button2)

User prompt with the ability to customize the text of the buttons.
Returns a 1 (one) if the first button is clicked or 2 (two) if the sec-
ond button is clicked.

I

ModL Functions 249
I/O functions

Functions
UserError("X = "+x+", Y = "+y);

will display a dialog with something like:

X = 5.23, Y = .007

This is also an example of using the + operator for concatenating strings.

Also see other useful functions in “Debugging” on page 367.

User inputs
Use these functions to determine the location of mouse clicks and the status of modifier keys
during the on blockClick and on dialogClick message handlers.

User inputs Description Return

GetModifierKey
(integer whichKey)

Returns a 1 if the key is depressed, a 0 if the key is not depressed.
Can be used in the on blockClick and on dialogClick message
handlers.

whichKey 1 = Shift key

whichKey 2 = Option (Mac OS) or Alt (Windows) key

I

GetMouseX() Returns the mouse X position in pixels relative to the model
worksheet. Use the GetBlockTypePosition() function to get the
coordinates of the block. Can be used in the on blockClick mes-
sage handler.

I

GetMouseXActive-
Window()

Returns the mouse X position in pixels relative to the active win-
dow, for example, a hierarchical submodel window. Use the Get-
BlockTypePosition() function to get the coordinates of a block in
that window. Can be used in the on blockClick message handler.

I

GetMouseY() Returns the mouse Y position in pixels relative to the model
worksheet. Use the GetBlockTypePosition() function to get the
coordinates of the block. Can be used in the on BlockClick mes-
sage handler.

I

GetMouseYActive-
Window()

Returns the mouse Y position in pixels relative to the active win-
dow, for example, a hierarchical submodel window. Use the Get-
BlockTypePosition() function to get the coordinates of a block in
that window. Can be used in the on blockClick message handler.

I

HBlockClicked() This function returns the block number of the Hblock that was last
double clicked. This is intended to be called during a On Hblock-
Open message handler, and will always return a negative one at
other times.

V

isKeyDown(inte-
ger keyCode)

Returns a True/False value for whether or not the specified key is
pressed. The constants for keyCode are the constants for the API
call GetKeyState (Windows) or the GetKeys functionality (Mac-
intosh).

I

250 Reference
Animation

Fu
nc

tio
ns

Animation

2D Animation
Use these functions to implement the ExtendSim 2D animation. Examples of using these func-
tions are shown in “2D animation” on page 128.

The Show 2D Animation command (Run menu) only controls whether animation is shown
during the simulation run. At all other times, the block will still show animation if the block
creator has coded it to do that. For instance, animation is available when the modeler makes
any changes in a block's dialog, whether Show 2D Animation is selected or not and regardless
of whether the simulation is running. When the command Show 2D Animation is selected, ani-
mation is available at all times.

In the functions:

• “obj” is the integer object number of the animation object on the icon.

• As discussed in “Animating hierarchical blocks” on page 131, hierarchical blocks are ani-
mated indirectly (by blocks in the submodel) by referencing the negative of the hierarchical
block’s object number. If a negative number is used and ExtendSim doesn’t find that object
in the current enclosing H-block, ExtendSim will search the H-block enclosing that one and
so on, until it finds the object or reaches the top level.

• The outsideIcon value is a value that is set to FALSE unless you want to move or stretch out-
side the original size of the icon (setting this to TRUE slows down the animation). All mea-
surements are in pixels.

• Some functions have the option of selecting a pattern in addition to a color. Starting with
ExtendSim 10, patterns remain as arguments for those functions but are no longer supported.

Lastkeypressed() The value returned will be the ASCII value of the character
entered for keys that have ASCII equivalents. For keys that don’t
have ASCII equivalents, the value returned is the keycode. This is
useful for monitoring what keys the user hits on the keyboard.
Used in conjunction with startTimer (See “Timer functions” on
page 364) or during a simulation, it will allow live keyboard
input.

I

WhichDialogItem-
Clicked()

Used in the dialogClick message handler to find the name of the
item that received the click. This is used, for example, to modify
the items in a popup menu at the time it is clicked on but before it
opens to the user.

S

WhichDTCell-
Clicked(integer
rowCol)

Returns the row or column of the cell in the data table that was
clicked on. This function should only be used in the on dialog-
Click message handler, and usually after the whichDialogItemC-
licked function has determined that a specific data table was
clicked on.

rowCol 0 = row

rowCol 1 = col

I

User inputs Description Return

ModL Functions 251
Animation

Functions
• AnimationEColor specifies the color of animated objects. See the “Select Color window” on
page 366.

 There is a limit of 256 animation objects that can be manually placed on a block’s icon when
the block is created. However, the AnimationObjectCreate function supports thousands of ani-
mation objects. This function can be used to create new animation objects during the run; use
AnimationObjectDelete() to delete the objects during the run.

Animation Description Return

AnimationAntial-
ias (integer obj-
Num, integer
antialias)

Determines whether or not the specified animation object uses
anti-aliasing when it draws. Defaults to on (True) for most anima-
tion object types.
Call this function with a false (0) if you don't want the specified
animation object to be drawn with anti-aliasing.

V

AnimationBlock-
ToBlock (integer
animationObj-
Num, integer
blockNumFrom,
integer conNum-
From, integer
blockNumTo, inte-
ger conNumTo,
real speed)

This function moves an animation object across the connection
lines from one block to another. You specify the sending block
and connector, and the receiving block and connector, as well as
the number of the animation object. The speed value is a relative
speed factor. Use a value of 1.0 for normal speed.

V

AnimationBorder
(integer obj, integer
pixels)

Changes the border size of an animation object. Pixels can be 0,
for no border, and up to 20 for a 20 pixel border.

V

AnimationBorder-
Color (integer obj-
Num, integer hue,
integer saturation,
integer value)

Allows you to specify the color of the border on an animation
object. Only effects objects that have a visible border around
them.

As of ExtendSim 10, see instead AnimationBorderEColor

V

AnimationBor-
derEColor (integer
objectNum, inte-
ger EColorValue

Allows you to specify the EColor of the border on an animation
object. Only effects objects that have a visible border around
them. See “EColors” on page 365 for more information.

V

AnimationColor
(integer obj, integer
hue, integer sat,
integer bright, inte-
ger pattern)

Sets the color of the object using the pattern number, hue, satura-
tion, and brightness.

 Patterns are not supported as of release 10, so use 1 for a solid
pattern. Also, for ExtendSim 10 or later, use the AnimationE-
Color function instead.

V

AnimationEColor
(long objNum, long
EColorValue)

Set the color of an animation object using an EColor value. See
“EColors” on page 365 for more information.

V

252 Reference
Animation

Fu
nc

tio
ns

AnimationGetH-
eight (integer obj,
integer original-
Value)

Returns the offset of the height of the object. If originalValue is
true, gets the original height.

See also AnimationGetHeightR, below.

I

AnimationGetH-
eightR (integer obj,
integer getOrig)

The same as the animationGetHeight function above, except it
returns a real number for the height instead of an integer.

R

AnimationGetLeft
(integer obj)

Returns the offset of the left side of the object relative to its origi-
nal position in the icon.

I

AnimationGetLef-
tRelative (integer
blockNumber, inte-
ger objNum, inte-
ger original)

Gets the left of the animation object relative to the upper left hand
corner of the block icon. See AnimationGetTopRelative and Ani-
mationGetTopRelativeR for more info.

I

AnimationGetLef-
tRelativeR (integer
blockNumber, inte-
ger objNum, inte-
ger original)

Exactly the same as AnimationGetLeftRelative except this func-
tion returns a real for the left number.

R

AnimationGet-
Speed()

Returns the speed setting, with 1 being slowest and 5 being fast-
est. See AnimationSetSpeed(), below.

I

AnimationGetTop
(integer obj)

Returns the offset of the top side of the object relative to its origi-
nal position in the icon.

I

AnimationGetTo-
pRelative(integer
blockNumber, inte-
ger objNum, inte-
ger original)

Gets the top of the animation object relative to the upper left hand
corner of the block icon. Compare to AnimationGetTop, which
returns the location relative to just the Animation Object location,
and will always return zero unless the animation object has been
moved with an AnimationMove call. Original specifies if the
moved rect (0), or the original unmoved rect (1) should be used.

I

AnimationGetTo-
pRelativeR(integer
blockNumber, inte-
ger objNum, inte-
ger original)

Exactly the same as AnimationGetTopRelative except this func-
tion returns a real for the top.

R

Animation-
GetWidth(integer
obj, integer get-
Orig)

Returns the width of the object. If getOrig is true, gets the original
width before any stretching.

See also AnimationGetWidthR, below.

I

AnimationGetWid-
thR(integer obj,
integer getOrig)

Same as AnimationGetWidth, above, except it returns a real num-
ber for the width instead of an integer.

R

AnimationHide
(integer obj, integer
outsideIcon)

Immediately hides the object.

NOTE: as of ExtendSim 10, the outsideIcon argument is unused.

V

Animation Description Return

ModL Functions 253
Animation

Functions
AnimationLevel
(integer obj, real
level)

Defines the object as a level whose height varies from 0.0 to 1.0
(based on the level argument).

V

AnimationMoveTo
(integer obj, integer
leftOffset, integer
TopOffset, integer
outsideIcon)

Moves the object relative to its original position in the icon. Note:
pixel coordinates start at the top/left corner of the animation
object and go down and to the right. TopOffset of 0 is the top of
the animation object.

V

AnimationMovie
integer obj, string
movieName, real
speed, integer play-
SoundTrack, inte-
ger async)

(Mac OS only) Defines the object as a QuickTime movie, played
at the specified speed (relative to 1.0, the normal speed). If play-
SoundTrack is true, the soundtrack is played. If async is true, the
movie starts and the function returns immediately; if it is false,
the function will not return until the movie is finished. The movie
must be a file in the ExtendSim\Extensions folder. Unlike other
resources, the “movieName” is its file name, not a resource name.

V

AnimationMovieF-
inish(integer obj)

(Mac OS only) Returns TRUE if the QuickTime movie is finished
or not currently playing; returns FALSE if the movie is still play-
ing. This is useful if you want to wait for a QuickTime movie to
finish playing before you restart it. If you call AnimationMovie
with async TRUE, use this function to check the status of the
movie at any time.

I

AnimationObject-
CopyData(integer
objNum, integer
objNum2)

This function copies the animation object data, (like type of
object, poly points, color, size, etc.) from one object to another
one.

I

AnimationObject-
Create(integer
enclosingHblockIf-
TRUE)

Creates an animation object on the fly. The animation object
number for the created object will be returned. If the enclosingH-
blockIfTRUE argument is set to one, or TRUE, the function will
create the animation object in the enclosing Hblock of the current
block. In this case, the returned value will be the negative value
of the animation object number. Animation objects create on the
fly with this function are not part of the block structure, and will
need to be recreated in openModel, or InitSim, or whenever they
are used. They will persist until the model window (Including
Hblock model windows,) is closed, or AnimationObjectDelete is
called.

I

AnimationObject-
Delete(integer obj-
Num)

This function will delete an animation object. This will not affect
animation objects that are defined in the block structure, just
those created on the fly with AnimationObjectCreate. Use nega-
tive objNum if in enclosing Hblock.

I

AnimationObject-
Exists(integer obj-
Num)

Returns TRUE if an animation object with the specified objNum
exists, and FALSE if it doesn’t. For example, you could test if the
enclosing hierarchical block has a specified animation object.

(i.e. if animationObjectExists(-3) returns a TRUE value, then
there is an animation object in the enclosing Hblock, or any num-
ber of levels above, with the objNum 3.)

I

Animation Description Return

254 Reference
Animation

Fu
nc

tio
ns

AnimationObject-
Exists2(integer
blockNumber, inte-
ger objNum)

Similar to the AnimationObjectExists function, except that this
function includes a block number argument, allowing you to
check for the existence of an animation object in a remote block.

I

AnimationOval
(integer obj)

Defines the object as an oval. V

AnimationPicture
(integer obj, string
picName, integer
scaleToObj)

Defines the object as a picture. If TRUE, the scaleToObj argu-
ment scales the picture to the animation object size; if FALSE, the
picture will not be scaled. See “Picture and movie files” on
page 90 for important information about pictures.

V

AnimationPixel-
Rect(integer obj,
integer rows, inte-
ger cols, integer
intArray[])

Defines the object as a rectangular pixel map of rows height and
cols width, where each pixel can have a specified color. Extend-
Sim normalizes the size of the pixels to conform to the animation
object size. IntArray is declared as a dynamic array:
integer intArray[];

V

AnimationPixel-
RectEColor-
Init(integer
objNum, integer
EColorValue)

Initializes or sets the color value of all the pixels in an Animation
Pixel Rectangle to the specified color. (This is quicker then loop-
ing through each pixel.)

V

AnimationPixelSet
(integer objNum,
integer row, inte-
ger col, integer h,
integer s, integer v,
integer drawNow)

See AnimationPixelRect, above. Sets a specific pixel to an HSV
color (see notes on color, above). Row values start from 0 to rows-
1. Col values start from 0 to cols-1.

Note: As of ExtendSim 10, see instead AnimationPixelRectECol-
orInit

V

AnimationPixelSe-
tEColor (integer
objNum, integer
row, integer col,
integer EColor,
integer drawNow)

Same as AnimationPixelSet, above, except it takes an EColor
value for the color instead of H/S/V values.

V

Animation-
Poly(integer obj-
Num, integer
pointCount, inte-
ger pointArray[])

Animates a polygon. PointCount is the number of points to be
drawn, point array is a two dimensional array of points that con-
tains the points to be animated. The points are defined in pixels
from the upper left hand corner of the animation object location.

V

AnimationRectan-
gle(integer obj)

Defines the object as a rectangle. V

AnimationRn-
dRectangle(integer
obj)

Defines the object as a rounded rectangle. V

Animation Description Return

ModL Functions 255
Animation

Functions
AnimationSetDe-
layMode(integer
trueIsDelay)

If trueIsDelay is TRUE (default), then ExtendSim uses its normal
delay, corresponding to the animation speed that the user chose.
FALSE removes any animation delay, no matter what speed the
user chooses. Use this function to set your own delay for anima-
tion and have ExtendSim ignore the animation speed set by the
user. See AnimationGetSpeed(), above, to see what speed the user
chose.

V

AnimationSet-
Speed(integer new-
Speed)

Sets the animation speed, with 1 being slowest and 5 being fast-
est. See AnimationGetSpeed(), above.

V

AnimationShow
(integer obj)

Shows a hidden object. V

Animation-
StretchTo(integer
obj, integer leftOff-
set, integer topOff-
set, integer width,
integer height, inte-
ger outsideIcon)

Stretches the object relative to its original position in the icon. V

AnimationText
(integer obj, string
msg)

Defines the object as text with the string msg. Also see the
TextWidth function in Strings, below, that is useful in applying
the AnimationStretchTo function to the object so that the text
width is accommodated.

V

AnimationTex-
tAlign (integer obj-
Num, integer
justification)

This function specifies the text alignment for the specified anima-
tion object. Justification takes the following values:

Left: 0
Right: -1
Center: 1

V

AnimationText-
Size(integer obj-
Num, integer size)

Allows you to modify the size of animation text. The size argu-
ment is a font point size.

V

AnimationText-
Transparent(inte-
ger objNum, string
text)

Exactly the same as the animationText function, except the back-
ground behind the text will be transparent. It’s normally white for
the regular function.

V

AnimationZOrder-
Get(integer obj-
Num)

Gets the zOrder value of the specified animation object.

Note: zOrders for animation objects only control the zOrder
relative to the other animation objects from the block that
controls the animation. Animation objects are children of the
block that they are associated with, and are all ordered rela-
tive to that block's zOrder.

R

AnimationZOrder-
Set(integer obj-
Num, real zOrder)

Sets the zOrder value of the specified animation object. See note
about zOrders above.

V

Animation Description Return

256 Reference
Blocks and inter-block communications

Fu
nc

tio
ns

Blocks and inter-block communications

Block numbers, labels, names, categories, position
As seen in their Properties, all objects in a model (blocks, text, shapes, connection lines, and so
forth) are numbered uniquely and sequentially from 0 to n-1 as they are added to the model
worksheet. In most cases, the numbers assigned to each object do not change. However, if a
block or text is deleted, its number becomes an “unused slot” which is available when another
object is added to the model.

Numbers
There are two numbers associated with blocks. Global numbers access all blocks, including
blocks inside of hierarchical blocks. Local numbers access a hierarchical block’s internal
blocks and are the same for all instances of that hierarchical block, whereas the global numbers
are different for each instance. Blocks are numbered from 0 to NumBlocks-1. Block numbers
show in a dialog’s title bar.

Names and labels
• Block names are the names you give a block when you create it. For example, “Data Import

Export” is the name of a block in the Value library. Names appear in the dialog’s title bar.

DialogPicture
(string variable-
Name, string pic-
tureName, integer
scalePicture)

This function displays the picture pictureName over the static text
item variableName. This is used to display a picture on a dialog
box. Normally you would create an empty static text item, and use
that as the location for displaying this picture. ScalePicture will
take a TRUE or FALSE, and determines if the picture is scaled to
the space, or not. Returns FALSE if that picture is not available.

I

PictureList
(String15 array-
Name[], integer
type)

Resizes, and fills the dynamic array arrayname with the names of
the pictures from the extension folder or the application to be used
with the AnimationBlockToBlock() function. Return value is the
number of pictures.
type:
0 - All pictures in the Extensions folder.
1 - Only AnimationBlockToBlock pictures in the application.
2 - Only AnimationBlockToBlock pictures in the Extensions
folder. Pictures with names that start with a “@” character are not
AnimationBlockToBlock pictures and are not returned. The @
character prevents pictures from showing up in the block’s anima-
tion tab popup menu.
3 - All non-AnimationBlockToBlock pictures (pictures that start
with an @ character.

I

ProofEncode
(string command-
Line)

The version of the Proof Animation DLL that works with Extend-
Sim requires a numeric value calculated by this function to be
passed to it periodically. See the Proof Animation blocks in the
Animation library to see how to use this function.

I

ProofEncodeRe-
set()

Resets counters for Proof copy protection. V

Animation Description Return

ModL Functions 257
Blocks and inter-block communications

Functions
• Block labels are user-definable names given to a particular block in the model. Block labels
are entered in the area to the right of the Help button at the bottom of a block’s dialog. Labels
appear at the bottom of the block’s icon.

Categories and types
• Categories are used to group blocks in the library menu based on some commonality. Exam-

ples of categories include Math or Holding from the Value library. Categories are set using
the Develop > Set Block Category menu command.

• Block types are a way to delineate Item library blocks as residence, passing, or decision.

Block numbers,
labels, etc. Description Return

BlockName(inte-
ger i)

Looks in global slot i and returns either the name of the block, the
first 255 characters of text, or an empty string if it is an unused
slot. For example, you can use this function to read text informa-
tion that you have added or modified in a model.

S

BlockRect (integer
blockNumber, inte-
ger or real array[4],
integer useAnima-
tion)

Virtually the same as the getBlockTypePosition function, except
for the useAnimation argument. This argument specifies (with a
true/false, 1/0 value) whether or not the animation objects are to
be included in the returned rectangle. If useAnimation is true, the
rectangle will include the positions of the animation objects that
are off the icon in the rectangle, otherwise it will not.

I

FindInHierarchy
(string FindBlock-
Name, string Find-
BlockLabel, string
FindDialogName,
integer FindDialog)

This function is used by several blocks, including the Catch Item
and Throw Item blocks in the Item library, to locate the corre-
sponding block associated with the current block. (For example,
to find a Catch corresponding to a Throw, and vice versa.) Please
see the Catch and Throw blocks for an example of how to use this
function. The function returns the block number of the resulting
block found; it returns a –1 if no matching block is found. Find-
BlockName is the name of the block to be found (e.g. ‘Catch’, or
‘Throw’). FindBlockLabel is the block label of the block to be
found. FindDialogName is the name of the dialog item you wish
to search for. The FindDialogName field should be filled with the
dialog item name, a colon, and then the value of the dialog item
that you wish to search for. For example Item:54 will search for
the presence of a dialog item with the name “item”, and the value
“54”. FindDialog takes the following values: 0: just check the
block name, and the block label. 1: just check the block name and
the dialog item name and value. 2: check the name, label, and dia-
log item.

I

FindInHierar-
chy2(integer block-
Number, string
findBlockName,
string findBlockLa-
bel, integer findDi-
alog)

The same as the FindInHierarchy function except it takes a block
number argument.

I

258 Reference
Blocks and inter-block communications

Fu
nc

tio
ns

GetBlockLa-
bel(integer i)

Returns the label string for the global block i. S

GetBlockMem-
Size(blockNumber)

Returns the number of bytes of memory used by the block. I

GetBlock-
Type(integer i)

Returns the string that represents the category (e.g. Math or Hold-
ing) for the global block i. Block categories are set in the Develop
> Set Block Category menu.

S

GetBlockTypeNu-
meric(objectID)

Like GetBlockTypePosition() this function returns the block type
but since it doesn't have to calculate the block position, it is faster.

I

GetBlockTypePosi-
tion(integer i, inte-
ger or real
Array[4])

In versions prior to 10, many objects (anchor points, blocks, text,
etc.) were referred to as “blocks”. This function returns a speci-
fied Type for the global block i. Types are as follows:
0: empty slot
1: anchor point
2: text
3: block
4: hierarchical block
5: embedded object (obsolete as of ExtendSim 10)
6: Slider, Switch, or Meter (from the Model > Controls command
prior to ExtendSim 10)

The function puts an integer or a real in the array depending on
whether the array is defined as integer or real. On return, array[0]
will contain the top, array[1] the left, array[2] the bottom, and
array[3] the right position’s pixel values.

To include animation objects, see the blockRect function.

☞ See also the GetBlockTypeNumeric and ObjectIDNext func-
tions, which are faster for certain situations.

I

GetEnclosingH-
blockNum()

Returns the global block number for the enclosing hierarchical
block. Returns -1 if there is no enclosing hierarchical block.

I

GetEnclosingH-
blockNum2 (inte-
ger block)

This is the same as GetEnclosingHblockNum(), except it refers to
a global block number.

I

GetStaticNames
(integer blockNum-
ber, array names,
array types)

Fills the names and types arrays with the names and types of all
the static variables defined in the block structure. Names should
be an array of strings, and types should be an array of longs. The
value of the cells of the types array will be from the following list:
3: LONGTYPE
6: DOUBLETYPE
7: STRING255TYPE
8: STRING15TYPE
9: STRING31TYPE
10: STRING63TYPE
11: STRING127TYPE

I

Block numbers,
labels, etc. Description Return

ModL Functions 259
Blocks and inter-block communications

Functions
GlobalToLocal
(integer blockNum-
ber)

Returns the local block number for the specified block if it is con-
tained in an H-block. Returns a -1 if the block is not contained in
an H-block.

I

IconBody (block-
Num, real array[4],
useAnimation, use-
Connectors)

Similar to the BlockRect function. Returns the rect for the body of
the icon, allowing (via the useAnimation and useConnectors argu-
ments) control over whether the animation objects and/or connec-
tors are included in the rect.

Returns a zero for success or a non zero value for an error.

I

LocalNumBlocks() Number of internal blocks in the hierarchical block from which
this function is called. Blocks are numbered from 0 to Local-
NumBlocks()-1.

I

LocalNumBlocks2
(integer block)

This is same as LocalNumBlock(), except it refers to a global
block number.

I

LocalToGlobal
(integer i)

Converts a local number in the hierarchical block from which this
function is called to a global number.

I

LocalToGlobal2
(integer Hblock-
Num, integer local-
BlockNum)

Similar to LocalToGlobal, this function will return the global
blocknumber for a local one. The difference is that this function
allows you to specify which Hblock in the model is used as the
context for the local block number via the first parameter Hblock-
Num.

I

MakeOptimizer-
Block (integer true-
False)

This function tags the block as an optimizer block so that the
Run > Run Optimization command will send a RUN message to
that block, assuming there is a “Run" button in the block that will
run the optimization and has an "ON RUN" message handler. Call
this function in "CREATEBLOCK." See the Optimizer block
(Value library).

V

MyBlockNumber() Global number of the block in which the function is called. Note
that this number is the first number shown in parentheses in the
block dialog’s title.

I

MyLocalBlock-
Number()

Local number of the block in which the function is called. Note
that this number is the second number shown in parentheses in the
block dialog’s title.

I

NumBlocks() Global number of blocks in the model, including text blocks and
unused slots. Blocks are numbered from 0 to NumBlocks()-1.

I

Block numbers,
labels, etc. Description Return

260 Reference
Blocks and inter-block communications

Fu
nc

tio
ns

Block connectors and connection information
The following functions give you information about connectors and connected blocks in a
model. This helps you manipulate connectors and determine what is connected to a block or to
create network lists of your models.

In these functions, “block” is the global block number (see “Block numbers, labels, names, cat-
egories, position” on page 256), “connName” is the connector’s name (without quotes, not a
string), “connString” is the connector’s name (with quotes), and “conn” is the ith connector (0
to n-1) in the list of connectors in the structure window’s connector pane. To determine the
connector number for a given connector name, look in the block’s connector pane, counting
from the top of the list (which is connector 0). “block” and “conn” are integers.

Also see “Variable connectors” on page 264, below, to see their use and to see the connector
labeling functions.

ObjectIDNext(Inte-
ger fromBlock,
integer which)

Returns the objectID of the next object of the type requested, as
controlled by the which variable. You can step through all the
blocks in the model quite a bit faster than in V9 since, depending
on the which value, you can just jump to the next block.

FromBlock specifies where in the list to begin, so it will normally
be started at -1. Which currently takes the arguments:
0: blocks
1: Hblocks
2: both regular and Hblocks

The pseudo code for using the function:
objectID = objectIDNext(-1, 0);
while (objectID > -1)

 {
 objectID = objectIDNext(objectID, 0);
 }

This will loop through all the blocks in the model without needing
to call numblocks or getBlockTypePosition.

I

SetBlockLabel
(integer i, string
str)

Sets the label for the global block i to str. Blocks are numbered
from 0 to NumBlocks()-1.

V

ShowBlockLabel
(integer i, integer
show)

Labels are shown by default. To hide a block’s label, use this
function with the global block number i and FALSE for show.

V

Block connection Description Return

AlignConnection
(long blockFrom,
long conFrom, long
blockTo, long
conTo, long verti-
cal)

Adjusts the position of the second block (blockTo) to make the
connection line between the two connectors specified straight.

I

Block numbers,
labels, etc. Description Return

ModL Functions 261
Blocks and inter-block communications

Functions
GetConBlocks
(integer block, inte-
ger Conn, integer
intArray[][2])

Returns the number of blocks attached to the connector. On
return, the rows of intArray are used to index the connected
blocks (if there are three blocks connected, there are three rows).
The first column of intArray contains the global block number of
a connected block, the second column contains the connector
number of that connected block. Rows and columns are indexed 0
to n-1. IntArray is declared as a dynamic array:
integer intArray[][2];

I

GetConHblocks
(integer blockNum-
ber, integer Conn,
integer intArray
[][2])

Similar to the GetConBlocks() function, above, but returns a list
of connected Hblocks. You can also start from a textblock or
anchor point if you know the block number (connector numbers
are zero for textblocks or anchor points).

I

GetConName (inte-
ger Block, integer
Conn)

Name of the connector. S

GetConnectedText-
Block (integer
Block, integer
Conn)

If block is positive, returns the block number of the named con-
nection (bypasses connector text blocks inside an Hblock and
goes out Hblock connector) connected to the connector conn of
block number block. If block is negative, stay inside the Hblock
(can return the connector text block inside of an Hblock). Use the
BlockName() function to retrieve the text of the named connec-
tion.

I

GetConnected-
Type (name conn-
Name)

Tells the type of connector connected to this connector. This is
useful for determining what is connected to a Universal connec-
tor. You can read the result by number or their associated Extend-
Sim constants:
13 Value (passes values)
14 Item (passes discrete event items)
15 Universal (other types of connectors can connect to it)
16 User-defined (can be programmed with custom behavior))
25 Flow (passes the effective rate)
308 Reliability (passes reliability information)
-1 Array (passes arrays of data)
309 Box (other purpose)

I

GetConnected-
Type2(integer
Block, integer
Conn)

This is similar to GetConnectedType(), except it refers to a global
block number and conn is the ith connector (0 to n-1).

I

GetConnection-
Color (integer
blockFrom, integer
conFrom, integer
blockTo, integer
conTo, integer col-
orArray[])

Fills the color array (three integer element) with the hue, satura-
tion, and brightness (HSV) values for the color of the connection
line. The color selector is on page 366.

Returns 0 for success or a negative value to indicate failure.

Note: As of ExtendSim 10, see instead GetConnectionEColor.

I

Block connection Description Return

262 Reference
Blocks and inter-block communications

Fu
nc

tio
ns

GetConnectionE-
Color (integer
blockFrom, integer
conFrom, integer
blockTo, integer
conTo)

Returns the value for the EColor of the specified connection line.
The EColor selector is on page 366.

I

GetConnectorPosi-
tion(integer block-
Number, integer
Conn, integer or
real Array[4])

Returns the position of the specified connector in pixels. Array
should be defined as a four-row integer or real array (integer
array[4]; or real array[4];), which on return from the
function call will be filled with the four values:
array[0] = top
array[1] = left
array[2] = bottom
array[3] = right

I

GetConnector-
Type(integer block-
Number, integer
Conn)

Returns the connector type of the specified connector.
13 Value (passes values)
14 Item (passes discrete event items)
15 Universal (other types of connectors can connect to it)
16 User-defined (can be programmed with custom behavior))
25 Flow (passes the effective rate)
308 Reliability (passes reliability information)
-1 Array (passes arrays of data)
309 Box (other purpose)

I

GetConNumber
(integer blockNum-
ber, string con-
NameStr)

Returns the Connector number of the connector of the specified
name.

I

GetEnclosingH-
blockCon(integer
blockNumber, inte-
ger conNum)

Used to find the connector index of the outer connector, given a
blockNumber and connector index inside the Hblock that is con-
nected to the Hblock’s internal connector text. Returns connector
number of the enclosing Hblock’s outer conector or -1 if not an
Hblock.

I

GetIndexedCon-
Value(integer
Conn)

Gets the connector’s current value. For blocks with many similar
connectors, use this in a loop instead of lots of statements like
“value[22]=con23In”. The connectors are indexed from 0; the
indexes are the same as the order of the connector names in the
connectors pane.

R

GetIndexedCon-
Value2(integer
Block, integer
Conn)

This is same as GetIndexedConValue(), except it refers to a global
block number.

R

GetIntermediate-
Blocks(integer
blockNum1, inte-
ger conn1, integer
blockNum2, inte-
ger conn2, array)

Returns number of connected dot blocks, text blocks, and connec-
tors between two blocks. Fills the array with information about
the blocks. See GetConBlocks function for definition of the array.
If blockNum2 is negative, returns above information between a
block (blockNum1) and the text block or connector text block
specified by blockNum2 (can be inside a hierarchical block).

I

Block connection Description Return

ModL Functions 263
Blocks and inter-block communications

Functions
GetNumCons(inte-
ger Block)

Number of connectors on the block. I

GetRightClicked-
Con()

This function returns the conn number of the last connector that
was right clicked on. This function should be called in the CON-
NECTORRIGHTCLICK message.

I

IsConVisible(inte-
ger blockNumber,
integer Conn)

Tests the specified connector for visibility. Returns TRUE if the
connector is visible, FALSE otherwise

I

MakeFeedback-
Block(feedBack)

If feedBack is TRUE, this function causes ExtendSim to terminate
the flow order search for this block. For multiple feedback cases,
this function prevents feedback from unexpectedly changing the
main flow simulation order. For an example, see the Feedback
block (Utilities library).

V

NodeGetCurrent-
Value(nodeIDIn-
dex)

Returns the currently set value of the connected block connectors.
See NodeGetIDIndex(), below.

R

NodeGetIDIn-
dex(blockNumber,
conNum)

Returns the nodeID for a connected network of block connectors.
Each connected network has a unique nodeID, which can change
when additional block connectors are connected or the model is
reopened. The nodeID is equivalent to an index of a real value
that holds the set value of the connected connectors.

I

SetConnection-
Color (integer
blockFrom, integer
conFrom, integer
blockTo, integer
conTo, integer hue,
integer saturation,
integer value)

Sets the color value of the specified connection line. See “Select
Color window” on page 366 for a description of the hue, satura-
tion, and value arguments. This function returns a TRUE if it suc-
ceeds and a FALSE if it fails.

Note: as of ExtendSim 10, see instead SetConnectionEColor

I

SetConnectionE-
Color (integer
blockFrom, integer
conFrom, integer
blockTo, integer
conTo, integer
EColorValue)

Sets the EColor value of the specified connection line. See
“Select Color window” on page 366. This function returns a
TRUE if it succeeds and a FALSE if it fails.

I

SetConnection-
Thickness (long
blockFrom, long
conFrom, long
blockTo, long
conTo, long value)

Sets the connection line thickness of the specified connection
line.

Returns a zero for success or a non zero value for an error.

I

Block connection Description Return

264 Reference
Blocks and inter-block communications

Fu
nc

tio
ns

Variable connectors
These functions are used with a block’s variable connectors, and to interface them with the
standard connector functions. Note that all of the single connector functions, above, also work.
Where conn is specified in the argument list, use ConArrayGetConNumber() to find the actual
connector number on the block from the array owner and nth connector in the array. For exam-
ple, to send a message out of a variable connector, call ConArrayGetConNumber() to get the
actual number of the connector (its index). Then call SendMsgTo…() and instead of using the
actual connector name (e.g. FlowIn), use V7’s new feature and use the connector number you
got from ConArrayGetConNumber().

These connector functions use a block number and the connector name as a string so you can
use them to control other blocks.

SetConVisibil-
ity(integer block-
Number, integer
conn, integer visi-
ble)

Sets the visibility flag on an individual connector. This function
can be used by block developers to hide and show connectors
based on choices the user has made in the dialog.

V

SetIndexedCon-
Value(integer conn,
real value)

Sets the connector’s numerical value. For blocks with many simi-
lar connectors, use this in a loop instead of lots of statements like
“con23Out=value[22]”. The connectors are indexed from 0; the
indexes are the same as the order of the connector names in the
connectors pane.

V

SetIndexedConVal-
ue2(integer block,
integer conn, real
value)

This is same as SetIndexedConValue(), except it refers to a global
block number.

V

SetSelectedCon-
nectionColor (inte-
ger hue, integer
saturation, integer
value)

Sets the color value of all selected connections. See “Select Color
window” on page 366 for a description of the hue, saturation and
value arguments. This function returns a TRUE if it succeeds, and
a FALSE if it fails.

I

SetSelectedCon-
nectionEColor
(integer EColor-
Value)

Sets the color value of all selected connections. See “Select Color
window” on page 366. This function returns a TRUE if it suc-
ceeds and a FALSE if it fails.

I

Variable connectors Description Return

ConArrayChanged-
WhichCon()

When the user drags to get more or less variable connectors, the
block gets a CONARRAYCHANGED message. This function
returns the owning connector name, as a string, that is being
dragged. Use this string in the ConArrayGetNumCons() function
to get the actual number of connectors during the dragging opera-
tion.

Block connection Description Return

ModL Functions 265
Blocks and inter-block communications

Functions
ConArrayGetCol-
lapsed(integer
blockNumber, string
origConName)

Returns True if the specified connector is collapsed, or false if it is
not.

I

ConArrayGetCon-
Number(blockNum-
ber,
origConNameStr,
nthConn)

Returns the connector number of the nth connector in this array.
OrigConNameStr is the owning connector name as a string. Nth-
Conn is the index of the array connector, starting from 0 for the
owning connector, to the number of connectors in this array
minus 1 for the last connector. The returned connector number
can be used in the other connector functions.

I

ConArrayGetDirec-
tion(blockNumber,
origConNameStr)

Returns the array direction as: 0 top, 1 right, 2 bottom, 3 left. If
not an array connector or an error, returns -1.

I

ConArrayGetNth-
Con(conn)

Given a block connector number, returns the member index of its
connector array (e.g. Given the block connector number of
ConIn[3] (could be 253), returns 3 meaning ConIn[3]). A -1
returned is an error.

I

ConArrayGetNth-
Con2(blocknum,
conn)

Same as ConArrayGetNthCon except it has an additional argu-
ment to specify the connector on a different block.

I

ConArrayGetNum-
Cons(blockNumber,
origConNameStr)

Returns the number of connectors in this array. If there are no
added array connectors, returns 1 for the original connector. Orig-
ConNameStr is the owning connector name as a string.

I

ConArrayGetOwn-
erCon(conn)

Given a block connector number, returns the block connector
number of the owning (originating) connector of a connector
array (e.g. Given the block connector number of ConIn[3] (could
be 253), returns the block connector number of ConIn[0]). A -1
returned is an error.

I

ConArrayGetTotal-
Cons(blockNumber)

Returns the total number of connectors in this block, including
array connectors. Used to prevent a dragged connector array from
adding too many connectors, causing the block to have more than
its limit of 255 connectors.

I

ConArrayGet-
Value(ConName,
nthConn)

Returns the value of the nth connector of the array owned by Con-
Name. ConName can be the name of the connector without
quotes or, new for V7, the index from 0 to numCons-1 as a con-
stant or variable (If the compiler detects a connector name, it
turns it into an index rather than evaluating its value).

R

ConArrayMsgFrom-
Con()

Returns the index of the connector that received the message in an
array. For example, if the Con1In message handler received a
message, calling this function at the beginning of the message
handler would return which connector in this array (from 0 to
num-1) received the message.

I

Variable connectors Description Return

266 Reference
Blocks and inter-block communications

Fu
nc

tio
ns

Connector tool tips
The System message ConnectorToolTip is sent to the block when the cursor hovers over a con-
nector. In that message handler, the connector tool tip functions (below) will allow you to cus-
tomize and access the tooltip that will appear.

ConArraySendMs-
gToAllCons(integer
origConName, inte-
ger nthConn)

Sends a connector message to all connectors connected to the
specified Connector. See SendMsgToAllCons.

V

ConArraySendMs-
gToInputs(integer
origConName, inte-
ger nthConn)

Sends a connector message to input connectors connected to the
specified Connector. See SendMsgToInputs.

V

ConArraySendMs-
gToOutputs(integer
origConName, inte-
ger nthConn)

Sends a connector message to output connectors connected to the
specified Connector. See SendMsgToOutputs.

V

ConArraySetCol-
lapsed(integer
blockNumber, string
origConName, inte-
ger trueOrFalse)

Sets the collapsed state on the specified connector. True will col-
lapse the connector, and False will uncollapse it.

V

ConArraySetNum-
Cons(blockNumber,
origConNameStr,
newNumCons, true-
ToIgnoreConnec-
tions)

Call this to set the number of connectors in a variable connector (a
1 for NewNumCons means to only keep the original connector).
If trueToIgnoreConnections is TRUE, the user can delete connec-
tors that have connections on them. If trueToIgnoreConnections is
FALSE, connectors that have connections on them will not be
deleted. This means that connections may prevent all of the
desired connectors from being deleted.

V

ConArraySet-
Value(ConName,
nthConn, value)

Sets the value of the nth connector of the array owned by Con-
Name. ConName can be the name of the connector without
quotes or, new for V7, the index from 0 to numCons-1 as a con-
stant or variable (If the compiler detects a connector name (not a
string), it turns it into an index rather than evaluating its value).

V

ConnectorLabels-
Get(blockNumber,
origConNum,
labelsStrArray[])

Call this to get the connector labels for single connectors or con-
nector arrays. labelsStrArray is any kind of string array (local,
static, or dynamic) that will contains all the labels used, one per
array element, which will allow up to n labels to be retrieved.
Each label is the ith connector in that connector array (0th for sin-
gle connectors). Returns the number of labels retrieved.

I

ConnectorLabels-
Set(blockNumber,
origConNum, num-
Labels, labelsStrAr-
ray[], position, hue,
saturation, value)

Call this to set the connector labels for single connectors or con-
nector arrays. labelsStrArray is any kind of string array (local,
static, or dynamic) containing all the labels needed, one per array
element. The labels can contain combinations of style information
such as <biur> for bold, italics, underlined, right adjusted. Posi-
tions are: 0 top, 1 right, 2 bottom, 3 left.

V

Variable connectors Description Return

ModL Functions 267
Blocks and inter-block communications

Functions
Dialog items
These functions work with a block’s dialog items and can be used to get and set values from
dialog items in other blocks, as well as change dialog item colors, create popup menus, hide
and show items, etc.

The functions in this list that include a global block number in their argument list can affect
any block in the model, including the calling block if its own block number (from the
MyBlockNumber() function) is used.

☞ Block controls (switch, slider, and meter) can be set or changed via the Get/SetDialogVariable
functions or poke/request functionality just the same way other types of blocks can. In the case
of the block meter, this is easy to recognize, as this control has a dialog, and therefore all the
pieces that you need for setting and getting the values are available. (Block number, and dialog
item name.) In the case of the slider and the switch it’s not so obvious, as these controls don’t
have dialogs, and therefore the dialog item name is not readily available. The names for these
dialog items follow the pattern of the meter, and therefore are as follows:

• Switch: value – This is whether the switch is on, or off, and just takes a value of 0, or 1.

• Slider: value – The current value of the slider. (The position of the thumb.)

• lower – The value of the lower bound of the slider.

• upper – The value of the upper bound of the slider.

☞ For additional formatting options, see “Formatting/interactivity using column and parameter
tags” on page 284. These facilitate both specialized formatting and mouse-interactivity with
parameters and data tables. Also see “Block data tables” on page 274, “Dynamic text items” on
page 283, and “Dynamic linking” on page 280.

Connector tool tips Description Return

ConnectorToolTip-
Get(integer block-
Number, integer
connectorIndex)

Gets the current string value of a connector tool tip from a block
and connector. This is useful if you want to show what block your
block is connected to, like the batch and select blocks.

S

ConnectorToolTi-
pSet(stringstring,
integer replace)

Allows you to set the string that will be displayed. If the replace
flag is true, the default string generated by ExtendSim will be
replaced, if it is false, this string will be appended to the default
string.

V

ConnectorToolTip-
Which()

When the ConnectorToolTip message is received, this function
returns the connector index of the connector the cursor is over.
This function is also used in the ConnectionMake message to
return the connector being connected.

I

Block dialog items Description Return

AppendPopupLa-
bels(string vari-
ableNameStr, string
theLabels)

This function appends the specified string onto the labels associ-
ated with the named popup menu. Popup menu labels can total up
to 5100 characters. This function is the method for adding menu
labels. VariableNameStr is the dialog item name as a string or in
quotes. See SetPopupLabels() below.

I

268 Reference
Blocks and inter-block communications

Fu
nc

tio
ns

CreatePopupMenu
(string string1,
string string2, inte-
ger initialSelection)

Creates a Popup at the last location the user clicked. This function
can be used in conjunction with the on dialogClick message han-
dler, the whichDialogItemClicked function, and the whichDT-
CellClicked function to create a popup menu that appears on a
dialog item, or data table cell in response to a user’s click. See the
code of the on dialogClick messagehandler of the Activity block
(Item library) for an example of how to use this function. Also see
PopupMenuArray(), below.

I

DialogHasEmbed-
dedObject (integer
blockNumber)

OBSOLETE AS OF ES10

Returns the dialog item name if the specified block contains any
embedded object dialog items in its dialog. This function will
return an empty string "" if there are no dialog items of this type
in the dialog.

S

DialogItemVisible
(integer blockNum-
ber, string variable-
NameStr, integer
clones)

Returns a true value if the specified dialog item is visible. If the
Clones value is a one (TRUE) this function checks to see if any
clones of the specified item are visible; otherwise it checks to see
if the primary item is visible.

I

DIGetID(integer
blockNumber,
string name)

Returns a dialog item ID number. This is used in the LINKCON-
TENT and LINKSTRUCTURE message handlers to help identify
which dialog item is getting the message.

I

DIGetName(inte-
ger blockNum,
integer dialogID)

 Returns the dialog item name from the item's dialogID S

DIMoveBy(integer
blockNumber,
string name, inte-
ger y, integer x)

Offsets the dialog item by the values of the y and x parameters. I

DIMoveTo(integer
blockNumber,
string name, inte-
ger top, integer
left)

Moves the specified dialog item to the y and x location specified
by the top and left variables.

I

DIMsgNum-
ber(integer block-
Number, string
name)

Returns the message number associated with a dialog item. Used
to send a dialog item message to a block.

I

DIPopupBut-
ton(integer block-
Number, string
name, integer
behavesAsButton)

Changes the behavior of the specified popup menu so that it will
not show the typical popup behavior when it is clicked, but will
instead behave like a button (Sending a message to the MODL
code, but not displaying a popup menu). This is used when the
block developer wants something that looks like a popup menu,
but has a button’s behavior.

I

Block dialog items Description Return

ModL Functions 269
Blocks and inter-block communications

Functions
DIPosition-
Get(integer block-
Number, string
name, integer array
position)

Gets the position of a dialog item specified by blockNumber, and
dialogItemName. The coordinates of the dialog items location
will be placed into the integer array position. Position needs to be
declared as:
integer array[4];

I

DIPosition-
Home(integer
blockNumber,
string name)

Resets the location of the dialog item back to the position and size
defined in the structure.

I

DIPositionSet(inte-
ger blockNumber,
string name, inte-
ger top, integer left,
integer bottom,
integer right)

Sets the position of the specified dialog item. This function also
includes the bottom and right arguments so you can change the
displayed size of the dialog item as well.

I

DisableDialogItem
(string variable-
NameStr, Integer
TRUEFALSE)

Disables, or enables the specified dialog item. V

DisableDialog-
Item2(integer
blockNumber,
string name, inte-
ger disableEnable)

Disables the specified Dialog Item. This function differs from the
DisableDialogItem() function in that it takes a block number
argument so you can disable a dialog item from a remote block.

I

DISetFocus(inte-
ger blockNumber,
string dialogItem-
Name)

Sets the focus on the specified dialog item. Returns 0 for success
or a negative value to indicate failure.

I

DISetParent
(blockNum, dialog-
ItemName, dialog-
ItemName)

DITitleGet(integer
blockNumber,
string dialogItem-
Name)

Returns the string title of the dialog item. For dialog items like
radio buttons and check boxes, the title is the text that appears on
the dialog. Use this function to retrieve the string if it has been set
by the function DITitleSet.

S

DITitleSet(integer
blockNumber,
string name, string
title)

Sets the title of a dialog item. Useful for Dialog items like radio
buttons and checkboxes where there is no other way to change the
title of the dialog item on the fly.

 If you use the ampersand character (&) in the label of a Radio
Button, Checkbox, or Frame dialog object you will need to enter
it twice (&&). Otherwise, the character will not show on the label.

I

Block dialog items Description Return

270 Reference
Blocks and inter-block communications

Fu
nc

tio
ns

GetDialogColors
(integer blockNum-
ber, integer HSV-
ColorArray[][3])

Copies all the color information from the dialog colors into the
color array. Used to save all the colors in a dialog in on dialog
close. The HSVColorArray is declared as a dynamic array:
integer HSVColorArray[][3];

I

GetDialogItem-
Color (integer
blockNumber,
string variable-
NameStr, integer
HSVColorAr-
ray[3])

Gets a color value associated with the dialog item.

For ExtendSim 10 or later, use the GetDialogItemEColor func-
tion.

I

GetDialogItemE-
Color (long block-
Name, string
dialogItemName)

Returns the EColor value of the color of the dialog item.

See “EColors” on page 365 for more information.

I

GetDialog-
ItemInfo(integer
blockNumber,
string variable-
NameStr, integer
which)

Returns TRUE if which qualities are true for the dialog item:
0: exist
1: hidden
2: enabled
3: display only
4: dialog item type (see below)
5: rows
6: columns
7: width
8: height
9: left
10: top
11: number of the dialog tab
Dialog item types (which = 4) are: 1: button, 2: checkbox, 3:
radiobutton, 4: meter, 5: parameter, 6: slider, 7: datatable, 8: edit-
text, 9: stattext, 12: switch, 13: stringtable, 14: plotpane, 16: pop-
upmenu, 17: embedobject (obsolete as of ES 10), 18: dynamic
text, 19: textframe, 20: calendar, 21: edittext31

I

GetDialogItemLa-
bel (integer block-
Number, string
variableNameStr,
integer n)

Returns the nth item label. For example, the nth item on a popup
menu or the nth column header in a data table. Returns an empty
string "" if the wrong type of item or no label is found.

S

Block dialog items Description Return

ModL Functions 271
Blocks and inter-block communications

Functions
GetDialo-
gNames(integer
block, string name-
Array[], integer
typeArray[])

Returns a list of the dialog variables in the specified block. Both
nameArray and typeArray are dynamic arrays. This function
returns the number of items in the target block’s dialog. For each
item in the block’s dialog, the string array will contain the name
of the dialog item and typeArray will contain the type of dialog
item. Values for typeArray are:

1:Button, 2:Check Box, 3:Radio Button, 4:Meter,
5:Parameter, 6:Slider, 7:Data Table, 8:Editable Text, 9:Static
Text, 12:Switch, 13:Text Table, 16:Popup Menu, 17:Embed-
ded Object (obsolete as of ES10), 18:Dynamic Text, 19:Text
Frame, 20:Calendar, and 21:Editable Text31 (31 characters)

GetDialogVariable
(integer blockNum-
ber, string variable-
NameStr, integer
row, integer col)

Returns the string value of the named variable (variableNameStr
in quotes or string). If the variable is a numeric parameter or a
control (such as a checkbox, slider, and so on), you would call
StringToReal to convert the returned string to a numeric value.
The variable can be any dialog item, static variable, global vari-
able, or dynamic array. Row and col apply to the cells of a data
table or text table. For Sliders or Meters, row must be zero and col
is 0 for the minimum, 1 for the maximum, and 2 for the value.
Row and col are ignored for other types of items.

☞ See also the GetStaticVariable function and the GetVariable-
Numeric function which should be faster for querying non-
string values.

S

GetDraggedClone-
List (integer block-
Nums[], string
variableNames[])

If you put this function call in a DRAGCLONETOBLOCK mes-
sage handler, it returns the number of clones dragged onto a
block. It also fills the dynamic array parameters with the block
numbers and variable names of the clones so you can get and set
their values with GetDialogVariable() and SetDialogVariable()
functions. This function is used in the Optimizer block (Value
library).

I

getStaticVari-
able(integer block-
Num, string
staticVariable-
Name, long row,
col)

Similar to GetDialogVariable, this function allows the user to
explicitly retrieve the value of a static variable.

GetDialogVariable will already do this, but GetDialogVariable
looks for any dialog variable with the specified name first.

The advantage of this function is speed. If you know whether you
are looking for a dialog variable or a static variable, you can call
the appropriate function and the function will not have to look for
the other kind of variable.

S

GetSystemColor
(integer whichPart,
integer which-
Color)

Gets the system colors so that they can be matched in a dialog.
Returns whichPart:
1:R, 2:G, 3:B, 4:H, 5:S, 6:V, 7:xxBBGGRR
whichColor:
0:Dialog BackGround, 1:ToolTipColor, 3:ScrollBar color

I

Block dialog items Description Return

272 Reference
Blocks and inter-block communications

Fu
nc

tio
ns

GetVariableNu-
meric (integer
blockNum, string
name, integer row,
integer col)

Similar to GetDialogVariable, but returns a numeric (real) value.
Should be faster for querying non-string variables.

R

HideDialogItem
(string variable-
NameStr, integer
hideShow)

Hides the named dialog item if hideShow is TRUE.
DialogNameStr is the dialog item name as a string or in quotes.
Returns 0 if it succeeds.

I

HideDialogItem2
(integer blockNum-
ber, string name,
integer hideShow)

Set the hidden/shown status of the item. See the HideDialog-
Item() function, with the addition of the block number argument,
which allows you to call the function from outside a block.
Returns 0 if it succeeds.

I

LastSetDialogVari-
ableString()

Returns the last string value that was set by SetDialogVariable.
This is useful if one is setting the value of a dialog item like a
popup menu, where the stored value is not the value that the
popup menu contains, but rather an additional string variable. In
this case, using the WhoInvoked() function, below, and this func-
tion you can have the code of the block change the correct string
for the dialog item, so the SetDialogVariable function will react as
the user expects, even though the data is not directly contained in
the dialog item.

S

OpenAndSelectDi-
alogItem (integer
blockNumber,
string variable-
NameStr)

Obsolete. Please see OpenAndSelectDialogItem2(), just below
this function. This version of the function did not have the row
and column indexes to select a cell in a data table.

V

OpenAndSelectDi-
alogItem2 (integer
blockNumber,
string variable-
NameStr, integer
row, integer col)

Opens the block's dialog, highlighting (selecting) the dialog item
corresponding to varName. If the item is a data table, row and col
are the indexes. Row and col are ignored if the item is not a data
table. If row and col are -1, selects the entire data table.

V

PopupCanceled() Returns whether or not the last popup menu was canceled. This
can be called immediately after a ‘flying’ popup menu has been
created, to determine if the user canceled the popup menu action
or not. Canceling would be clicking off the popup menu, without
making a selection.

I

PopupItem-
Parse(itemString)

This function parses the string that is passed in, and removes the
special characters that are used in certain dialog item contexts.
Specifically, it removes the formatting notation (e.g. <RB> for
right adjusted, bold), characters that are user for formatting, and
returns the stripped string.

S

Block dialog items Description Return

ModL Functions 273
Blocks and inter-block communications

Functions
PopupMenu-
AppendAr-
ray(string
dialogItemName,
stringArray array)

Appends the contents of the string array array to the popup menu
specified by dialogItemName.

I

PopupMenuArray
(string theArray[],
integer initial-
Value)

This function creates a flying popup menu based on the strings in
theArray, maximum 20 strings (5100 characters total). Other than
the fact that an array of strings is passed in instead of separate
strings, it’s exactly the same as the CreatePopupMenu function.

I

SetDialogColors
(integer blockNum-
ber, integer HSV-
ColorArray[][3])

Sets all the colors of the dialog items at once. Usually used with
the array from GetDialogColors(), above.

I

SetDialogItem-
Color (integer
blockNumber,
string variable-
NameStr, longAr-
ray HSVValues)

Sets a color value associated with the dialog item. Some items
will not redraw with this color, but instead have their color
defined by the operating system settings. See

Note: For ExtendSim 10 or later, use the SetDialogItemEColor
function. That function also lists which dialog items are and are
not able to be redrawn in the selected color.

V

SetDialogItemE-
Color (long block-
Name, string
dialogItemName,
long value)

Based on the EColor value that is passed in, sets the color of these
dialog items: parameter, popup menu, static text, editable text,
editable text 31, frame. Other dialog items (button, check box,
radio button, dynamic text, data table, text table) and dialog con-
trols are not impacted by the API but instead have their color
defined by the operating system settings.

See “EColors” on page 365 for more information.

I

SetDialogVariable
(integer blockNum-
ber, string variable-
NameStr, string
value, integer row,
integer col)

Sets the value of the named variable to the given numeric or string
value. The variable can be any dialog item, static variable, global
variable, or dynamic array. Row and col apply to the cells of a
data table or text table. For Sliders or Meters, row must be zero
and col is 0 for the minimum, 1 for the maximum, and 2 for the
value. Row and col are ignored for other types of items.

☞ See also SetVariableNumeric, which should be faster when
setting non-string values.

V

SetDialogVariable-
NoMsg(integer
blockNumber,
string variable-
NameStr, string
value, integer row,
integer col)

Same as SetDialogVariable function, but doesn’t send a dialog
item message to the block.

V

Block dialog items Description Return

274 Reference
Blocks and inter-block communications

Fu
nc

tio
ns

Block data tables
These functions allow ModL code to control the display of data in block dialog data tables. In
the following functions, DataTableName is the name of the dialog data table from which you
want to retrieve the selection; this name needs to be either a string variable or a string in
quotes.

☞ Starting in ExtendSim 7, you must access all data tables using their dialog item variable name.
Even dynamic data tables need to be accessed using the dialog variable name. This was not the
case in Extend 6 or earlier, but is a ModL compiler change that is necessary to allow data tables
to transparently access linked database or global array data, and to be variable column. Using
the dynamic array name will not allow linked or variable column data tables to work.

SetPopupLa-
bels(string vari-
ableNameStr, string
theLabels)

Sets the named popup menu items to theLabels string. The menu
items should be separated by semicolons (;). This function is sim-
ilar to SetDataTableLabels in that the changes made by this call
are not permanent within a block's dialog. Changes made by this
call are permanent, however, for cloned copies of popup labels.
VariableNameStr is the dialog item name as a string or in quotes.
See AppendPopupLablels() above to add more labels.

V

SetVariableNu-
meric (integer
blockNum, string
name, real value,
integer row, inte-
ger col, integer
msg)

Similar to SetDialogVariable, except it takes a numeric (real)
value. Should be faster when setting non-string values

V

SetVisibilityMoni-
toring (integer
blockNumber,
string variable-
NameStr, integer
monitor)

Turns on monitoring of the visibility of a dialog item. This sets a
flag on a dialog item that makes it send a message to the block
code (DIALOGITEMREFRESH) when the dialog item (Or one
of its clones) becomes visible. This is useful if you have a dialog
item whose redraw includes some time-consuming calculation
and you want to be able to turn off the calculation unless the dia-
log item is visible.

I

WhichDialogItem() Returns the name of the current dialog item in certain contexts.
This function can be used in the CELLACCEPT, DATATA-
BLERESIZE, DATATABLESCROLLED, DIALOGITEMTOOL-
TIP, DIALOGCLICK, or dialog item name message handlers.

I

WhoInvoked() Determines the source of the invocation of the current message
handler. Currently implemented in two cases:

1) Called in a dialog item message handler, this function will
return a 1 if the message handler was invoked from SetDialog-
Variable, or a 0 if the handler was invoked through user interac-
tion.
2) Called in OpenModel, this function will return a 2 if the Open-
Model handler is being executed from the placement of an
Hblock, or a 0 if it's being called because the model containing
the block is being opened.

I

Block dialog items Description Return

ModL Functions 275
Blocks and inter-block communications

Functions
☞ If you need large data tables, see the Dynamic data table functions below.

Variable column data tables
The DynamicDatatableVariableColumns function, and the supporting functions that have been
built for it, allow the creation and use of a data table with both variable rows and variable col-
umns. The starting point is a call to the DynamicDatatableVariableColumns function which
will link a dynamic array to a data table, in much the same way as the DynamicDatatable func-
tion, with the addition of allowing the user to define the number of columns that the table sup-
ports.

Each time you want to change the number of columns in the data table, you call Dynamic-
DataTableVariableColumns again with the new number of columns. The internal implementa-
tion of this construct is basically that the link between the data table and the dynamic array
contains the information about the number of columns. This means that you cannot use the
dynamic array variable name to refer to the data, as the dynamic array still has the original
definition of how many columns it has. To reference your data with the variable number of col-
umns, you need to refer to it using the data table variable name, as the data table will use the
information in the link to determine how many columns it has. See “OLE/COM (Windows
only)” on page 232 for OLE functions that fill variable column data tables.

Dynamic data table resizing
The following functions are designed to be support functions for dynamic data table resize
functionality. This functionality is implemented partially through block code, and partially
through the ExtendSim Application. The basic functionality, as seen on dialog boxes in both
the Item and Value libraries, is a button on the lower right hand corner of the data table that can
be clicked popping up a dialog that allows the user to specify the resizing options for the data
table. The application level implementation is the drawing and behavior of the button on the
data table. The presence or absence of the button can be controlled from the block code via the
DTGrowButton function described below. When the button is clicked, the block will receive a
DATATABLERESIZE message. The code of this message handler is where the majority of the
block code controlling the resizing will be executed. Normally the code in this message han-
dler will first be a call to NumericParameter, or NumericParameter2 to determine the desired
resizing of the table, followed by the necessary code to implement the resizing. See the Vari-
able Columns data table section above. See the blocks in the Value and Item libraries for
examples of this code.

Data table linking
Data tables can be linked to global arrays or an ExtendSim database by the user clicking the
Link button at the lower left corner, or using the linking functions below. When the data or
structure that they are linked to changes, LINKCONTENT or LINKSTRUCTURE messages
are sent to individual blocks that are subscribed to an ExtendSim database or global array. See
“Dynamic linking” on page 280.

☞ Starting in ExtendSim V, you must access all data tables using their dialog item variable name.
Even dynamic data tables need to be accessed using the dialog variable name. This was not the
case in Extend 6 or earlier, but is a ModL compiler change that is necessary to allow data tables
to transparently access linked database or global array data, and to be variable column. Using
the dynamic array name will not allow linked or variable column data tables to work.

276 Reference
Blocks and inter-block communications

Fu
nc

tio
ns

Formatting individual columns
For additional formatting options, see “Formatting/interactivity using column and parameter
tags” on page 284. These facilitate both specialized formatting and mouse-interactivity with
data tables.

Block data tables Description Return

AppendDataTable-
Labels (string
DTname, string
theLabels)

Appends another string of labels to the data table labels list of the
data table DTname.

I

DisableDTTabbing
(integer blockNum-
ber, string
DTname, integer
disableDT)

Disables or enables the tab key functionality for the specified data
table.

I

DTGrowButton
(integer blockNum-
ber, string
DTname, integer
showButton)

Shows/hides the resize/grow button on the specified data table.
This button is hidden by default, as block code is necessary for the
resizing functionality.

I

DTHasDDELink
(integer blockNum-
ber, string
DTname)

Returns true if the specified data table has an IPC advise link, or a
Paste link, associated with it.

I

DTPaneFixed
(integer blockNum-
ber, string name,
integer fixed)

Changes the behavior of the specified data table, setting or unset-
ting its internal ‘fixed’ flag. By default this flag is off, but if it is
turned on, the data table will retain its width when the number of
columns in the data is reduced, rather than resizing smaller, as it
can do in the default case.

I

DTResizeToCols
(integer block-
Num, string
DTName)

Forces the data table to resize to the width of the resized columns.
This function will not resize the columns, but instead will resize
the data table object to the width of the current column size.
Returns a zero for success or a non zero value for an error.

I

DTRowFontSize
(integer block-
Num, string
DTName)

Returns the size used for the font within the data table. This will
change if the height is modified either within the structure of the
block or via the DTRowHeightSet function.

R

DTRowHeightSet
(integer block-
Num, string
DTName, integer
height)

Sets the height of the rows for a data table object. This function
overrides the row height value set in the structure for a data table.

All the rows of the data table will be set to the same height.

Returns a zero for success, or a non zero value for an error.

I

DTToolTi-
pSet(string caption-
String)

In conjunction with the DataTableHover message handler dis-
cussed on page 199, this function allows you to show custom tool
tips when the cursor hovers over a data table.

V

ModL Functions 277
Blocks and inter-block communications

Functions
DynamicDataT-
able(integer block-
Number, string
dataTableName,
array dynamicAr-
rayName)

This function attaches a dynamic array to a dialog data table. This
allows dynamically resizable data tables, and the ability to change
what data is displayed in a data table without recopying the data.
You can attach the array to the data table at any time, but it will
need to be reattached (dynamicDataTable will need to be called)
each time that the dynamic array is resized.

I

DynamicDataT-
able2(integer
blockNumber,
string dataTable-
Name, string array-
Name)

Has the same behavior as the dynamicDataTable function, with
the exception that it can be called from an outside block, and
doesn't have to be called from within the block that contains the
array. Note that the arrayName argument is the name of the array
as a string, not the array name itself.

I

DynamicDataT-
ableVariableCol-
umns(integer
blockNumber,
string dataTable-
Name, array y, inte-
ger rows, integer
columns)

Similar to DynamicDatatable, with the addition of adding the
specification of how many rows and columns the resulting data
table will have. It will correct the data to work with a new number
of columns. You must use the variable name of the data table, not
the dynamic array, to access the data.

I

DynamicDataT-
ableVariableCol-
umns2 (integer
blockNumber,
string dataTable-
Name, string array-
Name, integer
rows, integer col-
umns)

Has the same behavior as the dynamicDataTableVariableColumns
function, with the exception that it can be called from an outside
block, and doesn't have to be called from within the block that
contains the array. Note that the arrayName argument is the name
of the array as a string, not the array name itself.

I

GetDataTableSe-
lection(string
DataTableName,
integer integerAr-
ray)

IntegerArray is a four element array declared as integer inte-
gerArray[4]. On return from the function, integerArray will
contain the selection information in the following format:
integerArray[0] -- top row
integerArray[1] -- bottom row
integerArray[2] -- left column
integerArray[3] -- right column
The integer value returned from the function will be the same as
integerArray[0] if there is a valid selection. The value will be a -2
if there is no correct selection, a -4 if no selection was made or if
the block’s dialog is closed, and a -1 if an error of some other type
occurred (usually an invalid DataTableName).

I

GetDTOffset (inte-
ger blockNumber,
string DTname,
integer clone, inte-
ger which)

Returns the offset (how many rows or columns the table has been
scrolled) for a data table. If clone is true, it returns the value for
the first clone of the item found. For which, it returns:
0: irst column
1: first row
2: last column
3: last row

I

Block data tables Description Return

278 Reference
Blocks and inter-block communications

Fu
nc

tio
ns

RefreshDatatable-
Cells(integer
blockNumber,
string dataTable-
Name, integer star-
tRow, integer
startCol, integer
endRow, integer
endCol)

This function will redraw the specific cells of the named data
table. This needs to be used in conjunction with the dynamic data
tables defined by the function above, as they will not automati-
cally update the data displayed during a simulation run when the
dynamic array is modified

I

ResizeDTDur-
ingRead(string
name, integer old-
Rows, integer old-
Cols)

This function will allow you to inform ExtendSim that a data
table is now a different size than it was in an earlier version. This
should only be called in the BlockRead message handler, and is
most useful when used with the GetFileReadVersion function to
inform ExtendSim when a Data Table has been redefined. (See
GetFileReadVersion for more information.) OldRows and Old-
Cols will contain the original size of the data table.

I

ScrollDTTo(inte-
ger blockNumber,
string name, integer
row, integer col)

Scrolls the named data table to the indicated row and column. (0
successful, 1 failed)

I

SetDataTable-
CornerLabel (string
datatablename,
string15 label)

Sets a label to be displayed in the upper left-hand corner of the
data table. This area of the table is blank by default. The function
will return a zero if the call succeeded, and a value of one if there
was an error (most likely an incorrect DataTableName).

I

SetDataTableLa-
bels (string DataT-
ableName, string
LabelString)

The LabelString variable will be used as a replacement string for
the column header string of the specified data table. The format
for this string is the same as that used in the dialog editor when
creating or modifying a data table dialog item. The function will
return a zero if the call succeeded, and a value of one if there was
an error (most likely an incorrect DataTableName). Note: The
change made by this call is not a permanent change within the
block’s dialog, you will need to retain the new string in a variable
in the block, and call this function multiple times. See the code of
the Information block (Item library) as an example of using this
function. The change made by this call is permanent for clones of
data tables.

I

SetDataTableSelec-
tion(name, star-
tRow, startCol,
endRow, endCol,
editCell)

This function selects the cells in the named data table or text table.
If editCell is TRUE, this function sets up the first cell for entering
data.

V

Block data tables Description Return

ModL Functions 279
Blocks and inter-block communications

Functions
Dynamic linking
Dynamic linking creates a link between a dialog item (data table or parameter) and a data
source (ExtendSim database or global array). This is a very powerful feature because the links
are live and dynamic—they update instantly when there is a change in the data source.

The ExtendSim user interface allows the modeler to create dynamic links just by right-clicking
on a parameter or clicking the Link button at the lower left of a data table. In addition, Extend-
Sim provides functions, described below, that allow control over how the links are to be cre-
ated and controlled.

For database linking using scripting see the DBDatatable function on page 338 and the DBPa-
rameter function on page 340. For global array linking using scripting, see the GADatatable
function on page 344 and the GAParameter function on page 347. Also see “Database func-
tions” on page 318 and “Global arrays” on page 342.

To simply register a block so that it will be notified if there was a database change, see “Regis-
tered blocks” on page 113 and “Linking and notification” on page 337.

SetDTColumn-
Width(integer
blockNumber,
string name, integer
column, integer
width, integer
doClones)

Sets the specified column in the named data table to the specified
width. Please note that column number for this function is zero
based starting from the title column, to allow reference to the title
column. This means that the first column with data in it is column
one, unlike most other functions that reference data table col-
umns.

I

SetDTRowStart
(integer blockNum-
ber, string name,
integer rowStart)

Sets the named data table to have its row numbers start at the indi-
cated value. (i.e the first row number, normally zero, will be row-
Start) (0 successful, 1 failed)

I

SortArrayVariable-
Columns(short
hNum, array datat-
ableName, integer
numCols, integer
numRowsToSort,
integer keyColumn,
integer increase,
integer sortStrin-
gAsNumbers)

Sorts the specified array, using the numCols argument to define
how many columns the array to be sorted contains.

I

StopDataTableEdit-
ing()

Immediately stops the currently selected data table from being
edited. A common use would be to call this function in response
to a click on the data table, preventing the user from editing the
cell but allowing selection to occur.

V

WhichDTCell(inte-
ger rowCol)

Returns the Row or Column that is currently active. If rowCol is
TRUE this function returns the Column, otherwise it returns the
row. This function can be called in the CELLACCEPT, DIALOG-
ITEMTOOLTIP, DIALOGCLICK, or dialog item name message
handlers.

I

Block data tables Description Return

280 Reference
Blocks and inter-block communications

Fu
nc

tio
ns

☞ Starting in ExtendSim 7, you must access all data tables using their dialog item variable name.
Even dynamic data tables need to be accessed using the dialog variable name. This was not the
case in Extend 6 or earlier, but is a ModL compiler change that is necessary to allow data tables
to transparently access linked database or global array data, and to be variable column. Using
the dynamic array name will not allow linked or variable column data tables to work.

Dynamic linking Description Return

DBDatatable(integer
blockNumber, string
datatableName, inte-
ger databaseIndex,
integer tableIndex,
integer showField-
Names)

Link a data table with an ExtendSim database table.

NOTE: This is the same function as listed on “Linking and
notification” on page 337; we just copied it here for your
convenience DK.

I

DBParameter(inte-
ger blockNumber,
string dialogItem-
Name, integer data-
baseIndex, integer
tableIndex, integer
fieldIndex, integer
recordIndex)

Link a parameter with an ExtendSim database cell.

NOTE: This is the same function as listed on “Linking and
notification” on page 337; we just copied it here for your
convenience DK.

I

DILinkClear(integer
blockNumber, string
dialogItemName)

Clears a link from the specified link if it has one. I

DILinkInfo(integer
blockN, string dia-
logItemName, inte-
ger which)

Returns linking information about the specified dialog item.
Values for which:
0 : Link type returns 0: no link, 1: global array, 2: Database,
3: dynamic array
1: DB Index returns the index of the database for the link (if
it's a DB link)
2: table/array index returns the value of the index
3: returns column index
4: returns row index
5: user link: if the link was created by a user vs. a function
7: returns dialogItemID to identify a dialog item. See
DIGetID function description.
10: ReadOnly: return value is true/false

I

DILinkingDis-
abled(integer
blockN, string dia-
logItemName, inte-
ger disableIfTrue)

This function controls if the specified data table or parame-
ter will allow linking. By default each data table has a link
button in its lower left-hand corner and calling this function
will allow the block developer to hide this button. This
should have the added effect of disabling the link menu
command. Return a negative error number or zero if no
error.

I

ModL Functions 281
Blocks and inter-block communications

Functions
DILinkModify(inte-
ger blockNumber,
string dialogItem,
integer which, inte-
ger value)

This function is used to modify a linked dialog item’s Link
dialog flags. The flags control whether the block receives
messages when the values of the linked data change. Mes-
sages are sent to the LinkContent message handler and the
dialog’s message handler. The which argument specifies
which flag will be set; value specifies what the value of the
flag should be set to. which:
0: ReadOnly. Set value to TRUE to make a link ‘read-only’
1: InitMsgs. Set value TRUE so link will get messages
during INITSIM.
2: SimMsgs. Set value TRUE so link will get messages
during SIMULATE.
3: FinalMsgs. Set value TRUE so link will get messages
during FINALCALC.
4: AnyMsgs. This is only available by code; it has no corre-
sponding checkbox in the Link dialog. By default this is set
to True, so you get LinkContent messages when the linked
data changes. If set to False, the block that is being linked to
will not get any messages at all. Caution: the setting True/
False is saved with the model so use this call carefully as the
application will not reset to True each time the model is
opened.
5: UserLink. Set value TRUE so link was created by the
user interface (TRUE), or a MODL function call (FALSE).
11: ShowFieldNames Set value TRUE so link uses the field
names for the header rows in the data table.

I

DILinkMsgs(integer
sendMsgs)

Turns on and off the sending of messages associated with
linking. This function should be used carefully, and should
always be turned back on when the code has completed.
This will disable all messages sent to any blocks that have
dialog items linked to any data source, and many blocks will
function incorrectly if these messages are disabled. The pri-
mary reason to use this function would be if you are making
many changes to a data source, and don’t want things to be
overwhelmed with too many messages.

V

DILink-
SendMsgs(integer
dataSourceType,
integer DBIndex,
integer tableIndex,
integer fieldIndex,
integer recordIndex)

Sends update messages to all the dialog items linked to this
data source. In the Global Array case, the DBIndex is
ignored. If you want to send messages to all dialog items
linked to a whole table, pass in –1 for the fieldIndex, and –1
for the rowIndex.
dataSourceType:
1: Global Array
2: Database

I

Dynamic linking Description Return

282 Reference
Blocks and inter-block communications

Fu
nc

tio
ns

Dynamic text items
Dynamic Text items are a new type of dialog item that supports up to 32000 characters of text.
They are useful where the 255 character limitation of editable text items is a hindrance. The
text is stored in a string dynamic array, declared:

string dynTextArray[];

DILinkUp-
dateInfo(integer
which)

Should be called in the LinkStructure, LinkContent, or dia-
log item name message handlers. Returns information about
which link changed and what the change was. Values for
which:
0:Link type (returns 0:no link, 1:global array, 2:database, 3:
dynamic array)
1:DB Index returns the index of the database for the link (if
it's a DB link)
2:table/array index returns the value of the index
3:returns column index
4:returns row index
5:what changed (see below for values)
6:number of rows or columns changed
7:dialog item ID
8: the block number of the block that changed the data
9: Returns True (1) if link messages are enabled; otherwise
returns False (0).
10:returns the index of the database being imported or 0 if
no database is being imported.

A which value of 5 (what changed) returns 1:data changed,
2:field inserted, 3:field deleted, 4:field renamed, 5:record
inserted, 6:record deleted, 7:table or GA deleted, 8:table or
GA renamed, 9:DB deleted, 10:DB renamed, 11:link cre-
ated, 12:link modified, 13:link cleared, 14:DB replaced via
DBDatabaseImport(), 15:GA resized, 16:table inserted,
17:field properties modified, 18:field moved, 19:table
sorted, 20:Table Properties modified, 21:record ID modi-
fied.

I

DILinkUpdat-
eString(integer
which)

This companion function to DILinkUpdateInfo returns a
string containing information about a change to the link sta-
tus. This can be called in the same message handlers as
DILinkUpdateInfo.
which values:
0 : DialogItemName The name of the dialog item associ-
ated with the link.
1 : Changed Name. If whatChanged is field or table
renamed, for example, the changed name string will be the
old name of the field or table.

S

DTHideLinkBut-
ton(integer blockN,
string DTname, inte-
ger hideButton)

This function is still available however, there is one that is
more complete. See DILinkingDisabled(), above, that
works for both data tables and parameters. See that function
for a description.

I

Dynamic linking Description Return

ModL Functions 283
Blocks and inter-block communications

Functions
For an example of how to use dynamic text items, look at the Equation block (Value library).

Formatting/interactivity using column and parameter tags
Column tag and Parameter tag functions provide a great amount of control over the display and
formatting of certain dialog items. Column and parameter tags allow you to put strings, check-
boxes, buttons, dates, popup menus, the infinity character, and so forth into a parameter field or
the cell of a data table. They can also be used to hide or disable a column or parameter.

Dynamic Text Description Return

DynamicTextAr-
rayNumber (string
dynamicTextAr-
ray[])

Returns the dynamic array index. Used to link the Dynamic Text
Item to the correct dynamic array. For example:

myDTextItem = DynamicTextArrayNumber(dyn-
TextArray);

where dynTextArray is declared as above.

I

DynamicTextIs-
Dirty (integer
blockNumber,
string name)

Returns a true if the text item is dirty (the user has typed text into
the dynamic text item or changed its contents in some way).

I

DynamicTextSet-
Dirty (integer
blockNumber,
string variable-
NameStr, integer
dirty)

Sets the dirty flag to ‘dirty’ (TRUE or FALSE) on the specified
dynamic text item. Useful to set dirty if the block performs a text
changing operation outside of the user editing the text.

I

StrFindDynamic
(string dynamic-
TextArray[], string
findStr, integer cas-
eSens, integer diac-
Sens, integer
wholeWords)

Similar to the StrFind() function, except it searches a dynamic
text array.

I

StrFindDynamic-
StartPoint (string
dynamicTextAr-
ray[], string findStr,
integer caseSens,
integer diacSens,
integer whole-
Words, integer
startPoint)

Similar to the StrFind() function, except it searches a dynamic
text array. startPoint is the starting character index to search from,
starting at zero.

I

StrReplaceDy-
namic (string
dynamicTextAr-
ray[], integer start,
integer numChars,
string replaceStr)

Similar to the StrReplace function, except it replaces text in a
dynamic text array.

284 Reference
Blocks and inter-block communications

Fu
nc

tio
ns

The data table and parameter dialog items check which column tags have been set, and draw
their data, or respond to clicks appropriately.

☞ The Data Init block (Value library) is an example of using column tags.

The basic mechanism for setting a param tag, or column tag, is to call either the DIParam-
TagSet or the DTColumnTagSet function. Column and param tags are not saved when the
model is closed, so the tags are commonly reset in the OpenDialog and CloneInit message han-
dlers.

If you set a column tag that has a value higher than 99, it will be stored as a HeaderTag. Head-
erTags are stored independently from column tags, and will store a behavior for the header for
that column, not for the individual cells in the table. (See Header tags below for more informa-
tion.)

In the data table case, column values start at zero, with zero referring to the first column after
the row column. Each column has four pieces of information that can be associated with it:
Two integer values, the tag itself, a tagOption value, and two string values, the TagString1 and
TagString2. ParamTags for parameters have just one number, the paramTag, and the same two
strings.

The primary tag sets the default behavior for the column/parameter. The TagOption value is
used for specific purposes by some of the tags below, and can also be used to disable the col-
umn using the TAGDISABLE value.

The TagString1 value is the lookup name in the case of string Lookup table columns, for other
tags it’s used as needed. TagString2 is used by some tags. For any tag that displays a string,
except the SL tags and the DBFIELD tag, putting a string into the string1, or string2 field will
prepend the string from string1, and/or append the string from string2.

The column/parameter tags are listed below. The symbol name definitions can be found in the
include file “\Extensions\Includes\ColumnTags v10.h”.

Tag name Value Description

Tag_Block_Label 60 Tags the column/parameter as containing block labels.

Tag_Block_La-
bel_Name

62 If the block has a block label it will show that, but if there is no block
label, shows the block name (e.g. Activity)

Tag_Block_Name 61 Tags the column/parameter as containing block names.

Tag_Button 21 Tags the column/parameter as containing push buttons. To hide the
button in a specific cell, set that data table cell to BLANK.

Tag_CheckBox 20 Tags the column/parameter as containing checkboxes. BLANK is
equivalent to FALSE (unchecked).

Tag_Color 24 Tags the column as containing colored cells. The value in the row of
the column will be used as an eColor value to set the color of the each
cell. (Alpha channel will be ignored and set to 255.)

ModL Functions 285
Blocks and inter-block communications

Functions
Tag_Condition-
al_Popup

42 Tags the column as containing popups conditionally. This functional-
ity is very specific. Each cell/row in the column will show a popup tri-
angle under the following condition: The cell in the column to the left
of the column specified must contain a string value that matches the
stringTag that was passed in when the coltag was set. If the string
value in the cell to the left of a given cell does not contain the string
value, that cell will default to a normal editable cell. This functionality
is used in the Item Equation block.

Tag_Condition-
al_Popup_Array

43 Tags the column as containing popups conditionally. This functional-
ity is very specific. Each cell/row in the column will show a popup tri-
angle under the following condition: The cell in the dynamic array
specified by the tagOption parameter must contain a string value that
matches the stringTag that was passed in when the coltag was set. If
the string value in the dynamic array cell does not match the string
value, that cell will default to a normal editable cell. This functionality
is used in the Item Equation block. This functionality is the same as
the TAG_Conditional_Popup function except that the comparison
strings are kept in a dynamic Array instead of in the adjacent column.

Tag_Date 50 Tags the column/parameter as containing date values.

Tag_Date_Con-
vert

51 Tags the column as containing simulation time values that should be
represented as date values. The conversion is done in the application.

Tag_DB_Address 32 Tags the column as containing DB Addresses, but with no popup menu
so the block designer can customize the DB part selection process.

Tag_DB_Ad-
dress_Pop

31 Tags the column as containing DB Addresses. A popup menu appears
when the user clicks the data table cell, enabling selection of the DB
parts.

Tag_DB_Field 30 Tags the column as containing data from a specified database table
field. TagOption should contain the DBIndex, String1, the tablename,
and string2 the fieldname.

Tag_Disable 99 Tags the column/parameter as being disabled. Note that this tag can be
used in Tag Option to mark a tagged column as disabled as well as the
other meaning of the tag in the column tag.

Tag_-
Head_Tag_Popup

100 Tags the column/parameter header as being a popup menu. Note: this
does not change the behavior of clicking on the cell, just the appear-
ance of the cell. The popup behavior needs to be implemented in block
code.

Tag_Hide 98 Tags the column/parameter as being hidden.

Tag name Value Description

286 Reference
Blocks and inter-block communications

Fu
nc

tio
ns

Tag_Infinity 26 Tags the parameter as containing a checkbox that changes the value to
a novalue to represent infinity. If ParamStr and paramStr2 are empty,
the behavior is that the dialog item will display the word infinite, and
an infinity symbol will be drawn near the checkbox. If there is a string
in paramStr, it will be displayed instead of the word infinity, if there is
a string in paramStr2, it toggles whether or not the infinity symbol is
drawn, so if you want to change the meaning of novalue to something
else, just put the meaning in paramStr, and an ‘x’. or some thing like
that in paramStr2.

Tag_No_-
Head_Tag

101 Reverts the header tag back to zero, meaning no defined behavior.

Tag_Nothing 0 Tags the column/Parameter as not having a tag. (Note that you can use
this with the TagOption or the TagStrings to disable the column, or
append/prepend text to the column.)

Tag_Number 71 Used in a string table to format numbers correctly to fit the cell.

Tag_Percent 70 Tags the column/parameter as containing percents. Only numerical
parameters support this tag.

Tag_Popup 40 Tags the column/parameter as containing popupMenus. Note: this does
not change the behavior of clicking on the cells, just the appearance of
the cells. The popup behavior needs to be implemented in block code.

Tag_Precision 72 Specifies the precision of the numbers displayed in the column. The
coltag2 value specified will determine how many characters of preci-
sion with which to display the numbers in the cells.

Tag_Progress 23 Tags the column as containing progress bars. The value of the progress
bar will show using the content of the row to display a range from 0 to
100. If column tag 2 contains a valid eColor value, that color will be
used to render the progress bars.

Tag_Radio 22 Tags the column/parameter as containing radio buttons.

Tag_SL 10 Tags the column/parameter as containing string lookup values.

Tag_SL_Append 17 Tags the column as containing string lookup values, appended with the
string in tagSstring2.

Tag_SL_Pop 11 Tags the column/parameter as containing string lookup values that
function as popup menus when clicked.

Tag_SL_Prepend 16 Tags the column as containing string lookup values, prepended with
the string in tagString2.

Tag_Str_Flag 80 Tags the column as a numeric column where the colstring will be dis-
played when the value in a cell is a negative one. Otherwise, the col-
umn will be treated as a standard numeric data column.

Tag_Str_Flag_-
Noed

81 The same as Tag_Str_Flag, except it doesn’t allow editing.

Tag name Value Description

ModL Functions 287
Blocks and inter-block communications

Functions
Column/parameter tag functions
Here is a list of the functions used to implement column/parameter tags. The tag values are
listed in the table above:

Dialog item tool tips
The System message DialogItemToolTip is sent to the block when the cursor hovers over a dia-
log item. In that message handler, the dialog item tool tip functions (below) will allow you to
customize and accesss the tooltip that will appear.

Column/parameter tags Description Return

DIParamTagGet(inte-
ger blockNumber, string
dialogItemName)

Returns the ParamTag for the specified parameter. I

DIParamTagSet(integer
blockNumber, string
dialogItemName, inte-
ger tag, integer tag2,
string tagString, string
tagString2)

Sets the specified Parameter tag to the specified value. Values
for the tag value are from the ColTag/ParamTag Values table
above. The tagString value is currently only used for the string
lookup tags, in which case it is the lookup name.

I

DIParamTagString-
Get(integer blockNum-
ber, string
dialogItemName, inte-
ger which)

Returns a TagString for the specified parameter. Which should
be 0 for the first string and 1 for the second string.

S

DTColumnTagGet(inte-
ger blockNumber, string
DTname, integer col,
integer which)

Returns the column tag for the specified column. Which value
is:
0: columnTag 1
1: columnTag 2
2: the header tag

I

DTColumnTagSet(inte-
ger blockNumber, string
DTname, integer col,
integer tag, integer
tagOption, string tag-
String, string tag-
String2)

Sets the specified column tag to the specified value. Col val-
ues start at zero, with zero referring to the first column after
the row column. Values for the tag value are from the ColTag/
ParamTag Values table above. The tagString value is the
lookup table name in the case of string Lookup table columns,
for other tags it’s used as needed. For many types of tags it’s
not used. TagString2 is used by some tags as well, for many
it’s not used, and can just be set to “” the empty string. TagOp-
tion specifies an option for the tag. Some tags use this option
for specific purposes. Using the flag for TAGDISABLE in
this argument will disable most column tags. For any tag that
displays a string, except the SL tags and the DBFIELD tag,
putting a string into the string1, or string2 field will prepend
the string from string1, and/or append the string from string2.

I

DTColumnTagString-
Get(integer blockNum-
ber, string DTname,
integer col, integer
which)

Returns a tagString value for the specified column. Which
should be 0 for the first string and 1 for the second string.

S

288 Reference
Blocks and inter-block communications

Fu
nc

tio
ns

The functions WhichDialogItem(), and whichDTCell() can be used with this functionality to
find which dialog item the cursor is currently hovering over.

Block dialogs (opening and closing)
These functions allow the ModL code to control the opening and closing of the block’s dialog.

Dialog item tool tips Description Return

DIToolTipSet(string-
string, integer replace)

Allows you to set the string that will be displayed. If the replace
flag is true, the default tool tip string will be replaced, if it is
false, the default string will be appended to.

V

Block dialogs Description Return

BlockDialogIsO-
pen(integer block-
Number)

Returns TRUE if the block dialog it open. Returns FALSE other-
wise.

I

CloseBlockDialog-
Box(i)

Closes the dialog for any block, where i is the global block num-
ber. See OpenBlockDialogBox, below.

V

CloseDialogBox() Closes this block’s dialog from within the ModL code. Put this in
the EndSim message handler if you want an open dialog to close
at the end of the simulation. See OpenDialogBox, below.

NOTE: to prevent the dialog from closing conditionally, use an
Abort statement in the DIALOGCLOSE message handler.

V

CloseEnclosing-
Hblock()

Closes the hierarchical block in which this block resides, if any. V

CloseEnclosing-
Hblock2(integer
blockNumber)

This is same as CloseEnclosingHblock(), except it refers to a
global block number.

V

DialogGet-
Size(integer the-
BlockNumber,
integer which)

Gets the width or Height of an open dialog. (Returns the width or
height of the Hblock model window if the block number refers to
an Hblock.) The ‘which’ argument takes the following values:
0: width
1: height.

I

Dialog-
MoveTo(integer
blockNumber, inte-
ger x, integer y)

Moves the dialog box to the specified x and y pixel location. If the
block is an Hblock, this will move the Hblock submodel window.

I

DialogSetSize(inte-
ger blockNumber,
integer w, integer
h)

Resizes the dialog box of the block. Only works if the dialog is
open. If the block is an Hblock, this will resize the Hblock sub-
model window. W and H are width and height in pixels.

I

MakeDialogModal
(integer theBlock-
Number, integer
TrueFalse)

Makes a block's dialog modal and should be called when the dia-
log is open. During the dialogOpen message is OK. Calling this
function with the TrueFalse flag set to false will turn the dialog
back to non-modal behavior.

V

ModL Functions 289
Blocks and inter-block communications

Functions
Block dialog tabs
These functions allow ModL code to manipulate block dialog tabs.

OpenBlockDialog-
Box(i)

Opens the dialog for any block, where i is the global block num-
ber. You may want to do this if you are telling the user to change a
value in a block’s dialog. For instance, if you have just put up an
alert saying “The value in the ‘Height’ field of the ‘Attic’ dialog
is negative,” you can then open the offending dialog to make the
change easier.

V

OpenDialogBox() Opens this block’s dialog to show something visually important to
the user. If you want a dialog to always appear in front of any
open plotting windows, call this function at the beginning of the
Simulate message handler.

V

OpenEnclosing-
Hblock()

Opens the hierarchical block in which this block resides, if any. V

OpenEnclosingH-
block2 (integer
blockNumber)

This is same as OpenEnclosingHblock(), except it refers to a
global block number that is within the Hblock.

V

Block dialog tabs Description Return

DisableTabName
(string tabName,
integer trueOr-
False)

Disables or enables the specified tab. V

GetCurrentTab-
Name(integer
blockNumber)

Returns the currently selected tab name. S

GetBlockTab-
Names(integer
blockNum, Str63
names[])

Returns the number of dialog tabs in the specified block and lists
the names of the tabs in the Str63 dynamic array names.

I

OpenDialogBox-
ToTabName(string
tabName, integer
blockNumber)

Opens a dialog box to a specified tab. V

SetDefaultTab-
Name (string tab-
Name, integer
blockNumber)

Sets the block so that the dialog will open at a specific tab name. V

VariableNameTo-
TabName(string
varName, integer
blockNumber)

Returns the name of the tab of a dialog that the indicated dialog
item is on.

S

Block dialogs Description Return

290 Reference
Blocks and inter-block communications

Fu
nc

tio
ns

Messages to blocks (sending and receiving)
These functions make it easy to communicate information back and forth between blocks and
to execute and modify processes between blocks. They can be used to set up different types of
simulations that override ExtendSim’s simulation engine (i.e. Item library blocks). Sending
messages to blocks can be used to enable global functions. You can put many functions in a
custom function block, then use the SendMsgToBlock function to send one of the user-defined
messages. Use global variables to select a function and pass parameters to and from the func-
tion. Blocks can also send and receive connector messages and propagate them correctly, as
discussed in “Basic item messaging” on page 153.

In the functions, connName is the name of the connector in the calling block and block is the
global block number of the receiving block. (See “Block numbers, labels, names, categories,
position” on page 256 .)

Block messaging Description Return

BlockSimStartPri-
ority(integer block-
Number, integer
priority)

Sets the priority value for receiving the SimStart message dis-
cussed on “Simulation messages” on page 194. Returns 0 for suc-
cess or a negative value for failure. The default value is -1 and any
block with a priority value of less than 0 will not receive the mes-
sage. Blocks that have a priority value greater than -1 will receive
the message in priority order (lowest to highest).

I

BlockSimFinish-
Priority(integer
blockNumber, inte-
ger priority)

Sets the priority value for receiving the SimFinish message dis-
cussed on “Simulation messages” on page 194. Returns 0 for suc-
cess or a negative value for failure. The default value is -1 and any
block with a priority value of less than 0 will not receive the mes-
sage. Blocks that have a priority value greater than -1 will receive
the message in priority order (lowest to highest).

I

Connec-
torMsgBreak()

Called from a block currently receiving a connector message. It
prevents any additional connected blocks from receiving that
message. This function does not affect the current message han-
dler and it should be called right before returning from the current
message handler.

V

DuringHblockUp-
date()

During an Hblock update, some connections are temporarily bro-
ken and then reconnected. Returns True if called during an
Hblock update so you can determine if ConnectionMake or Con-
nectionBreak messages can be safely ignored.

I

GetConnec-
torMsgsFirst (con-
nName)

Makes the specified connector the first in netlist messages. This is
used in blocks where it is critical that the messages be received by
a specific block first, no matter what the order of connections. Use
this function in INITSIM or CHECKDATA. For example, the Sta-
tus block uses this function.

V

GetMsgSending-
Block ()

Returns the blocknumber of the block that sends the currently
executing message to the current block.

I

ModL Functions 291
Blocks and inter-block communications

Functions
GetSimulateMsgs(
integer ifTrue)

In some cases, you may not want a block to get Simulate mes-
sages. (See “Residence blocks that do not post future events:” on
page 149.) This may be true in some discrete event blocks and in
continuous blocks that are used in discrete event simulations. This
function prevents blocks from getting Simulate messages and thus
speeds up the simulation. The function would usually be called in
the InitSim or checkData message handlers. Call this function
with FALSE if you do not want the block to get Simulate mes-
sages. This is initially set to TRUE for new and existing models,
and is always reset to TRUE before a simulation starts.

V

MsgEmulationOp-
timize(integer
ifTrue)

See “Value connector messages” on page 158. This specialized
function is used in the Executive block (Item library) to optimize
the operation of Value blocks in discrete event models. It prevents
the propagation of redundant messages that are produced by Value
blocks emulating and propagating connector messages from Item
blocks. It does this by not back-propagating (step 1) connector
messages to blocks that have ever sent a connector message to
that input of this block. This can speed the simulation by reducing
the number of messages sent between Itemand Value blocks. This
behavior is not a default because other types of modeling will fail
if not all messages are propagated. This is initially set to FALSE
for new and existing models, and is always reset to FALSE before
a simulation starts.

V

RestrictConnec-
torMsgs (integer
restrictMessages)

This function enables/disables a flag that restricts the use of con-
nector messages in InitSim, checkdata, and endsim. This is used
in the Executive block (Item library), as sending connector mes-
sages at the wrong times can cause problems in these libraries.

V

SendConnectorMs-
gToBlock (integer
blockNumber, inte-
ger conn)

Sends a connector message to a block number that is not necessar-
ily connected to the block sending the message. Conn is the index
for the receiving connector in the connector pane (the index starts
at 0).

V

SendMsgToAll-
Cons(connName)

Sends a message to all connectors on other blocks that are con-
nected to connName on the sending block. The connected blocks
will get an “on xxx” message where xxx is the connected receiv-
ing block’s connector name.

V

SendMsgToBlock
(integer block, inte-
ger messageCon-
stant)

Sends a message to the specified global block. The message is an
ExtendSim constant that corresponds to the message to be sent.
The messageConstant is not a string. It is derived by taking the
message name and adding MSG after the message name. For
example, to send a USERMSG0 to a block, messageConstant
would be USERMSG0MSG (not a string). See the chapter “Mes-
sages and Message Handlers” on page 193 for all the messages
that can be sent. Note: If the block is a hierarchical block, the sub-
model blocks will not receive the message. Instead, use the
SendMsgToHblock function discussed in this section.

V

Block messaging Description Return

292 Reference
Blocks and inter-block communications

Fu
nc

tio
ns

Icon views
These functions are used to interrogate and control block icon classes and views. Classes are
global (e.g. Flowchart class) and always set by the modeler, but views (e.g. Flow down) can be
set by the modeler or the block.

The default class (ExtendSim classic) and view are both zero.

☞ As of ExtendSim 10, icon classes were eliminated.

SendMs-
gToHblock(integer
globalBlockNum,
integer message)

Sends the message to all internal blocks within the hierarchical
block. This function will do nothing if globalBlockNum is not a
hierarchical block.

V

SendMsgToInputs(
connName)

Sends a message to all input connectors on other blocks that are
connected to connName on the sending block. The connected
blocks will get an “on xxxIn” message where xxxIn is the con-
nected receiving block’s input connector name.

V

SendMsgToOut-
puts(connName)

Sends a message to the output connector on the block that is con-
nected to connName on the sending block. The connected block
will get an “on xxxOut” message where xxxOut is the connected
receiving block’s output connector name.

V

SimulateConnec-
torMsgs(integer
trueFalse)

This is used to disable the “simulation” of connector messages by
Value blocks that have no connector message handlers, as
described in “Value connector messages” on page 158. “Simula-
tion” of connector messages is enabled by default for new and
existing models, and is always re-enabled before a simulation
starts. This is a special-purpose function that will probably only
be of interest to users who are creating their own libraries that are
not being used with the Item library. Use this function in INIT-
SIM or CHECKDATA.

V

Classes and views Description Return

IconGetClass (inte-
ger blockNumber)

Gets the current class (0 to 7) of the block, but classes are cur-
rently global, so the entire model will have this class.

I

IconGetView (inte-
ger blockNumber)

Gets the current view (0 to n) of the block. See IconGet-
ViewName(), below.

I

IconGet-
ViewName (inte-
ger blockNumber,
integer view)

Returns the name of the view specified. S

IconSetViewByIn-
dex (integer block-
Number, integer
index)

Sets the block’s view by index (0 to n). V

Block messaging Description Return

ModL Functions 293
Models, notebooks, and libraries

Functions
Models, notebooks, and libraries

IconSetViewBy-
PartialName (inte-
ger blockNumber,
string partialName)

Sets the block’s view by the partial name entered. For example,
“right” will set the icon view to “Right Angle.” This is useful
when the view names are slightly different for different classes
and you want to set the view to a type of view rather tban a spe-
cific one.

I

Models, notebook Description Return

DuringContinue() Returns true if the model is being continued from a previous
saved run.

I

GetBlockInfo(inte-
ger theBlockNum-
ber, integer which)

Returns misc information about a block which can take the fol-
lowing values:
1: invisible – returns if the block is invisible.
2: scriptedBlock – returns if the block was created via scripting.
3: dialog box is open
4: block is in debugging mode

R

GetGlobalSimula-
tionOrder(integer
blockNumber)

Returns the actual simulation order index of a block. I

GetLibraryCon-
tents (string lib-
Name, Str31
blockNames[],
Str31 block-
Types[])

Fills the passed-in Dynamic Arrays with the names and types of
the blocks in the named library. Returns the number of blocks in
the library.

I

GetLibraryInfo
(integer blockNum-
ber, integer spec-
ify)

Returns whether a library is of a certain type.

specify takes the following values:

1: RunTime

(others will be defined in the future)

I

GetLibraryPath-
Name (integer
blockNumber, inte-
ger specify)

Function to return the pathname of a library file, given a block in
that library.

specify takes the following values:

1: pathname without library name

2: just library name

S

GetLibraryString-
Info (integer block-
Number, integer
specify)

Returns string information about the library that the block comes
from. Specify takes the following values:

1: Name

(others will be defined in the future)

S

Classes and views Description Return

294 Reference
Models, notebooks, and libraries

Fu
nc

tio
ns

GetLibraryVer-
sion(integer block-
Number)

This function returns the short version string for the library that
includes the block specified by blockNumber.

S

GetLibraryVersion-
ByName(string lib-
Name)

Returns the library version string. S

GetModelName() Returns the string that is the model’s file name. This is useful
when writing out debugging information or in certain user alerts.

S

GetModelPath
(string model-
Name)

Returns the pathname to the specified model, but does not include
the model name. The model needs to be open.

S

GetModelSimula-
tionOrder()

Returns the simulation order of the block that called this function. I

GetRunParame-
ter(integer which)

Similar to GetRunParameterLong except it returns a real. Which
specifies a parameter in the Simulation Setup dialog. In addition
to the parameters for GetRunParameterLong, this function
returns values for:
1 - endTime
2 - startTime
10 - startDate
12 - endDate

R

GetRunParameter-
Long(integer
which)

Gets the specified parameter from the Simulation Setup dialog
using the value of which:
3 - numSims
4 - numSteps
5 - random seed
6 - seedControl (value, from 1-3, of the seed popup from the Ran-
dom Numbers tab)
7 - checkRandomSeeds (value of the duplicate seeds check box
from the Random Numbers tab)
8 - timeUnits
9 - calendarDates
11 - “__seed” table database index

I

GetSerialNumber() Returns the serial number of the unit as a string. S

Models, notebook Description Return

ModL Functions 295
Models, notebooks, and libraries

Functions
GetSimulation-
Phase()

Returns the phase of the simulation:

-1: No model open
0: Not currently running a simulation
1: CheckData
2: StepSize
3: InitSim
4: Simulate (main simulation loop)
5: FinalCalc
6: BlockReport
7: EndSim
8: AbortSim
9: PreCheckData
10: PostInitSim
11: SimStart
12: SimFinish
13: ModifyRunParameter
14: OpenModelPhase

Note: If a hierarchical block is updated, ExtendSim sends an
openModel message handler but this function will return a 0
rather than a 14.

I

GetWindowsHndl
(integer which)

(Windows Only) Returns the Windows API handle of the main
window in the ExtendSim application. Currently the which
parameter is unused. It should be set to 0 for the Main window
handle. This handle is used to pass to a Windows DLL. It is not
used in ModL functions.

I

IsSimulation-
Paused()

Returns TRUE if the simulation run is paused or is about to pause. I

Librarie-
sOpen(String-
DynamicArrayNa
me)

Returns the list of library names in the String dynamic array. Also
returns the number of libraries that are open.

I

LibraryUsed(inte-
ger blockNum)

Returns the name of the library that owns blockNum. S

ModelLock(inte-
ger lock, integer
HblocksLocked,
string password)

The function allows you to lock and unlock the model from
MODL code. The Lock argument takes a value of one if the
model is to be locked, a value of zero for unlocking. Hblocks-
Locked is a flag that sets whether you want the Hblocks to be
locked when locking a model. The password is the password to be
set in the locking case, and the password to be compared with in
the unlocking case. This function returns a zero if is succeeds, and
the following error codes for specific error conditions:
-1: Unlock password didn’t match.
-2: Model is already locked, it cannot be locked again without
being unlocked first.
-3: lock value out of range.

I

NotebookClose() Closes the notebook if it is open. I

Models, notebook Description Return

296 Reference
Models, notebooks, and libraries

Fu
nc

tio
ns

NotebookItem-
Rect(blockNum,
whichNotebook,
iobjectID, rectAr-
ray)

Fills the 4 element array rectArray with the position values for the
specified notebook item. Specification of whichNotebook works
the same way as for OpenNotebook2.

Coordinates are:
0: top
1: left
2: bottom
3: right

Return value is the type of the object.

I

Notebook-
Items(blockNum,
whichNotebook,
idArray, typeArray)

Fills the idArray and typeArray with information about objects in
the specified notebook. IdArray is filled with a list of the id num-
bers of objects in the notebook. typeArray is filled with type spec-
ifiers for those same items. Specification of whichNotebook
works the same way as for OpenNotebook2.

The return value is the count of the number of items found (there-
fore also the number of rows filled in the arrays.)

I

Notebook-
ItemInfo(block-
Num,
whichNotebook,
itemId, which)

Returns information about the specified notebook object. Specifi-
cation of whichNotebook works the same way as for OpenNote-
book2.

Which values are:
0: type
1: isClone
2: blockNumber
3: font size in pixels
4: border thickness

R

NotebookItemIn-
foString(block-
Num,
whichNotebook,
itemId, which)

Returns string information about the specified notebook
object.Specification of whichNotebook works the same way as
for OpenNotebook2.

Which values are:
1: object name
2: border color as HTML value string
3: fill color as HTML value string

S

NotebookIsOpen() Returns a true value if the notebook is currently open. I

Notebook-
sInfo(integer
parentHblock[],
integer notebookIn-
dex[], String note-
bookName[],
integer notebook-
Publish[])

Fills the dynamic arrays with information about all the notebooks
in the model, including HBlock notebooks. For a model’s note-
book, parentHblock is -1. For an Hblock’s notebook, parentH-
Block is the number of the Hblock. The notebookIndex is the
number of that notebook for that block or model, starting from 1.
The notebookName is the name of that notebook. NotebookPub-
lish is true if that notebook is marked by the user to be published.
The results of this function call can be used as arguments for the
NotebookItems() functions to see items in a particular notebook.
Returns the integer number of notebooks in the model.

I

Models, notebook Description Return

ModL Functions 297
Models, notebooks, and libraries

Functions
OpenNotebook() Opens the model notebook. Since this is from v9, which only had
one notebook per model, see also OpenNotebook2.

V

OpenNote-
book2(integer
blockNumber, inte-
ger Index, integer
ripOff)

Opens the specified notebook, either for the model worksheet or
for an Hblock. BlockNumber controls which set of Hblock note-
books is referenced by the Index. Pass in the number of a block at
the top level of the main worksheet or a -1 for blockNumber to get
to the top level notebooks. Otherwise, the blockNumber will be
used to identify which Hblock's set of notebooks will be refer-
enced by the Index. If the blockNumber is for a block inside an
Hblock, that Hblock's notebooks will be referenced, otherwise the
blockNumber will identify the hblock itself. If ripOff is true, the
notebook will be opened in the ripped-off state. If false, the note-
book’s tab will be selected.

V

PauseSimFor-
Save()

Pauses the simulation at the end of a time step (currentTime for
discrete event models and currentStep for continuous process).
When the function is called, the application completes sending the
onSimulate message handlers for the current step; pausing is
delayed until that current step is finished. The simulation remains
paused until you chose Run > Resume, click the Resume button,
or call ResumeSimulation. This is important for continuous pro-
cess models, to ensure that all the blocks are time synced and have
finished executing their final current step.
Note: the separate PauseSim() function stops the execution
instantly.

V

ResumeSimula-
tion()

Resumes the simulation and returns immediately. V

RunSetup(true-
False)

Opens Setup Simulation dialog and sets up a default OK button
instead of Run Now button. Returns TRUE if OK is clicked. If
trueFalse is TRUE, show RunNow button. If trueFalse is FALSE,
hide RunNow button.

I

RunSimula-
tion(trueFalse)

Runs the model. If the argument is TRUE, the function puts up the
Simulation Setup dialog, then runs the simulation if the user
chooses OK; if the argument is FALSE, the model is run directly.
This function returns TRUE if the simulation ran to completion
with no errors and was not stopped, otherwise returns FALSE. See
the SetRunParameters() function below.

NOTE: If called from a block, runs the model until it completes or
is aborted, and then returns. If you use the ExecuteMenuCom-
mand() function to call RunSimulation() (e.g. from scripting or
OLE automation), it returns immediately after starting the model
run.

I

SaveModel() Can save the model before or after a run. Cannot save the model
during a simulation run.

V

Models, notebook Description Return

298 Reference
Models, notebooks, and libraries

Fu
nc

tio
ns

SaveMod-
elAs(string file-
Name)

Saves the active model under the name and path defined in file-
Name. Returns a zero if successful, a negative number otherwise.
Saves after the current block is executed. Can save before or after
a simulation run; cannot save during a run.

I

SaveTopDo-
cAs(string file-
Path, integer
aSync)

Saves the top document under the file name and path name
defined by filePath. If aSync is TRUE, saves after the current
block is executed. Similar to SaveModelAs except it will work on
whichever the top ExtendSim document is. (Specifically used by
the Equation block to save and close Include files.) Returns 0 for
success or a negative value to indicate failure.

Note that if the top document is a model and it is running a simu-
lation, it cannot be saved. The model can only be saved before or
after running a simulation.

I

SetBlockSimula-
tionOrder (integer
blockNumber, inte-
ger newOrder)

Sets the simulation order value of the specified block. This is only
useful, or allowed if the model simulation order has been set to
custom simulation order. This function returns a zero if success-
ful, and the following error codes if it fails:

-1: can’t be set during a simulation.
-2: newOrder must be greater than zero.
-3: no active model document.
-4: sim order is not set to custom.
-5: no such block.

I

SetModelSimula-
tionOrder (integer
neworder)

Sets the type of simulation order to be used in the model. Types
are:

0: left to right
1: not used
2: flow
3: custom

This function returns a zero if successful, and –1, -2, and –3, as
described under SetBlockSimulationOrder.

I

SetRunParame-
ter(real param-
Value, integer
which)

Sets a single parameter in the Simulation Setup dialog. As an enu-
merated list, this function is more expandable than SetRunParam-
eters(). The values for which are:

1:endTime, 2:startTime, 3:numSims, 4:numSteps, 5:random
seed), 6:seedControl (value, from 1-3, for the seed popup from the
Random Numbers tab), 7:checkRandomSeeds (value for the
duplicate seeds check box for the Random Numbers tab),
8:timeUnits, 9:calendarDates, 10:startDate, 11: “__seed” table
database index (Note: “seed is preceded by 2 underscore charac-
ters).

I

Models, notebook Description Return

ModL Functions 299
Scripting

Functions
DE Modeling Using Equation Blocks
The following function are convenience functions intended to be called from Equation blocks.
They have the effect of querying a resource pool block for the number of available resource, or
reuesting that the Resourcd Pool block allocate a resource. They are implemented through the
sending of messages, and the use of globals. See the code of the resource pool block for more
information if desired.

Scripting
These functions are useful in building or changing models when called from blocks or from
other applications. See also the GetDialogVariable() and SetDialogVariable functions under
“Dialog items” on page 267.

See the Scripting blocks in the ModL Tips library for examples of scripting.

SetRunParame-
ters(real SetEnd-
Time, real
SetStartTime, real
SetNumSims, real
SetNumStep)

Sets the parameters in the Simulation Setup dialog. This function
returns the following:

 0 Successful

-1 End time must be greater than start time

-2 Number of steps must be at least one

-3 Number of steps must be less than 2000000000

-4 Number of simulations must be at least 1 and less than 32768

I

SpinCursor() Spins the beachball cursor. Used to alert the user that a time con-
suming calculation is taking place.

V

SpinCur-
sorStart(integer
showDuringRun)

Starts a spinCursor that will continue until spinCursorStop is
called.

showDuringRun determines if the cursor is shown during a simu-
lation or not.

V

SpinCursorStop() Stops a spinCursor started by spinCursorStart. V

DE Modeling Description Return

ResourcePoolAllo-
cate(integer
ResourcePool-
BlockNum, real
NumToAllocate)

Requests the specified Resource Pool block to allocate the speci-
fied number of resources.

ResourcePoolA-
vailable(integer
ResourcePool-
BlockNumber)

Queries the specified resource pool block for the number of
resources that are available.

Models, notebook Description Return

300 Reference
Scripting

Fu
nc

tio
ns

Scripting Description Return

ActivateApplica-
tion()

Brings the ExtendSim application to the foreground. This is pri-
marily used for interapplication/scripting

V

ActivateWorksheet
(string sheetName)

Activates (selects and brings to the front) the named worksheet.
NOTE: Normally you would expect Success to return a 0 but for
backwards compatibility this function returns a 1 for Success or 0
for Failure.

I

AddBlockToClip-
board (integer
blockNumber)

Adds the indicated block to the clipboard contents without other-
wise changing the contents. Returns FALSE if successful.

I

AddBlockToSelec-
tion (integer block-
Number)

Adds the indicated block/worksheet object to the selection. This
is in contrast to SelectBlock(), which makes the indicated block
the entire selection. Returns FALSE if successful.

I

Application-
Frame(integer
frame[], integer
inside)

Returns the application frame in global coordinates. The Inside
argument specifies if the returned frame should be inside
(includes the menubar and window frame) of the application
frame window, or the outside.
Declare frame as: Integer frame[4];
When the function returns, frame will contain: frame [0] - Top,
frame[1] - Left, frame[2] - Bottom, frame[3] - Right

I

BlockAdjustPosi-
tion(integer block-
Num)

Adjusts the position of the specific block relative to the location
of the icon positioner, which is turned on or off in the Icon tab of
a block’s structure. See “Icon positioner” on page 10 for more
information.

V

ChangePreference
(integer prefer-
ence, integer value)

Allows you to change preference values using ModL code. The
value argument takes a zero for FALSE or a one for TRUE. The
preference argument takes the following values:
12: simulation sound
14: connection type (0=free, 1=right, 2= smart, 3=straight)
21: show worksheet tool tips
22: show dialog tool tips
27: metric units
30: show library warnings
31: check application version
32: bump connectors and auto-connect
33: show dialog editor tool tips

 Note: XCMDs and patterns are not supported as of release 10.

See GetPreference(), below.

V

ModL Functions 301
Scripting

Functions
ChangePreferen-
ceString (integer
preference, string
theString)

Change the string-based preferences using this function. The pref-
erences that can be changed with this function are:

Default Library Path: 1
Library 1: 2
Library 2: 3
Library 3: 4
Library 4: 5
Library 5: 6
Library 6: 7
Library 7: 8
Default Model Path: 9

V

ClearBlock(integer
blockNumber)

Clears the specified block from the worksheet. V

ClearBlockUndo
(integer theBlock-
Number)

Clears the block and adds it to the delete task list to allow undo-
ing. Returns FALSE if successful.

I

ClearConnec-
tion(integer block-
From, integer
conFrom, integer
blockTo, integer
conTo)

Removes the connection between the specified blocks and con-
nector numbers. Returns TRUE if successful.

I

ClearUndo(void) Clears the Undo list and removes any existing undo tasks from
the Edit menu. After executing this function, the Undo command
will be disabled.

V

CloneCreate(inte-
ger blockNumber,
string variable-
Name, integer des-
tination, integer
left, integer top)

Returns a cloneID for the new clone, used in the other clone
scripting functions. VariableName is the dialog item variable
name. Destination is -1 for the top worksheet, -2 for the notebook
or the block number of an H-block to put it into its submodel. Left
and Top are the pixel coordinates of the left-top corner of the
clone.

I

CloneDelete(inte-
ger cloneID)

Deletes the specified clone. Get the cloneID from the CloneCre-
ate() or CloneFind() functions.

I

CloneFind(integer
blockNumber,
string variable-
Name, integer n)

Returns a cloneID for the found clone, used in the other clone
scripting functions. VariableName is the dialog item variable
name. N is the nth instance of the clone specified, in order of cre-
ation. If variableName is blank, the nth clone from the block is
returned.

I

CloneGetDialog-
Item(integer
cloneID)

Returns the variable name of the dialog item that the specified
clone is from.

S

CloneGetDialog-
ItemLabel(integer
cloneID, integer n)

Returns the Nth label on a cloned dialog item that has labels. This
would be either a Popup menu, or a data table.

S

Scripting Description Return

302 Reference
Scripting

Fu
nc

tio
ns

CloneGetInfo(inte-
ger cloneID, inte-
ger whatInfo)

For whatInfo, 1:returns the type of the clone, 2:returns the block
number of the clone, 3:returns True if the clone is selected and
False if it is not.

Values for the type of clone (whatInfo:1) are:

1:Button, 2:Check Box, 3:Radio Button, 4:Meter, 5:Parameter,
6:Slider, 7:data table, 8:EditText, 9:StaticText, 12:Switch,
13:String Table, 14:Plotter pane, 15:Plotter data table, 16:Popup
Menu, 17:EmbeddedObject (obsolete as of ES10), 18:Dynamic-
Text, 19:Text frame, 20:Calendar, 21:EditText(31).

I

CloneGetList(inte-
ger blockNumber,
string variable-
Name, integer
cloneIDArray[])

Returns the number of clones in the cloneIDArray array. Fills the
dynamic array cloneIDArray with all of the cloneIDs for the vari-
ableName. If variableName is blank, all of the clone IDs for that
block are returned in the array.

I

CloneGetPosi-
tion(integer
cloneID, integer
positionArray)

PositionArray is declared as an array of 4 integers. It returns the
following information: positionArray[0] = cloneRect.top, posi-
tionArray[1] = cloneRect.left, positionArray[2] =
cloneRect.bottom, positionArray[3] = cloneRect.right.

I

CloneHideDis-
able(integer
cloneID, integer
disable, integer dis-
ableIFtrue)

Disables/enables or hides/shows the specified clone.
If disable is True and disableIFtrue is True, the clone is disabled.
If disable is True and disableIFtrue is False, the clone is enabled.
If disable is False and disableIFtrue is True, the function hides
the clone; the clone appears if disable is False and disableIFtrue
is False.
Returns zero if successful; otherwise returns an error code (nega-
tive number).

I

CloneResize(inte-
ger cloneID, inte-
ger top, integer left,
integer bottom,
integer right)

Resizes the clone to the specified rectangle (position and size). I

CodeExe-
cute(string modl-
CodeString)

Executes the ModL code in the string modlCodeString. Local
variables may be defined. Global variables can be used to input
and return values.

V

CreateHblock
(string theName)

Makes the current selection into an H-block with the specified
name.

I

DialogRe-
fresh(integer block-
Number)

Forces the dialog box of the specified block to refresh (redraw.)
Does nothing if the dialog box is not open or the block doesn't
exist. Returns true (1) if it succeeds, zero otherwise.

I

DialogFixed-
Size(integer block-
Number, integer
height, integer
width)

Specifies that the dialog box for blockNumber should be fixed to
the specified height and width. User resizing of the block dialog
will be restricted.

I

Scripting Description Return

ModL Functions 303
Scripting

Functions
DuplicateBlock
(integer theBlock-
Number)

Makes a copy of the indicated block, and returns the block num-
ber of the new block. Returns FALSE if successful.

I

ExecuteMenuCom-
mand(integer com-
mandNumber)

Executes the specified command. This is functionally the same as
selecting the command from the menus. ExtendSim will attempt
to perform the command on the active window. If there are multi-
ple windows open (including dialog boxes), you may need to call
ActivateWorksheet() to ensure that the correct model is in the
active window. See Appendix C for a list of menu command num-
bers.

V

ExtendMaximize() Maximizes the ExtendSim Application. V

ExtendMinimize() Minimizes the ExtendSim Application. V

FindBlock (string
searchStr, integer
which, integer
openDialogs, inte-
ger wholeWords,
integer justBlock-
Num)

Finds the first block that matches the string searchStr and returns
its block number, optionally opening the dialog or selecting the
block. Which specifies what string in the block you want to com-
pare your searchstring to. It takes the following values:

BlockLabel:1, BlockName:2, BlockType:3, TextBlockText:4

openDialogs specifies if the block should be just selected, or if
the dialog should be opened. It is overridden by the justBlock-
Num parameter, if it is TRUE. WholeWords specifies if you want
the text to try for an exact match, or to match a partial string. The
final argument justBlockNum if set to true will set the function to
just return a block number, and neither select the block nor open
the dialog.

I

FindNext() Finds the next block that matches the search string specified.
Only useful if called immediately after the findBlock function.
(Returns a –1 if no matching block is found.)

I

GetAppPath() Returns a string containing the full path name for the ExtendSim
application file. This function is useful for determining the loca-
tion of files for which only the file’s relative location to the
ExtendSim application is known.

S

Scripting Description Return

304 Reference
Scripting

Fu
nc

tio
ns

GetPreference
(integer preference)

Allows you to get preference values using ModL code. The return
value is 1 for TRUE and 0 for FALSE. The preference argument
takes the following values:
12: simulation sound
14: connection type (0=free, 1=right, 2= smart, 3=straight)
21: show worksheet tool tips
22: show dialog tool tips
27: metric units
30: show library warnings
31: check application version
32: bump connectors and auto-connect
33: show dialog editor tool tips

See also ChangePreference

 Note: XCMDs and patterns are not supported as of release 10.

I

GetRecentFile-
Path(integer which)

Returns the full path to the specified recent file from the list of 5
recent files at the bottom of the File menu. The specified file
(which) will be a number from 1 to 5.

S

GetUserPath() Returns the path to the user documents directory. Similar to
GetAppPath.

S

GetWorksheet-
Frame(integer
blockNumber,
array arrayName)

Returns the frame of the worksheet in the array arrayName,
which must be declared integer arrayName[4]. Coordinates are in
screen pixels and correspond to the information returned by the
GetMouseX(), GetMouseY(), and GetBlockTypePosition() func-
tions.

ArrayName[0]:top, ArrayName[1]:left, ArrayName[2]:bottom,
ArrayName[3]:right.

I

HBlockTopGet() Returns the block number of the topmost open Hblock’s sub-
model, or a negative number if there are no Hblocks open above
the model worksheet.

I

HBlockUnlink-
FromLibrary(inte-
ger blockNumber)

Disconnects the specified Hblock from the library it has a link to.
This will make the Hblock into a standalone Hblock without a
library connection.

V

IsBlockSelected
(integer blockNum-
ber)

Returns a TRUE if the indicated block is selected, returns false
otherwise. This function will return a –1 if the indicated block-
number is not a valid block.

I

IsLibEnabled(inte-
ger type)

Returns TRUE if the type of ExtendSim product will allow a spe-
cific library to open. Type values are: 17: DE product (Item
library), 18: Pro product. (Rate and Reliability libraries).

I

IsMenuIte-
mOn(integer
whichItem)

Returns TRUE if the given menu command is currently checked.
The whichItem argument uses the same numbers as defined in
Appendix C for the ExecuteMenuCommand() function.

I

IsMetric() Returns TRUE if metric is set in the options dialog. I

Scripting Description Return

ModL Functions 305
Scripting

Functions
LastBlockPlaced() Returns the block number of the last block placed on the active
worksheet.

I

LibraryGetInfoBy-
Name(unsigned
string libName,
string blockName,
integer specify)

Function to return information about a library, and blocks in that
library. Specify takes the following values;
1: Hblock - TRUE/FALSE

I

MakeBlockInvisi-
ble (integer global-
BlockNum, integer
invisible)

Makes the indicated block invisible. (Turns it visible if it was
already invisible, and the invisible flag is set to false.) Invisible
blocks will not display on the worksheet at all, and cannot be
selected by the user. Returns FALSE if successful.

I

MakeConnection
(integer block-
From, integer con-
From, integer
blockTo, integer
conTo)

Makes a connection line from the From block to the To block. I

ModelSettings-
Get(string model-
Name, integer
which)

Returns the model setting value specified by the which argument.
If modelName is an empty string, this function will access the
active model. which values:

0: Model exists (returns a true or a false)
1: Animation on
2: Model is dirty (has unsaved changes)
3: Run Mode (0 means multithreaded; 1 means single threaded)
4: Sim Running

R

ModelSettings-
Set(string model-
Name, integer
which, real value)

Sets the value of a model Setting to the real value specified by the
which argument. Returns a 0 for success and a non zero integer
for failure. which values:

1: Animation on
2: Dirty (needs to be saved)
3: Run Mode (0 means multithreaded; 1 means single threaded)

I

MoveBlock(inte-
ger blockNumber,
integer xPixel, inte-
ger yPixel)

Moves the specified block the specified number of pixels. Coordi-
nates refer to the upper left corner of the block.

I

Move-
BlockTo(integer
blockNumber, inte-
ger xLoc, integer
yLoc)

Moves the specified block to the specified location. Coordinates
refer to the upper left corner of the block.

I

OpenExtendFile
(string fullPath)

Opens the ExtendSim model, library, or text file, using the full-
path name on the disk. This creates a new front window if open-
ing a model or text file. Returns a zero if successful.

I

Scripting Description Return

306 Reference
Scripting

Fu
nc

tio
ns

PlaceBlock(string
blockName, string
libName, integer
xPixel, integer
yPixel, integer
neighbor, integer
side)

Places the named block from the named library onto the active
worksheet at the specified location. If the neighbor field is filled
in with a block number of a block already on the worksheet, then
the xPixel, yPixel values are relative to the location of the neigh-
bor, otherwise if neighbor is -1 (no neighbor) they are absolute
worksheet coordinates.

The side argument determines how the new block will be placed
relative to the old block:

0: Left, 1: top, 2: right, 3: bottom

I

PlaceBlockIn-
Hblock (string
blockName, string
libName, integer
xPixel, integer
yPixel, integer
HblockNum)

Places a copy of the named block from the named library in the
H-block that is specified by the HblockNum argument. See Place-
Block in your manual for more information. Returns FALSE if
successful.

I

PlaceDot-
Block(integer
xPixel, integer
yPixel, integer
neighbor, integer
side, integer width,
integer Hblock-
Name)

Places a dot block into the worksheet. Arguments are similar to
PlaceBlock, and PlaceTextBlock.

I

PlaceTextBlock
(string text, integer
xPixel, integer
yPixel, integer
neighbor, integer
side, integer width)

Places a Text Block with the string text as its content onto the
active worksheet at the specified location. The width argument
specifies the final width of the text block in pixels. See the
description of PlaceBlock above for descriptions of the other
arguments.

I

PlaceTextBlockIn-
Hblock(string text,
integer xPixel, inte-
ger yPixel, integer
neighbor, integer
side, integer width,
integer Hblock-
Num)

This function places a TextBlock in the Specified HBLock. See
the description of PlaceTextBlock for more information.

I

QuickTimeAvail-
able()

Returns whether or not quicktime is available on the current
machine.

I

SelectConnection
(integer block-
From, integer con-
From, integer
blockTo, integer
conTo)

Selects the connection line associated with the connection
between the specified blocks. This function returns a TRUE if it
succeeds, and a FALSE if it fails.

I

Scripting Description Return

ModL Functions 307
Reporting

Functions
Reporting
These functions are used in the BlockReport message handler to organize reports written by
blocks.

SetDirty(integer
dirty)

Sets/Unsets the “dirty” flag on the active worksheet. A common
use for this functionality would be to set the dirty flag to
“FALSE’”before issuing the ExecutemenuCommand function to
close a worksheet. This has the effect of closing the worksheet
without querying the user if they want to save, or not.

V

SuppressWork-
sheetRedraw(inte-
ger suppress)

If supress is TRUE, stops any update drawing of the worksheet
until a call to SuppressWorksheetRedraw(FALSE), whereupon
the worksheet will be redrawn.

V

UnselectAll() Unselects all blocks, connections, etc. V

WinSetFore-
groundWin-
dow(integer
handle)

Sets the application associated with the passed in handle to be the
foreground window. Passing in a zero, sets ExtendSim as the fore-
ground window. Windows handles for other applications then
ExtendSim will need to be acquired through some means. One
example would be querying the Excel object model through OLE/
COM to return the object handle for Excel. See the code of the
Command block in the Value library for an example of doing this.

V

WinShellExe-
cute(string opera-
tion, string
fileName, string
params, string dir,
integer show)

This calls the Windows ShellExecute() function. This specifies all
arguments in the ShellExecute() function call but the first
(HWND), as ExtendSim supplies that argument internally.

I

WorksheetRe-
fresh(integer block-
Number)

Forces a worksheet refresh (redraw) of the worksheet window
containing the specified block.

I

worksheetSetting-
Get(integer block-
Num, integer
which)

Gets a setting on the worksheet associated with the specified
block. (Blocks on the top level will affect the main worksheet,
blocks inside an Hblock will affect that Hblock worksheet, if it's
open.) Which takes the following values:
1: left
2: top
3: width
4: height
5: scroll X
6: scroll Y

I

worksheetSet-
tingSet(integer
blockNum, integer
which, integer
value)

Sets a setting on the worksheet associated with the specified
block. Also works on Hblocks. Uses “which” values the same
way as WorkSheetSettingGet.

I

Scripting Description Return

308 Reference
Plotting/Charts

Fu
nc

tio
ns

Plotting/Charts
These functions allow you to provide graphs and data in any block you create.

Each trace can be assigned one of two Y axes, Y and Y2, so that traces of different magnitudes
can appear in the same plot.

 Some of these functions only apply to the blocks in the Plotter library which is a Legacy library
that was replaced by the Chart library as of ExtendSim 10.

The following arguments are used in the plotting functions:

Reporting Description Return

GetReportType() Used in BlockReport message handler to get the current report
type. Returns 0 for Dialog report, 1 for Statistical report.

I

IsFirstReport() Returns TRUE if this is the first block of a type getting a Block-
Report message. Useful to set up column headers for that block
type.

I

Plot argument Definition

Color Color of the plot traces. You can use the numbers or their associated Extend-
Sim constants. Note that these are different than the animation colors.

33: BlackColor
205: RedColor
341: GreenColor
409: BlueColor
273: CyanColor
137: MagentaColor

EndTime X-axis value that corresponds with the last point of the array.

FunctionName Name of a real, single argument function. For example, cos(x) should be
entered as cos.

IsXLog If TRUE, the X axis is logarithmic.

IsY2Log If TRUE, the Y2 axis is logarithmic.

IsYLog If TRUE, the Y axis is logarithmic.

LineFormat Format for traces.
0: connected points
1: rectangular connected points (no interpolation between points)
2: dots

MaxLines Initial number of rows in the plot’s data pane.

NumFormat Format for the numbers in the data pane.
0: General
1: decimal (2 places)
2: integer
3: scientific (exponential)

ModL Functions 309
Plotting/Charts

Functions
General plotting
☞ See Pie Chart, Bar Chart, and Scatter Chart functions starting on page 316.

Pattern Pattern of the plot line. You can use the numbers or their associated Extend-
Sim constants. Note that these are different than the animation patterns.
0: BlackPattern
1: DkgrayPattern
2: GrayPattern
3: LtgrayPattern

 Note: patterns are not supported as of release 10.

Plot Number (0 to 3) specifying one of the four possible plot pages. See the
blocks in the Plotter library for an example. As of ExtendSim 10, the Plotter
library is a Legacy library.

PlotPts Number of points in the array ready to plot, which does not need to be the
number of points actually declared in the array. If there are no points ready
to plot (because they have not yet been calculated), use 0 for this value.

SigName Name for the trace

StartTime X-axis value that corresponds with the first point (y[0]) of the array.

SymFormat Symbols used on traces.
0 – ; 1 – ; 2 – ; 3 – ; 4 – ; 5 – ; 6 – ; 7 –
8 – (displays the trace’s number); 9 –

UseY2Axis If TRUE, the trace is plotted to the limits of the Y2 axis instead of the main
Y axis.

WhichSig Number (0, 1, 2 ...) specifying one of the plot traces

Y Name of the dynamic array used in the plot. Use MakeArray to allocate Y
before using it in a function.

General plotting Description Return

AutoScaleX(inte-
ger plot)

Finds the minimum and maximum X axis values of all installed
arrays or installed scatter arrays and adjusts the X axis limits
accordingly. See also the PlotterAutoScaleLimits function.

V

AutoScaleY(inte-
ger plot)

Finds the minimum and maximum Y values of all installed arrays
or installed scatter arrays and adjusts both the Y and Y2 axis lim-
its accordingly.

V

BarGraph(integer
plot, integer aBins,
real aMin, real
aMax)

Sets the number of bins, the minimum value, and maximum value
for a bar graph.

V

Plot argument Definition

310 Reference
Plotting/Charts

Fu
nc

tio
ns

ChangeAxisValues
(integer plot, real
xLo, real xHi, real
yLo, real yHi, real
y2Lo, real y2Hi)

Sets or changes the axis values of the specified plotter to the value
specified. Specifying a BLANK for a given value will use the
existing value. Returns a TRUE if the function executed success-
fully.

I

ChangePlotType
(integer plot, inte-
ger plotType)

Changes the defined plot type of a plotter. This is used when cre-
ating custom plotters. The call to change the plotter should be
done right after the call to install an axis and before any other of
the plotter calls.

1 – linear plot; 2 – scatter plot; 3 – error bars; 4 – strip chart;
5 – worm plot; 6 – bar plot

V

ChangeSignal-
Color (integer plot,
integer whichSig,
integer color)

Specifies the color for the trace. V

ChangeSignalSym-
bol(integer plot,
integer whichSig,
integer symFormat)

Specifies the symbol for the trace. V

ChangeSignal-
Width(integer plot,
integer whichSig,
integer width)

Specifies the width (in pixels) for the trace. V

ClosePlotter(inte-
ger plot)

Closes the plot window, if open. V

ClosePlotter2 (inte-
ger blockNumber,
integer plot)

This function just closes the specified plotter window, if it is open. V

DisposePlot(inte-
ger plot)

Disposes of a plot window and all its saved plots. This does not
dispose of any installed data arrays.

V

GetAxis(integer
plot, real axisVal-
ues[9])

Fills the first nine elements of the axisValues array (declared as
real axisValues [9]) with the current values of isXLog, xLow, xHi,
isYLog, yLow, yHi, isy2Log, y2Low and y2Hi.

V

GetAxisName(inte-
ger plot, integer
whichAxis)

Returns the name of the specified axis.

whichAxis:
1 - x
2 - y1
3 - y2

S

General plotting Description Return

ModL Functions 311
Plotting/Charts

Functions
GetPlotter-
Value(integer plot,
integer which)

Gets a setting value on the specified plotter or chart. “which”
takes the following values:
1: X axis decimal places
2: Y axis decimal places
3: Y2 axis decimal places
4: number of active traces (just get)
5: label angle for Bar Chart or pieSize for Pie Chart
6: plotter type ((1 – linear plot; 2 – scatter plot; 3 – error bars; 4 –
strip chart;,5 – worm plot; 6 – bar plot, 7-pie chart, 8 - bar chart)

Note: this function is a duplicate of PlotterValueGet.

R

GetSignalName
(integer plot, inte-
ger whichSig)

Returns the name of the signal whichSig. S

GetSignalValue
(integer plot, inte-
ger whichSig, real
xAxisValue)

Finds the value of the installed trace at xAxisValue. If the trace is
an installed array, the value is interpolated between adjacent
points. If the trace is an installed function, the function is evalu-
ated at xAxisValue. This does not work for scatter plots because
there may be many Y values for a single xAxisValue.

R

GetTickCount(inte-
ger plot, integer
whichCount)

Returns the number of ticks on the plotter axis. WhichCount is 0
for the X axis, 1 for the Y axis, and 2 for the Y2 axis.

I

GetY1Y2Axis(inte
ger plot, integer
whichSig)

Returns an integer specifying which Y axis the signal is plotted
against and whether or not the signal is hidden.

1: y1
2: y2
-1: y1, hidden
-2: y2, hidden

Note: If you are not concerned whether the signal is hidden, take
the absolute value of the result.

I

InstallArray(inte-
ger plot, integer
whichSig, string
sigName, real y,
real StartTime, real
EndTime, integer
plotPts, integer
useY2Axis, integer
pattern, integer
color)

Allows the automatic plotting of arrays. The plot window will
plot all the points of this array up to plotPts-1. It should be pre-
ceded by InstallAxis and eventually be followed by showPlot.
The first time arrays are installed they need to be installed in
sequential order. The Install Array call is used in two ways in
plotter blocks. The first time it is called, it installs the array and
sets parameters such as the color of the line. The second and sub-
sequent times, the formatting options are ignored, and the only
action a call to installArray takes is to reinstall the array itself. If
you precede a call to InstallArray with a call to RemoveSignal,
the formatting information will be used.

 Note: patterns are not supported as of release 10.

V

General plotting Description Return

312 Reference
Plotting/Charts

Fu
nc

tio
ns

InstallAxis(integer
plot, string title,
string xName, inte-
ger isXLog, real
xLow, real xHi,
string yName, inte-
ger isYLog, real
yLow, real yHi,
string y2name,
integer isY2Log,
real y2Low, real
y2Hi, integer
y2Pattern, integer
y2Color, integer
maxLines)

Installs both the X and Y axes. If both the y2Low and y2Hi argu-
ments are 0, the Y2 axis is not shown.

V

InstallFunction
(integer plot, inte-
ger whichSig,
string sigName,
functionName,
integer useY2Axis,
integer pattern,
integer color)

Allows the automatic plotting of functions. The plot window will
plot all the points of this function corresponding to the x axis val-
ues, even if you changed them. It should be preceded by Instal-
lAxis and eventually followed by ShowPlot. Call InstallFunction
every time the plot window is shown (before ShowPlot).

 Note: patterns are not supported as of release 10.

V

NumPlotPoints
(integer plot, inte-
ger points)

Specifies the number of points to be stored for worm and strip
plots.

V

PlotNewBarPoint

(integer plot, inte-
ger whichSig, inte-
ger whichBin, real
Value)

This function allows you to set the value of one of the bins in a
histogram/barchart chart, rather than adding 1 to it as the Plot-
NewPoint function will do.

V

PlotNewPoint(inte-
ger plot, integer
whichSig, integer
index, real yValue)

Adds and plots a new yValue point to the installed array. It is use-
ful when you want to see points plotted as they are calculated
within a loop (such as during simulations). To use this effectively,
first use InstallArray with a value of 0 for the plotPts argument.
PlotNewPoint increments the plotPts of the installed array when
the point is plotted, and the equation “y[index] = yValue” is inter-
nally executed, putting the new yValue into the installed array.
Note that the first value of index must be 0 when calling PlotNew-
Point for a newly installed array.

V

PlotSignalFormat
(integer plot, inte-
ger whichSig, inte-
ger lineFormat,
integer numFor-
mat)

Specifies the line format and number format for the trace. V

General plotting Description Return

ModL Functions 313
Plotting/Charts

Functions
PlotterAuto-
scaleLimits (inte-
ger plot, real minX,
real maxX, real
minY, real maxY,
real minY2, real
maxY2)

Sets the limits for the autoscaling functionality in the specified
plot. Autoscaling will force the max and min values to these val-
ues if they are set.

PlotterBackground
(integer plot, string
backName)

Specifies that the named picture should be used as the background
for the specified plotter. The picture file must be in the extensions
folder. See “Picture and movie files” on page 90 for more infor-
mation on how external pictures are used in ExtendSim.

I

PlotterNameGet
(integer plot)

Returns the name of the specified plotter. S

PlotterNam-
eSet(integer plot,
string newName)

Sets the name of the specified plotter. I

PlotterSignalColor-
Set(integer plot,
integer whichSig,
integer Hue, integer
Sat, integer Value)

Sets the color of the specified signal. This function will automati-
cally set the color value of the signal to custom and will then
define the custom color values to be the values you pass in.

As of ExtendSim 10, use PlotterSignalEColorSet instead.

V

PlotterSignalECol-
orSet (integer plot,
integer whichSig,
integer EColor-
Value)

Sets the color of the specified signal. See “EColors” on page 365. V

PlotterSignalVal-
ueGet (integer plot,
integer whichSig,
integer which-
Value)

Returns a value associate with the specified signal. The which-
Value argument specifies the number of the signal:
0: Color (prior to ExtendSim 10)
1: Hue (prior to ExtendSim 10)
2: Sat (prior to ExtendSim 10)
3: Value (prior to ExtendSim 10)
4: Signal visibility
5: use Y2Axis
6: Line format
7: Line symbol
8: Line thickness
10: EColor Value to set the signal line color
11: The number of data points in this signal

I

PlotterSignalValue-
Set (integer plot,
integer whichSig,
integer which-
Value, integer
value)

Sets the value of a specified aspect of a plotter signal. Which val-
ues are the same as for PlotterSignalValueGet.

I

General plotting Description Return

314 Reference
Plotting/Charts

Fu
nc

tio
ns

PlotterSquare(inte-
ger plot, integer
trueFalse)

If true, forces the window to be square. If false, it removes the
squaring restriction.

V

PlotterVal-
ueGet(integer plot,
integer which)

Gets a setting value on the specified plotter or chart. “which”
takes the following values:
1: X axis decimal places
2: Y axis decimal places
3: Y2 axis decimal places
4: number of active traces (just get)
5: label angle for Bar Chart or pieSize for Pie Chart
6: plotter type ((1 – linear plot; 2 – scatter plot; 3 – error bars; 4 –
strip chart;,5 – worm plot; 6 – bar plot, 7-pie chart, 8 - bar chart)

Note: this function is a duplicate of GetPlotterValue

R

PlotterValue-
Set(integer plot,
integer which, real
value)

Sets a setting value on the specified chart or plotter. “which” takes
the following values:
1: X axis decimal places
2: Y axis decimal places
3: Y2 axis decimal places
5: label angle for Bar Chart or pieSize for Pie Chart

I

PlotterXAxisCal-
endar(integer plot,
integer xAxisCal-
endar, integer for-
mat)

Turns on or off Calendar date behavior on the x axis of the speci-
fied plotter. The xAxisCalendar flag set to a true value will set the
plotter to redraw with Calendar date values on the x Axis. The
format parameter takes the following values:
0: everything
1: Just date, (ignore time)
2: Just time, (ignore date)
3: tight format. (Two digit year, and don't show time value if
zero.)

V

PlotterXAxisIs-
Time(integer plot,
integer xAxisTime)

This function sets a true/false flag in the specified plotter that tells
the plotter if the X axis is defined as a time value or not. The pri-
mary purpose for which the plotter uses this is for optimization. If
the X axis of the plotter is scaled to a certain max value, and the
next X value is beyond that value, the plotter knows that it is done
drawing because all subsequent X value will be higher than the
current values. Without this optimization, the DE plotter, which
is based on a scatter plotter, not a continuous plotter, will continue
to attempt to draw the rest of the points in the data unnecessarily.

V

PushPlotPic(inte-
ger plot)

Pushes the top plot picture, page 1, down to page 2 of the plot
window. The oldest plot (page 4) is discarded. This function only
works if the plot is showing when the function is called.

V

RefreshPlot-
ter(integer plot,
integer whole-
frame, integer
openPlotterWin-
dow)

Function that will redraw the plotter without opening the plotter
window if it is closed. Used for redrawing the clones of a plotter
when a change has occurred.

V

General plotting Description Return

ModL Functions 315
Plotting/Charts

Functions
Remember to call the ShowPlot function to replot any changes made by these functions. Be
sure to call ShowPlot after all calls that change the plot axis limits or formats.

The structure and contents of plots are saved with the model file, whether they were open or
not.

RemoveSig-
nal(integer plot,
integer unused)

Removes the last installed array or function from the plot.

For unused, enter any integer; 0 is suggested.

V

RenamePlot-
ter(integer plot,
string newname)

Renames the plotter. V

RetimeAxis(inte-
ger plot)

Sets the X axis values to the simulation start and end times. This
is useful for plotting simulation results without having to reset the
x axis values before a simulation is run.

V

RetimeAxisNStep
(integer plot, inte-
ger nStep)

This function is used to correct axis values when “Plot every nth
Point” is selected in the plotter’s dialog. As an example, see the
Plotter I/O block in the Plotter library.

V

SetAxisName(inte-
ger plot, integer
whichAxis, string
theName)

Sets the Axis name of the specified Axis. whichAxis:
1-x
2-y1
3-y2

I

SetSignalName
(integer plot, inte-
ger whichSig,
string theName)

Sets the name of signal whichSig. V

SetTickCounts
(integer plot, inte-
ger xCount, integer
yCount, integer
y2Count)

Specifies the number of ticks on the plotter axes in the plot. Spec-
ifying -1 as the parameter will use the current value.

V

ShowPlot(integer
plot, string plot-
Name)

Opens and names the plot window. If the plot has never been
used, an empty plot is shown. Additional calls bring the window
to the front. plotName is a string that contains the name of the
plot. Note that ShowPlot will not change the name of a plot that
was entered the plot dialog.

V

ShowPlot2(integer
blockNumber, inte-
ger plot)

Shows the specified plotter. The only difference between this
function and ShowPlot is the block number argument, which
allows you to show a plotter in a remote block.

V

SwitchPlotterRe-
draw(integer plot,
integer direction)

Specifies the direction in which the plot will be redrawn. A direc-
tion of 0 specifies left to right, a direction of 1 specifies right to
left. This only affects the way that the plot lines are redrawn when
the plot is complete.

V

General plotting Description Return

316 Reference
Plotting/Charts

Fu
nc

tio
ns

Pie and Bar chart functions

Pie charts Description Return

PieChart(integer
plot, real pieSize,
real holeSize

Sets the specified plotter to be a Pie Chart. PieSize and holeSize
range from 0.0 to 1.0. PieSize specifies how big the Pie Chart is,
relative to the size of the graph area. HoleSize specifies the same
for the hole in the middle of the Pie Chart. A hole size of greater
than 0.0 makes the Pie Chart a Donut Chart.

V

PieChartSlice(inte-
ger plot, integer
whichSlice, string
sliceLabel, long
color, long explode,
real explodePer-
cent, real value)

Specifies the size and color of a slice of a Pie Chart.

Explode should be set to TRUE if the pie slice should be dis-
played separated from the rest of the Pie Chart.

Value is the relative size of the section.

V

Bar charts Description Return

BarChart(integer
plot, integer
stacked)

Sets the specified plotter to be a Bar Chart. When there are multi-
ple Series (i.e. a grouped bar chart), Stacked allows the bars to be
stacked on top of each other rather than next to each other.

V

BarChartCategory-
CountGet(integer
plot)

Returns the specified value for the specified bar chart set. I

BarChartCategory-
CountSet(integer
plot, integer num-
Categories)

Sets the number of categories in the specified bar chart. New cate-
gories will be defined with empty strings. Will not change exist-
ing categories.

V

BarChartCategory-
Get(integer plot,
integer which)

Returns the specified category name. Returns an empty string if
the which value is out of range.

S

BarChartCategory-
Set(integer plot,
integer which,
string catego-
ryName)

Sets the specified category to the specified string. Has no effect if
the which value is out of range.

V

BarChartSet(inte-
ger plot, integer set,
string setLabel,
integer color)

Creates a new set, or modifies an existing set in the specified Bar
Chart. Set is the index value of the set.

V

BarChartVal-
ueGet(integer plot,
integer whichSet,
integer which-
Value)

Gets the value for a specified Bar Chart. R

ModL Functions 317
Database functions

Functions
Scatter plot functions
To plot scatter plots (XY plots), you need two additional functions. Scatter plot windows com-
bine two traces previously installed into a plot. The traces are combined into an XY trace,
where the first trace supplies the X values, and the second trace supplies the Y values. The val-
ues of the whichSig argument for the Scatter Plot functions must range from 0 to an even num-
ber minus one specifying the highest numbered scatter trace.

To see how the plotting functions can be used in your own blocks, examine the plotter func-
tions that are used in the code of the various blocks in the Chart library.

Database functions
These are used to create, read, write, import, export, and delete databases and their compo-
nents. They are used by blocks to create and manipulate databases during a run. All database
indexes are 1 based, so they start at 1 and end at N. Databases and tables maintain their
indexes, even when other databases or tables are deleted. Fields and record indexes can change
if earlier fields or records are deleted.

☞ Reserved databases use specially named functions to manipulate them so they don’t inadver-
tently get changed by the user or developer. These functions have the word “Reserved” in their
name.

Blocks can be linked to parts of the database, so if the database structure or data changes, they
will be notified and can take action. See “Dynamic linking” on page 280 and the LINK-
STRUCTURE and LINKCONTENT messages.

Error codes
For database read/write functions, the Database menu command “Read/Write Index Checking“
can enable error messages if a read/write function call has illegal indexes. This is a good tool to
find illegal indexes and leaving this check on does not impact the speed of a simulation run.

BarChartValue-
Set(integer plot,
integer whichSet,
integer which-
Value, real value)

Sets the values within a specific set in the Bar Chart. V

Scatter plots Description Return

MakeScatter (inte-
ger plot, integer
whichSig)

Combines the two traces (the first specified by whichSig) into a
scatter trace. Both whichSig and whichSig+1 traces must be the
same length and must have been installed by InstallArray before
MakeScatter is called.

V

PlotNewScatter
(integer plot, inte-
ger whichSig, inte-
ger index, real
xValue, real
yValue)

Similar to plotNewPoint but for scatter plots. xValue is put into
whichSig and yValue is put into whichSig+1.

V

Bar charts Description Return

318 Reference
Database functions

Fu
nc

tio
ns

Leave it off if it is preventing a legacy model from running. New models have this check on by
default.

In most cases, functions return zero if no error, or non-zero error codes when an error occurs:

Creating and deleting database components

Error code Value Description

no such record -1 One of the indexes are incorrect.

no such parent -2 Trying to set a child field to a value that is not a parent value.

not unique error -3 Trying to set a cell to a non-unique value in a field with the “Unique”
property set.

not unique index >0 DBSetDataAs... functions will return the record index of the currently
existing unique value if you try to set a cell to a non-unique value.

not linked error -4 Returned by DBDataGetAsNumber() on a list of tables field if a table
name found in a database cell doesn’t exist and doesn’t have an index
in the database.

DB creating/deleting Description Return

DBDatabaseCreate
(string databaseName)

Creates database databaseName and returns its index. Error:
returns negative error code if existing name already used.

I

DBDatabaseDe-
lete(string data-
baseName)

Deletes entire database. Returns negative error code if DB
doesn't exist.

I

DBDatabaseDelete-
ByIndex(integer data-
baseIndex)

Deletes entire database using index, returns error code. See
also DBDatabaseDelete() in the Technical Reference.

I

DBDatabaseTabDe-
lete(integer databa-
seIndex, Str255
existingTabName)

Deletes existingTabName tab in databaseIndex database
viewer. Returns -1 if error.

I

DBFieldCreate(string
databaseName, string
tableName, string
fieldName, integer
fieldFormat, integer
decimals, integer
unique, integer
readOnly, integer
invisible)

Creates field fieldName with specified attributes tableName
and returns its index. Error: returns negative error code if
existing name already used.
Field format constants defined:
DB_FIELDTYPE_INTEGER_VALUE, DB_FIELD-
TYPE_INTEGER_BOOLEAN (checkbox), DB_FIELD-
TYPE_REAL_GENERAL,
DB_FIELDTYPE_REAL_SCIENTIFIC, DB_FIELDTYPE_-
REAL_PERCENT, DB_FIELDTYPE_REAL_CURRENCY,
DB_FIELDTYPE_REAL_DATE_TIME, DB_FIELDTYPE_-
REAL_DB_ADDRESS, DB_FIELD-
TYPE_STRING_VALUE, DB_FIELDTYPE_TABLELIST

I

ModL Functions 319
Database functions

Functions
DBFieldCreateByIn-
dex(integer databa-
seIndex, integer
tableIndex, string field-
Name, integer field-
Format, integer
decimals, integer
unique, integer
readOnly, integer
invisible)

Creates field fieldName using specified indexes, returns error
code. See also DBFieldCreate() in the Technical Reference.

I

DBFieldDelete(string
databaseName, string
tableName, string
fieldName)

Delete field. Returns negative error code if field doesn't exist. I

DBFieldDeleteByIn-
dex(integer databa-
seIndex, integer
tableIndex, integer
fieldIndex)

Deletes field using index, returns error code. See also
DBFieldDelete() in the Technical Reference.

I

DBRecordsDe-
lete(integer databa-
seIndex, integer
tableIndex, integer
startRecord, integer
endRecord)

Delete records from a table. Returns negative error code if
table doesn't exist.

I

DBRecordsInsert(inte-
ger databaseIndex,
integer tableIndex,
integer insertAtRecord,
integer numberRe-
cords)

Insert at record index or append (insertAtRecord is zero) new
records to a table, returns tableIndex if ok. Returns negative
error code if table doesn't exist.

I

DBRelationCre-
ate(string data-
baseName, string
tableChildName, string
fieldChildName, string
tableParentName,
string fieldParent-
Name)

Create relation, returns negative error code if anything doesn't
exist.

I

DBRelationDe-
lete(string data-
baseName, string
tableChildName, string
fieldChildName, string
tableParentName,
string fieldParent-
Name)

Delete relation. Returns negative error code if relation doesn't
exist.

I

DB creating/deleting Description Return

320 Reference
Database functions

Fu
nc

tio
ns

Selecting parts of a database
These functions open a database component selection dialog so the user can select a desired
component.

DBTableCloneTo-
Tab(integer databa-
seIndex, integer
tableIndex, string tab-
Name)

Creates the tabName if not there, and clones the table to the
tab.

V

DBTableCreate (string
databaseName, string
tableName)

Creates table tableName and returns its index. Error: returns
negative error code if existing name already used.

I

DBTableCreateByIn-
dex(integer databa-
seIndex, string
tableName)

Creates table tableName in current database using indexes,
returns negative error code. See also DBTableCreate() in the
Technical Reference.

I

DBTableDelete(string
databaseName, string
tableName);

Delete table. Returns negative error code if Table doesn't exist. I

DBTableDeleteByIn-
dex(integer databa-
seIndex, integer
tableIndex)

Deletes table using index, returns error code. See also DBTa-
bleDelete() in the Technical Reference.

I

DBToolTipsGet(inte-
ger databaseIndex,
integer tableIndex,
integer fieldIndex)

Gets the string value of the tooltip.
1) All indexes good, gets field tooltip.
2) FieldIndex is zero, gets table tooltip.
3) Field and Table index zero, gets database tooltip.

S

DBToolTipsSet(inte-
ger databaseIndex,
integer tableIndex,
integer fieldIndex,
string value)

Sets the tooltip to value.
1) All indexes good, sets field tooltip.
2) FieldIndex is zero, sets table tooltip.
3) Field and Table index zero, sets database tooltip.

I

DB selecting Description Return

DBChildPopupSelec-
tor(integer databaseIn-
dex, integer
tableIndex, integer
fieldIndex, integer
recordNum, integer
trueForSelectorDialog)

Opens a child field parent value selector similar to clicking on
a child field popup arrow, and changes the child value accord-
ing to which parent value the user selects. If trueForSelector-
Dialog is TRUE, a selector dialog is shown with a scroll bar,
good for a large numbers of parent values. If FALSE, a popup
menu is shown, which is good for a small number of parent
values.

Returns the selected parent record index or zero if canceled.

I

DB creating/deleting Description Return

ModL Functions 321
Database functions

Functions
Copying parts of a database

Import and export a database

DBDatabasePopupSe-
lector(real currentD-
BIndex)

Opens a database selector dialog and selects the currentDBIn-
dex if not BLANK or zero. If BLANK or zero, doesn’t select
any entries in the list.

Returns the selected database index or zero if canceled.

I

DBFieldPopupSelec-
tor(integer databaseIn-
dex, integer
tableIndex, real cur-
rentFieldIndex)

Opens a field selector dialog and selects the currentFieldIndex
if not BLANK or zero. If BLANK or zero, doesn’t select any
entries in the list.

Returns the selected field index or zero if canceled.

I

DBRecordPopupSelec-
tor(integer databaseIn-
dex, integer
tableIndex, integer
fieldIndex, real curren-
tRecordIndex)

Opens a record selector dialog and selects the currentRe-
cordIndex if not BLANK or zero. If BLANK or zero, doesn’t
select any entries in the list.

Returns the selected record index or zero if canceled.

I

DBTablePopupSelec-
tor(integer databaseIn-
dex, integer
tableIndex)

Opens a table selector dialog and selects the currentTableIn-
dex if not BLANK or zero. If BLANK or zero, doesn’t select
any entries in the list.

Returns the selected table index or zero if canceled.

I

DB copy Description Return

DBDatabaseC-
opy(integer fromData-
baseIndex, string
newDatabaseName)

Copies entire database to a new database. Returns index of the
new database or -1 if error (bad index or same name as exist-
ing database).

I

DBTableCopy(integer
fromDatabaseIndex,
integer fromTableIn-
dex, integer toDataba-
seIndex, string
newTableName)

Copies and optionally renames an existing table into its cur-
rent database (must use newTableName) or another database
(If newTableName is blank, keeps the existing table name).
Returns index of the new table or -1 if error (bad index or
same table name as existing table in that database).

Note: if the target table’s name starts with a + (plus sign), this
function will append the existing table’s data to the target.

I

DB import/export Description Return

DBDatabaseEx-
port(string data-
baseName, string
pathName)

Export database to DB text file pathName. If pathName is a
blank string, let the user select a text file. Returns -1 if error.

I

DB selecting Description Return

322 Reference
Database functions

Fu
nc

tio
ns

Database properties

DBDatabaseIm-
port(string data-
baseName, string
pathName)

Import database from text file pathName, replacing the data-
base named databaseName or creating it if it didn’t exist. If
the database name is in the form “databaseName<delete>”, it
deletes any left over tables that were not imported in this file.
If pathName is a blank string, let the user select a text file.
Returns the database index or -1 if it fails. Sends both a Link-
Structure message (what changed: DB replaced) and a Link-
Content message (what changed: data changed) to linked
blocks. See DILinkUpdateInfo() for an explanation of what
changed.

I

DBTableExport-
Data(string pathName,
string userPrompt,
string format, integer
databaseIndex, integer
tableIndex, integer
rows, integer columns)

Exports the table data to a delimited text file. If pathName is a
blank string, lets the user select a text file. If format is a blank
string, uses a tab as delimiter (see Import() functions). If the
databaseIndex is negative, it outputs the field names (sepa-
rated by delimiters) as the first line of the text file. Returns -1
if error.

I

DBTableImport-
Data(string pathName,
string userPrompt,
string format, integer
databaseIndex, integer
tableIndex)

Imports a delimited text file into a database table and returns
the number of rows imported. If format is a blank string, uses
a tab as delimiter (see Import() functions). If databaseIndex is
negative, it assumes that the first line of the text file contains
the field names and skips that line.

This function maintains existing relations in the table but will
discard relations that violate parent/child data requirements:
all child data in a relation must be blank or exist in the parent
data set.

NOTE: This function automatically resizes the table to the
number of rows imported, so you do not need to allocate any
records in the table before calling this function.

I

DB properties Description Return

DBDatabaseExists
(integer databaseIn-
dex)

Passing in a database index, returns TRUE if the database
exists, FALSE if it doesn’t exist. Also see DBTableExists(),
DBFieldExists(), and DBRecordExists().

I

DBDatabaseGetIn-
dex(string data-
baseName)

Returns database index or negative error if not found. I

DBDatabaseGet-
Name(integer databa-
seIndex)

Gets the name of the database or blank string if bad index. S

DB import/export Description Return

ModL Functions 323
Database functions

Functions
DBDatabaseRe-
name(integer databa-
seIndex, string
newDatabaseName)

Renames a database. Returns a negative error code if newDa-
tabaseName already exists or the old database doesn't exist.

I

DBDatabasesGet-
Num()

Because database indexes remain constant even if some data-
bases are deleted, this returns number of database slots of
which some could be empty. To count how many actual data-
bases there are, use a loop and count the databases that have a
non-blank name.

I

DBDatabaseShowHid-
eReserved(integer
showIfTrueHideIf-
False)

Use this to hide or show reserved databases without using the
menu command. Reserved databases are discussed on
page 114.

Note: When the model closes, the reserved databases return to
being hidden. So this command must be called again when-
ever the model is opened.

V

DBDatabaseTabChan-
geName(integer data-
baseIndex, Str255
existingTabName,
Str255 newTabName)

Changes the name of existingTabName to newTabName in
databaseIndex database viewer. Returns -1 if error.

I

DBFieldExists(integer
databaseIndex, integer
tableIndex, integer
fieldIndex)

Passing in a database index, table index, field index, returns
TRUE if the field exists, FALSE if it doesn’t exist. Also see
DBDatabaseExists(), DBTableExists(), and DBRecordEx-
ists().

I

DBFieldGetIndex(inte-
ger databaseIndex,
integer tableIndex,
string fieldName)

Returns field index or negative error if not found. I

DBFieldGet-
Name(integer databa-
seIndex, integer
tableIndex, integer
fieldIndex)

Gets the name of the field or blank string if bad index. S

DBFieldGetProper-
ties(integer databaseIn-
dex, integer
tableIndex, integer
fieldIndex, integer
which)

which:
1: fieldType
2: fieldDecimals
3: fieldUnique
4: fieldReadOnly
5: fieldInvisible
6: IfFieldID
7: isParentField (note: use judiciously; this is very slow)
8: isChildField, (note: use judiciously; this is very slow)

-1 if error

Also see the DBFieldCreate() function on page 319.

I

DB properties Description Return

324 Reference
Database functions

Fu
nc

tio
ns

DBFieldGetPropertie-
sUsingAddress(real
dbAddress, integer
which)

This uses a DBAddress (see the DBAddress functions).

For the values of which, see the DBFieldGetProperties func-
tion, above.

Also see the DBFieldCreate() function on page 319.

I

DBFieldMove(integer
databaseIndex, integer
tableIndex, integer
fieldIndex, integer
newFieldIndex)

Moves field fieldName to newFieldIndex, moving other fields
in the process. Returns a negative when indexes are incorrect.

I

DBFieldRename(inte-
ger databaseIndex,
integer tableIndex,
integer fieldIndex,
string newFieldName)

Renames a field. Returns a negative error code if the field
already exists or the old field doesn't exist.

I

DBFieldSetInitial-
ize(integer databaseIn-
dex, integer
tableIndex, integer
fieldIndex, integer init-
Flag, integer initSim-
Flag, string value)

Set the field's initialization parameters.
initFlag: 0 no init (default), 1 init to initDataValue.
initSimFlag: 0 init each run (default), 1 init first run of multi-
sim.
value: what value to init the field, real or string for string
fields.
Returns an error code if bad indexes.

I

DBFieldSetProper-
ties(integer databaseIn-
dex, integer
tableIndex, integer
fieldIndex, integer
which, integer
newValue)

which: 1: fieldType, 2: fieldDecimals, 3: fieldUnique, 4: fiel-
dReadOnly, 5: fieldInvisible, 6: IfFieldID. Returns -1 if index
error. See the DBFieldCreate() function, above.

I

DBFieldsGet-
Num(integer databa-
seIndex, integer
tableIndex)

Returns number of fields. Returns negative error code if no
fields or no such table index.

I

DBRecordExists(inte-
ger databaseIndex,
integer tableIndex,
integer fieldIndex,
integer recordIndex)

Passing in a database index, table index, field index, record
index, returns TRUE if the record (database cell) exists,
FALSE if it doesn’t exist. Also see DBDatabaseExists(),
DBTableExists(), and DBFieldExists().

I

DB properties Description Return

ModL Functions 325
Database functions

Functions
DBGetSize(integer
databaseIndex, integer
tableIndex, integer
fieldIndex)

Used to find the amount of memory used by the DB. Returns
the size in bytes of the selected database, table, or field by
specifying its indexes. If the index is -1, all of the sizes of the
databases, tables, or fields are added up. For example, if data-
baseIndex is -1, the size of all of the databases are totaled and
returned. If any of the indexes are -1, the next indexes are
ignored, so if the databaseIndex is 1, tableIndex is -1, and
fieldIndex is 2, the function ignores the fieldIndex and returns
the sum of sizes of all of the tables in databaseIndex 1.

R

DBRecordID-
FieldGetIndex(integer
databaseIndex, integer
tableIndex)

Returns field index of the recordID field, if any. Returns nega-
tive error if no fieldID found.

I

DBRecordsGet-
Num(integer databa-
seIndex, integer
tableIndex)

Returns number of records in a table. Returns negative if no
such table index.

I

DBRelationsGet-
Names(integer databa-
seIndex, integer
relationIndex, string
relationNames[])

Returns zero error code and tableChild, fieldChild, tablePar-
ent, fieldParent in string relationNames[4]

I

DBRelationsGet-
Num(integer databa-
seIndex)

Returns number of relations in the DB. Returns negative error
code if no DB.

I

DBTableExists (inte-
ger databaseIndex,
integer tableIndex)

Passing in a database and table index, returns TRUE if the
table exists, FALSE if it doesn’t exist. Also see DBDatabase-
Exists(), DBFieldExists(), and DBRecordExists().

I

DBTabGetTableIndex-
List(integer databa-
seIndex, string
tabName, integer inte-
gerArray)

Puts database table indexes in integerArray, where indexes
represent the tables in the tab named tabName. IntegerArray is
a dynamic array declared as integer integerArray[]. Returns an
integer that specifies how many table indexes are in integerAr-
ray. Returns -1 if the either or both of the databaseIndex or the
tabName don't exist.

I

DBTableGetIn-
dex(integer databa-
seIndex, string
tableName)

Returns table index or negative error if not found. I

DBTableGetProper-
ties(integer databaseIn-
dex, integer
tableIndex)

Returns the initialization method: 0 is no initialization, 1 is
delete all records for all runs, 2 is delete all records for only
the first run. Returns -1 if error.

I

DB properties Description Return

326 Reference
Database functions

Fu
nc

tio
ns

Read and write to a database
☞ Note that reading a “List of Tables” field returns the table index if read as a number, and the

name of the table if read as a string.

DBTableGet-
Name(integer databa-
seIndex, integer
tableIndex)

Gets the name of the table or blank string if bad index. S

DBTableSetProper-
ties(integer databaseIn-
dex, integer
tableIndex, integer ini-
tializeMethod)

Sets the initialization method: 0 is no initialization, 1 is delete
all records for all runs, 2 is delete all records for only the first
run. Returns -1 if error.

I

DBTableRename(inte-
ger databaseIndex,
integer tableIndex,
string newTableName)

Renames a table. Returns a negative error code if the table
already exists or old table doesn't exist.

I

DBTablesGet-
Num(integer databa-
seIndex)

Because table indexes remain constant even if some tables are
deleted, returns number of table slots of which some could be
empty. To count how many actual database tables there are,
use a loop and count the tables that have a non-blank name.

I

DB read/write Description Return

DBDataGetAsNum-
ber(integer databaseIn-
dex, integer
tableIndex, integer
fieldIndex, integer
recordIndex)

Reads the value as a number without any formatting. Returns
a NoValue if the cell is blank, even if it is an integer cell.

Note: Random distributions in cells will return a different ran-
dom number each time that this function is called.

Note: Using this function to read a “List of Tables” field
returns the index of the table read.

R

DBDataGetAsNum-
berParentAltField(real
childDBAddress, inte-
ger altFieldIndex)

This function, when called with a child DBAddress, allows
returning the value from a different field of the parent record.
Reads the value as a number without any formatting. Note that
random distributions in cells will return a different random
number each time that this function is called.

Note: Using this function to read a “List of Tables” field
returns the index of the table read.

R

DBDataGetAsNumbe-
rUsingAddress(real
dbAddress)

Using a DBAddress, read the value as a number without any
formatting. Note that random distributions in cells will return
a different random number each time that this function is
called.

Note: Using this function to read a “List of Tables” field
returns the index of the table read.

R

DB properties Description Return

ModL Functions 327
Database functions

Functions
DBDataGe-
tAsString(integer data-
baseIndex, integer
tableIndex, integer
fieldIndex, integer
recordIndex)

Reads the value as a string at full precision. Percentage format
returns the normalized value as “1.00” for database cells that
read 100%. NOTE that if the table is a table of tables, this
returns the table name (see DBGetDataAsNumber() below.
Note that random distributions in cells will return a different
random number each time that this function is called.

Note: Using this function to read a “List of Tables” field
returns the name of the table read.

S

DBDataGetAsString-
ParentAltField(real
childDBAddress, inte-
ger altFieldIndex)

This function, when called with a child DBAddress, allows
returning the value from a different field of the parent record.
Reads the value as a string at full precision. Percentage format
returns the normalized value as “1.00” for database cells that
read 100%. NOTE that if the table is a table of tables, this
returns the table name (see DBGetDataAsNumber() below.
Note that random distributions in cells will return a different
random number each time that this function is called.

Note: Using this function to read a “List of Tables” field
returns the name of the table read.

S

DBDataGetAsStrin-
gUsingAddress(real
dbAddress)

Using a DBAddress, read the value as a string at full precision.
Percentage format returns the normalized value as “1.00” for
database cells that read 100%. NOTE that if the table is a table
of tables, this returns the table name (see DBGetDataAsNum-
ber() below. Note that random distributions in cells will return
a different random number each time that this function is
called.

Note: Using this function to read a “List of Tables” field
returns the name of the table read.

S

DBDataGetDateAs-
SimTime(integer dbIn-
dex, integer
tableIndex, integer
fieldIndex, integer
recordIndex, integer
timeUnits)

Reads a database cell as a date, and converts it to a simulation
time value. This allows the user to read a date value directly
as a simulation time value, avoiding the conversion process.

R

DBDataGetDateAs-
SimTimeUsingAd-
dress(real
addressValue, integer
timeUnits)

Using a dbAddress, reads a database cell as a date, and con-
verts it to a simulation time value. This allows the user to read
a date value directly as a simulation time value, avoiding the
conversion process.

R

DB read/write Description Return

328 Reference
Database functions

Fu
nc

tio
ns

DBDataGetPar-
ent(integer databaseIn-
dex, integer
tableIndex, integer
fieldIndex, integer
recordIndex, integer
parentArray[3])

Gets the parent information from a child field. Use it to either
return these database indexes of the parent:
parentArray[0] returns parent Table index
parentArray[1] returns parent Field index
parentArray[2] returns parent Record index (or zero if no child
value has been set)
Or, as with parentArray[2], to return the parent record index
(or zero if no child value has been set).
Returns a negative error code.

I

DBDataGetParentUs-
ingAddress(real dbAd-
dress, parentArray[3])

Using a DBAddress, gets the parent information from a child
field address. Use it to either return these database indexes of
the parent:
parentArray[0] returns parent Table index
parentArray[1] returns parent Field index
parentArray[2] returns parent Record index (or zero if no child
value has been set)
Or, as with parentArray[2], to return the parent record index
(or zero if no child value has been set).
Returns a negative error code.

I

DBDataSetAsNum-
ber(integer databaseIn-
dex, integer
tableIndex, integer
fieldIndex, integer
recordIndex, real val-
ueDouble)

Write value of field as number to a record. Returns a negative
error code. Only sends LINKCONTENT message to block if
value has changed. If setting a unique field cell to a non-
unique value, returns the record index of the original unique
value. This function does not work with reserved databases.
See DBDataSetAsNumberReserved(), which works only with
reserved databases.

I

DBDataSetAsNumber-
Reserved(integer data-
baseIndex, integer
tableIndex, integer
fieldIndex, integer
recordIndex, real val-
ueDouble)

This function works only with reserved databases. Otherwise,
it is the same as DBDataSetAsNumber(), which works only
with non-reserved databases.

I

DBDataSetAsNumbe-
rUsingAddress(real
dbAddress, real val-
ueDouble)

Using a DBAddress, write value of field as number to a
record. Returns a negative error code. Only sends LINKCON-
TENT message to block if value has changed.If setting a
unique field cell to a non-unique value, returns the record
index of the original unique value. See DBDataSetAsNumbe-
rUsingAddressReserved(), which works only with reserved
databases.

I

DBDataSetAsNumbe-
rUsingAddressRe-
served(real dbAddress,
real valueDouble)

This function works only with reserved databases. Otherwise,
it is the same as DBDataSetAsNumberUsingAddress(), which
works only with non-reserved databases.

I

DB read/write Description Return

ModL Functions 329
Database functions

Functions
DBDataSetAsPar-
entIndex(integer data-
baseIndex, integer
tableIndex, integer
fieldIndex, integer
recordIndex, integer
parentIndex)

For a child field, sets the parent index directly rather than
using DBDataSetAs... functions. Only sends LINKCON-
TENT msg to block if value changed. Note that you can set
the parentIndex to zero if you want to set the child value to
<no value yet>. Also see DBDataSetAsParentIndexRe-
served(), which works only with reserved databases.

I

DBDataSetAsPar-
entIndexRe-
served(integer
databaseIndex, integer
tableIndex, integer
fieldIndex, integer
recordIndex, integer
parentIndex)

This function works only with reserved databases. Otherwise,
it is the same as DBDataSetAsParentIndex(), which works
only with non-reserved databases.

I

DBDataSetAsPar-
entIndexUsingAd-
dress(real dbAddress,
integer parentIndex)

Using a DBAddress for a child field, sets the parent index
directly rather than with DBPutDataAs... functions trying to
set the parent index by finding the data value in the parent.
Only sends LINKCONTENT msg to block if value changed.
Note that you can set the parentIndex to zero if you want to set
the child value to <no value yet>. See DBDataSetAsParentIn-
dexUsingAddressReserved(), which works only with reserved
databases.

I

DBDataSetAsPar-
entIndexUsingAd-
dressReserved(real
dbAddress, integer par-
entIndex)

This function works only with reserved databases. Otherwise,
it is the same as DBDataSetAsParentIndexUsingAddress(),
which works only with non-reserved databases.

I

DBDataSe-
tAsString(integer data-
baseIndex, integer
tableIndex, integer
fieldIndex, integer
recordIndex, string val-
ueString)

Write value of field as string to a record. Percentage format
expects the normalized value as “1.00” for database cells that
read 100%. Returns a negative error code. Only sends LINK-
CONTENT message to block if value has changed.If setting a
unique field cell to a non-unique value, returns the record
index of the original unique value. See DBDataSetAsStrin-
gReserved(), which works only with reserved databases.

I

DBDataSetAsStrin-
gReserved(integer
databaseIndex, integer
tableIndex, integer
fieldIndex, integer
recordIndex, string val-
ueString)

This function works only with reserved databases. Otherwise,
it is the same as DBDataSetAsString(), which works only with
non-reserved databases.

I

DB read/write Description Return

330 Reference
Database functions

Fu
nc

tio
ns

DBDataSetAsStrin-
gUsingAddress(real
dbAddress, string val-
ueString)

Using a DBAddress, write value of field as string to a record.
Percentage format expects the normalized value as “1.00” for
database cells that read 100%. Returns a negative error code.
Only sends LINKCONTENT message to block if value has
changed.If setting a unique field cell to a non-unique value,
returns the record index of the original unique value. See
DBDataSetAsStringUsingAddressReserved(), which works
only with reserved databases.

I

DBDataSetAsStrin-
gUsingAddressRe-
served(real dbAddress,
string valueString)

This function works only with reserved databases. Otherwise,
it is the same as DBDataSetAsStringUsingAddress(), which
works only with non-reserved databases.

I

DBDataSetDateAs-
SimTime(integer dbIn-
dex, integer
tableIndex, integer
fieldIndex, integer
recordIndex, real sim-
TimeVal, integer
timeUnits)

Takes a simulation time value, converts it to a date, and sets a
DB cell with that date value. See DBDataSetDateAsSimTim-
eReserved(), which works only with reserved databases.

I

DBDataSetDateAs-
SimTimeRe-
served(integer
dbIndex, integer
tableIndex, integer
fieldIndex, integer
recordIndex, real sim-
TimeVal, integer
timeUnits)

This function works only with reserved databases. Otherwise,
it is the same as DBDataSetDateAsSimTime(), which works
only with non-reserved databases.

I

DBDataSetDateAs-
SimTimeUsingAd-
dress(real
addressValue, real sim-
TimeVal, integer
timeUnits)

Using a dbAddress, takes a simulation time value, converts it
to a date, and sets a DB cell with that date value. See DBData-
SetDateAsSimTimeUsingAddressReserved(), which works
only with reserved databases.

I

DBDataSetDateAs-
SimTimeUsingAd-
dressReserved(real
addressValue, real sim-
TimeVal, integer
timeUnits)

This function works only with reserved databases. Otherwise,
it is the same as DBDataSetDateAsSimTimeUsingAddress()
which works only with non-reserved databases.

I

DB read/write Description Return

ModL Functions 331
Database functions

Functions
Random data in a database

DB random data Description Return

DBDataGetCurrent-
Seed(integer databa-
seIndex, integer
tableIndex, integer
fieldIndex, integer
recordIndex)

Returns current running seed value from a random cell speci-
fied by indexes. Returns zero if bad cell.

I

DBDataSetCurrent-
Seed(integer databa-
seIndex, integer
tableIndex, integer
fieldIndex, integer
recordIndex, integer
seedValue)

Sets current running seed value for a random cell specified by
indexes. Returns 0 if bad cell.

I

332 Reference
Database functions

Fu
nc

tio
ns

DBRandomDistribu-
tionGet(integer databa-
seIndex, integer
tableIndex, integer
fieldIndex, integer
recordIndex, string
distName, real
params[],real empT-
able[][2])

Gets the cell's distribution, if any assigned. Returns the info on
the distribution in the returnParams array. Can use locally or
statically declared returnParams (Real returnParams[10]) and
empTable (Real empTable[maxEmpiricalrows][2]) or dynamic
arrays for returnParams[], empTable[][2]; If using dynamic
arrays, no Makearray() needed. You can dispose dynamic
arrays after the call if not needed (Local arrays allow use in an
Equation block).

Case: All database indexes good (ignores distName), return
info for a DB cell:
1) Return all info in arrays. Function returns name of distribu-
tion or blank if not named.
2) Return distributionIndex of 0 in array if not a random cell.

Case: Only databaseIndex is good, rest are zero. Return info
for distName named distribution, if it exists:
1) If distName is good name: Return all info for that distribu-
tion (useSeed and seedInit will be zero as it is defined for each
DB cell).
2) distName doesn’t exist: Return string “-1”

Note that the returned distributionIndex values are the same
as used in the RandomCalculate() function, with these addi-
tions:
EmpiricalDiscrete 200
EmpiricalStepped 201
EmpiricalInterpolated 202

returnParams[0] = distributionIndex;
returnParams[1] = meanDistParam1;
returnParams[2] = argDistParam2;
returnParams[3] = modeParam3;
returnParams[4] = locationParam4;
returnParams[5] = lowerLimit;
returnParams[6] = upperLimit;
returnParams[7] = useSeed;
returnParams[8] = seedInit;
returnParams[9] = empiricNumRows;

empTable contains the empirical distribution array, if any.

S

DB random data Description Return

ModL Functions 333
Database functions

Functions
DBRandomDistribu-
tionSet(integer databa-
seIndex, integer
tableIndex, integer
fieldIndex, integer
recordIndex, string
distName, integer dis-
tributionIndex, real
param1, real param2,
real param3, real loca-
tionParam4, real low-
erLimit, real
upperLimit, integer
useSeed, integer seedI-
nit, real empTable[][2])

This can be used in several cases:

1) Define or modify a named random distribution without set-
ting a DB cell to it (must use this for empirical distributions):
a) Set databaseIndex, other DB indexes should be zero:
b) Use distributionIndex to set the distribution type.
c) Set remaining params for this distribution.
d) Fill empTable if this is an empirical distribution.

2) Set a DB cell to a named random distribution (must use this
for empirical distributions):
a) Set all DB indexes to point to a DB cell.
b) Set distribution name as it is defined in database or via case
1 above.
c) Set useSeed and seedInit for this DB cell. Other parameters
are ignored as name defines distribution to use.

3) Set a DB cell to an unnamed non-empirical random distri-
bution:
a) Set all DB indexes to point to a DB cell.
b) Set distribution name to ““ (blank string).
c) Set distribution index and parameters as in case 1 above.

4) Remove the random distribution from a cell and make it a
constant:
a) Set all DB indexes to point to a DB cell.
b) Set distribution name to ““ (blank string).
c) Set distribution index to zero.

Note that the distributionIndex values are the same as used in
the RandomCalculate() function, with these additions:
EmpiricalDiscrete 200
EmpiricalStepped 201
EmpiricalInterpolated 202

Returns -1 as error.

I

DB random data Description Return

334 Reference
Database functions

Fu
nc

tio
ns

Sort and search in a database

DB sort/search Description Return

DBRecordFind(inte-
ger databaseIndex,
integer tableIndex,
integer notRecordID-
FieldIndex, integer
startingRecordIndex,
integer exactMatch,
string findValue)

Finds a record and returns index of record found. If fieldIndex
is zero, uses RecordID field for search. startingRecordIndex
can be zero or one to start at the first record. To keep searching
for more matches, increment the returned record index by one
for startingRecordIndex. If exactMatch is FALSE, finds
record containing findValue without having to match entire
field value.

Returns 0 if record not found. Returns negative error if index
error.

NOTE: Different find functions return different error codes
because of legacy concerns.

I

DBRecordFindMulti-
pleFields(integer data-
baseIndex, integer
tableIndex, integer
startingRecordIndex,
integer fieldIndex1,
string findValue1, inte-
ger exactMatch1, inte-
ger fieldIndex2, string
findValue2, integer
exactMatch2, integer
fieldIndex3, string
findValue3, integer
exactMatch3)

Finds a record and returns index of record found. Up to 3
fields can be searched. If only one is searched, make both
fieldIndex2, fieldIndex3 zero. If only two are searched, make
fieldIndex3 zero. StartingRecordIndex can be zero or one to
start at the first record. To keep searching for more matches,
increment the returned record index by one for startingRe-
cordIndex. If exactMatch is FALSE, finds record containing
findValue without having to match the entire field value.

Returns -1 if record not found or index error.

NOTE: Different find functions return different error codes
because of legacy concerns.

I

DBRecordFindMulti-
pleFieldsArray(integer
databaseIndex, integer
tableIndex, integer
startingRecordIndex,
integer fieldIndexAr-
ray[], string findValue-
Array[], integer
exactMatchArray[])

Finds a record and returns index of record found. Any number
of fields can be searched. Create three arrays that can be local,
static or dynamic. For example, to declare local arrays in an
Equation block to search 4 fields:

integer fieldIndexArray[4], exactMatchArray[4];
string findValueArray[4];

The arrays can be larger than you need as only nonzero
fieldIndexArray members will be searched. The first zero
fieldIndex will end the fields searched. StartingRecordIndex
can be zero or one to start at the first record. To keep searching
for more matches, increment the returned record index by one
for startingRecordIndex. If exactMatch is FALSE, finds
record containing findValue without having to match the
entire field value.

Returns -1 if record not found or index error.

NOTE: Different find functions return different error codes
because of legacy concerns.

I

ModL Functions 335
Database functions

Functions
DB address functions
These functions stuff the database or global array component indexes into a real number. For
databases, it includes the database index, table index, field index, and record index. The result-
ing real number is very useful as an attribute value that can completely describe a database or
global array address.

Depending on whether there are more than 1 million records, the top index limits for DB
Addresses are:

Depending on the number of records needed, ExtendSim automatically switches to the correct
algorithm. For example, Algorithm #2 is used if more than 1 million records are needed.

DBRecordFindNumer-
icalRange(integer data-
baseIndex, integer
tableIndex, integer
notRecordIDFieldIn-
dex, integer startingRe-
cordIndex, real
lowerDouble, real
upperDouble)

Finds a record and returns index of record found where num-
ber >= lowerDouble and <= upperDouble. To find exactly,
make lowerDouble and upperDouble the same. If fieldIndex is
zero, uses RecordID field for search. StartingRecordIndex can
be zero or one to start at the first record. To keep searching for
more matches, increment the returned record index by one for
startingRecordIndex.

Returns 0 if record not found or index error.

NOTE: Different find functions return different error codes
because of legacy concerns.

I

DBRecordFindParen-
tRecordIndex(integer
databaseIndex, integer
tableIndex, integer
childFieldIndex, inte-
ger startingRecordIn-
dex, integer
findParentIndexValue)

Returns the index of the child record found pointing to start-
ingParentIndex. StartingRecordIndex can be 0 or 1 to start at
the first record. To keep searching for more matches, incre-
ment the returned record index by 1 for startingRecordIndex.
Returns index of found record or 0 for record not found, -1 for
indexing error.

I

DBTableSort(integer
databaseIndex, integer
tableIndex, integer
fieldIndex1, integer
direction1, integer
fieldIndex2, integer
direction2, integer
fieldIndex3, integer
direction3)

Sorts the table using up to three fields and directions. Set the
fieldIndexes of the fields you need sorted, and set the other
fieldIndexes to zero. For example, if you want to sort only one
field, set fieldIndex1 to that field index and set fieldIndex2
and 3 to zero. The direction arguments are TRUE for ascend-
ing and FALSE for descending. Returns -1 if there is an error.

I

Component Algorithm 1 Algorithm 2

Databases 500 500

Tables 10,000 1,000

Fields 1,000 1,000

Records 1,000,000 10,000,000

DB sort/search Description Return

336 Reference
Database functions

Fu
nc

tio
ns

DB address Description Return

DBAddressCre-
ate(integer databaseIn-
dex, integer
tableIndex, integer
fieldIndex, integer
recordIndex)

Returns a DBAddress value from the indexes. R

DBAddress-
GetAllIndexes(real
addressValue, integer
returnIndexesArray[4])

Return the indexes from a DBAddress value. ReturnIndexe-
sArray can be declared as a local variable array (can be
declared in equation blocks):
integer returnIndexesArray[4];

returnIndexesArray[0] returns Database index
returnIndexesArray[1] returns Table index
returnIndexesArray[2] returns Field index
returnIndexesArray[3] returns Record index

DBAddress-
GetAsString(real
addressValue)

Returns the string representation of a DBAddress value. S

DBAddressGet-
Dlg(real theInitVal)

Puts up a dialog for the user to specify the coords of a DBAd-
dress. theInitVal is a starting value. BLANK leaves all blank.

R

DBAddressGet-
Dlg2(integer DBIn-
dex, integer
tableIndex, integer
fieldIndex, integer
recordIndex)

Similar to DBAddressGetDlg. Displays a dialog so the user
can enter a database address. Note that in addition to entering
the DB coordinates as separate values, you can also pass -2 for
a DB coordinate, and this will hide that coordinate on the dia-
log. This allows you to enter just a DB index, for example, or
just a DB and table index. Returns a database address.

R

DBAddressGetFrom-
String(string dbAd-
dressStr)

Returns the real database address when the string argument is
of the form “D:T:F:R” where D, T, F, and R are the numerical
indexes of the address.

R

DBAddressIncre-
mentIndex(real
addressValue, integer
whichElement, integer
incrementValue)

Increments or decrements (negative incrementValue) a DBAd-
dress. whichElement: 1: database, 2: table, 2: field, 4: record

R

DBAddressReplaceIn-
dex(real addressValue,
integer whichElement,
integer newValue)

Replaces an element (whichElement) of the DB address with a
new element (newValue) and returns the new DBAddress.

whichElement: 1: database, 2: table, 3: field, 4: record

R

DBDatabaseGetIndex-
FromAddress(real
addressValue)

Returns a dabase index from the DBAddress value. I

DBFieldGetIndexFro-
mAddress(real
addressValue)

Returns a field index from the DBAddress value. I

ModL Functions 337
Database functions

Functions
Viewing a database

Linking and notification
These functions register and unregister blocks from databases, independent of dialog items and
their links, so linked blocks can be notified if the data that they are depending on changes in
structure or content. This type of linking is different than user linking of parameters and data
tables to a database because you don’t specify anything to link. If the database changes content
(e.g. the value in a cell that you registered changes) you will get a LINKCONTENT message.
If the database table that you are linked to changes name or number of fields or rows, you will
get a LINKSTRUCTURE message. Please see “Dynamic linking” on page 280, for informa-
tion on finding out what changed when you get the LINKCONTENT or LINKSTRUCTURE
messages.

☞ All registration set up by DBBlockRegisterContent() or DBBlockRegisterStructure() is good
only for this model session. This disposal of links is done to prevent obsolete links sending
unneeded messages that could slow down a simulation. When the model is closed and
reopened, you will have to call these functions again (usually in the OPENMODEL message
handler) for all links that you want.

DBRecordGetIndex-
FromAddress(real
addressValue)

Returns a record index from the DBAddress value. I

DBTableGetIndexFro-
mAddress(real
addressValue)

Returns a table index from the DBAddress value. I

DB viewing Description Return

DBDatabaseOpen-
Cell(integer databa-
seIndex, integer
tableIndex, integer
fieldIndex, integer
recordIndex)

Opens the desired database table and scrolls to and selects the
cell specified by fieldIndex and recordIndex. Returns a -1 if
indexes are bad.

I

DBDatabaseOpen-
Viewer(integer databa-
seIndex, string
tableName)

Open the table data viewer. If tableName is blank or doesn't
exist, open the default database viewer. Returns table index if
successful or -1 if error.

I

DBDatabaseOpen-
ViewerToTab(integer
databaseIndex, Str255
tableName, Str255
openTabName)

Opens the table data viewer. If tableName is blank or doesn't
exist, open the default database viewer. If openTabName
exists, opens to that tab. If it is blank or doesn't exist, opens
the last clicked tab. Returns table index if successful or -1 if
error.

I

DBDatabaseClose-
Viewer(integer databa-
seIndex, string
tableName)

Close the table data viewer. If tableName is blank or doesn't
exist, close the database viewer. Returns table index if suc-
cessful or -1 if error.

I

DB address Description Return

338 Reference
Database functions

Fu
nc

tio
ns

For an overview, see “Registered blocks” on page 113.

DB linking/notify Description Return

DBBlockRegisterCon-
tent(integer block-
Number, integer
databaseIndex, integer
tableIndex, integer
fieldIndex, integer
recordIndex)

This will register the block with the selected part of the data-
base so it will get LINKCONTENT messages when that data
is changed. Returns negative code if block not found. Note
that for content registration, individual cells as well as whole
databases, tables, fields, and records can be registered.
If databaseIndex is negative, register all databases.
If tableIndex is negative, register all tables.
If fieldIndex is negative and recordIndex is negative, register
all cells in table.
If fieldIndex is negative and recordIndex is good, register
whole record.
If fieldIndex is good and recordIndex is negative, register
whole field.

I

DBBlockRegister-
Structure(integer
blockNumber, integer
databaseIndex, integer
tableIndex)

This will register the block with the selected part of the data-
base so it will get a LINKSTRUCTURE message when the
database or table structure is changed. Returns negative code
if block not found. Note that for structure registration, only
whole databases or whole tables can be registered.
If databaseIndex is negative, register all databases for struc-
ture changes.
If tableIndex is negative, register all tables for structure
changes.

I

DBBlockUnregister-
Content(integer block-
Number, integer
databaseIndex, integer
tableIndex, integer
fieldIndex, integer
recordIndex)

For non-user-linked data, take it out of the registered block
list. Return negative code if block not found.
If databaseIndex is negative, unregister all databases.
If tableIndex is negative, unregister all tables.
If fieldIndex is negative and recordIndex is negative, unregis-
ter all cells in table.
If fieldIndex is negative and recordIndex is good, unregister
whole record.
If fieldIndex is good and recordIndex is negative, unregister
whole field.

I

DBBlockUnregister-
Structure(integer
blockNumber, integer
databaseIndex, integer
tableIndex)

For non-user-linked data, take it out of the registered block
list. Return negative code if block not found.
If databaseIndex is negative, unregister all databases.
If tableIndex is negative, unregister all tables.

I

DBDatatable(integer
blockNumber, string
datatableName, inte-
ger databaseIndex,
integer tableIndex,
integer showField-
Names)

Link a data table with an ExtendSim database table. I

ModL Functions 339
Database functions

Functions
DBGetLinkedContent-
List(integer DBIndex,
integer TableIndex,
integer Array-
BlockID[][1], integer
ArrayDBLoca-
tion[][4])

For blocks that have database content registered, returns the
number of links found, changes the dynamic arrays to have a
number of rows equal to the number of links, and puts their
link information into dynamic arrays.

ArrayBlockID[][1] has one column that contains the block-
Number. ArrayDBLocation[][4] has four columns that con-
tain the 4 database indices (DB, Table, Field, Record) needed
to specify the location of the cell linked. If the Field index is -
1, the whole table is linked to a data table dialog item.

By default, only lists the blocks which are registered to data-
base DBIndex and table TableIndex. If DBIndex== -1, it lists
all registered blocks in all databases with the entered TableIn-
dex. If DBIndex == -1 and TableIndex == -1, it lists all blocks
which are registered to any databases and any tables.

I

DBGetLinkedDialog-
sList(integer DBIn-
dex, integer
TableIndex, integer
ArrayBlockAndDia-
logID[][2], integer
ArrayDBLoca-
tion[][4])

For blocks that have a dialog item that is dynamically linked
to a database location, returns the number of links found,
changes the dynamic arrays to have a number of rows equal to
the number of links, and puts their link information into
dynamic arrays.

ArrayBlockAndDialogID[][2] has two columns. The first is
the blockNumber and the second is the dialogID that is linked.
ArrayDBLocation[][4] has four columns that contain the 4
database indices (DB, Table, Field, Record) needed to specify
the location of the cell linked. If the Field index is -1, the
whole table is linked to a datatable dialog item.

By default, the arrays list the blocks that have a link just to
database DBIndex and table TableIndex. If DBIndex== -1,
they list all links in all databases with the entered TableIndex.
If DBIndex == -1 and TableIndex == -1, they list all blocks
which are linked to any databases and any tables.

I

DBGetLinkedStruc-
tureList(integer DBIn-
dex, integer
TableIndex, integer
ArrayBlockID[][1],
integer ArrayDBLoca-
tion[][2])

For blocks that have database structure registered, returns the
number of links found, changes the dynamic arrays to have a
number of rows equal to the number of links, and puts their
link information into dynamic arrays.

ArrayBlockID[][1] has one column that contains the block-
Number. ArrayDBLocation[][2] has two columns that contain
the two database indices (DB, Table) needed to specify the
location of the table linked.

By default, the arrays list the blocks that have a link just to
database DBIndex and table TableIndex. If DBIndex== -1,
they list all links in all databases with the entered TableIndex.
If DBIndex == -1 and TableIndex == -1, they list all blocks
which are linked to any databases and any tables.

I

DB linking/notify Description Return

340 Reference
Arrays, pointers, queues, delay, linked list, and string lookup table functions

Fu
nc

tio
ns

Arrays, pointers, queues, delay, linked list, and string lookup table functions

Dynamic and non-dynamic arrays
The following functions manipulate arrays.

Dynamic arrays are declared as static arrays with their first dimension missing, such as:

real, integer, or string array[], array2Dim[][5];

☞ If you pass a dynamic array as an argument to a user-defined function, you cannot use this local
argument name as the argument to the MakeArray or DisposeArray functions, but must instead
use the original static declared name.

DBParameter(integer
blockNumber, string
dialogItemName, inte-
ger databaseIndex,
integer tableIndex,
integer fieldIndex,
integer recordIndex)

Link a parameter with an ExtendSim database cell. I

Dynamic arrays Description Return

ArrayDataMove
(array y[], integer
StartIndex, integer
rowsToMove, inte-
ger targetIndex,
integer clearData)

This function moves a specified number of rows of data
(rowsToMove) from a specified location (startIndex) in the array
to another specified location in the array (targetIndex). If the
clearData flag is set to TRUE (1), it will clear out the old data
locations in the array. Returns 0 if successful.

I

DisposeAr-
ray(array)

Dynamic arrays only. Releases the memory used by a dynamic
array. Use this when you have finished using a dynamic array to
save memory and model file space. Call this function with the
original static declared name of the array (see notes above).

V

DynamicArrayIn-
dexByName (long
blockNum, string
arrayName)

Returns the index number of the named dynamic Array. I

FindMinimum(real
RealArray, integer
ResultArray)

Accepts two dynamic arrays; one real, one integer. It searches the
RealArray for the minimum values and returns the minimum
value. The ResultArray is filled with the position numbers of the
elements that contain the minimum value.

R

FindMinimum-
WithThreshhold
(realArray y, inte-
gerArray y2, real
threshhold)

This function is identical to the FindMinimum function defined in
the above, with the addition of the threshhold argument. This
argument specifies a threshhold below which the real values will
be ignored. I.e. the minimum value found will always be at the
threshhold, or above.

R

DB linking/notify Description Return

ModL Functions 341
Arrays, pointers, queues, delay, linked list, and string lookup table functions

Functions
Passing arrays
These functions let you pass dynamic arrays through connectors or global variables. This is
discussed in more detail in “Passing arrays” on page 104. Also see the “Passing Arrays” exam-

GetDimension
(array)

The size of the first dimension (rows). If array is a dynamic array,
this function will return the size of the dynamic dimension. This is
useful for determining the maximum subscript (the returned value
minus 1) of an array when it is passed to a user-defined function.

I

GetDimensionBy-
Name(integer
blockNumber,
string arrayName)

This function is a variation of the GetDimension function that has
two differences. The first is that it takes a block number argu-
ment, which specifies which block contains the array, and the sec-
ond is that it takes the arrayname of the array as an argument
rather than the array itself. The combination of these two differ-
ences mean that you can call the function from a remote block,
query the number of rows in a array, and also pass in a string vari-
able for the arrayname if desired.

I

GetDimensionCol-
umns(array)

Returns the number of columns (second dimension in a two
dimensional array) in the specified array.

I

GetDimensionCol-
umnsByName(inte-
ger blockNumber,
string arrayName)

Has the same behavior as the getDimensionColumns function,
with the exception that it can be called from an outside block, and
doesn't have to be called from within the block that contains the
array. Note that the arrayName argument is the name of the array
as a string, not the array name itself. This also means that the
function can be called with a string variable as the second argu-
ment, and not a hard coded array name.

I

MakeArray(array,
integer i)

Dynamic arrays only. Allocates a dynamic array. i is the desired
value of the first (blank) dimension. MakeArray does not clear or
disturb data already in the array and can be used to make an array
larger or smaller. If you need to initialize an array to 0 or BLANK,
this must be done by the block’s code. Call this function with the
original static declared name of the array (see notes above).

V

MakeArray2(inte-
ger blockNumber,
string arrayName,
integer dim)

Has the same behavior as the MakeArray function, with the
exception that it can be called from an outside block, and doesn't
have to be called from within the block that contains the array.
Note that the arrayName argument is the name of the array as a
string, not the array name itself. This allows resizing of dynamic
arrays passed in to functions as a string name.

V

SortArray(array,
integer numRows,
integer keyColumn,
integer increase,
integer sortStrin-
gAsNumbers)

Sorts the array up to numRows. Uses the keyColumn as the sorting
column. To sort a table using multiple keyColumns, call the func-
tion multiple times using keyColumns from the lowest to the
highest priority. If increase is TRUE, sorts in ascending order
(note that, for purposes of sorting, NoValues are considered larger
than any number). If this is a string array and sortStringAsNum-
bers is TRUE, sorts strings as numbers in keyColumn. This func-
tion works with any kind of array, including data tables and text
tables.

V

Dynamic arrays Description Return

342 Reference
Arrays, pointers, queues, delay, linked list, and string lookup table functions

Fu
nc

tio
ns

ple (Windows: PassArry.mox in the ModLTips folder; Mac OS: Passing Arrays in the ModL
Tips folder).

Pointer functions
Dynamic array pointer functions allow you to copy the contents of dynamic arrays into an
independent data structure that can be created, used by other blocks if desired, and disposed of
by any block. You can create a very large number of independent pointers, if desired. They are
also useful for creating complex structures of pointers.

 Using a disposed pointer will cause a crash (uses malloc() and free()).

Global arrays
The Global Array functions define and manage global arrays (see “ModL function overview”
on page 206). All of the functions except the ones that start with “GAGet” will return a nega-
tive number if they fail. The following numbers have standard meanings:

Passing arrays Description Return

GetPassedAr-
ray(real

realVar, array)

Gives access to array values from the input connector or real num-
ber realVar that holds the location of a passed array. array must be
declared in this block as a dynamic array of the same type as the
passed array. After this function is called, array can be used to
access and change the values in the passed array. This function
returns TRUE if realVar is a passed array from another block and
returns FALSE if it is not a passed array.

I

PassArray(array) Returns the real value that represents the location of a dynamic
array declared in this block. This is used to pass the array to an
output connector or real variable (such as a global variable). Do
not call PassArray to pass an array that has been received by Get-
PassedArray; see “Passing arrays” on page 104, for more infor-
mation.

R

Pointers Description Return

PointerFromDynamicAr-
ray(dynamicArray)

Copies data from any type of dynamic array to a new pointer
created by “malloc()” and returns the pointer.

If you pass the pointer to an external DLL, the first integer in
the pointer's data is the size of the pointer's data in bytes.
Including the size data, the pointer is actually that size plus 4.

I

PointerDispose(integer
pointer)

Frees the memory used by the pointer using “free()”. The
pointer is now invalid and can cause a crash if used.

V

PointerToDynamicAr-
ray(integer pointer,
dynamicArray)

Takes a pointer created by PointerFromDynamicArray() and
copies it to a dynamic array, so ModL code can access it. This
action writes over any old data in that dynamic array. The
dynamic array must be the same type as the array in the
pointer. The pointer must still be disposed of by PointerDis-
pose().

V

ModL Functions 343
Arrays, pointers, queues, delay, linked list, and string lookup table functions

Functions
The type of a global array can be defined by the following constants:

Value Meaning

-1 No arrays defined, or array not found

-2 Array index invalid, or array not defined

-3 Row or column reference out of range

-4 Incorrect array type

-5 Name is blank, or too long (> 15 characters)

-7 Wrong type of array

-8 Array length doesn’t match global array length

Constant Value

GAReal 1

GAInteger 2

GAString 3

GAString15 4

GAString31 5

GAString63 6

GAString127 7

Global Arrays Description Return

DBTable-
toGA(integer data-
baseIndex, integer
tableIndex, integer
GAIndex)

Copies data from the specified Database table to the specified
Global Array. The function makes its best attempt to copy the
data over. If the DB table defines multiple fields in different for-
mats, not all the data may be copyable.

I

GABlockRegister-
Content(integer
blockNumber, inte-
ger GAIndex, inte-
ger row, integer
col)

This function is used in conjunction with the Dynamic Linking
functionality in version 7. This function will set up a registration
entry for the specified Global Array, such that whenever there is a
change in the Global Array, the block will receive Conten-
tChanged messages informing it of the change. This works simi-
larly to the way a dialog item linked to the Global Array would
work, except that by calling this function you can establish this
kind of link through code without a specific dialog item involved.
If you specify the row and column, then the message will only be
sent when the specific cell is affected by the change. (Specify -1 if
you want the entire array.) See the GABlockRegisterStructure()
function below to register to receive structure changes.

I

344 Reference
Arrays, pointers, queues, delay, linked list, and string lookup table functions

Fu
nc

tio
ns

GABlockRegister-
Structure(integer
blockNumber, inte-
ger GAIndex, inte-
ger row, integer
col)

This function is similar to the GABlockRegisterContent function,
except that it registers to receive StructureChanged messages
when the structure of the GA changes, not when the content
changes.

I

GABlockUnregis-
terContent(integer
blockNumber, inte-
ger GAIndex, inte-
ger row, integer
col)

Unregisters the specified GA from the Block’s dynamic link reg-
istry. See GABlockRegister above for information about what it
means for a Global Array to be listed in the registry.

I

GABlockUnregis-
terStructure(inte-
ger blockNumber,
integer GAIndex,
integer row, inte-
ger col)

Unregisters the specified GA from the Block’s dynamic link reg-
istry. See GABlockRegister above for information about what it
means for a Global Array to be listed in the registry.

I

GAClipboard (inte-
ger arrayIndex)

Copies the array with the specified index into the clipboard,
where it will be inserted into the selected model with the next
paste.

V

GACopyAr-
ray(integer arrayIn-
dex, string
newName)

Creates a new Global Array that is a duplicate of the array speci-
fied by arrayIndex, with the name newName. The return value of
the function is the arrayindex of the new Global Array.

I

GACreate(string
name, integer type,
integer columns)

This function creates an array with the specified name, and type.
Arrays are created with zero rows. Returns the index number.

I

GACreateQuick
(string name, inte-
ger type, integer
columns)

This function behaves the same way as the GACreate function,
with the exception that it will not check the name to see if a global
array already exists with that name. The only case where you
would want to use this function is where you are creating a large
number of GA’s, speed is of the essence, and you are sure that
there will be no duplication of names. If you do create an array
with the same name as an existing array, referencing that array by
name will only access the older array.

I

GACreateRandom
(integer type, inte-
ger columns)

Creates a Global Array with a random name. Useful for quick cre-
ation of global arrays in cases where you need to create many
arrays quickly.

I

GADataTable (inte-
ger blockNumber,
string DTname,
integer arrayIndex)

Associates a Global Array with a dialog data table in the same
way the DynamicDatatable function associates a dynamic array
with one. See the DynamicDatatable() function description for
more information.

I

Global Arrays Description Return

ModL Functions 345
Arrays, pointers, queues, delay, linked list, and string lookup table functions

Functions
GADelete-
Row(integer array-
Index, integer row)

Deletes a row in the specified Global Array. This will move down
the data on rows after the specified row.

I

GADispose(string
name)

Disposes the named Array. I

GADisposeByIn-
dex (integer array-
Index)

Disposes the Global Array referenced by arrayIndex. I

GAExport(string
pathName, string
userPrompt, string
format, integer
GAIndex, integer
rows, integer col-
umns)

Exports data from the Global Array specified by GAIndex
directly into a text file. See the Export() function for information
about the other arguments.

I

GAFindStringAny
(integer arrayIndex,
string findString,
integer column,
integer numRows,
integer numChars,
integer caseSensi-
tivity)

This function searches a specific string Global Array, referrenced
by arrayIndex, for the first string that matches the findString. The
return value is the index of the array element that contains the first
string found. A -1 will be returned if the string is not found.

I

GAGetArray(inte-
ger arrayIndex,
integer row, array
y)

Sets the contents of the array y to the values in the Global Array
with the specified index. This will copy the contents of the speci-
fied row of the Global Array into the array y. (You need to make
sure that the number of elements in the dynamic array match the
number of columns in the row of the global array.)

I

GAGetColumns
(string name)

Returns the number of columns defined for the named array. I

GAGetColumns-
ByIndex (integer
arrayIndex)

Returns the number of columns defined for the Global Array
referrenced by arrayIndex.

I

GAGetIn-
dex(string name)

Returns the Index value of the named array. I

GAGetInfo(integer
ArrayIndex, inte-
ger Which)

This Global Array function returns the value of some of the
Global Array flags for the specified array. Values for Which are:
0:non saving, 1:initializing.

I

GAGetInit-
Value(integer
arrayIndex)

Gets the initialization value for the global array. This value is set
by GASetInitValue(), and is used during array initialization.

R

Global Arrays Description Return

346 Reference
Arrays, pointers, queues, delay, linked list, and string lookup table functions

Fu
nc

tio
ns

GAGetInteger(inte-
ger arrayIndex,
integer row, inte-
ger column)

Returns the integer value stored at the specific row and column of
the array with the specified index.

I

GAGetLong(inte-
ger arrayIndex,
integer row, inte-
ger column)

This function is also known as GAGetInteger. See
GAGetInteger for description.

I

GAGetName(inte-
ger arrayIndex)

Returns the Name of the array with the specified index. S

GAGetReal(inte-
ger arrayIndex,
integer row, inte-
ger column)

Returns the real value stored at the specific row and column of the
array with the specified index.

R

GAGet-
Rows(string name)

Returns the number of rows defined for the named array. I

GAGetRowsByIn-
dex (integer array-
Index)

Returns the number of rows defined for the Global Array refer-
renced by arrayIndex.

I

GAGetString (inte-
ger arrayIndex,
integer row, inte-
ger column)

Returns the string value stored at the specific row and column of
the array with the specified index.

S

GAGet-
String15(integer
arrayIndex, integer
row, integer col-
umn)

Returns the string value stored at the specific row and column of
the array with the specified index.

S

GAGet-
String31(integer
arrayIndex, integer
row, integer col-
umn)

Returns the string value stored at the specific row and column of
the array with the specified index.

S

GAGet-
String63(integer
arrayIndex, integer
row, integer col-
umn)

Supports the string 63 type, otherwise the same as the GAGet-
String() function.

S

GAGetType(string
name)

Returns the type of the named Array. See table above for type val-
ues.

I

GAGetTypeByIn-
dex (integer array-
Index)

Returns the type of the Global Array referrenced by
arrayIndex.

I

Global Arrays Description Return

ModL Functions 347
Arrays, pointers, queues, delay, linked list, and string lookup table functions

Functions
GAImport(string
pathName, string
userPrompt, string
format, integer
GAIndex)

Imports data from a text file directly into the Global Array speci-
fied by GAIndex. See the Import() function for information about
the other arguments.

I

GAInitializ-
ing(integer Array-
Index, integer
Initializing)

Sets the initializing flag for the specified global array. The flag
determines if the array is automatically initialized during initsim
of a model run or not. The Initializing flag takes the following
values: 0: don't initialize (default), 1: initialize to 0, 2: initialize to
blank (real numbers only.), 3: initialize to specified value. See
GASetInitValue(), below.

I

GAInsertRow(inte-
ger arrayIndex,
integer row)

Inserts a row in the specified Global Array. This will cause all the
data on rows after the specified row to be moved up a row.

I

GALastUsedIn-
dex()

Returns the GAIndex of the last defined Global Array. This can
be used to loop through all the Global Arrays in a model.

I

GAMultisim(inte-
ger arrayIndex,
integer multisim)

Sets a flag on the Global Array that determines how the initializa-
tion deals with multiple simulation runs. 0: initialize at beginning
of each run, 1: initialize at beginning of first run of a multiple run
only.

I

GANonSav-
ing(integer arrayIn-
dex, integer
nonSavingArray)

This function flags the specific array as a non saving array. The
array will not be written out to the model file when the file is
closed. (By default Global arrays are “saving” arrays.)

I

GAParameter(inte-
ger blockNumber,
StringdialogItem-
Name, integer
arrayIndex, integer
colIndex, integer
rowIndex)

Link a parameter with a Global Array cell. I

GAPopupMenu
(integer arrayIndex,
string name, integer
rows, integer init,
integer flying)

This function copies the strings in the specified Global array into
the named Popup menu. This is a utility that allows quick con-
struction of a popup menu. The flying argument is true if the
menu is being created “on the fly,” as opposed to adding the array
to the existing menu. See the code that controls the Animation tab
of any Item library block as an example.

I

GAPtr (integer
arrayIndex)

Returns the memory pointer to the data associated with a particu-
lar global array. (For passing data to dll's only, and it should be
called only immediately before the DLL call, as memory can
move, making the pointer invalid.)

I

GAResize(string
name, integer rows)

Changes the number of rows defined for a global array. I

Global Arrays Description Return

348 Reference
Arrays, pointers, queues, delay, linked list, and string lookup table functions

Fu
nc

tio
ns

GAResizeByIndex
(integer arrayIndex,
integer size)

Changes the number of rows defined for the Global Array refer-
renced by arrayIndex.

I

GASearch(integer
GAIndex, integer
lValue, real rValue,
string sValue, inte-
ger whichCol, inte-
ger startIndex)

Searches a Global array for the occurrence of the specified value
and returns the first index where found. This function can be used
to search any type of Global Array. It will search for the value
lValue, rValue, or sValue, as appropriate, based on the type of the
Global Array and will search in the column specified by the
whichCol parameter. The startIndex parameter specifies which
row to begin searching on. For second and subsequent searches,
just pass the last value returned by the function plus one as the
startIndex parameter. You should end the search when the func-
tion returns a negative 1, as this will mean that the desired ele-
ment was not found.

I

GASearch-
Count(integer
GAIndex, integer
lValue, real rValue,
string sValue, inte-
ger whichCol, inte-
ger startIndex)

Returns the number of occurrences in a Global array of the speci-
fied value. This function can be used to search any type of Global
Array. It will search for the value lValue, rValue, or sValue, as
appropriate, based on the type of the Global Array and will search
in the column specified by the whichCol parameter. The startIn-
dex parameter specifies which row to begin searching on. You
should end the search when the function returns a negative 1, as
this will mean that the desired element was not found.

I

GASetArray(inte-
ger arrayIndex,
integer row, array
y)

Sets the contents of the Global Array with the specified index to
the values in the array y. This will copy the contents of the array y
into the specified row of the Global Array. (You need to make
sure that the number of elements in the dynamic array match the
number of columns in the row of the global array.)

I

GASetInit-
Value(integer
arrayIndex, real
value)

Sets the initialization value for the specified global array. This
value is used during array initialization.

I

GASetInteger(inte-
ger value, integer
arrayIndex, integer
row, integer col-
umn)

Sets the integer value at the specific row and column of the array
with the specified index.

I

GASetLong(inte-
ger value, integer
arrayIndex, integer
row, integer col-
umn)

This function is alos known as GASetInteger. See GASetInteger
for description.

I

GASetReal(real
value, integer
arrayIndex, integer
row, integer col-
umn)

Sets the real value at the specific row and column of the array
with the specified index.

I

Global Arrays Description Return

ModL Functions 349
Arrays, pointers, queues, delay, linked list, and string lookup table functions

Functions
Linked lists
Linked lists are queue-like, multiple type structures that maintain internal pointers between the
different elements. This speeds the moving around of elements (sorting) within the list. Each
structure element can simultaneously contain any number of integer, real, Str15, Str31, and
Str255 data types, so complex sorted structures can be created. They will be slightly slower to
access than their linear equivalent if used as a simple queue (FIFO, or LIFO) and faster than
their linear equivalent if their internal sorting functionality is taken advantage of, as in a Queue
block (Item library). See that block’s code for a good example of using linked lists to sort.

These functions create and manipulate linked lists which are referred to by an index and are
associated and stored with a block. Because these functions have a global block number as an

GASet-
String(string value,
integer arrayIndex,
integer row, inte-
ger column)

Sets the string value at the specific row and column of the array
with the specified index.

I

GASet-
string15(string
value, integer
arrayIndex, integer
row, integer col-
umn)

Sets the str15 value at the specific row and column of the array
with the specified index.

I

GASet-
string31(string
value, integer
arrayIndex, integer
row, integer col-
umn)

Sets the str31 value at the specific row and column of the array
with the specified index.

I

GASet-
String63(string
value, integer
arrayIndex, integer
row, integer col-
umn)

Supports the string 63 type, otherwise the same as the GASet-
String() function.

I

GASort(integer
arrayIndex, integer
numRows, integer
keyColumn, integer
increase, integer
sortstringAsNum-
bers)

Sorts the Array with the specified index. Sorts the array up to
numRows. Uses the keyColumn as the sorting column. If increase
is TRUE, sorts in ascending order (note that, for purposes of sort-
ing, NoValues are considered larger than any number). If this is a
string array and sortStringAsNumbers is TRUE, sorts strings as
numbers in keyColumn.

I

GAtoDBT-
able(integer GAIn-
dex, integer
databaseIndex,
integer tableIndex)

Copies data from the specified GA to the specified Database
table. The function makes its best attempt to copy the data over.
If the DB table defines multiple fields in different formats, not all
the data may be copyable.

I

Global Arrays Description Return

350 Reference
Arrays, pointers, queues, delay, linked list, and string lookup table functions

Fu
nc

tio
ns

argument, linked lists associated with a specific block can also be accessed globally, from any
other block in the model.

The normal sequence for working with linked lists is:

ListCreate(...); // create the list structures

ListCreateElement(…); // creates a new empty element

ListSetxxx(…); // sets a field in the element

ListSetxxx(…); // sets another field in the element

… // set the rest of the fields in the element

ListAddElement(…); // adds the new element to the list

... // manipulate the list, adding and deleting elements

... // get elements from the list to use in a calculation

ListDispose(...); // we are done with the list

Linked lists Description Return

ListAddEle-
ment(integer block-
Number, integer
listIndex, integer
where)

Adds an element previously created with ListCreateElement to
the specified queue.

where:-2 sorted by preset sortType and field index value

where:-1 the front of the list

Otherwise, where is an index value and the item will be added
after the specified index item. Returns zero for success.

I

Lis-
tAddString63s(inte
ger blockN, integer
listIndex, integer
string63Count)

This function should be called right after ListCreate, if you wish
your linked list to contain String63s. It has the same effect as
specifying, for example, n String15s in the ListCreate function, it
defines the number of string63s that will be present in each ele-
ment of the Linked List.

I

ListCopyEle-
ment(integer
blockN, integer
listIndex, integer
fromIndex, integer
targetBlockN, inte-
ger targetListIn-
dex, integer
targetIndex)

Copies an element from one linked list to another. The first three
parameters specify the element in the first list, the next two spec-
ify the target list, and the last one specifies where in the new list to
copy the element. As with any linked list function that adds an
element, you can specify a -2 to mean that the new element should
be added in its sorted order.

I

ModL Functions 351
Arrays, pointers, queues, delay, linked list, and string lookup table functions

Functions
ListCreate(integer
blockNumber, inte-
ger longCount,
integer realCount,
integer str15Count,
integer str31Count,
integer strCount,
integer sortType,
integer fieldIndex)

Creates a new list with the specified attributes. LongCount, real-
Count, etc are counts of the number of fields of each of the speci-
fied types each list element contains. SortType and fieldIndex
determine which field is to be used as the sorting field for the list.

sortType:0 don’t sort
sortType:1 real field is key
sortType:2 integer field is key
sortType:3 str255 field is key
sortType:4 str15 field is key
sortType:5 str31 field is key

FieldIndex is used to determine which index of the specified type
is the key field. Zero is the first field.

I

ListCreateEle-
ment(integer block-
Number, integer
listIndex)

Creates a new empty element for a list. The normal sequence is

ListCreateElement(…); // creates a new empty element
ListSetxxx(…); // sets a field in the element
ListSetxxx(…); // sets another field in the element
… // set the rest of the fields in the element
ListAddElement(…); // adds the new element to the list

I

ListDeleteEle-
ment(integer block-
Number, integer
listIndex, integer
indexToDelete)

Deletes the specified element. Zero is the first element. I

ListDispose(inte-
ger blockNumber,
integer listIndex)

Disposes of the specified list and recovers its memory. I

ListDispo-
seAll(integer
blockNumber)

Disposes all linked lists in a block. Returns TRUE if the block
doesn’t exist or the lists have already been disposed.

I

ListElementMin-
Max(integer block-
Number, integer
listIndex, integer
compareType, inte-
ger compareIndex,
integer max)

This function searches the list for the maximum or minimum
value of the specified value. If the Max flag is true, it will return
the index of the element that contains the maximum value of that
entry, otherwise it will return the minimum. (Currently just inte-
ger and real are implemented. string comparisons are not yet
implemented.)

I

Linked lists Description Return

352 Reference
Arrays, pointers, queues, delay, linked list, and string lookup table functions

Fu
nc

tio
ns

ListGetCount(inte-
ger blockN)

Returns the count of the number of linked lists the block has
defined. Please note that in a similar way to the way GetNumB-
locks works for the model worksheet, the number returned by this
function can contain 'empty slots'. An 'empty slot' is defined as a
list index that specifies a list that has been disposed, or is other-
wise not defined. This function can be used to execute a loop that
looks at all the linked lists in a block, but you should check each
list to confirm that it exists. Because of this aspect of how this
functions, you should not call ListGetCount, and assume that the
returned value is exactly the number of lists the block supports.

I

ListGetDou-
ble(integer block-
Number, integer
listIndex, integer
elementIndex, inte-
ger fieldIndex)

Returns the real (double) value at that element and field index. If
elementIndex is passed in as a value less than zero, it refers to the
current newly created, but not yet added, item. If
elementIndex is zero or greater it is used as an index value into
the specified list.

R

ListGetEle-
ments(integer
blockNumber, inte-
ger listIndex)

Returns the number of elements in the specified list. I

ListGetIndex(inte-
ger blockN, string
name)

Gets the index of a linked list by its name. Linked lists do not
automatically have names. If the name specified is not found, the
function will return a negative value as an error code.

I

ListGetInfo(inte-
ger blockNumber,
integer listIndex,
integer infoType)

Returns the specified info about the specified Linked List. Info-
Type takes the following values:

1: returns the number of real values in the specified list
2: returns the number of integer values in the specified list
3: returns the number of string values in the specified list
4: returns the number of string15 values in the specified list
5: returns the number of string31 values in the specified list
6: returns the number of string63 values in the specified list
10: returns TRUE if this list exists, FALSE if it doesn’t

I

ListGetLong(inte-
ger blockNumber,
integer listIndex,
integer elementIn-
dex, integer fieldIn-
dex)

Returns the integer (integer) value at that element and field index.
If elementIndex is passed in as a value less than zero, it refers to
the current newly created, but not yet added, item. If elementIn-
dex is zero or greater it is used as an index value into the specified
list.

I

ListGetName(inte-
ger blockN, integer
listIndex)

Returns the name of the linked list. List names are new in version
7. Lists do not have a name by default, and will not have a name,
until one has been set with the ListSetName function.

S

Linked lists Description Return

ModL Functions 353
Arrays, pointers, queues, delay, linked list, and string lookup table functions

Functions
ListGetString(inte-
ger blockNumber,
integer listIndex,
integer elementIn-
dex, integer string-
Type, integer
fieldIndex)

Returns the string value at that element and field index. If ele-
mentIndex is passed in as a value less than zero, it refers to the
current newly created, but not yet added, item. If
elementIndex is zero or greater it is used as an index value into
the specified list.

StringType takes the following values:
3: string (str255) field
4: str15 field
5: str31 field

S

ListLastElementIn-
dex(integer
blockN, integer
listIndex)

Return the index value of the last item added to the specified list
(not the end of the list, the last item actually added).

I

ListLocked (integer
blockN, integer
listIndex, integer
locked)

If Locked is true, this function call marks the specified Linked
List as locked. This has the effect of making that List not be dis-
posed if ListDisposeAll is called. If the function ListDispose is
called explicitly on this list, it will still be disposed, this function
only prevents accidental disposal of the list through the ListDis-
poseAll call. Returns a zero of the call succeeds. Returns a nega-
tive error code value if the function fails.

I

ListSearch(integer
blockN, integer
listIndex, integer
searchType, inte-
ger searchIndex,
integer lVal, real
rVal, string sVal,
integer startIndex)

Searches the list for the specified value. Search type determines
which type to search for, and also which value string is used.
StartIndex specifies where in the list to start searching. This func-
tion returns the index number of the first list element that matches
the search criteria. If you want to search for multiple elements in
the same list, just call the function multiple times, using the last
index found plus one as the ‘startIndex’ parameter of the next
search. You should end the search when the function returns a
negative 1, as this will mean that the desired element was not
found.

I

ListSearch-
Count(integer
blockN, integer
listIndex, integer
searchType, inte-
ger searchIndex,
integer lVal, real
rVal, string sVal,
integer startIndex)

Similar to the ListSearch function, except that this function
returns the number of occurrences of the specified value in the
list.

I

ListSearchCount-
Longs(integer
blockN, integer
listIndex, integer
Array y, integer
startIndex)

Functions similarly to the ListSearchCount function, except that
the integer Array Y argument is similar to the ListSearchLongs
function, below. (I.e. this function will count the number of ele-
ments in the list that contain matches for all the integer elements
in the integer Array.)

I

Linked lists Description Return

354 Reference
Arrays, pointers, queues, delay, linked list, and string lookup table functions

Fu
nc

tio
ns

ListSearchLo-
ngs(integer blockN,
integer listIndex,
integer Array y,
integer startIndex)

Similar to the ListSearch function, except that the type to be
searched for is longs, and the function will search for more than
one integer at a time within a single element of the list. The inte-
ger Array Y argument is a two column array by any number of
rows long. These longs are in pair of index followed by search
value. This allows you to search a linked list for more than one
integer condition at a time. The search will match only list ele-
ments where all the longs in the array match.

I

ListSetDou-
ble(integer block-
Number, integer
listIndex, integer
elementIndex, inte-
ger fieldIndex, real
value)

Sets the real (double) value at that element and field index. If ele-
mentIndex is passed in as a value less than zero, it refers to the
current newly created, but not yet added, item.
If elementIndex is zero or greater it is used as an index value into
the specified list.

I

ListSetLong(inte-
ger blockNumber,
integer listIndex,
integer elementIn-
dex, integer longIn-
dex, integer value)

Sets the integer (long) value at that element and field index. If ele-
mentIndex is passed in as a value less than zero, it refers to the
current newly created, but not yet added, item. If elementIndex is
zero or greater it is used as an index value into the specified list.

I

ListSetName(inte-
ger blockN, integer
listIndex, string
name)

Sets the name of the specified linked list to the name defined by
the ‘name’ parameter.

I

ListSetSort(integer
blockNumber, inte-
ger listIndex, inte-
ger sortType,
integer fieldIndex)

ListSetSort allows you to change the sort criteria for the list. Sort-
Type and fieldIndex are defined as described above in the List-
Create function. The list will be resorted by this call.

I

ListSetSort2(inte-
ger blockN, integer
listIndex, integer
sortType, integer
sortIndex, integer
sortType2, integer
sortIndex2, integer
sortType3, integer
sortIndex3)

Sets the sorting criteria for the specified list. This function
enhances the existing ListSetSort() function in that there are now
multiple sorting criteria. I.e. there is a secondary, and tertiary
sort.

I

ListSetString(inte-
ger blockNumber,
integer listIndex,
integer elementIn-
dex, integer string-
Type, integer
stringIndex, string
newString)

Sets the string newString at that element and field index. If ele-
mentIndex is passed in as a value less than zero, it refers to the
current newly created, but not yet added, item.
If elementIndex is zero or greater it is used as an index value into
the specified list. StringType takes the following values:
3: string (str255) field
4: str15 field
5: str31 field

V

Linked lists Description Return

ModL Functions 355
Arrays, pointers, queues, delay, linked list, and string lookup table functions

Functions
String lookup table functions
String lookup tables are data structures that allow you to associate a string with an integer
value. This is used to lookup a string value in the table whenever needed. An example might
be associating the strings “Red”, “Green” and “Blue” with the values 1, 2 and 3. This allows
you to display the string values in a dialog box or popup menu when internally you are storing
a numeric value. Because the String Lookup blocks use hash tables internally they will access
and convert the integer values to the strings quickly.

These functions are used to implement the string attribute behavior in the Item library.

Note that string lookup table information is stored in the model, but it is not saved when the
model is closed. This has a couple of implications. First, if you copy a block that has informa-
tion that is based on a string lookup from one model to another one where the string lookup is
not defined, the results will be unpredictable. The correct work around for this issue would be
to make sure that the string lookup is defined in the target model before the block is copied.
The second implication is that, as the string lookup information is not saved when the model is
closed, you will need to recreate any necessary string lookups in the model when it is opened.
(In the case of the String Attributes, this is done in the executive block during the OpenModel
message handler.) Also, see “Strings” on page 358

String lookup Description Return

SLClear(string
slName)

Clears the specified lookup of all strings, and sets it to not be a
string lookup, until SLSet is called on it again.

I

SLCreate(string
slName)

Creates a string lookup table with the specified name. I

SLDelete(string
slName)

Deletes a string lookup table with the specified name. I

SLFlagGet(string
slName, integer
which)

Returns one of the twenty user defined flag values for the speci-
fied string lookup. Each string lookup has twenty flags associ-
ated with it. ‘Which’ should take a value from 0 to 19.

I

SLFlagReal-
Get(string slName,
integer which)

Returns one of the twenty real user defined flag values for the
specified string lookup. Each string lookup has twenty real flags
associated with it. ‘Which’ should take a value from 0 to 19.

R

SLFlagReal-
Set(string slName,
integer which, inte-
ger tableAttribute)

Sets one of the twenty real user defined flag values for the speci-
fied string lookup. Each string lookup has twenty real flags asso-
ciated with it. ‘Which’ should take a value from 0 to 19.

I

SLFlagSet(string
slName, integer
which, integer
tableAttribute)

Sets one of the twenty user defined flag values for the specified
string lookup. Each string lookup has twenty flags associated
with it. ‘Which’ should take a value from 0 to 19. Note that these
flags are stored internally as a single byte of data, which means
that you can only store values from zero to 127 in the flag. This is
normally intended to store Boolean (True/False) values, but you
can store values up to 127 if you wish. (Negative values will not
be stored.)

I

SLGetCount() Returns the count of the number of string Lookups defined in a
model.

I

356 Reference
Arrays, pointers, queues, delay, linked list, and string lookup table functions

Fu
nc

tio
ns

Queues
These functions store queues in a single-dimensional real, dynamic array, that is, an array that
is declared with no dimension, such as real a[] (see the section above on dynamic arrays).
You do not need to use the MakeArray function before calling QueInit. When you have fin-
ished with a queue, you should recover the memory it occupies with the
DisposeArray function; this is often done in the EndSim message handler.

In queues, the first member is numbered “0”, the next member “1”, and so on. This means that
in an array of n members, the last member is numbered “n-1”. n and i are integers, and x is a
real value.

SLGetCount-
Strings(string
slName)

Returns the count of the number of strings that are associated with
the specified lookup.

I

SLIs(string
slName)

Returns a true value if the specified name is a string lookup. I

SLPopup-
Menu(string
slName, dialog-
Item, init, flying)

Either fills a popup menu with the lookup string values, or creates
a flying popup menu at the location of the last click, based on
whether or not the flying flag is set.

I

SLSort(string
slName)

Sorts the strings for the specified lookup alphabetically. I

SLStringAp-
pend(string
slName, string
stringVal)

Sets a string value for the specified lookup. By default the first
string will have value one, the second one value two, and so on.
This can be revised by changing the order of the list by either call-
ing SLSort, to sort the list alphabetically, or calling SLRemove to
remove a string from the list. The first time this function is called,
It will create a string lookup table with the name slName if that
string lookup table does not already exist. This is an alternative
to calling SLCreate.

I

SLStringGet(string
slName, integer
index)

Returns the string value of the specified index on a string lookup. S

SLStringGetIn-
dex(string slName,
string string)

This function is the inverse of the SLStringGet, it returns the
index value of a string on a string lookup.

I

SLStringInsert(stri
ng slName, string-
stringVal, integer
index)

Inserts the specified string at the specified index. I

SLStringRe-
move(string
slName, string
string)

Removes the specified string from the list of strings associated
with the specified lookup.

I

String lookup Description Return

ModL Functions 357
Arrays, pointers, queues, delay, linked list, and string lookup table functions

Functions
Queues cannot be directly accessed via the array and an index. You must use the following
functions to access elements within the queue. Also, see “Linked lists” on page 349.

Delay lines
These functions store delay lines in a single-dimensional real, dynamic array, that is, an array
that is declared with no dimension, such as real a[] (see the section above on dynamic
arrays). Delay lines are used in continuous simulations to delay values by a constant amount of
time. They are like a pipe with values flowing in one end and out the other; the delay time is
analogous to the length of the pipe.

Although the delay line functions store delay lines in dynamic arrays, you must not use the
MakeArray function to allocate these arrays. Array allocation is handled automatically by the
delay line functions. When you have finished with a delay line, you should recover the mem-
ory it occupies with the DisposeArray function.

Queues Description Return

GetFront(real
array[])

Removes and returns item 0 from the front of the queue. If the
queue is empty, NoValue is returned.

R

GetRear(real
array[])

Removes and returns item n-1 from the rear of the queue. If the
queue is empty, NoValue is returned.

R

PutFront(real
array[], real x)

Adds x to the front of the queue. V

PutRear(real
array[], real x)

Adds x to the rear of the queue. V

QueGetN(real
array[], integer i)

Removes and returns the ith member of a queue. If the ith member
does not exist, noValue is returned. This compacts the queue after
the ith member is removed so that the i+1st member becomes the
new ith member.

R

QueInit(real
array[])

Allocates and initializes the array for the queuing functions. Call
this procedure in the InitSim message handler for each queue.

V

QueLength(real
array[])

Length of the queue. If the queue is empty, the function returns 0. I

QueSetAlloc (inte-
ger alloc, integer
realloc)

Specifies the allocation and reallocation constants for the queue-
ing functions. This function allows the user to control how much
memory is allocated by the queueing functions to initially allocate
memory for item storage, and how much additional to add each
time they need to be resized bigger. The default values are 200
for alloc, and 500 for realloc.

V

QueLookN(real
array[], integer i)

Value of the ith member of a queue without changing the queue
order. If the ith member does not exist, noValue is returned.

R

QueSetN(real
array[], integer i,
real x)

Sets the value of the ith member of a queue to x without changing
the queue order. If i is greater than the length of the queue, an
error message informs you and aborts the operation.

V

358 Reference
Miscellaneous functions

Fu
nc

tio
ns

Miscellaneous functions

Strings
 These functions allow you to change and parse a string into whatever component parts you
want. Note that, in ModL, the “+” operator acts as a string concatenation operator. The func-
tions that require a character position indicate the first character in a string as position 0. In
these functions, the arguments s, findString, and replaceString are strings.

Please see “String lookup table functions” on page 355

Delay lines Description Return

Delay(real array[],
real x)

Inserts a new value x, and returns a delayed value from a delay
line. The returned value will be the value inserted DelayTime ago.

R

DelayInit(real
array[], real Delay-
Time)

Initializes a dynamic array delay line to DelayTime. Call this pro-
cedure in the InitSim message handler for each delay line.

V

Strings Description Return

ArrayLabel-
Parse(integer item,
string array)

Parses an array of semicolon delimited strings and treats it as a
single long string so you can get the nth label. This is the same
parsing that ExtendSim does internally with both the data table
labels, and the popup menu strings.

S

DIFontSize(inte-
ger blockNum,
string DIName)

Returns the point size of the font used by the named dialog item. R

FormatString(inte-
ger numArgs,
string format-
String, string val-
ue1, string value2,
string value3, string
value4, string val-
ue5, string value6,
string value7, string
value8)

This function creates formatted strings using string value argu-
ments. The formatString argument is used to define the format of
the returned output string. The definition of the format string is
based on the C function sprintf. Please refer to a standard C refer-
ence for more information on how to define the format string.
NumArgs defines the number of value arguments that contain
meaningful values.

S

FormatStringReal
(integer numArgs,
string format-
String, real value1,
real value2, real
value3, real val-
ue4, real value5,
real value6, real
value7, real value8)

This function creates formatted strings using real value argu-
ments. The formatString argument is used to define the format of
the returned output string. The definition of the format string is
based on the C function sprintf. Please refer to a standard C refer-
ence for more information on how to define the format string.

S

ModL Functions 359
Miscellaneous functions

Functions
NumToFor-
mat(real x, integer
maxchar, integer
sigFigs, integer for-
mat)

Returns the number formatted as a string. X is the input number,
maxchar is the maximum number of characters in the returned
string, sigFigs is the number of significant figures desired. For-
mat is 0 for general, 1 for currency, 2 for integer, 3 for scientific
notation.

NOTE: if -1 is used for maxchar, format is ignored and no scien-
tific notation is used even if the value is very small or large. This
special output format is needed to be compatible with Proof Ani-
mation.

S

Random-
String(integer n)

Returns a randomly generated string of n upper case alphabetic
characters.

S

RealToStr(real
value, integer sig-
Figs)

Converts the value, rounded to sigFigs significant figures, to a
string.

S

RealToStrShort-
est(real value, inte-
ger sigFigs, integer
alwaysPadZeroes)

Converts a double or real variable to a string value, like the Real-
ToStr function. The alwaysPadZeros argument specifies if you
want the zero trimming behavior. What this does is to remove any
trailing zeros that may have appeared in the string from the sigfigs
being higher than the number of actual digits in the resulting
value. If you call this function with alwaysPadZeros TRUE, it
will behave exactly the same as RealToString.

S

StrFind(string s,
string findString,
integer caseSens,
integer diacSens)

Character position of findString within string s. The first position
of a string is 0, so if the findString is not found, StrFind returns -1.
If caseSens is TRUE, case is considered in the search. If diacSens
is TRUE, diacritical marks are considered in the search.

I

StrGetAscii(string
s)

First character of s as an integer value corresponding to the ASCII
value.

I

StringCase(string
str, integer lower-
Case)

Returns str converted to lower case if lowerCase is TRUE, upper
case if lowerCase is FALSE.

S

StringCompare
(string s1, string s2,
integer caseSens,
integer diacritical)

Returns -1 if s1 < s2, 0 if s1 == s2, 1 if s1 > s2. If caseSens is
TRUE, uses case. If diacritical is TRUE, uses diacritical marks (ä,
é, ö, etc.).

I

Strings Description Return

360 Reference
Miscellaneous functions

Fu
nc

tio
ns

StringTrim (string
input, integer
which)

This function is used to trim blank spaces (including CR, LF, and
TAB characters) off the input string. The resulting string is
returned.

The argument “which,” takes the following values:

0-both leading and trailing blanks are trimmed.
1-leading blanks trimmed.
2-trailing blanks trimmed.
3-both leading and trailing blanks are trimmed plus blanks any-
where else in the string
4-empty spaces (not including CR, LF and TAB) are replaced
with the _ character

S

StrLen(string s) Number of characters in the string s. I

StrPart(string s,
integer start, inte-
ger i)

Substring of string s, starting at character position start, i charac-
ters long. Note that string length is 255 character maximum.

S

StrPutAscii(integer
i)

String of length 1 corresponding to the ASCII value of i. This is
useful for putting non-printing control characters into a string.

S

StrReplace(string s,
integer start, inte-
ger i, string
replaceString)

The substring of string s starting at start of length i is replaced
with replaceString.

S

StrToReal(string s) Real value converted from string s, ending with the first space or
letter found that is not part of the number. If s does not represent a
number, the function returns a NoValue.

R

TextWidth(string
theString, integer
font, integer face,
real size)

This function returns the width that the specified string would
draw at in pixels. If font, face, and size are all zero the function
will use the default values (Arial 9 point) for the animation text
functions.

Font values:
0: Arial
2: New York
20: Times
21: Helvetica
22: Courier
any other number: Arial

Face values:
Bold: bit 31 is 1
Italic: bit 30 is 1
Underline: bit 29 is 1

Size is the point size of the font.

I

Strings Description Return

ModL Functions 361
Miscellaneous functions

Functions
Attributes
Use these functions in discrete event blocks to work with attribute strings. Attribute strings are
formatted as: AttrName1=val1;AttrName2=val2;...

 Obsolete. These function are provided for backwards compatibility with version 3.x. New
blocks built in version 4.0+ should not use these functions.

Time units
These functions convert local time units defined within blocks to the global time unit defined
in the Simulation Setup (see “Units of time” in the main ExtendSim User Reference). Get-
TimeUnits and ConvertTimeUnits use the following values for Time Units.

StrPartDy-
namic(stringarray,
integer start, inte-
ger numChars)

Same as the strPart function, on a dynamicText dialog item. See
“Dynamic text items” on page 283.

S

Attributes Description Return

GetAttributeValue(
string attrString,
string attrName)

Returns the value of the attribute attrName or NoValue if attr-
Name isn’t found. If you pass in a blank (empty) string for the
attrName variable, function returns the value of the first attribute
in the attribute string.

R

RemoveAttribute(
string attrString,
string attrName)

Returns the attribute string after removing attribute attrName. S

SetAttribute(
string attrString,
string attrName,
real value)

Adds attrName and value or, if it already exists, changes the attr-
Name to value. Returns the attribute string after adding or chang-
ing the attribute value.

S

Time Unit Value

Generic Time Units 1

Milliseconds 2

Seconds 3

Minutes 4

Hours 5

Days 6

Weeks 7

Months 8

Years 9

Strings Description Return

362 Reference
Miscellaneous functions

Fu
nc

tio
ns

Calendar Date functions
ExtendSim Calendar Date values are numeric representations of a date value that is the same as
is used by Microsoft Excel, and is based on the number of days since January 1, 1900 and the
fraction of the current date for the time value. The integer part of the number is the number of
days since 1900, and the decimal part of the number is the fraction of the current day. For
example, the number 37256.5 would be twelve noon, on January first, 2006. There is a Macin-
tosh version of this date calculation, (also implemented based on the same numbers as Excel,)
which bases the first part of the date number on January first, 1904. Make sure that if you are
communicating with an outside application, you have selected the same version of these date
choices in both applications.

If you have a model saved in ExtendSim, and it has saved date values in one of these formats,
running it in the other date setting will give unexpected results. This legacy Macintosh date
setting is selectable in the Simulation Setup Dialog. Calendar Dates can only be selected in the
simulation setup dialog if the time units for the model are set to seconds or longer, and not to
generic time units, or milliseconds.

☞ Prior to ExtendSim 7, a different time and date format was used, as discussed on page 364.

Time Units Description Return

ConvertTimeUnits
(real value, integer
fromType, integer
toType)

Converts a value from one type of time unit to another. R

GetTimeUnits() Returns the currently selected Time Units from the Simulation
Setup dialog.

I

SetTimeConstants

(real hInADay, real
dInAWeek, real
dInAMonth, real
dInAYear)

Sets the time unit conversion values. These are specified in the
Simulation Setup dialog.

V

SetTimeUnits(inte-
ger value)

Sets the Time Unit parameter in the Simulation Setup dialog. I

Date and time Description Return

EDCalcDate(inte-
ger year, integer
month, integer day,
integer hour, inte-
ger minute, integer
second)

Construct a date value from its individual components. R

EDCalendarDate-
Get(real startDate)

Opens the calendar input dialog for the user to input a date value
and returns that date value. The input dialog will show the value
of the parameter startDate as a starting point.

R

ModL Functions 363
Miscellaneous functions

Functions
EDCalendarDates() Returns the value of the CalendarDates checkbox in the simula-
tion setup dialog box: FALSE is unchecked, TRUE is checked.

I

EDCalendar-
Show(true/false)

This function opens or closes the calendar window. I

EDConvert-
Date(real value,
integer fromType,
real startDate)

Modifies a date value by adding additional time. The additional
time added to the date value will be in the value parameter, and
what time units it is in will be in the fromType parameter. Note
that this function returns a date value, not a number of time units.

R

EDDateToSim-
Time(real current-
Date, integer
timeUnits)

Converts from a date value to a simulation time value (e.g. a pos-
sible value of currentTime). Putting in a zero for the timeUnits
argument will make the function use the currently specified model
time units. (see Time Units)

R

EDDateTo-
String(real dateV-
alue, integer
format)

Converts an ExtendSim date value to a string according to format:

0: Date and Time, 1: Just date (ignore Time), 2: Just Time (ignore
Date), 3: Tight format (two digit year, don’t show time value if
zero). 4: Looser format (two digit year but show time value even
if zero)
The following query the operating system to see if it uses the
European format where day comes before month: 10: Date and
Time, 11: Just date (ignore Time), 12: Just Time (ignore Date), 13:
Tight format (two digit year, don’t show time value if zero). 14:
Looser format (two digit year but show time value even if zero)

S

EDDateValue(real
value, integer
which)

Gets one part of a date value. Which is the time unit value (see
“Time units” on page 361, above). NOTE: Week information is
not available in this function.

I

EDDayOfThe-
Week(real current-
Date)

Converts from an ExtendSim Date value to an integer value repre-
senting the day of the week. Returns a zero for Sunday.

I

EDGetCurrent-
Date()

Returns the current date equivalent for the CurrentTime simula-
tion variable during a simulation run.

R

EDGetStartDate() Returns the date value of start time in the Simulation Setup Dia-
log.

R

EDNow() Returns the real time current date and time like the Now() func-
tion, but as an ExtendSim date.

EDSimTimeTo-
Date(real sim-
Time, integer
timeUnits)

Converts a simulation time value to a date value. A simTime
value is a time number in simulation time format. Putting in a zero
for the timeUnits argument will make the function use the current
model time units. For example in most models, the simTime value
for startTime is zero. Calling with a zero value of simTime will
return the ExtendSim Date value for the StartDate value of the
model.

R

Date and time Description Return

364 Reference
Miscellaneous functions

Fu
nc

tio
ns

Date and time, legacy format
☞ The following date and time functions were used in releases prior to ExtendSim 7. See “Calen-

dar Date functions” on page 362 for the functions used in ExtendSim 7.

The legacy format stored dates and times in an integer that is the number of seconds since mid-
night, January 1, 1904.

• The Now function returns the current date and time. To determine the amount of time that
has elapsed since the beginning of the simulation, subtract Start Time from Now.

Timer functions
These allow real time measurements to be set up. The TimerID functions are an extension of
the timer functions that allow multiple (Up to 200) timers to run simultaneously. Each timer is
referenced by an ID number from 0 to 199. The StartTimer() and StopTimer() functions (with-
out a timerID argument) always refer to timer zero.

EDStringTo-
Date(string dat-
eString)

Parses a string to retrieve an ExtendSim Date value. R

Date and time Description Return

DiffDate(integer
firstDate, integer
secondDate)

Returns the difference between two date values as a real number
which represents the number of days between the two dates.

R

GetBlock-
Dates(integer
blockNumber, inte-
ger whereFrom,
integer whichDate)

Returns the modified and created dates of the block. The where-
From argument takes a zero for the block or a one for the library.
The whichDate argument takes a zero for created or a one for
modified. Use the EDdateToString function to get the string val-
ues of the date & time.

I

ModifyDate(inte-
ger oldDate, real
dateModifier)

Returns the old date value plus the date modifier value. The old-
Date value is an ExtendSim integer date value, similar to that
returned from the GetBlockDates function, and the dateModifier
value is a real number representing a number of days.

I

Now() Number of the current date and time. I

Timers Description Return

PrecisionTimer() Returns the current timer count of the highest resolution timer
found on the system. Used in conjunction with PrecisionTim-
erScale(), below.

R

PrecisionTim-
erScale ()

Returns the numbers of counts per second of the timer made avail-
able in the PrecisionTimer function.

I

Date and time Description Return

ModL Functions 365
Miscellaneous functions

Functions
EColors
The following color functions are new in ExtendSim 10. They support a new color information
variable type called an EColor, which is stored in long (integer) variables. EColors contain the
previously supported RGB/HSV color information as well the alpha channel information that
allows color transparency and is new in ExtendSim 10.

StartTimer (integer
blockNumber, inte-
ger waitTicks)

Starts a timer chore that will periodically send messages to either
the specified block, or every block in the active model if the
blockNumber is zero. This chore is performed when the CPU is
idle, so you cannot count on it happening exactly every period,
unless the CPU is idle. (e.g. other user/program actions will
potentially interrupt the execution of the chore.) If the CPU is
idle, the chore will be performed every waitTicks time intervals.
Ticks are 60ths of a second, so if you enter 60 the chore will
attempt to send out its message every second. The message sent
is TIMERTICK. See the Breakout.mox model for an example of
timer events.

V

StartTimerID (inte-
ger blockNumber,
integer waitTicks,
integer index)

Starts a timer with an ID tag, which can range from 0 to 199. As
with the StartTimer() function, blockNumber specifies which
block should receive the TIMERTICK message, and waitTicks
specifies how often it should be sent.

V

Stoptimer() This procedure stops the idle timer chore started by startTimer
above.

V

StopTimerID (inte-
ger index)

Stops a timer with an ID tag, which can range from 0 to 199. V

TickCount() Clock count (in 60ths of a second) since the computer was pow-
ered up. This is useful for timing operations.

I

TimerID() This function is to be used in the TimerTick message handler to
find which timer is responsible for triggering the message.
Returns the ID number of the timer that is currently activating the
message.

I

WaitNTicks(inte-
ger numTicks)

Waits for the number of ticks (60ths of a second) before returning.
This is useful for slowing simulations down and for synchronizing
communication protocols with real time.

V

Timers Description Return

366 Reference
Miscellaneous functions

Fu
nc

tio
ns

Select Color window
You can see any color’s RGB (red, green, blue), HSV (hue, saturation, and value or bright-
ness), and HTML values as well as other settings by selecting the Fill Color tool in the Shapes
toolbar:

Pick a basic color from the matrix of colors. Or use your cursor and the button labeled Pick
Screen Color to choose a color from the color swatch at the right. Adding any selected color to
the custom colors section saves the color for other models. Use the slider at the far right to
increase or decrease the value (brightness) of a selected color.

The alpha channel is for the level of transparency; the lower the number, the more transparent
the color is.

 Some functions in ExtendSim releases prior to 10 had the option of selecting a pattern in addi-
tion to a color. Patterns remain as arguments for those functions but are no longer supported.

EColors Description Return

EColorFromHSV
(h, s, v, alpha)

Converts HSV values to EColor values. H (Hue) should be in the
range from 0 to 359. All other values must be in the range 0 to 255

I

EColorFromOl-
dExtendColor (old)

Converts a color value from ExtendSim 9 or earlier to an EColor
value.

I

EColorFromRGB
(r, g, b, alpha)

Converts RGB values to EColor values. All values must be in the
range 0 to 255.

I

EColorIsValid (col-
orValue)

Returns a true value if the EColor is a valid color, and a false (0)
value if it is not.

I

EColor-
ToHTML(integer
eColor)

Returns the string representing the hexadecimal value of the
EColor.

S

Color selector

ModL Functions 367
Miscellaneous functions

Functions
Debugging
Also see the Abort statement in “Control statements and loops” on page 70 and UserError in
“Alerts and prompts” on page 248.

Note: To stop a simulation such that it neither puts up an error message nor opens windows to
indicate in which process the simulation was stopped, put the following code in the SIMU-
LATE message handler of an equation-based or custom block:

• currentStep = numSteps;

• currentSim = numSims;

• //don’t use the Abort statement or call any abort functions

EColorPart (color,
which)

Returns an integer value for the specified part of the EColor
value. which can take on the following values:
1: red (0-255)
2: green (0-255)
3: blue (0-255)
4: hue (0-359)
5: saturation (0-255)
6: value (0-255)
7: alpha (0-255)

I

EColorPicker (col-
orValue)

Displays a color picker and returns an EColor value from the user
selected result.

I

EColorUpdateV-
alue (old, isHue)

Converts an ExtendSim 9 or earlier color component value to a
part of an EColor value. (For example, if you have a number from
some v9 code that supports v9 RGB values, calling this function
on each one of those separate values will convert them to an
EColor component value.)

I

Debugging Description Return

AbortAllSims() Aborts the simulation and all multiple simulations. Note that the
Abort statement only aborts the current simulation.

V

AbortAllSimsSi-
lent()

Aborts a multiSim run without an error message. I

AbortSilent() Aborts the simulation run without giving any error messages. V

DebuggerBreak-
point(integer true-
False)

If called with a true value will act as if a source debugger break-
point has been set at the line of code where the function is called.
This function is useful in debugging the CreatBlock message and
in putting a global breakpoint for all blocks of a type.

V

DebugMsg(string
errorString)

Operates like the UserError function. The difference is that this
function flags the block as having debugging code – the next time
a library is opened that contains any blocks having this function,
ExtendSim will issue a warning message. This function automati-
cally displays the simulation time and the block number of the
block from which the function was called.

V

EColors Description Return

368 Reference
Miscellaneous functions

Fu
nc

tio
ns

Web and Help connectivity
See also the ShowFunctionHelp function which brings up a list of ExtendSim’s functions and
arguments. This function is listed with “Equations” on page 218.

DebugWrite(inte-
ger fileNum, string
errorString, delim-
Str, integer tabCR)

Operates like the FileWrite function. The difference is that this
function flags the block as having debugging code – the next time
a library is opened that contains any blocks having this function,
ExtendSim will issue a warning message.

V

FreeMemory(inte-
ger memoryType)

Returns the amount of memory available to ExtendSim. The
memoryType argument determines what type of memory will be
checked. Windows:
1 - Total memory
2 - Resources (only for Windows 3.1 and Windows 95)

Mac OS:
1 - Total memory
2 - Contiguous memory

I

heapCheck() Posts an error message, and returns a true value for an error condi-
tion if memory has been corrupted.

Don’t call this function unless you are in a debugging situation, as
heap checking is slow.

I

PauseSim() Immediately pauses the simulation until you choose Run >
Resume, click the Resume button, or call ResumeSimulation().
For continuous process models, see PauseSimForSave() which
allows the application to finish sending onSimulate messages
until current step is finished executing.

V

ProfileBlock-
Get(integer block-
Number)

Returns the block profile results for the specified block. This will
only return a meaningful number if the command Profile Block
Code is selected. Can be called in finalCalc to get the total profile
results for that block or during the simulation to get partial results.

R

SelectBlock(inte-
ger trueFalse)

Selects the block and scrolls to it if the argument is TRUE, unse-
lects it if the argument is FALSE.

V

SelectBlock2(inte-
ger block, integer
trueFalse)

This is same as SelectBlock(), except it refers to a global block
number.

V

TraceModeEnable-
Disable(integer
enableIfTRUE)

Call to enable or disable the current trace when desired. Trace
mode must be on for this function to work. It returns zero if no
error and -1 if trace mode is not on.

V

Debugging Description Return

ModL Functions 369
Miscellaneous functions

Functions
Platforms and versions
These functions allow you to determine the version number of ExtendSim and the platform on
which it is running.

Help Description Return

CallHelp(string
fileName, integer
command, integer
data, integer file-
Type)

Used to load a WinHelp file, an HTML Help file, or a pdf file.

(For the WinHelp and HTMLHelp Windows API calls, see the
Microsoft documentation for more information.)

The fileType flag takes the following values:

0: Calls the WinHelp function (Windows only. Opens compiled
Help files. Typically have an extension of .hlp.)

1: Calls HTMLHelp. (Opens compiled Html help files. Typically
have an extension of .chm.)

2: Opens a file with a .pdf extension.

This function is used to bypass the standard ExtendSim Help sys-
tem via the following code in the “on helpbutton” message han-
dler:

On helpbutton
{
CallHelp("C:\helpfile.chm", 1,1,1);
Abort;
}

V

OpenURL(string
theURL)

Access the specified URL using your computer’s default browser.
Returns non-zero error code if it fails.

I

ShowBlockHelp
(integer block)

Opens the Help dialog, showing the online Help for any global
block. For example, use the function GetEnclosingHblockNum to
get the global block number of an enclosing hierarchical block to
show its Help under ModL code control.

V

ShowHelp() Opens the Help dialog, showing the online Help for the block. V

Platforms and
versions Description Return

GetCurrentPlat-
form()

Determines the operating system under which ExtendSim is cur-
rently running. This function returns 0 for 68K Mac OS, 1 for
Power Mac OS or Mac OSX, 2 for Windows 3.1/Win32s, 3 for
Windows NT or XP, and 4 for Windows 95, 98, and ME.

I

370 Reference
Miscellaneous functions

Fu
nc

tio
ns

Application privileges
Functions to allow specific application features, such as for Distributed Analysis.

GetExtendVer-
sion(integer which)

If which is 1 or 2 it returns a number in the format 1025.1 where
10 is the major version, 2 is the middle, 5 is the minor version,
and the digit after the decimal is 1 for a, 2 for b, and so on (e.g.,
version10.2.5a). If which is 1, the final digit is always zero. If
which is 2, it returns True if it is a debug version.
Which:
0: application version
1: file version
2: debug version

R

GetExtendVersion-
String()

Returns the version number of ExtendSim as a string. S

GetExtendType() Returns the type of the ExtendSim application.
Normal: 0
LT/RunTime: 2
Demo/Player: 4

I

GetFileReadVer-
sion()

Returns the version of the file being read, or previously read. It
can be used in the On BlockRead message handler to determine
the version of the file that is currently in the process of being read.
In conjunction with the ResizeDTDuringRead function, it will
allow you to inform ExtendSim that a data table has changed size
from the size it was in an older version. (This is useful for using
the Dynamic data table function without breaking existing mod-
els.)

R

GetFileReadVer-
sionString()

Returns the version of the file being read, or previously read, as a
string. This is similar to the GetFileReadVersion function, with
the difference that the result is a version string, not a real number.
NOTE: This function returns the complete version string, in the
form ‘major version. minor version.bug fix version', unlike the
GetFileReadVersion function which just returns the major ver-
sion. This function will return an empty string for files earlier than
version 4.0.

MaintenanceSup-
portPlanExpired()

Returns TRUE if the Maintenance & Support Plan (MSP) has
expired, FALSE if it has not yet expired. Gets the MSP expiration
date from the license file (extendsim.lic).

I

NumMultiLaunch-
esAllowed()

Returns the total number of run instances allowed. If MSP is cur-
rent (i.e. MaintenanceSupportPlanExpired() is False), the base
number is 4. If additional run instances have been purchased,
returns the total (base number plus number of additional instances
purchased).

I

Platforms and
versions Description Return

ModL Functions 371
User-defined functions for ADO

Functions
User-defined functions for ADO
User-defined functions are custom functions, coded in ModL, that can be declared in a block
for local use or declared in an include file for use by multiple blocks. For how to create, use,
and override them, see “User-defined functions” on page 72 and “Include files” on page 81.

The following ActiveX Data Object (ADO) functions are used to implement ADO features in
the Data Import Export block (Value library). These ModL-coded functions are stored in an
include file named ADO_DBFunctions.h. To reference that include file in your block’s code,
use a format discussed on page 81, such as #include “ADO_DBFunctions.h”.

ADO Function Description Return

ADO_AddRe-
cords(integer
ADOApp, string
ADO_TableName,
integer EX_DBIn-
dex, integer
EX_TableIndex

Inserts an ExtendSim table into an ADO database table.
ADO_TableName - name of the table in the ADO database
EX_DBIndex - ExtendSim Database index
EX_TableIndex - ExtendSim table index

Note 1: The tables must have exactly the same structure.
Note 2: This is the fastest way to transfer information.

V

ADO_CheckCom-
patibleField-
Type(string
ADODataType,
integer ExtendSim-
Type)

Returns True (1) if the ADO field type is compatible with the
ExtendSim field type.

I

ADO_Close(inte-
ger ADOAppHan-
dle, integer Force)

Closes the connection to the ADO DLL. Call when done access-
ing the DLL.

I

ADO_Cre-
ateTable(integer
ADOApp, string
ADO_TableName,
string63 ADO_-
FieldArray[][4])

Creates a table in an ADO database.
ADO_TableName - name of the table
ADO_FieldArray contains the table names, their type, “Is nul-
lable”, and the number of characters

V

ADO_DeleteRe-
cords(integer
ADOApp, string
ADO_TableName,
string Criteria)

Deletes records from an ADO database table.
ADO_TableName - name of the table in the ADO database.
Criteria - SQL statement indicating which rows to delete. To
delete all rows, leave blank.

V

ADO_Execu-
teNonQuery(inte-
ger ADOApp,
string SQLStr)

Executes a Non-query SQL statement.
SQLStr - SQL statement

V

ADO_Execute-
Query(integer
ADOApp, string
SQLStr)

Executes a Query SQL statement.
SQLStr - SQL statement

V

372 Reference
User-defined functions for ADO

Fu
nc

tio
ns

ADO_Get-
Fields(integer
ADOApp, String
ADO_TableName,
string63 ADO_-
FieldArray[][4])

Gets a list of fields in the database.
ADO_TableName - name of the table
ADO_FieldArray contains the table names, their type, “Is nul-
lable”, and the number of characters. This is returned by the func-
tion

V

ADO_GetNum-
Fields(integer
ADOApp, string63
ADO_TableName)

Gets the number of fields in table ADO_TableName.
ADO_Tablename - name of the table in the ADO database

I

ADO_GetNum-
Rows(integer
ADOApp, string63
ADO_TableName)

Gets the number of records in table ADO_TableName.
ADO_Tablename - name of the table in the ADO database

I

ADO_GetNum-
Tables(integer
ADOApp)

Returns the number of tables in an ADO Database I

ADO_GetTable-
Columns(integer
ADOApp, integer
EX_DBIndex, inte-
ger EX_TableIn-
dex, string
ADO_TableName,
string63 ADO_-
Columns[])

Transfers a set of columns to an ExtendSim database table.
EX_DBIndex - ExtendSim Database index
EX_TableIndex - ExtendSim table index
ADO_TableName - name of the table in the ADO database
ADO_Columns - array containing the column (field names) to
import into the ExtendSim data table

Note 1: Allocate records in the ExtendSim table before calling
this function.
Note 2: The data types for the fields in the ExtendSim table and
the ADO table must be compatible.

V

ADO_GetTa-
bles(integer ADO-
App, string63
ADO_FieldAr-
ray[])

Gets the list of tables in the ADO database. ADO_FieldArray
contains the table names, their type, “Is nullable”, and the number
of characters.

V

ADO_OpenCon-
nection(string
DatabaseType,
string FileName,
string UserName,
string Password,
String Server)

Opens a connection with an ADO database. This is where data-
base information is specified:
DatabaseType - Access, SQLServer, MYSql, or XML
Filename - name of the database
UserName
Password
Server - name of the database server (not used in Access or XML)

I

ADO Function Description Return

ModL Functions 373
User-defined functions for ADO

Functions
ADO_SetTable-
Columns(integer
ADOApp, string
ADO_TableName,
string63 ADO_-
Columns[], integer
EX_DBIndex, inte-
ger EX_TableIn-
dex)

Transfers a set of columns to an ADO database table.
ADO_TableName - name of the table in the ADO database
ADO_Columns - array containing the column (field names) to
import into the ExtendSim data table
EX_DBIndex - ExtendSim Database index
EX_TableIndex - ExtendSim table index

Note: The data types for the fields in the ExtendSim table and the
ADO table must be compatible.

V

ADO_Setup() Sets up the connection to the ADO DLL. Call before accessing
the DLL Returns the ADO Application Handle - referred to in
other functions as ADOApp.

I

ADO_SQLServer-
GetServ-
ers(string63
ServerInfo[][4])

Returns a list of SQL Server Servers.
ServerInfo - array containing the list of the servers. Allocate this
array before calling the function.

V

ADO_SQLSserver-
GetData-
bases(string63
Server, string63
DBArray[][4])

Returns a list of SQLServer databases.
Server - name of the SQL Server
DBArray - returns name, size, description of the SQL Server data-
base. The forth column is unused.

V

ConvertADOData-
Type(string ADO-
DataType)

Converts an ADO field type to an ExtendSim Constant.
ADODataType - string containing the type for the ADO type
(float, string, int ...)

I

ConvertExtend-
SimDataType(inte-
ger
ExtendSimType)

Converts an ExtendSim constant for data type to SQL string for
data type.

S

DB_FieldGetTyp-
eString(integer
ExtendSimType)

Returns the string description given an ExtendSim field type. S

ADO Function Description Return

374 Reference
User-defined functions for ADO

Fu
nc

tio
ns

Appendix

Menu Command Numbers
A list of the menu command numbers to be used with

the ExecuteMenuCommand function

“Obedience alone gives the right to command.”
— Ralph Waldo Emerson

376 Appendix

A
pp

en
di

ce
s

The ExecuteMenuCommand(commandNumber) function executes a specified menu command
(see “Scripting” on page 300). This is functionally the same as selecting the command from the
menu. Below is a list of the command numbers that are used with that function.

File Menu Command
Number

New Model 2

New Text File 1601

Open 3

Recent Files (1-5) 1555-1559

Close 4

Save Model 5

Save Model As 6

Print 9

Update Launch Control 1410

Properties 2001

Exit or Quit 1

Edit menu Command
Number

Cut 18

Copy 19

Paste 20

Clear 21

Model menu Command
Number

Hide Connections 2012

Hide Connectors 2071

Model > Connection Line Style sub menu Command
Number

Smart 5004

Right-Angle 5001

Straight 5002

Menu Command Numbers 377

A
ppendices
Free Form 5003

Output to Input 1208

Input to Output 1209

Solid Line 1205

Dotted Line 1206

Default Thickness 1250

Double Line 1204

Database Menu Command
Number

Read/Write Index Checking 1931

Run Menu Command
Number

Run Simulation 6000

Simulation Setup 6001

Run Optimization or Scenarios 6002

Show 2D Animation 2020

Stop 30000

Pause 30001

Resume 30002

Step 30003

Run > Model Debugging Menu Command
Number

Step Entire Model 2023

Step Each Block 2024

Generate Trace 2040

Add Selected Blocks To Trace 2041

Add All Blocks To Trace 2045

Remove Selected Blocks From Trace 2042

Model > Connection Line Style sub menu Command
Number

378 Appendix

A
pp

en
di

ce
s

Remove All Blocks From Trace 2043

Show Tracing Blocks 2044

Profile Block Code 2029

Toolbars Command
Number

Slower Animation (Model tool) 30004

Faster Animation (Model tool) 30005

Normal Size (Edit tool) 2010

Reduce to Fit (Edit tool) 2009

Courier (Text tool) 6100

Helvetica (Text tool) 6101

Times (Text tool) 6102

Arial (Text tool) 6103

Run > Model Debugging Menu Command
Number

Appendix

Upper Limits
A list of the maximum numbers of things

that you can do at one time

“The thing I am most aware of is my limits.”
— André Gide

380 Appendix

A
pp

en
di

ce
s

Like every program, ExtendSim has its limits. It is unlikely you will find them in your normal
work, but it is good to know what they are. Note: Some limits depend on available memory.

Steps in a simulation run 2 billion

Total model data size 2.8E14 bytes

Number of simulations in a multiple run 2 billion

Block name or label length, characters 31

Blocks in a model 2 billion

Blocks in a library 200

Libraries open at one time 40

Text files open at one time 200

Databases per model 2 billion

Tables per database/fields per table/records per table 2 billion/1,000/2 billion

Output connectors in a model (nodes) 2 billion

Connectors per block 255

Length of a block’s ModL code (characters) 10 megabytes

Dialog items in a block 1024

2D animation objects per block 255/icon; unlimited through function

Dynamic arrays (each array) 2 billion elements

Number of array dimensions 5

Maximum index for array dimensions 2 billion elements total

Dynamic arrays per block 255

Columns in a table 255 (data table); 255 (text table)

Total table size (cells) per block for static data tables 3260 (data table); 2030 (text table)

Total table size (cells) each, for dynamic data tables 2 billion

Variable name length: dialog item msgs, connector
names

63

Variable name length: ModL local, static variables 127

Static and local variable declaration limit (See page 62) 32,767 bytes

Maximum popup menu length 5100 characters or 20 strings

User defined function arguments 127

Nested loops 32

Maximum, minimum of real numbers ±1E±308

Upper Limits 381

A
ppendices
Maximum, minimum of integer numbers ±2,147,483,647

Significant figures in real calculations 16 (double)

Number of attributes for discrete event item 500

382 Appendix

A
pp

en
di

ce
s

Appendix

ASCII Table
To help you determine the values of

the ASCII characters

“I would sooner read a timetable or catalogue than
nothing at all. They are much more entertaining

than half the novels that are written.”
— W. Somerset Maugham

384 Appendix

A
pp

en
di

ce
s

This table shows the ASCII values from 00 to 127, which are the same for Windows and Mac
OS. Values above 127 are not part of the standard ASCII set and vary depending on the font.

00 NUL 32 space 64 @ 96 `

01 SOH 33 ! 65 A 97 a

02 STX 34 " 66 B 98 b

03 ETX 35 # 67 C 99 c

04 EOT 36 $ 68 D 100 d

05 ENQ 37 % 69 E 101 e

06 ACK 38 & 70 F 102 f

07 BEL 39 ' 71 G 103 g

08 BS 40 (72 H 104 h

09 HT 41) 73 I 105 i

10 LF 42 * 74 J 106 j

11 VT 43 + 75 K 107 k

12 FF 44 , 76 L 108 l

13 CR 45 - 77 M 109 m

14 SO 46 . 78 N 110 n

15 SI 47 / 79 O 111 o

16 DLE 48 0 80 P 112 p

17 DC1 49 1 81 Q 113 q

18 DC2 50 2 82 R 114 r

19 DC3 51 3 83 S 115 s

20 DC4 52 4 84 T 116 t

21 NAK 53 5 85 U 117 u

22 SYN 54 6 86 V 118 v

23 ETB 55 7 87 W 119 w

24 CAN 56 8 88 X 120 x

25 EM 57 9 89 Y 121 y

26 SUB 58 : 90 Z 122 z

27 ESC 59 ; 91 [123 {

28 FS 60 < 92 \ 124 |

29 GS 61 = 93] 125 }

30 RS 62 > 94 ^ 126 ~

31 US 63 ? 95 _ 127 DEL

385Index

Symbols
 187
_(underscore) character 114
_leftClickDB 100, 102
** 33
*/ 33
/* 33
// 33
#define 83
#else 78, 83
#endif 78, 83
#ifdef 78, 82
#ifndef 83
% operator 69

Numerics
2D animation

adding to a block 53
between blocks 134
changing a level 132
color 130, 135
functions 250
hiding a shape 131
hierarchical blocks 131
moving a shape 132
objects 10, 53
overview 10
pictures 134
pixels 136
programming 128
shapes 129
showing a shape 131
stretching a shape 133
text 136

A
Abort statement 70, 146

in CheckData 72
in Simulate 72

AbortAllSims 146, 367
AbortAllSimsSilent 367
AbortDialogMessage 200
aborting multiple simulations 142, 146
AbortSilent 367
absolute value 208
Acos 209

ActivateApplication 300
ActivateModel 196
ActivateWorksheet 300
ActiveX

Automation 119
BlockMsg 123
C++ examples 120
client 119
Execute 121
GetObjectHandle 124
Poke 122
Request 122
Visual Basic 125
Visual Basic examples 125

ActiveX Automation 119
ActiveX Data Objects functions 371
Add External Code to Libraries command 84
Add to Custom Colors button 366
add to right click menu 19
AddBlockToClipboard 300
AddBlockToSelection 300
AddC 210
ADO functions 371
ADO_AddRecords 371
ADO_CheckCompatibleFieldType 371
ADO_Close 371
ADO_CreateTable 371
ADO_DeleteRecords 371
ADO_ExecuteNonQuery 371
ADO_ExecuteQuery 371
ADO_GetFields 372
ADO_GetNumFields 372
ADO_GetNumRows 372
ADO_GetNumTables 372
ADO_GetTableColumns 372
ADO_GetTables 372
ADO_OpenConnection 372
ADO_SetTableColumns 373
ADO_Setup 373
ADO_SQLServerGetServers 373
ADO_SQLSserverGetDatabases 373
AdviseReceive 203
alert functions 248
AlignConnection 261
alignment of dialog item labels 20
alpha channel 366
Alt key 249

386
alternate views 9
animation

2D 128
2D functions 250

animation object (2D) 129
Animation Object button 10
animation object tool 22
animation objects 10

Properties dialog 129
zOrder 54

AnimationAntialias 251
AnimationBlockToBlock 134, 251, 256
AnimationBorder 251
AnimationBorderColor 251
AnimationBorderEColor 251
AnimationColor 251
AnimationEColor 129, 135, 251
AnimationGetHeight 252
AnimationGetHeightR 252
AnimationGetLeft 252
AnimationGetLeftRelative 252
AnimationGetLeftRelativeR 252
AnimationGetSpeed 252
AnimationGetTop 252
AnimationGetTopRelative 252
AnimationGetTopRelativeR 252
AnimationGetWidth 252
AnimationGetWidthR 252
AnimationHide 131, 252
AnimationLevel 132, 253
AnimationMoveTo 132, 253
AnimationMovie 253
AnimationMovieFinish 253
AnimationObjectCopyData 253
AnimationObjectCreate 129, 253
AnimationObjectDelete 253
AnimationObjectExists 254
AnimationObjectExists2 254
AnimationOn 130, 190
AnimationOval 129, 254
AnimationPicture 254
AnimationPixelRect 254
AnimationPixelRectEColorInit 254
AnimationPixelSet 254
AnimationPixelSetEColor 254
AnimationPoly 128, 129, 254
AnimationRectangle 254

AnimationRndRectangle 129, 255
AnimationSetDelayMode 255
AnimationSetSpeed 255
AnimationShow 129, 131, 255
AnimationStatus 196
AnimationStretchTo 133, 255
AnimationText 136, 255
AnimationTextAlign 255
AnimationTextSize 255
AnimationTextTransparent 136, 255
AnimationZOrderGet 255
AnimationZOrderSet 256
AntitheticRandomVariates 190
API 2
AppendDataTableLabels 276
AppendPopupLabels 268
application.ini file 79
ApplicationFrame 301
arguments

arrays as 67, 74
call tips 79, 207
data type expectations 207
of function calls (converting) 64
pass by value or reference 104

array segment 67
ArrayDataMove 340
ArrayLabelParse 358
arrays 65

array segment 67
as arguments 67, 74
copying using FOR loops 110
definition 30
dimensions 65
disposing 106
disposing of global 109
dynamic 26, 66
fixed 26, 66
fixed or dynamic 30
functions 340
global arrays 67, 109
import function 110
in discrete event modeling 147
memory usage 103
passing 105, 341
passing (precautions) 106
subscripts 65
working with 103

ASCII value table 384

387
Asin 209
ASP license

form-based interface 125
assignment operators 68
Atan 209
Atan2 209
AttribInfo 202
AttribType array 152
AttributeList array 152
attributes

arrays for items 152
flow 153
functions 361

AttribValues array 153
auto indentation 79
automation

methods 119
automation, OLE

client 119
server 119

AutoScaleX 310
AutoScaleY 310

B
BarChart 317
BarChartCategoryCountGet 317
BarChartCategoryCountSet 317
BarChartCategoryGet 317
BarChartCategorySet 317
BarChartSet 317
BarChartValueGet 317
BarChartValueSet 317
BarGraph 310
basic math functions 207
Beep 248
bidirectional connectors 103
Bidirectional Flows model 103
Binomial distribution function 210
BitAnd 218
BitClr 218
bit-handling functions 218
BitNot 218
BitOr 218
BitSet 218
BitShift 218
BitTst 218

BitXor 218
BLANK 63
block number 260
block parts

accessing from code 35
animation 8
code 7
connector types 21
connectors 8
Connectors pane 8
Dialog Item Names pane 9
dialog items 8, 14
Help tab 8
icon 8
icon views 8
ModL code 7
script 7
Script tab 12
tabs 8

block status messages 197
block to block messages 202
BlockAdjustPosition 301
blockAdjustPosition 10
BlockClick 197, 249
BlockDialogIsOpen 288
blocked message 156
BlockIdentify 197
blocking the flow 156
BlockLabel 197
BlockMove 197
BlockMsg 119, 123
BlockName 115, 257
BlockRead 197, 278
BlockReceive 202
BlockReceive0 150
BlockReceive3 150
BlockRect 257
BlockReport 142, 146, 196, 308
BlockRightClick 197
blocks

2D animation between 134
adding connectors 46
animating in 2D 53
categories 55, 256
communicating with each other 99
communication 99, 256, 260, 267, 290
compiling 47
data table functions 274

388
dialog items when creating 35
dialog tab functions 290
dialogs 6, 288
dynamic text functions 283
equation-based 94
Executive 142
for debugging 170
hierarchical (animating) 131
icon view functions 293
icons 9
intermediate results 51
labels 256
labels (length) 380
Make Your Own 146
messaging functions 290
names 256
names (length) 380
new 44
numbers 256, 260
parts of a block 7
popup menus 48
programming discrete event 146
programming discrete rate 165
protecting 90
red border for debugging mode 173
registered 113
remote communication 99
structure 7
submenus in library 55
that don’t post future events 149
that post events 149
types of discrete event 148
uncompiled 45

BlockSelect 198
BlockSimFinishPriority 291
BlockSimStartPriority 291
BlockTableInfo 202
BlockUndelete 198
BlockUnselect 198
blue circle 185
Boolean operators 69
Border Color tool for dialog items 17
brace matching 78
Break statement 70, 72
Breakpoint Conditions dialog 187
breakpoints

condition 172
definition 172
disabling 182

margin 174
removing 182
setting 179
setting conditions 180
window 186

Breakpoints window 186
Breakpoint and Condition columns 181

button
creating 52
dialog item 14
message 201
titles (changing) 38, 98

Buttons block 94

C
C to Pascal string function 61
CalcDate

see EDCalcDate 362
CalcFV 213
CalcNPER 213
CalcPMT 214
CalcPV 214
CalcRate 214
calendar 15
calendar date

functions 362
call chain

yellow location arrow 176, 185
Call Chain pane 174
Call Tips 79, 207
CallHelp 369
Cancel 200
case sensitivity 60
CASE statement 72
categories of blocks 55
Ceil 208, 209
CellAccept 200
ChangeAxisValues 310
ChangePlotType 310
ChangePreference 301
ChangePreferenceString 301
ChangeSignalColor 310
ChangeSignalSymbol 311
ChangeSignalWidth 311
changing parameters globally 98
chart functions 308
checkbox

389
programming for 37
titles (changing) 98

checkboxes 14
CheckData 138, 140, 195
ClearBlock 301
ClearBlockUndo 301
ClearConnection 302
ClearStatistics 202
ClearUndo 302
CloneCreate 302
CloneDelete 302
clone-drop 99

code for a custom stand-alone block 100
CloneFind 302
CloneGetDialogItem 302
CloneGetDialogItemLabel 302
CloneGetInfo 302
CloneGetList 302
CloneGetPosition 303
CloneHideDisable 303
CloneInit 198
CloneResize 303
CloseBlockDialogBox 288
CloseDialogBox 289
CloseEnclosingHBlock 289
CloseEnclosingHBlock2 289
CloseModel 196
ClosePlotter 311
ClosePlotter2 311
CM 84
cm extension 84
code

colorization 78
conventions 49
example 47
language overview 27
layout 32
management 84
script editor 78
type declarations 33, 60

code completion 33, 79
customizing 79
for functions 207

code folding 79
code management 84
code marker 179
CodeExecute 303

coding conventions 49
color 130, 135

HSV 130
color selector window 366
colored code 78
column index 94
column separators 223
column tag functions 284
COM DLL example 125
comments 12

multi-line 33
single line 33

compile
conditionally 29, 76, 82

Compiled_Debug 83
complex number function 210
ConArrayChanged 201
ConArrayChangedComplete 201
ConArrayChangedWhichCon 265
ConArrayCollapseChanged 201
ConArrayGetCollapsed 265
ConArrayGetConNumber 265
ConArrayGetDirection 265
ConArrayGetNthCon 265
ConArrayGetNthCon2 265
ConArrayGetNumCons 265
ConArrayGetOwnerCon 265
ConArrayGetTotalCons 265
ConArrayGetValue 266
ConArrayMsgFromCon 266
ConArraySendMsgToAllCons 266
ConArraySendMsgToInputs 266
ConArraySendMsgToOutputs 266
ConArraySetCollapsed 266
ConArraySetNumCons 266
ConArraySetValue 266
concatenation 68, 69, 249
conditional breakpoints 187
conditional compilation 29, 76, 82
ConjugateC 215
ConnectionBreak 201
ConnectionClick 201
ConnectionMake 198, 202
connector labels

defined 23
formatting 23

connector messages 154, 201

390
connector names
used as variables in ModL 34

connector tool tips 267
ConnectorLabelsGet 266
ConnectorLabelsSet 267
ConnectorMsgBreak 291
ConnectorName 202
ConnectorRightClick 198, 202
connectors 34

adding 22, 46
bidirectional 103
changing 102
changing an input to an output 46
changing from normal to variable 21
changing the type of 23
checking in CheckData 195
deleting 102
functions 260
initializing 102
labels 23
messages 154, 159
naming 22, 34
no resize bar 21
normal 22, 35
normal vs variable 21
renaming 46
tools 21
tooltips 23
types 21
User Defined 21
variable 21, 22, 35, 102

Connectors pane 8, 22
ConnectorShowHide 198
ConnectorToolTip 202
ConnectorToolTipGet 267
ConnectorToolTipSet 267
ConnectorToolTipWhich 267
constant definitions 32
constants 61, 63

definition 30, 33, 63
in equation-based blocks 63
names 60

Continue statement 70, 72
Continue tool 184
ContinueSim 140, 195
control 41
control statements 70, 72
conversion

of numeric types 64
convert a variable connector 21
ConvertADODataType 373
ConvertExtendSimDataType 373
ConvertTimeUnits 362
CopyBlock 198
copying

dialog items 97
Cos 209
Cosh 209
cost array 151
costing attributes 153
Create New Library button 44
CreateBlock 50, 198
CreateFolder 224
CreateHBlock 303
CreatePopupMenu 268
CurrentScenario 190
CurrentSense 190
CurrentSim 140, 143, 190
CurrentStep 141, 190
CurrentTime

changed by Executive block 190
currentTime

in Debugger window 174
custom colors 366

D
data

checking in CheckData 195
consumption by type of variable 61
linking to databases 55
linking to global arrays 55
managing data in complex models 113
repository 113
source (organizing) 94
source indexing 94

data consumption 61
data tables 15, 38

functions 274
row and column 18

data type declarations 32
data types 33, 60

definition 30
Database

Read/Write Index Checking 318
database errors

391
no such parent 318
no such record 318
not linked error 319
not unique error 318
not unique index 318

database functions 318
databases (ExtendSim)

_character at beginning of name 114
accessing 113
copying functions 322
creating 113
creating/deleting functions 319
DB address functions 335
functions 318
import/export functions 322
linking/notify functions 337
no such parent error 318
no such record error 318
not linked error 319
not unique error 318
not unique index error 318
number of databases per model 380
properties functions 323
random data functions 331
read/write functions 327
registering blocks 55, 280
reserved 114
selecting functions 321
sort/search functions 334
viewng functions 337
working with 113

DataTableHover 200
DataTableResize 200
DataTableScrolled 200
date functions (legacy) 364
DateToString

see EDdateToString 363
DB_FieldGetTypeString 373
DBAddressCreate 336
DBAddressGetAllIndexes 336
DBAddressGetAsString 336
DBAddressGetDlg 336
DBAddressGetDlg2 336
DBAddressGetFromString 336
DBAddressIncrementIndex 336
DBAddressReplaceIndex 336
DBBlockRegister 113
DBBlockRegisterContent 338
DBBlockRegisterContents 113

DBBlockRegisterStructure 113, 338
DBBlockUnregisterContent 338
DBBlockUnregisterStructure 338
DBChildPopupSelector 321
DBDatabaseCloseViewer 337
DBDatabaseCopy 322
DBDatabaseCreate 319
DBDatabaseDelete 319
DBDatabaseDeleteByIndex 319
DBDatabaseExists 323
DBDatabaseExport 322
DBDatabaseGetIndex 323
DBDatabaseGetIndexFromAddress 336
DBDatabaseGetName 323
DBDatabaseImport 322
DBDatabaseOpenCell 337
DBDatabaseOpenViewer 337
DBDatabaseOpenViewerToTab 337
DBDatabasePopupSelector 321
DBDatabaseRename 323
DBDatabasesGetNum 323
DBDatabaseShowHideReserved 324
DBDatabaseTabChangeName 324
DBDatabaseTabDelete 319
DBDataGetAsNumber 327
DBDataGetAsNumberParentAltField 327
DBDataGetAsNumberUsingAddress 327
DBDataGetAsString 327
DBDataGetAsStringParentAltField 328
DBDataGetAsStringUsingAddress 328
DBDataGetCurrentSeed 331
DBDataGetDateAsSimTime 328
DBDataGetDateAsSimTimeUsingAddress 328
DBDataGetParent 328
DBDataGetParentUsingAddress 329
DBDataSetAsNumber 329
DBDataSetAsNumberReserved 329
DBDataSetAsNumberUsingAddress 329
DBDataSetAsNumberUsingAddressReserved

329
DBDataSetAsParentIndex 329
DBDataSetAsParentIndexReserved 330
DBDataSetAsParentIndexUsingAddress 330
DBDataSetAsParentIndexUsingAddressRe-

served 330
DBDataSetAsString 330

392
DBDataSetAsStringReserved 330
DBDataSetAsStringUsingAddress 330
DBDataSetAsStringUsingAddressReserved

330
DBDataSetCurrentSeed 331
DBDataSetDateAsSimTime 331
DBDataSetDateAsSimTimeReserved 331
DBDataSetDateAsSimTimeUsingAddress 331
DBDataSetDateAsSimTimeUsingAddressRe-

served 331
DBDatatable 280, 338
DBFieldCreate 319
DBFieldCreateByIndex 319
DBFieldDelete 319
DBFieldDeleteByIndex 320
DBFieldExists 324
DBFieldGetIndex 324
DBFieldGetIndexFromAddress 336
DBFieldGetName 324
DBFieldGetProperties 324
DBFieldGetPropertiesUsingAddress 324
DBFieldMove 325
DBFieldPopupSelector 321
DBFieldRename 325
DBFieldSetInitialize 325
DBFieldSetProperties 325
DBFieldsGetNum 325
DBGetLinkedContentList 339
DBGetLinkedDialogsList 339
DBGetLinkedStructureList 339
DBGetSize 325
DBinomial 210
DBParameter 280, 340
DBRandomDistributionGet 332
DBRandomDistributionSet 333
DBRecordExists 325
DBRecordFind 334
DBRecordFindMultipleFields 334
DBRecordFindMultipleFieldsArray 334
DBRecordFindNumericalRange 335
DBRecordFindParentRecordIndex 335
DBRecordGetIndexFromAddress 337
DBRecordIDFieldGetIndex 325
DBRecordPopupSelector 322
DBRecordsDelete 320
DBRecordsGetNum 326

DBRecordsInsert 320
DBRelationCreate 320
DBRelationDelete 320
DBRelationsGetNames 326
DBRelationsGetNum 326
DBTabGetTableIndexList 326
DBTableCloneToTab 320
DBTableCopy 322
DBTableCreate 320
DBTableCreateByIndex 320
DBTableDelete 321
DBTableDeleteByIndex 321
DBTableExists 326
DBTableExportData 323
DBTableGetIndex 326
DBTableGetIndexFromAddress 337
DBTableGetName 326
DBTableGetProperties 326
DBTableImportData 323
DBTablePopupSelector 322
DBTableRename 326
DBTableSetProperties 326
DBTablesGetNum 327
DBTableSort 335
DBTabletoGA 343
DBToolTipsGet 321
DBToolTipsSet 321
DDE (dynamic data exchange) 229
DE Modeling Using Equation Blocks 300
Debug Tutorial model 173
debugger 172

arrays 188
breakpoint margin 174
breakpoints 172
call chain pane 174
Debugger window 174
indicators in the margin 185
location arrow 174, 175
red border around blocks 173
removing breakpoints 182
setting breakpoints 179
setting conditions 180, 187
source pane 174
toolbar 184
tutorial 173
variables pane 174
WatchPoint conditions 188
window 184

393
Debugger window 174
empty circle 182
indicators 185
toolbar 184

DebuggerBreakpoint 367
debugging 171

block code using UserError 248
blocks for 170
functions 367
functions using alerts and prompts 248
models 170
source code (see "debugger") 172
tips 188
tracing 170
using DebugMsg function 171

DebugMsg 171, 367
DebugWrite 171, 368
decision blocks 148
DEExecutiveArrayResize 202
Delay 358
delay line functions 357
DelayInit 300, 358
DeleteBlock 198
DeleteBlock2 198
delimiters 223
DeltaTime 138, 140, 141, 190
Determinant 215
DeterminantC 215
Develop command 44
DExponential 210
DGamma 210
DI ID 18
diagnostic functions 248
dialog functions 274, 283, 288
Dialog Item Names pane 9
dialog items 6, 15, 35

add to right click menu option 19
alignment of labels 20
Border Color for labels 17
buttons 14, 38
buttons (creating) 52
calendar 15
changing text and titles 96
checkbox 14
checkboxes 37
color for labels 17
copying 97
data tables 38

display only option 19, 50
dynamic text 15, 36
editable text 15, 36
editable text 31 character limit 15
Fill Color option 17
format text 20
frame 15, 40, 49
functions 267
hidden 19
ID 18
labels 18
linking to ExtendSim databases 55
linking to global arrays 55
list 14
messages 36, 199
meter 15, 41
move manually 97
move to another tab 97
move using code 97
names 17, 35
new 44
numeric formats for 17
parameter 14, 36, 49
parameter fields 14
popup menus 14, 39, 48
radio button 15, 37, 48
show and hide 97
slider 15, 41
static text label 15, 39
style 20
switch 41
switch control 15
tab order 18
tabs 8, 13
text frame 40
text tables 15, 38
tool tips 20, 288
types (definition) 17
types of 14
visible 19
visible in all tabs option 19
W and H coordinates 17, 98
X and Y coordinates 17, 97
zOrder 17

Dialog Items 2 toolbar 44
dialog messages 199
dialog names

used as message names 36
used as variable names 36

Dialog Resizer 13

394
Dialog tab 8, 13, 44
dialog tab functions 290
dialog variables

getting and/or setting remotely 99
remote interface with 99

DialogClick 200, 249, 268
DialogClose 200
DialogFixedSize 303
DialogGetSize 289
DialogHasEmbeddedObject 268
DialogItem 201
DialogItemRefresh 200
DialogItemToolTip 200
DialogItemVisible 268
DialogMoveTo 289
DialogOpen 200
DialogPicture 256
DialogRefresh 303
dialogs

Dialog Item Names pane 9
exploring 6
functions for opening and closing 288
Help tab 14
programming tips 95
tab for dialog editing 13
tabs 8, 13
text (changing) 95

DialogSetSize 289
DiffDate 364
DIFontSize 358
DIGetID 268
DIGetName 268
DILinkClear 280
DILinkInfo 281
DILinkingDisabled 281
DILinkModify 281
DILinkMsgs 282
DILinkSendMsgs 282
DILinkUpdateInfo 282
DILinkUpdateString 283
dimensions of an array 65
DIMoveBy 268
DIMoveTo 268
DIMsgNumber 269
DIParamTagGet 287
DIParamTagSet 287
DIParamTagStringGet 287

DIPopupButton 269
DIPositionGet 269
DIPositionHome 269
DIPositionSet 269
DirPathFromPathName 224
DisableDialogItem 269
DisableDialogItem2 269
DisableDTTabbing 276
DisableTabName 290
discrete event programming

arrays 147
blocked and query messages 156
continuous blocks 158
explicit connector messages 159
functions 160
how ExtendSim runs DE models 142
item data structures 150
item messaging 153
Make Your Own blocks 146
message emulation 158
notify message 157
overview 146
pseudocode of the simulation loop 142
pulling 155
pushing 154
scheduling events 147
SysGlobal variables 160
system variables 142
types of blocks 148
zero time events 149

discrete rate programming 165
DISetFocus 269
DISetParent 269
display only option 19, 36, 50
DisposeArray 66, 340
DisposePlot 311
distributions

Binomial function 210
Exponential function 210
Gamma function 210
Gaussian function 210
LogNormal function 210
Mean distribution function 210
Pascal function 210
Poisson function 210
Random function 211
RandomCalculate function 211
RandomCheckParam function 212
RandomGetModelSeedUsed function 212

395
RandomRead function 212
students t 213
TStatisticValue function 213

DITitleGet 270
DITitleSet 270
DIToolTipSet 288
DivC 210
division by integer 69
DLL Add block 88
DLLBoolCFunction 246
DLLBoolPascalFunction 246
DLLBoolStdcallFunction 246
DLLCtoPString 61, 87, 245, 246
DLLDoubleCFunction 246
DLLDoublePascalFunction 246
DLLDoubleStdcallFunction 246
DLLLoadLibrary 247
DLLLongCFunction 247
DLLLongPascalFunction 247
DLLLongStdCallFunction 247
DLLMakeProcInstance 247
DLLMakeProcInstanceLibrary 247
DLLPtoCString 61, 87, 245, 247
DLLs 86, 245

example code for DLL Add block 88
example code for Miles block 87
interface 86
Python example 89
VB.net example 89

DLLUnloadLibrary 247
DLLVoidCFunction 247
DLLVoidPascalFunction 247
DLLVoidStdcallFunction 247
DLogNormal 210
Donut Chart 316
double (data type) 33, 207

definition 60
Do-While 70, 71
DPascal 210
DPoisson 210
DragCloneToBlock 100, 198
drawing tools 9
DTColumnTagGet 287
DTColumnTagSet 288
DTColumnTagStringGet 288
DTGrowButton 276
DTHasDDELink 276

DTHideLinkButton 283
DTPaneFixed 276
DTResizeToCols 276
DTRowFontSize 276
DTRowHeightSet 277
DTToolTipSet 277
DuplicateBlock 303
DuringContinue 293
DuringHBlockUpdate 291
dynamic arrays 26, 30, 66, 340

functions 340
number per block 380

dynamic data exchange (DDE) 229
dynamic data link functions 280
dynamic data link messages 203
dynamic data linking 55
Dynamic Link Libraries (DLLs) 86
dynamic text 15, 36

add to right click menu 19
display only 19
display only option 19
functions 283
visible in all tabs 19

DynamicArrayIndexByName 340
DynamicDataTable 277
DynamicDataTable2 277
DynamicDataTableVariableColumns 66, 275, 277
DynamicDataTableVariableColumns2 277
DynamicTextArray 283
DynamicTextIsDirty 283
DynamicTextSetDirty 283

E
E (scientific) notation

definition 30
EColorFromHSV 366
EColorFromOldExtendColor 366
EColorFromRGB 366
EColorIsValid 366
EColorPart 367
EColorPicker 367
EColors 365
EColorToHTML 366
EColorUpdateValue 367
EDCalcDate 362
EDCalendarDateGet 362
EDCalendarDates 363

396
EDCalendarShow 363
EDConvertDate 363
EDDateToSimTime 363
EDDateToString 363
EDDateValue 363
EDDayOfTheWeek 363
EDGetCurrentDate 363
EDGetStartDate 363
editable text 36

31 character limit 15
add to right click menu 19
dialog item 15
display only 19, 36
visible in all tabs 19

editable text 31 character 15
EDNow 363
EDSimTimeToDate 363
EDStringToDate 364
EigenValues 215
embedded objects 119
empty circle 182, 185
end of line 78
endif 83
EndSim 142, 146, 196
EndTime 138, 140, 142, 191
Enter Selection command 80
entry boxes 14
Equation block 94, 218
equation functions 218
Equation(I) block 94
equation-based blocks 2, 27, 94

differences from custom block code 31
user-defined functions 94

EquationCalculate 219
EquationCalculate20 219
EquationCalculateDynamic 219
EquationCalculateDynamicVariables 219
EquationCompile 220
EquationCompile20 220
EquationCompileDynamic 220
EquationCompileDynamicVariables 220
EquationCompileDynamicVariablesSilent 221
EquationCompilePlatform 198
EquationCompileSetStaticArray 221
EquationDebugCalculate(221
EquationDebugCompile 221
EquationDebugDispose 221

EquationDebugSetBreakpoints 221
EquationGetStatic 222
EquationIncludeSet 222
equations 94

differ from custom block code 31
EquationSetStatic 222
Erf 208
Euler integration 214
evaluating expressions 69
event

list 149
posting 149
scheduling 146, 147

event clock 147
Example block 6
Excel Client-Server Model Workbook.xls 125
Excel interface 125
Execute 119, 121
ExecuteMenuCommand 303
Executive block 142, 292

controlling simulation 145
controlling timing 146

Exp 208
Exponential distribution function 210
exponential number 30
Export 223
ExportText 223
expressions

evaluating 69
ExtendMaximize 303
ExtendMinimize 303
ExtendSim

databases 113
upper limits 380

ExtendSim IDE 2
ExtendSim OLE.exe 125
ExtendSim_10 83
extensions 85

DLLs 86
folder 85
pictures 90
sounds 89

external source code 42, 83
source folder 84

External Source Code command 84

397
F
FALSE 63
fast Fourier transform 208
FFT 208
file I/O functions 222, 224
file types for extensions 85
FileChoose 224
FileClose 224
FileDelete 224
FileEndOfFile 224
FileExists 224
FileGetDelimiter 225
FileGetPathName 225
FileInfo 225
FileIsOpen 225
FileNameFromPathName 225
FileNew 225
FileOpen 225
FileRead 226
FileRewind 226
FileWrite 226
Fill Color for dialog items 17
FinalCalc 142, 146, 195
FinalCalc2 142, 146, 195
financial functions 213
Find command 80
Find in Files tab (Find String dialog) 80
Find String dialog 80
FindBlock 304
FindInHierarchy 257
FindInHierarchy2 258
FindMinimum 340
FindMinimumWithThreshhold 340
FindNext 304
FixDecimal 208
fixed arrays 26, 30, 66
Floor 208
flow attributes 153
flow order 191
FlowAttList array 153
FlowAttType array 153
FlowAttValues array 153
FlowBlockReceiveN 203
For construct 70, 71
format of numbers 17
formats

data sources 94
number formats 17

FormatString 358
FormatStringReal 358
form-based interface 125
Fortran 29
forward declaration 73
frame 15, 40, 49
free() 342
FreeMemory 368
functions 205

2D 250
alerts, prompts 248
animation 2D 250
arrays as arguments to 67
attributes 361
bit-handling 218
block categories 256
block numbers 256
calendar date 362
charts 308
column tag 284
connections 260
data tables 274
database 318
database copying 322
database creating/deleting 319
database DB address 335
database import/export 322
database linking/notify 337
database properties 323
database random data 331
database read/write 327
database selecting 321
database sort/search 334
database viewing 337
date (egacy) 364
DDE 229
debugging 367
definition 30, 33
delay line 357
diagnostic 248
dialog 288
dialog items 267
dialog tabs 290
distributions 210
dynamic arrays 340
dynamic data linking 280
dynamic text 283
equation 218

398
file I/O, formatted 222
file I/O, unformatted 224
financial 213
global 112
help 368
icon view 293
integration 214
internet access 226
Interprocess communication (IPC) 229
labels 256
libraries 293
linked list 349
Mailslots 240
math 207
matrix 214
messaging blocks 290
models 293
names 60, 256
netlist 260
notebook 293
ODBC 241
OLE 232
overriding 34
parameter tags 284
passing arrays 341
plotting 308
pointers 342
queue 356
recursive 73
returns 207
scripting 300
serial I/O 244
statistical 210
string 358
text files 222, 224
time (legacy) 364
time units 361
timer 364
trigonometric 209
types 206
user-defined 72, 104
web 368

Functions popup in Script tab 12
Functions popup menu 185
future value 213

G
GABlockRegister 113
GABlockRegisterContent 343

GABlockRegisterContents 113
GABlockRegisterStructure 113, 344
GABlockUnregisterContent 344
GABlockUnregisterStructure 344
GAClipboard 344
GACopyArray 344
GACreate 344
GACreateQuick 344
GACreateRandom 344
GADataTable 344
GADeleteRow 345
GADispose 345
GADisposeByIndex 345
GAExport 345
GAFindStringAny 345
GAGetArray 345
GAGetColumnsByIndex 345
GAGetColums 345
GAGetIndex 345
GAGetInfo 345
GAGetInitValue 345
GAGetInteger 346, 348
GAGetLong 346
GAGetName 346
GAGetReal 346
GAGetRows 346
GAGetRowsByIndex 346
GAGetString 346
GAGetString15 346
GAGetString31 346
GAGetString63 346
GAGetType 346
GAGetTypeByIndex 346
GAImport 347
GAInitializing 347
GAInsertRow 347
GALastUsedIndex 347
Gamma distribution function 210
GammaFunction 208
GAMultisim 347
GANonSaving 347
GAParameter 347
GAPopupMenu 347
GAPtr 347
GAResize 347
GAResizeByIndex 348

399
GASearch 348
GASearchCount 348
GASetArray 348
GASetInitValue 348
GASetInteger 348
GASetReal 348
GASetString 349
GASetstring15 349
GASetstring31 349
GASetString63 349
GASort 349
GAtoDBTable 349
Gaussian 210
Gaussian distribution function 210
GetAppPath 304
GetAttributeValue 361
GetAxis 311
GetAxisName 311
GetBlockDates 364
GetBlockInfo 294
GetBlockLabel 258
GetBlockMemSize 258
GetBlockTabNames 290
GetBlockType 258
GetBlockTypeNumeric 258
GetBlockTypePosition 197, 258, 305
GetConBlocks 135, 261
GetConHBlocks 261
GetConName 261
GetConnectedTextBlock 261
GetConnectedType 261
GetConnectedType2 261
GetConnectionColor 262
GetConnectionEColor 262
GetConnectorMsgsFirst 291
GetConnectorPosition 262
GetConnectorType 262
GetConNumber 135, 262
GetCurrentPlatform 369
GetCurrentTabName 290
GetDataTableSelection 278
GetDialogColors 270
GetDialogItemColor 270
GetDialogItemEColor 270
GetDialogItemInfo 270
GetDialogItemLabel 271

GetDialogNames 271
GetDialogVariable 98, 271
GetDimension 66, 341
GetDimensionByName 66, 341
GetDimensionColumns 66, 341
GetDimensionColumnsByName 66, 341
GetDraggedCloneList 100, 271
GetDTOffset 278
GetEnclosingHBlockCon 262
GetEnclosingHBlockNum 258
GetEnclosingHBlockNum2 258
GetExtendType 370
GetExtendVersion 370
GetExtendVersionString 370
GetFileReadMachineType 226
GetFileReadVersion 197, 278, 370
GetFileReadVersionString 370
GetFront 357
GetGlobalSimulationOrder 294
GetIndexedConValue 262
GetIndexedConValue2 263
GetIntermediateBlocks 263
GetItem 160
GetLibraryContents 294
GetLibraryInfo 294
GetLibraryPathName 294
GetLibraryStringInfo 294
GetLibraryVersion 294
GetLibraryVersionByName 294
GetModelName 294
GetModelPath 294
GetModelSimulationOrder 295
GetModifierKey 249
GetMouseX 197, 249, 305
GetMouseXActiveWindow 249
GetMouseY 197, 249, 305
GetMouseYActiveWindow 249
GetMsgSendingBlock 291
GetNumCons 263
GetObjectHandle 119, 124
GetPassedArray 104, 106, 342
GetPlotterValue 311
GetPreference 304
GetRear 357
GetRecentFilePath 304
GetReportType 308

400
GetRightClickedCon 263
GetRunParameter 295
GetRunParameterLong 295
GetSerialNumber 295
Get-Set Dialog Variable model 98
GetSignalName 311
GetSignalValue 311
GetSimulateMsgs 291
GetSimulationPhase 295
GetStaticNames 259
getStaticVariable 271
GetSystemColor 272
GetTickCount 312
GetTimeUnits 362
GetUserPath 304
GetVariableNumeric 272
GetWindowsHndl 296
GetWorksheetFrame 305
GetY1Y2Axis 312
global arrays 67

AttribType 152
AttributeList 152
AttribValues 153
functions 342
working with 109

global numbers 256
global variables 76

definition 30
for passing messages 112
lists 191
reserved 192
scope 62
SysGlobals 160
use during CheckData or InitSim 164
use during Simulate 161

GlobalProofStr 191
GlobalToLocal 259
Go To Function/Message Handler command 81
Go To Line button 79, 81
Go To Line command 81
goal seeking 118
GOTO statement 70, 72
green location arrow 174, 180, 185
groups

for radio buttons 15

H
HBlockClicked 249
HBlockClose 198
HBlockFromLibrary 198
HBlockHelpButton 199
HBlockMove 199
HBlockOpen 199
HBlockSaveToLibrary 199
HBlockUnlinkFromLibrary 305
HBlockUpdate 199
header files 81
heapCheck 368
help 369

functions 368
getting technical support 4

Help tab 14
HelpButton 199
HideDialogItem 272
HideDialogItem2 272
hiding dialog items 97
hierarchical blocks

animation 131
HSV 130, 366

I
icon

alternate views 9
animating in 2D 53
block part 8
creating 9
functions for view 293
red border around block 173
showing a picture on 134
tools 21
views 9

icon positioner 301
Icon tab 7

exploring 9
Icon toolbar 21, 46

description 21
icon view

functions 293
Icon views popup 9, 10
IconBody 259
IconGetClass 293
IconGetView 293

401
IconGetViewName 293
IconSetViewByIndex 293
IconSetViewByPartialName 293
IconViewChange 199
IDE 2
identifier

definition 30
Identity 215
IdentityC 215
IEEE floating point numbers 60
IF statement 70, 71
ifdef 82
If-Else statement 70, 71
ifndef 83
Ignore comparison and always break 187
Ignore conditions and always break 188
Imagine That, Inc. 4
Import 223
Import function 110
ImportText 224
Include additional block information option 14
include files

definition 12
MouseClick 100
New Include File command 82
referencing 81
Save Include File command 82

IncludeFileEditor 222
Includes popup menu 185
indentation guides 79
index of items 150
indexing

table by data source type 94
indexing (data source) 94
indicators 185
INetCloseHandle 227
INetConnect 227
INetFileImportText 227
INetFindNextFile 227
INetFTPCreateDirectory 227
INetFTPDeleteFile 227
INetFTPExport 227
INetFTPExportGA 227
INetFTPExportText 228
INetFTPFindFirstFile 228
INetFTPGetCurrentDirectory 228
INetFTPGetFile 228

INetFTPImport 228
INetFTPImportGA 228
INetFTPImportText 228
INetFTPPutFile 228
INetFTPRemoveDirectory 229
INetFTPRenameFile 229
INetFTPSetCurrentDirectory 229
INetGetFindFileInfo 229
INetGetFindFileName 229
INetOpenSession 229
INetOpenURL 229
initializing connectors 102
InitSim 140, 195
Inner 215
InnerC 215
InstallArray 312
InstallAxis 312
InstallFunction 312
Int 208
integer

division of an 69
function return 207
maximum value 60
to real 64
to string 65

integer (data type) 33
definition 60

integer array for SysGlobal 151
Integerabs 208
IntegerParameter 248
IntegerParameter2 248
integrated development environment (IDE) 2
IntegrateEuler 214
IntegrateInit 214
IntegrateTrap 214
integration functions 214
interface 125
internet access functions 226
Interprocess communication (IPC)

functions 229
IPCAdvise 229
IPCCheckConversation 230
IPCConnect 230
IPCDisconnect 230
IPCExecute 230
IPCGetDocName 230
IPCLaunch 230

402
IPCOpenFile 231
IPCPoke 231
IPCPokeArray 231
IPCRequest 231
IPCRequestArray 231
IPCSendCalcReceive 231
IPCServerAsync 232
IPCSetTimeOut 232
IPCSpreadSheetName 232
IPCStopAdvise 232
IsBlockSelected 305
IsConVisible 263
IsFirstReport 308
isKeyDown 249
IsLibEnabled 305
IsMenuItemOn 305
IsMetric 305
IsSimulationPaused 296
item

array 151
priority 151
quantity 151

item attributes 152
item index 150
Item library

programming 146
itemArray arrays 150
itemArrayC

passed by SysGlobal9 151
itemArrayI

passed by SysGlobal4 151
itemArrayI2 152
itemArrayR

passed by SysGlobal3 151
items

flow is blocked 156
pulling 155
pushing 154

J
Java 29

L
label 15
label functions 256
labels for dialog items 18

labels on connectors 23
LastBlockPlaced 305
Lastkeypressed 250
LastSetDialogVariableString 272
left to right order 191
libraries

functions 293
number of blocks per 380
protecting 90
size 380
source folder 84

LibrariesOpen 296
LibraryGetInfoByName 305
LibraryUsed 296
limits of ExtendSim 380
line numbers 79
Link Alerts 114
Link Contents 114
Link Structure 114
LinkContent 203
linked list functions 349
linked lists

sorting 67
LinkStructure 203
list of tables 319, 327, 328
ListAddElement 350
ListAddString63s 350
ListCopyElement 350
ListCreate 351
ListCreateElement 351
ListDeleteElement 351
ListDispose 351
ListDisposeAll 351
ListElementMinMax 351
ListGetCount 352
ListGetDouble 352
ListGetElements 352
ListGetIndex 352
ListGetInfo 352
ListGetLong 352
ListGetName 352
ListGetString 353
ListLastElementIndex 353
ListLocked 353
ListSearch 353
ListSearchCount 353
ListSearchCountLongs 353

403
ListSearchLongs 354
ListSetDouble 354
ListSetLong 354
ListSetName 354
ListSetSort 354
ListSetSort2 354
ListSetString 354
literal

definition 31
local numbers 256
local variables 34, 62, 76

definition 31
LocalNumBlocks 259
LocalToGlobal 259
LocalToGlobal2 259
location arrow 174, 175
Log 208
Log10 208
Log2 208
logical operators 69
LogNormal distribution function 210
long 207
long (data type) 33

definition 60
LUdecomp 216
LUdecompC 216

M
magnitude operators 69
Mailslot functions 240
MailSlotClose 240
MailSlotCreate 240
MailSlotRead 240
MailSlotReceive 199, 240
MailSlotSend 241
MaintenanceSupportPlanExpired 370
Make Your Own block 160, 165
Make Your Own blocks 146
MakeArray 66, 111, 341
MakeArray2 66, 341
MakeBlockInvisible 305
MakeConnection 305
MakeDialogModal 289
MakeFeedbackBlock 263
MakeOptimizerBlock 259
MakeScatter 318

MakeSelectionHierarchical 199
malloc() 342
Mandelbrot model 136
MatAdd 216
MatAddC 216
matching

#ifdef, #endif, and #else 78
braces 78
strings 78

MatCopy 216
MatCopyC 216
math functions 207
math operators 68
MatInvert 216
MatInvertC 216
MatMatProd 216
MatMatProdC 216
matrix functions 214
MatScalarProd 217
MatScalarProdC 217
MatSub 217
MatSubC 217
MatVectorProd 217
MatVectorProdC 217
Max2 208
Mean 210
memory usage when programming 103
message emulation 158
message handlers

block status 197
block to block 202
categories 111
categories and types 194
connector messages 201
constants 292
CreateBlock 50
definition 31, 33
dialog messages 36, 199
dynamic data link 203
example 33, 75
format 75
model status 196
OLE 203
overriding 34, 75
purpose during DE initialization loop 144
purpose during initialization loop 141
Simulation Messages 194
types 111

404
use during DE initialization loop 144
use during initialization loop 141

message name 36
messages 112

AbortDialogMessage 200
ActivateModel 196
AdviseReceive 203
AnimationStatus 196
AttribInfo 202
block status 197
block to block 202
BlockClick 197
BlockIdentify 197
BlockLabel 197
BlockMove 197
BlockRead 197
BlockReceive 202
BlockReport 196
BlockRightClick 197
BlockSelect 198
BlockTableInfo 202
BlockUndelete 198
BlockUnselect 198
Button 201
Cancel 200
CellAccept 200
CheckData 195
ClearStatistics 202
CloneInit 198
CloseModel 196
ConArrayChanged 201
ConArrayChangedComplete 201
ConArrayCollapseChanged 201
ConnectionBreak 201
ConnectionClick 201
ConnectionMake 198, 202
connector messages 201
ConnectorName 202
ConnectorRightClick 198, 202
ConnectorShowHide 198
ConnectorToolTip 202
ContinueSim 195
CopyBlock 198
CreateBlock 198
DataTableHover 200
DataTableResize 200
DataTableScrolled 200
DEExecutiveArrayResize 202
DeleteBlock 198
DeleteBlock2 198

DialogClick 200
DialogClose 200
DialogItem 201
DialogItemRefresh 200
DialogItemToolTip 200
DialogOpen 200
DragCloneToBlock 100, 198
dynamic data link 203
EndSim 196
EquationCompilePlatform 198
FinalCalc 195
FlowBlockReceiveN 203
functions for communicating 290
GetDraggedCloneList 100
HBlockClose 198
HBlockFromLibrary 198
HBlockHelpButton 199
HBlockMove 199
HBlockOpen 199
HBlockSaveToLibrary 199
HBlockUpdate 199
HelpButton 199
IconViewChange 199
InitSim 195
LinkContent 203
LinkStructure 203
list 194
MailSlotReceive 199
MakeSelectionHierarchical 199
model status 196
ModelSave 196
ModifyRunParameter 194
netlist 291
OK 200
OldFileUpdate 196
OLE 203
OLEAutomation 203
OpenModel 196
OpenModel2 196
PasteBlock 199
PasteBlock2 199
PauseSimulation 196
PlotterClose 199
PreCheckData 194, 195
ProofAnimation 202
QueueFunction 202
ResumeSim 197
ResumeSimAllBlocks 197
sent by application 112
sent during user interaction 112

405
ShiftSchedule 202
SimFinish 196
SimOrderChanged 197
SimSetup 197
SimStart 194
Simulate 195
simulation 194
StepSize 195
TabSwitch 201
TimerTick 199
types of 111
UpdateStatistics 202
UserMsg0-9 202

meter 15, 41
methods

for automation 119
Miles block 44
Min2 208
MOD operator 69
model

artificial intelligence 118
debugging a 170
discrete event (running) 142
functions 293
goal-seeking 118
how discrete event models work 146
profiling 170
programming 293
self-modifying 118
size 380
status messages 196
text blocks as commands 115
timing for discrete event 146

ModelLock 296
ModelSave 196
ModelSettingsGet 306
ModelSettingsSet 306
ModernRandom 191
ModifyDate 364
ModifyRunParameter 194
ModL

case sensitivity 60
code conventions 49
code example 47
code part of block 7
compared to C++ 27
compared to Java, Visual Basic, FORTRAN 29
compiled to machine code 12
conditional compilation 76, 82

connector names as variables 34
constant definitions 33, 60
data types 33, 60
external source code 42, 83
functions and message handlers 33
language terminology 30
layout 32
overview of the language structure 27
preprocessor directives 76, 82
type declarations 33, 60

ModL feature overview 30
modulo 209
MouseClick.h 100
MoveBlock 306
MoveBlockTo 306
MovieOn 191
movies 253
MsgEmulationOptimize 292
MultC 210
multiple simulations 191
multiple statements 70
MyBlockNumber 135, 259
MyLocalBlockNumber 259

N
name

dialog items 17
name functions 256
names

constants 60
functions 60
reserved 60
variables 60

names of blocks
length of name 380

NearlyEqual 208
NearlyGreaterThan 208
NearlyLessThan 208
netlist messages 291
New Include File command 82
NextTimes 149
No resize bar 21
no such parent 318
no such record 318
NodeGetCurrentValue 263
NodeGetIDIndex 263
normal connectors 22, 35

406
not linked error 319
not unique error 318
not unique index 318
notebook functions 293
NotebookClose 296
NotebookIsOpen 297
NotebookItemInfo 297
NotebookItemInfoString 297
NotebookItemRect 296
NotebookItems 296
notebooks

functions 293
NotebooksInfo 297
notify message 157
NoValue 63, 69, 208

converted to integer 64
Now 364
number of periods 213
numbers 60
NumBlocks 260
numeric conversion 64
NumericParameter 248
NumericParameter2 248
NumMultiLaunchesAllowed 370
NumPlotPoints 313
NumScenarios 191
NumSims 138, 140, 142, 143, 191
NumSteps 138, 141, 191
NumToFormat 359

O
object

for Automation 119
ObjectIDNext 260
objects

animation 128
ODBC functions 241
ODBCBindColumn 242
ODBCColAttribute 242
ODBCColumns 242
ODBCColumns2 242
ODBCConfigDataSource 242
ODBCConnect 242
ODBCConnectName 242
ODBCCountRows 243
ODBCCreateTable 243

ODBCDisconnect 243
ODBCDriverConnect 243
ODBCExecuteArray 243
ODBCExecuteQuery 243
ODBCFetchRows 243
ODBCFreeStatement 243
ODBCInsertRow 243
ODBCKeyword 243
ODBCNumResultCols 244
ODBCSetRows 244
ODBCSetRowsType 244
ODBCSuccessInfo 244
ODBCTables 244
OK 200
OldFileUpdate 196
OLE

automation client 119
automation server 119
BlockMsg 123
C++ examples 120
Execute 121
GetObjectHandle 124
IDispatch interface 120
messages 203
methods 119
Poke 122
Request 122
VB.net DLL example 125
Visual Basic 125
Visual Basic examples 125

OLE functions 232
OLEActivate 233
OLEAddRef 233
OLEArrayParam 233
OLEArrayParamVariableColumns 233
OLEArrayResult 233
OLEArrayResultVariableColumns 233
OLEAutomation 203
OLECreateObject 233
OLEDBParam 234
OLEDBResult 234
OLEDeactivate 234
OLEDispatchGetCLSID 234
OLEDispatchGetDispatchName 234
OLEDispatchGetDispID 234
OLEDispatchGetDoc 234, 236
OLEDispatchGetFuncIndex 234

407
OLEDispatchGetFuncInfo 234
OLEDispatchGetHelpContext 235
OLEDispatchGetNames 235
OLEDispatchInvoke 235
OLEDispatchParam 235
OLEDispatchPropertyGet 235
OLEDispatchPropertyPut 235
OLEDispatchresult 235
OLEGAParam 235
OLEGAResult 235
OLEGetCLSID 235
OLEGetDispatchName 236
OLEGetDispID 236
OLEGetDoc 236
OLEGetFuncIndex 236
OLEGetFuncInfo 237
OLEGetGUID 237
OLEGetHelpContext 233
OLEGetInterface 237
OLEGetNames 237
OLEGetRefCount 237
OleGlobal 191
OleGlobalInt 191
OleGlobalStr 191
OLEInsertLicensedObject 238
OLEInsertObject 238
OLEInsertObjectFromFile 238
OLEInvoke 238
OLELongParam 238
OLELongResult 238
OLEObjectIsRegistered 238
OLEPropertyGet 239
OLEPropertyPut 239
OLERealParam 239
OLERealResult 239
OLERelease 239
OLEReleaseInterface 239
OLERemoveObject 239
OLERequestLicKey 239
OLESetNamedParam 239
OLEStringParam 239
OLEStringResult 239
OLESupressInvokeErrors 240
OLEVariantParam 240
OLEVariantResult 240
Open Block Structure command 7

OpenAndSelectDialogItem 272
OpenAndSelectDialogItem2 272
OpenBlockDialogBox 289
OpenDialogBox 289
OpenDialogBoxToTabName 290
OpenEnclosingHBlock 289
OpenEnclosingHBlock2 289
OpenExtendFile 306
OpenModel 196
OpenModel2 196
OpenNotebook 297
OpenNotebook2 297
OpenURL 369
operations

between any type and a string 65
between reals and integers 64

operators 68
Optimizer block 94
Option key 249
Outer 217
OuterC 217
overridin

message handlers 34
overriding

functions 34
message handlers 75
user-defined functions 74

P
panes

connectors 8
parameter

add to right click menu 19
adding to a dialog 49
changing globally from a block 98
changing through text on the model 115
dialog item 14, 36
display only 19, 36
format 17
formats for numbers 17
tags 284
visible in all tabs 19

parameter fields 14
parameter tag functionss 284
Pascal distribution function 210
Pascal to C string function 61
pass by value or reference 104

408
PassArray 104, 342
passing array functions 341
passing arrays 105, 341

connectors 105
precautions 106
using globals 106

Passing Arrays model 104
passing blocks 148
passing messages 112
PassItem 160
PasteBlock 199
PasteBlock2 199
PasteBlock3 199
PauseSim() 368
PauseSimForSave 298
PauseSimulation 196
payment 213
PI 63
Pick Screen Color button 366
PictureList 256
pictures 90, 134, 254

naming conventions 90
PieChart 316
PieChartSlice 316
pixels

animating 136
coordinates 253
measurement 250

PlaceBlock 306, 307
PlaceBlockInHBlock 306
PlaceDotBlock 307
PlaceTextBlock 307
PlaceTextBlockInHBlock 307
Planet Dance model 129
Platform_Macintosh_Defined_Symbol 83
Platform_Windows_Defined_Symbol 83
PlaySound 248
PlotNewBarPoint 313
PlotNewPoint 313
PlotNewScatter 318
PlotPropertyChange 199
PlotSignalFormat 313
plotter functions 308
PlotterAutoscaleLimits 313
PlotterBackground 313
PlotterClose 199
PlotterNameGet 313

PlotterNameSet 313
PlotterSignalColorSet 313
PlotterSignalEColorSet 314
PlotterSignalValueGet 314
PlotterSignalValueSet 314
PlotterSquare 314
PlotterValueGet 314
PlotterValueSet 314
PlotterXAxisCalendar 315
PlotterXAxisTime 315
pointer functions 342
PointerDispose 342
PointerFromDynamicArray 342
pointers 104
PointerToDynamicArray 342
pointertype (data type) 33, 246

definition 60
Poisson distribution function 210
Poke 119, 122
popup menus

creating 48
dialog item 14, 39
in block dialogs 48

PopupCanceled 272
PopupItemParse 273
PopupMenuAppendArray 273
PopupMenuArray 273
posting events 149
PostInitSim 140
Pow 209
PreCheckData 140, 194, 195
PrecisionTimer 364
PrecisionTimerScale 364
pre-defined constants 63
preprocessor directives 29, 76, 82
preprocessor symbols 83
present value 213
procedures 72
Profile Block Code command 170
ProfileBlockGet 368
profiling 170
programming

2D animation 128
arrays 103
changing parameters globally 98
code search and replace 80
debugging 171

409
dialogs 95
discrete event blocks 146
discrete rate blocks 165
DLLs 86
extensions 85
include files 81
profiling 170
scripting 118
sounds 89
techniques 78
text as commands 115
Trace 170
viewing debugging data 171
viewing intermediate results 171

programming languages
C++ 27
C++ example for Automation 120
Fortran 29
Java 29
used for OLE and ActiveX 119
VBA for Automation 125
Visual Basic 29
Visual Basic for Automation 125

prompts 248, 300
Proof Animation

numerical format 359
ProofAnimation 202
ProofEncode 256
ProofEncodeReset 256
Properties dialog for animation objects 129
protecting libraries 90
pseudocode 138, 142
pulling items 155
pushing items 154
PushPlotPic 315
PutFront 357
PutRear 357
Python 89

Q
QueGetN 357
QueInit 357
QueLength 357
QueLookN 357
Query Equation block 94
Query Equation(I) block 94
query message 156
QueSetAlloc 357

QueSetN 357
Queue Equation block 94
queue functions 356
QueueFunction 202
QuickTime 253
QuickTimeAvailable 307

R
radians 209
radio button

defining in a dialog 48
dialog item 15
groups 15
programming for 37
radio group ID 37

radio control 37
Radio Group ID 37
Random 211
Random distribution function 211
random number generator 191
RandomCalculate 211
RandomCheckParam 212
RandomGetModelSeedUsed 212
RandomGetSeed 212
RandomReal 212
RandomSeed 191
RandomSetSeed 212
RandomString 359
rate 213
Rate library

programming 165
Read/Write Index Checking 318
real

function return 207
to integer 64
to string 65

real (data type) 33
definition 60

Real (uniform) function 212
real array 151
Realabs 209
Realmod 209
RealToStr 359
RealToStrShortest 359
recursive functions 73
red border 173
red circle 179, 185

410
red name of a block 45
RefreshDatatableCells 278
RefreshPlotter 315
RegisterBlockInLeftClickDB 101
registered blocks 113
registering blocks 55, 280
regular expression (searching) 80
RemoveAttribute 361
RemoveSignal 315
RenamePlotter 315
reporting

programming 170
Request 119, 122
reserved database 114

_character 114
blocks that use 114

residence blocks 148
ResizeDTDuringRead 197, 278
resizing a tab 13
Resource Order ID 152
ResourcePoolAllocate 300
ResourcePoolAvailable 300
RestrictConnectorMsgs 292
ResumeSim 117, 197
ResumeSimAllBlocks 117, 197
ResumeSimulation 298
RetimeAxis 315
RetimeAxisNStep 315
Return statement 70, 72
returns

function 207
RGB 366
Roots 217
Round 209
row index 94
rows and columns

setting for text tables and data tables 18
runs

multiple 190, 191
RunSetup 298
RunSimulation 298

S
Save Block command 49
Save Include File As command 82
SaveModel 298

SaveModelAs 298
SaveTopDocAs 298
scatter plots 317
scientific notation

definition 30
scope 62
script editor

miscellaneous features 81
syntax styling 78

Script tab 7, 12
syntax highlighting 78
syntax styling 78

scripting 118
scripting functions 300
ScrollDTTo 278
searching and replacing 80
searching text 80
SeedListClear 212
SeedListRegister 212
Select Color window 366
SelectBlock 368
SelectBlock2 368
SelectConnection 307
self-modifying 118
SendConnectorMsgToBlock 292
SendItem 160
SendMsg 154, 160
SendMsgToAllCons 292
SendMsgToBlock 292
SendMsgToHBlock 292
SendMsgToInputs 154, 155, 158, 165, 292
SendMsgToOutputs 154, 155, 165, 292
sensitivity analysis

CurrentSense variable 190
sensor connector 158
serial I/O functions 244
serial ports 244
SerialRead 245
SerialReset 245
SerialWrite 245
ServerOpenPort 232
Set Block Category command 56
Set Breakpoints window 185
SetAttribute 361
SetAxisName 315
SetBlockLabel 260
SetBlockSimulationOrder 299

411
SetConnectionColor 263
SetConnectionEColor 264
SetConnectionThickness 264
SetConVisibility 264
SetDataTableCornerLabel 278
SetDataTableLabels 279
SetDataTableSelection 279
SetDefaultTabName 290
SetDialogColors 273
SetDialogItemColor 273
SetDialogItemEColor 273
SetDialogVariable 98, 273
SetDialogVariableNoMsg 274
SetDirty 307
SetDTColumnWidth 279
SetDTRowStart 279
SetIndexedConValue 264
SetIndexedConValue2 264
SetModelSimulationOrder 299
SetPopupLabels 274
SetRunParameter 299
SetRunParameters 299
SetSelectedConnectionColor 264
SetSelectedConnectionEColor 264
SetSignalName 316
SetTickCounts 316
SetTimeConstants 362
SetTimeUnits 362
SetVariableNumeric 274
SetVisibilityMonitoring 274
Shift key 249
Shift Selected Code Left command 81
Shift Selected Code Right command 81
Shift-click 99

_leftClickDB 102
code for a custom stand-alone block 100
code in blocks used remotely 100

ShiftSchedule 202
Show 2D Animation button 128
Show 2D Animation command 128
Show Animation command 250

AnimationOn variable 190
Show Reserved Databases command 114
ShowBlockLabel 260
ShowFunctionHelp 222
ShowHelp 369
showing dialog items 97

ShowPlot 316
ShowPlot2 316
SimDelay 191
SimFinish 196
SimMode 191
SimOrderChanged 197
SimSetup 197
SimStart 194
Simulate 141, 195
SimulateConnectorMsgs 293
simulation messages 194
simulation order 191
simulation pseudocode 142
Simulation Setup command 138
simulations

automating 118
changing data while running 117
internals 138
messages 194
methods 138
multiple 190, 191
number of runs (maximum) 380
order when running 191
paused 140
pseudocode 138, 142
running 138
stopping multiple 142, 146
time 146, 190

Sin 209
Sinh 209
sink connectors 103
sizes 103
SLClear 355
SLCreate 355
SLDelete 355
SLFlagGet 355
SLFlagRealGet 355
SLFlagRealSet 355
SLFlagSet 355
SLGetCount 355
SLGetCountStrings 356
slider 15, 41
SLIs 356
SLPopupMenu 356
SLSort 356
SLStringAppend 356
SLStringGet 356

412
SLStringGetIndex 356
SLStringInsert 356
SLStringRemove 356
smart highlighting 78
SortArray 341
SortArrayVariableColumns 279
sorting

linked lists 67
sounds 89, 248
source code debugger (see "debugger") 172
source code editor 78
source connectors 103
source folder 84
Source pane 174
Speak 248
Speech Manager 248
SpinCursor 299
SpinCursorStart 299
SpinCursorStop() 300
Sqrt 209
StartTime 138, 140, 142, 191
StartTimer 365
StartTimerID 365
statements

control 70
definition 31
multiple 70

static data limits 62
static text 15, 39
static variables 32, 34, 62, 76

definition 31
limits on data size 62
scope 62
uninitialized 62

statistics functions 210
Status block 291
StdDevPop 212
StdDevSample 213
Step Into tool 184
step loop 141
Step Out tool 184
Step Over tool 184
steps

number of 190
StepSize 138, 140, 195
Stop and Go To tool 184
Stop Debugging and Edit Code 182

Stop tool 184
StopDataTableEditing 279
Stoptimer 365
StopTimerID 365
Str127 33, 60
Str15 33, 60
Str255 33, 60
Str31 33, 60
Str63 33, 60
StrFind 359
StrFindDynamic 284
StrFindDynamicStartPoint 284
StrGetAscii 359
string 207

concatenation 68, 69, 249
declaring 61
function return 207
functions 358
literals 61
to integer 65
to real 65

String data type 33
definition 60

string functions 358
StringCase 359
StringCompare 359
StringTrim 360
StripLFs 226
StripPathIfLocal 226
StrLen 360
StrPart 360
StrPartDynamic 361
StrPutAscii 360
StrReplace 360
StrReplaceDynamic 284
StrToReal 39, 360
structure

open command 7
structure of a block 7
structures 67, 103

using passed arrays 107
structures (pointers) 342
style of text for dialog items 20
SubC 210
submenus for blocks 55
subscripts of an array 65
SuppressWorksheetRedraw 307

413
Switch 72
switch 15, 41
Switch statement 70
SwitchPlotterRedraw 316
symbols 82

Compiled_Debug 83
ExtendSim_10 83
Platform_Macintosh_Defined_Symbol 83
Platform_Windows_Defined_Symbol 83
pre-defined preprocessor 83

syntax colorization 78
syntax styling 78
SysDBNGlobalInt0-19 167
SysFlowGlobal0 165
SysFlowGlobal1 165
SysFlowGlobalInt0-21 166
SysFlowGlobalStr0 165
SysGlobal 76
SysGlobal variables 160, 192

during CheckData or InitSim 164
during Simulate message 161

SysGlobal0 147
SysGlobal0-22 161
SysGlobal1 170
SysGlobal12 150
SysGlobal13 147, 148
SysGlobal2 170
SysGlobal23 167
SysGlobal24 167
SysGlobal25 167
SysGlobal26 167
SysGlobal27 167
SysGlobal28 167
SysGlobal3 150

passing itemArrayR 151
SysGlobal4 150

passing itemArrayI 151
SysGlobal6 150
SysGlobal7 147, 148
SysGlobal9 150

passing itemArrayC 151
SysGlobalInt0 147, 154, 155, 157, 164
SysGlobalInt0-40 162
SysGlobalInt1 164
SysGlobalInt11 165
SysGlobalInt3 154, 155, 157
SysGlobalInt41 165

SysGlobalInt42 164
SysGlobalInt43 164
SysGlobalInt44-52 167
SysGlobalInt53 167
SysGlobalInt54-56 167
SysGlobalInt57 167
SysGlobalInt58 167
SysGlobalInt59 167
SysGlobalInt6 157
SysGlobalInt60-79 167
SysGlobalInt8 150, 164
SysGlobalStr0-2 162
SysGlobalStr1 165
SysGlobalStr3 167
SysGlobalStr4-9 162
system variables

definition 31
list 190

T
tab character 223
tab delimited files 223
tab number 18
tab resizing 13
table list 319, 327, 328
tabs 8, 13
TabSwitch 201
Tan 209
Tanh 209
Target the DLL by name 89
technical support

information to provide 4
terminology 30
text 115

changing programmatically 95
tables 15, 38

text as commands 115
text files

functions 222, 224
include files 81
numerical data 223
programming 223
string data 223

text frame 15, 40
text tables 15, 38

row and column 18
TextWidth 360

414
TickCount 365
time

current time 190
time functions 364
time functions (legacy) 364
time in simulation 190
time units

functions 361
TimeArray 147, 149
TimeBlocks 147
TimeEventMsgType 147
timer functions 364
TimerID 365
TimerTick 199
TimeToString

see EDdateToString 363
tool tips

connector 267
dialog item 288
on block dialogs 20
on dialog tab 20

tools
animation 21
connectors 21
in the Debugger window 184

tooltips 23
topic and item 120
TraceModeEnableDisable 368
transparency 366
transparent text 136
Transpose 218
TransposeC 218
Trapezoidal integration 214
trigonometry functions 209
TRUE 63
TStatisticValue 213
tutorial

source code debugger 173
type conversion 64

function arguments 207
type declarations 32

definition 31
type of dialog item 17

U
uninitialized static variables 62
UnRegisterBlockInLeftClickDB 101

UnselectAll 307
UpdatePublishers 232
UpdateStatistics 202
upper limits 380
Use 361
UseRandomizedSeed 213
user-defined functions 72

ADO functions 371
exiting 73
include files 81
overriding 74
recursive 73

user-defined procedures 72
UserError 171, 248
UserMsg0-9 202
UserParameter 248
UserPrompt 248
userPromptCustomButtons 248

V
value connector messages 158
variable connectors 21, 22, 35, 102

convert to normal 21
no resize bar 21

variable name 36
VariableNameToTabName 290
variables

data consumption 61
global 192
list 190
local 31, 62
memory usage 103
names 60
pane 174
scope 62
static 31, 62
SysGlobal 192
system 190

Variables pane 174
VB.net 89, 125
VB.net COM DLL example 125
VBA example 125
version control 42, 83
Visible checkbox 19, 97
visible in all tabs 19
Visible option for dialog items 19
Visual Basic 29, 125

415
void 207
void functions (procedures) 30

W
W (width) and H (height) coordinates 98
WaitNTicks 130, 365
Watch(A) 188
WatchPoint condition 188
web functions 368
WhichDialogItem 274
WhichDialogItemClicked 200, 250, 268
WhichDTCell 279
WhichDTCellClicked 250
While loop 71
While statement 70
white circle 185
white space 78
WhoInvoked 274
WinRegSvr32 240
WinSetForegroundWindow 307
WinShellExecute 308
wizards 118
WorksheetRefresh 308
worksheetSettingGet 308
worksheetSettingSet 308

X
X and Y coordinates 17, 97

Y
yellow location arrow 175, 176, 185

Z
zero time event list 146
Zoom In button 81
zOrder 17, 54
zOrderanimation objects

zOrder 129

	Table of Contents
	Technical Overview
	Introduction
	About the Technical Reference
	ExtendSim IDE
	How the Technical Reference is organized

	Additional resources

	Parts of a Block
	The Example block
	The block’s user interface—its dialog
	Dialog of the Example block

	The block’s structure
	How to open a block’s internal structure
	Examining the internal structure of the Example block

	Overview of block parts, by tab and pane
	Script tab
	Icon tab
	Dialog tab
	Help tab
	Connectors pane
	Dialog Item Names pane

	Icon tab
	Icon
	Icon views
	Icon positioner
	Connectors
	2D animation

	Script tab
	ModL code
	Functions
	Includes

	Dialog tab
	Dialog items
	Tabs
	Dialog Resizer

	Help tab
	Dialog items
	Types of dialog items
	Properties of dialog items
	Options in the dialog item’s properties window
	Stylizing and aligning dialog items
	Dialog item tooltips on block dialogs and in the Dialog tab
	For more information about dialog items, see:

	Connectors
	The Icon toolbar
	Connector names
	Adding connectors to the icon
	Changing connector types
	Connector labels
	Connector tooltips
	For more information about connectors see:

	ModL Overview
	ModL feature overview
	ModL compared to other programming languages
	If you code, and if you don’t
	ModL compared to C++
	ModL compared to languages other than C++

	ModL language terminology
	Differences between equation blocks and programmed blocks
	Structure of a block’s ModL code
	Layout of the code
	Data types
	Constants
	Functions, message handlers, and local variables
	Other ModL features

	Accessing connectors from a block’s code
	Normal (single) connectors
	Variable connectors

	Accessing dialog items from a block’s code
	Overview
	Dialog messages
	Parameters and editable text
	Dynamic text
	Checkboxes and radio buttons
	Buttons
	Data tables and text tables
	Static text (label)
	Popup menu items
	Frame
	Switch
	Slider
	Meter
	Calendar
	Clock

	Accessing code from other languages
	External source code

	Tutorial
	Creating a Block
	Building a simple block that converts miles to feet
	Create the block
	Dialog tab
	Save the block
	Icon tab
	Script tab
	Save and compile the block
	Test the block

	Adding user interaction and display features
	Dialog tab
	Script tab
	Save and compile the block

	Adding an intermediate results feature
	Add a button to the Dialog tab
	Add ModL code to the Script tab

	Adding 2D animation
	Change the icon and add the animation object
	Add code for the animation
	Testing the block

	Other features you might have used
	Linking to a global array or ExtendSim database
	Block categories

	Defining functions

	Integrated Development Environment (IDE)
	The ModL Language
	Names
	Data types: definitions and declarations
	Real data types
	Integer data types
	String data types
	Pointertype data types
	Declaration examples

	Scope of global, local, and static variables
	Static and local

	Constant definitions
	Constants that are pre-defined
	BLANK and NoValue
	Numeric type conversion
	Real to integer
	NoValue to integer
	Integer to real
	Integer or real to string
	String to real or integer

	Arrays
	Array declarations
	Fixed and dynamic arrays
	Arrays as arguments to functions

	Array-like structures
	Global arrays
	Linked lists
	Database tables

	Operators
	Assignment operators
	Math operators
	Boolean and magnitude operators

	Control statements and loops
	User-defined functions
	Limitations
	Defining
	Exiting
	Overriding user-defined functions
	Declaring arrays as arguments for user-defined functions
	For more information

	Message handlers
	Overriding message handlers
	For more information about message handlers, see:

	System variables
	Global variables
	Conditional compilation

	Programming Tools
	Script Editor
	Syntax styling
	Syntax highlighting
	Code completion and call tips
	Search and replace
	Miscellaneous script editing features

	Debugging and profiling
	Include files
	Creating an include file

	Conditional compilation
	Preprocessor directives
	Pre-defined preprocessor symbols
	Examples

	External source code control
	Externalizing source code for a block
	Restoring the block’s code to its structure
	Externalizing source code for an entire library
	Restoring the source code to the library file
	The consequences of saving the code externally
	Using the external source code with code management software
	Cautions when using the external source code feature

	Extensions
	Supported file types
	Naming
	For more information, see

	DLLs
	Overview
	DLL interface
	Turning code into a DLL
	DLL example for Miles block
	DLL example for DLL Add block

	Sounds
	Picture and movie files
	Naming conventions and limitations for pictures

	Protecting libraries

	Programming Techniques
	Data source indexing and organization
	Transferring data between a data table and a spreadsheet
	Transferring data between a spreadsheet and a database

	Equation block programs
	Working with dialogs
	Changing text in dialogs
	Hiding/showing dialog items
	When you copy or duplicate dialog items
	Moving dialog items
	Resizing dialog items
	Changing the title of a radio button or checkbox
	Changing and reading parameters globally from a block

	Remote access to dialog variables
	Custom remote blocks interfacing with a stand-alone block
	Custom stand-alone block referencing remote dialog variables

	Working with connectors
	Variable connectors
	Initializing connectors
	Deleting connectors or changing connector types
	Bidirectional connectors

	Working with arrays
	Memory usage of variables, arrays, and items
	Pass by value and reference (pointers)
	Passing arrays
	Working with global arrays
	Copying arrays using “for” loops
	Using arrays to import unknown rows of numbers

	Working with linked lists
	Using message handlers
	Categories of messages
	Message sent during user interaction with dialog
	Block-to-block message
	Message sent by the application

	Working with databases
	Using the database API to read and write
	Registered blocks
	Reserved databases

	Reading text blocks as commands
	Global function block

	Changing data while the simulation is running
	Scripting
	OLE and ActiveX Automation
	Controlling Embedded Objects from ModL script
	ExtendSim as an Automation Client
	ExtendSim as an Automation Server
	Object
	Topic and Item
	C++ examples
	COM DLL example
	Using VBA for ActiveX/OLE Automation
	Using Visual Basic for ActiveX/OLE Automation

	Animation Using ModL
	2D animation
	Overview
	Steps
	Animating hierarchical blocks
	Showing and hiding a shape
	Moving a shape
	Changing a level
	Stretching a shape
	Showing a picture on an icon
	Moving a picture along the connection line between two blocks
	Changing a color
	Changing text
	Animating pixels

	Simulation Architecture
	Running a simulation
	How ExtendSim runs continuous simulations
	How ExtendSim runs discrete event or discrete rate simulations

	How discrete event blocks and models work
	Timing for discrete event models
	Scheduling events
	Residence, passing, and decision blocks
	Zero time events
	Item data structures and indexes
	Basic item messaging
	Blocked and query messages
	The Notify message
	Value connector messages
	Functions in discrete event blocks

	Globals in discrete event blocks
	Use of system globals during Simulate message
	Use of Global variables during CheckData or InitSim messages

	Creating blocks for discrete event models
	How discrete rate blocks and models work
	Globals in discrete rate blocks
	Globals for ARM (Advanced Resource Management)
	Other reserved global variables

	Debugging
	Debugging models
	Features that are discussed in the User Reference
	Adding Trace code

	Profiling
	Debugging block code without the Source Code Debugger
	Using DebugMsg functions
	Viewing intermediate results

	Source Code Debugger
	Overview of the debugger

	Debugger tutorial
	The Debug Tutorial model
	Debugging one block
	Debugging an entire library
	Fixing the block’s code #1
	Setting breakpoints
	Setting conditions
	Fixing the block’s code #2

	Source code debugger reference
	Setting a block or library to be in debugger mode
	Debugger window
	Set Breakpoints window
	Breakpoints window
	Breakpoint Conditions dialog
	Debugging tips

	Variables, Messages, & Functions
	ModL Variables
	System variables
	Table of system variables

	Global variables
	Types
	General use global variables
	Reserved global variables

	Messages and Message Handlers
	Summary of messages
	Simulation messages
	Model Status messages
	Block Status messages
	Dialog messages
	Connector messages
	Block to block messages
	Dynamic Link messages
	OLE messages

	ModL Functions
	ModL function overview
	Code completion
	Overriding
	Type conversion of arguments
	Static data limits
	Function returns

	Math functions
	Basic math
	Trigonometry
	Complex numbers
	Statistics and random distributions
	Financial
	Integration
	Matrices
	Bit handling
	Equations

	I/O functions
	File I/O, formatted
	File I/O, unformatted
	Internet access
	Interprocess Communication (IPC)
	OLE/COM (Windows only)
	Mailslot (Windows only)
	ODBC
	Serial I/O
	DLLs
	Alerts and prompts
	User inputs

	Animation
	2D Animation

	Blocks and inter-block communications
	Block numbers, labels, names, categories, position
	Block connectors and connection information
	Variable connectors
	Connector tool tips
	Dialog items
	Block data tables
	Dynamic linking
	Dynamic text items
	Formatting/interactivity using column and parameter tags
	Dialog item tool tips
	Block dialogs (opening and closing)
	Block dialog tabs
	Messages to blocks (sending and receiving)
	Icon views

	Models, notebooks, and libraries
	DE Modeling Using Equation Blocks

	Scripting
	Reporting
	Plotting/Charts
	General plotting
	Pie and Bar chart functions
	Scatter plot functions

	Database functions
	Error codes
	Creating and deleting database components
	Selecting parts of a database
	Copying parts of a database
	Import and export a database
	Database properties
	Read and write to a database
	Random data in a database
	Sort and search in a database
	DB address functions
	Viewing a database
	Linking and notification

	Arrays, pointers, queues, delay, linked list, and string lookup table functions
	Dynamic and non-dynamic arrays
	Passing arrays
	Pointer functions
	Global arrays
	Linked lists
	String lookup table functions
	Queues
	Delay lines

	Miscellaneous functions
	Strings
	Attributes
	Time units
	Calendar Date functions
	Date and time, legacy format
	Timer functions
	EColors
	Debugging
	Web and Help connectivity
	Platforms and versions
	Application privileges

	User-defined functions for ADO

	Appendix
	Menu Command Numbers
	Upper Limits
	ASCII Table

	Index

