

© 2024 ANDRITZ Inc. This program is protected by US and international copyright laws.

You may not copy, transmit, or translate all or any part of this document in any form or by any means,
electronic or mechanical, including photocopying, recording, or information storage and retrieval sys-
tems, for any purpose other than your personal use without the prior and express written permission of

ANDRITZ Inc.

License, Software Copyright, Trademark, and Other Information

The software described in this manual is furnished under a separate license and warranty agreement.
The software may be used or copied only in accordance with the terms of that agreement. Please note
the following:

ExtendSim blocks and components (including but not limited to icons, dialogs, and
block code) are copyright © by ANDRITZ Inc. and/or its Licensors. ExtendSim blocks
and components contain proprietary and/or trademark information. If you build blocks,
and you use all or any portion of the blocks from the ExtendSim libraries in your
blocks, or you include those ExtendSim blocks (or any of the code from those blocks)
in your libraries, your right to sell, give away, or otherwise distribute your blocks and
libraries is limited. In that case, you may only sell, give, or distribute such a block or
library if the recipient has a valid license for the ExtendSim product from which you
have derived your block(s) or block code. For more information, contact ANDRITZ at
Info.ExtendSim@Andritz.com or Support.ExtendSim@Andritz.com.

© 2024 ANDRITZ Inc. This program is protected by US and international copyright laws. Microsoft
is a registered trademark and Windows is a trademark of Microsoft Corporation. The copyright for
Stat::Fit® is owned by Geer Mountain Software. All other product names used in this manual are
the trademarks of their respective owners. All other ExtendSim products and portions of products
are copyright by ANDRITZ Inc. All right, title and interest, including, without limitation, all
copyrights in the Software shall at all times remain the property of ANDRITZ Inc. or its Licensors.

Acknowledgments

Extend was created in 1987 by Bob Diamond; it was re-branded as ExtendSim in 2007.

The contents of this document are the result of years of work by software architects, simulation en-
gineers, and technical writers and editors of ExtendSim products.

ANDRITZ Inc • 13560 Morris Road, Suite 1250 • Alpharetta, GA 30004 USA
770.640.2500 • Info.ExtendSim@Andritz.com

www.ExtendSim.com

Table of Contents
TABLE OF CONTENTS

Why I Created ExtendSim .. 1

SIMULATION

An Overview of Simulation ... 3
Why simulate? ..4
What you can do with simulation ...4
Systems, models, and simulation..5
Additional modeling terminology ..6

Modeling Methodologies ... 9
Methods for specifying systems ...10
How time is treated in the main modeling methodologies ...10
Table of continuous process, discrete event, and discrete rate differences11
Which one do you choose?...12
Other modeling approaches ..13

There’s a Process To It... 23
The modeling process...24
Model verification and validation ..26

ABOUT EXTENDSIM

Capabilities, Products, and Licensing .. 29
What ExtendSim can do ...30
ExtendSim products..32
Licensing options..36

Support: Documentation, Training, and Upgrades .. 39
ExtendSim written documentation ...40
Videos and additional resources ...41
Technical support..41

HOW TO

The Big Picture... 43
Overview ..44
Model-building to represent the dynamics of the system...44
Creating a user interface for the model ..44
Getting data into the model ..46
Managing data for use in the model ...47
Analyzing data and assessing results..47
Reporting results and exporting data ..49
Communicating with external applications and devices ..50

Libraries and Blocks .. 53
Overview...54
The libraries that ship with ExtendSim ..54
Opening, closing, and searching for libraries ...56
Library windows...58
Working with blocks...59
Hierarchical blocks ...66
Creating and maintaining libraries..67
Managing blocks...69

Customizing the User Interface .. 71
Overview...72
Cloning ...72
Creating a dashboard interface ...74
Control blocks...76
Interacting with the model user ..77
Hierarchy ..78
Notebooks ...79
Documenting models ..80
Equation blocks ..80
Centralizing data in a database ...81
Additional interactive features if you program...81
External applications as an interface ..82

Model Execution... 83
Overview...84
Simulation setup ...84
Running a simulation..87
Timing...92
Simulation order (continuous models)..93
Time units ...93
Other Units..96
Length and number of runs...96
Speeding up a simulation..98
Slowing down simulations..100
Working with multiple models ...100
How ExtendSim passes messages in models..101

Presentation .. 105
Overview...106
Text ...106
Graphic shapes, tools, and commands..107
Working with pictures...109
Navigator ..110
Animation ...110
Connections ..116
Showing and hiding model elements..120
Hierarchy ..120
Other presentation features ...131

Analysis ... 133
Overview...134

Blocks that calculate statistics ..134
Confidence intervals ...138
Sensitivity analysis ...138
Scenario analysis ..143
Comparison of analysis methods ..157
Optimization ...158
Stat::Fit (Windows only) ..172
Chart library..174
Model reporting ..184

Math and Statistical Distributions.. 187
Overview...188
Blocks that represent functions...188
Equation-based blocks ..189
Random numbers ..197
Probability distributions..198
Integration vs. summation in the Holding Tank block..202

Debugging Tools.. 205
Debugging hints..206
Verifying results as you build a model ...207
Blocks for debugging..207
Measuring performance to debug models...208
Find command ..210
Item Contents of queues and activities ...210
The Source Code Debugger..211
Debugging equations ..211
Dotted lines for unconnected connections..214
Animation features for debugging ..215
Notebook...215
Stepping through the simulation...215
Show Simulation Order command (continuous blocks only)...215
Slow simulation speed ..216
Model reporting ..216
Model tracing..216
Automated test environment (Windows only)..217

Data Management and Exchange ... 221
Overview...222
User interfaces for data exchange...222
Copy/Paste ..223
Importing and exporting data..223
Reading and writing data ..226
Dynamic linking to internal data structures..229
Internal data storage and management methods...232
ExtendSim databases for internal data storage ...232
Global arrays...233
Dynamic arrays...236
Linked lists..236
Exchanging information with external applications (IPC) ...236
Blocks for data management and exchange..245
Link alerts ...247

Data source indexing and organization...247
Communicating with external devices..248

Miscellaneous.. 249
Printing ...250
Copy/Paste and Duplicate commands ..250
Tooltips ...253
Scripting functions..253
Referencing dialog variables ..253
Changing parameters dynamically ...254
Sharing model files ...255

DISCRETE EVENT MODELING

Items, Properties, and Values .. 257
Blocks of interest ..258
Item generation ...259
Item properties ..263

Queueing ... 277
Blocks of interest ..278
Queueing disciplines...278
Queue/server systems ...279
Queueing considerations...281
Sorting items using the Queue Equation block...283
Matching items using the Queue Matching block ..288
Advanced queue topics ...289
Animating queue contents ..291

Routing .. 293
Commonly used blocks ..294
Items from several sources ...295
Items going to several paths ...299

Processing.. 315
Commonly used blocks ..316
Processing in series...317
Processing in parallel..318
Setting the processing time...319
Bringing an activity on-line ..325
Controlling the flow of items to an activity..327
Interrupting processing ...329
Multitasking..336
Kanban system..337
Transportation and material handling ...338

Batching and Unbatching .. 345
Blocks of interest ..346
Batching..346
Unbatching..353
Preserving the items used to create a batch ..357
Additional models...358

Resources and Shifts... 359
Blocks of interest ..360
Modeling resources...361
Closed and open systems ..370
Scheduling resources ..370
The Shift block ...372
Advanced Resource Management ..378

Activity-Based Costing... 379
Blocks of interest ..380
Modeling with activity-based costing...381
How ExtendSim tracks costs ..390

Statistics and Model Metrics ... 395
Commonly used blocks...396
Gathering statistics..397
Clearing statistics..397
Using the History block to get item information ..398
Using the Item Log Manager to get item information..399
Accumulating data ..399
Time weighted versus observed statistics ...400
Timing the flow of items in a portion of the model..401

Tips and Techniques ... 403
Moving items through the simulation...404
Continuous blocks in discrete event models...408
Cycle timing..412
Item library blocks..413
Event scheduling...416
Messaging in discrete event models ...419

DISCRETE RATE MODELING

Introduction .. 423

Creating Flow.. 425
Blocks of interest ..426
Creating flow ..426
Indicators ..429
Flow attributes ..431

Storage and Units ... 437
Blocks of interest ..438
Capacity ..439
Units and unit groups..441
Changing the unit group ...444

Rates, Constraints, and Movement... 447
Blocks of interest ..448
Rates, rate sections, and the LP area...449
Flow rules ...452
Defining a critical constraint ..454
Meeting the critical constraint requirement..458

Comprehensive example...461

Merging, Diverging, and Routing Flow.. 463
Blocks of interest ..464
Merging and diverging flow ...464
Features of the Merge and Diverge blocks ...473
Throwing flow and catching flow remotely ...476

Delaying Flow ... 481
Blocks of interest ..482
Controlling a Valve’s maximum rate ..482
Delaying flow with the Shift block...491
Convey Flow block...491

Mixing Flow and Items .. 497
Controlling flow with items and items with flow...498
Using the Interchange block to mix items with flow..502

Miscellaneous.. 509
Precision ...510
Biasing flow..510
Global and advanced options in the Executive...514
Common connectors on discrete rate blocks ..518
Animation ...520

Advanced Topics... 525
What this chapter covers...526
LP technology ...526
Upstream supply and downstream demand ..533
Messaging in discrete rate models..537

APPENDIX

Menu Commands and Toolbars.. 539
File menu ..540
Edit menu..542
Library menu ..550
Model menu ..553
Database menu..557
Develop menu...562
Run menu..565
Window menu...568
Tools menu..568
Help menu...571
ExtendSim database window toolbars and buttons ..573

Value Library Blocks ... 575

Item Library Blocks... 583

Rate Library Blocks... 591

Utilities Library Blocks.. 595

Upper Limits ... 601

INDEX

Preface

Why I Created ExtendSim
ExtendSim’s architect
talks about simulation

“What we experience of nature is in models,
and all of nature’s models are so beautiful.”

— R. Buckminster Fuller

2 Why I Created ExtendSim
Dedicated to the pleasure of finding things out

Simulation is defined as the act of imitation. Even a word processor simulates pen and paper,
but how do you get the computer to behave like the stock market, or an electronic circuit, or
even a car, and how can you communicate this power to the user? My search for the answer
began in the early days of the space race.

I was attending the Polytechnic Institute of Brooklyn when the head of the Electronics Engi-
neering department told us that a new department was being formed... a combination of mathe-
matics, computers, physics and engineering. Being into math, and curious about the large IBM
mainframe lurking down the hall, I immediately joined and made a constant pest of myself at
the computer center.

The bug bit hard, I guess, and I began to realize that I could use computers to duplicate the lab-
oratory experiments in class so well, that I never really did them, I just simulated them on the
computer. NASA then asked if I could develop a simulation of their new liquid fuel booster for
something called Project Apollo. I came up with the Rocket-Drop simulation, a monstrously
large program that only had one function: follow the path of a single droplet of fuel, from the
shower heads (as the fuel sprayers at the top of the engine were called) to the rocket engine
exhaust, via subsonic, supersonic, and hypersonic flow.

It hit me then that simulation was inaccessible, except to the select few who had the resources
to put together an entire system dedicated to one function. A generalized simulation applica-
tion would be a great and useful thing, if one could find the computer that was both powerful
enough and widespread enough to support it. This was 1965, and Seymour Cray was still
building his super fast (at the time!) computers by hand and graphic user interfaces were still
decades in the future.

When I saw the graphical user interfaces (GUIs) on the Mac OS and Windows machines, I
realized that I could use these tools to fulfill that long awaited dream. ExtendSim is built upon
those roots. Imagine That Inc. was founded in 1987 to develop and market Extend and its suc-
cessor ExtendSim, the first simulation applications allowing users of any discipline to use sim-
ulation and to develop their own libraries of customized simulation tools.

My joyous moments come from bringing the art, science, and fun of simulation to the desktop,
in a form digestible and accessible by everyone. ExtendSim is the first user-extendible simula-
tion package that meets those expectations.

Bob Diamond

“You see? That’s why scientists persist in their investigations, why we struggle so desperately
for every bit of knowledge, stay up nights seeking the answer to a problem, climb the steepest obsta-
cles to the next fragment of understanding, to finally reach that joyous moment of the kick in the dis-

covery, which is part of the pleasure of finding things out.” attributed to Richard P. Feynman

Simulation

An Overview of Simulation
What simulation is and why it’s important.

“‘Begin at the beginning,’ the King said, gravely,
‘and go ‘til you come to the end; then stop.’”

— Lewis Carroll

4 Simulation
Why simulate?

Si
m

ul
at

io
n

Why simulate?
The goal of every company, government agency, and educational institution should be to
develop a strong and competitive organization. Cost reduction and quality improvement alone
are not sufficient to achieve market share. Organizations must also be able to quickly develop
and provide innovative new products and services. Invention, innovation, quality, productivity,
and speed are the keys to making companies competitive.

One way to maximize competitiveness is to improve operational systems and processes by:

• Eliminating nonessential, non value-adding steps and operations

• Implementing and inserting technology where appropriate

• Managing the deployment and utilization of critical resources

• Identifying key cost drivers for reduction or elimination

In spite of recent and rapid advances in technology, many companies and institutions still suf-
fer from outdated equipment and inefficient work practices. This is due in part to the prohibi-
tive expense and time required to explore alternative methods of operation and try out new
technologies on real systems and processes. Simulating a system or process provides a quick
and cost-effective method for determining the impact, value, and cost of changes, thus validat-
ing proposed enhancements and reducing the resistance to change.

Simulation models allow for time compression, are not disruptive of the existing system, and
are more flexible than real systems. They also provide metrics for meaningful analysis and
strategic planning. Simulation can help organizations answer questions about how they do
work: what they do, why they do it, how much it costs, how it can be changed, and what the
effects of changes will be.

What you can do with simulation
Simulation allows you to see how a real-world activity will perform under different conditions
and test various hypotheses or alternatives at a fraction of the cost of performing the actual
activity. It also allows you to explore the effect of making modifications to systems that are
inaccessible, for systems and processes that do not yet exist, or where making changes would
be dangerous or prohibited.

One of the principal benefits of a model is that you can begin with a simple approximation of a
process and gradually refine the model as your understanding of the process improves. This
“stepwise refinement” enables you to achieve good approximations of very complex problems
surprisingly quickly. As you add refinements, the model more closely imitates the real-life pro-
cess.

An important aspect of strategy development, simulation helps you understand complex sys-
tems and produce better results faster because you will be able to:

• Predict the course and results of certain actions

• Gain insight and stimulate creative thinking

• Visualize your processes logically or in a virtual environment

• Identify problem areas before implementation

• Explore the potential effects of modifications

• Confirm that all variables are known

An Overview of Simulation 5
Systems, models, and simulation

Sim
ulation
• Optimize your operations

• Evaluate ideas and identify inefficiencies

• Understand why observed events occur

• Communicate the integrity and feasibility of your plan

Systems, models, and simulation
All professions use models of one form or another. But the word “model” does not always have
the same meaning to business professionals, managers, scientists, and engineers. Even within a
specific discipline, such as manufacturing, modeling has many different definitions. The fol-
lowing discussion serves to clarify what “modeling” means as it relates to dynamic simulation
tools such as ExtendSim.

Systems
The real world can be viewed as being composed of systems. A system is a set of interacting or
interdependent components that form a whole. The components interact with each other based
on the rules or operating policies of the system.

• Components are the internal parts of the system. They could be individual entities, general-
ized substances, or any other parts of the system that are involved in one or more of its pro-
cesses.

• Operating policies are the external inputs to the system. These types of controls and the
availability of resources govern how the system operates and thus how the components of
the system interact.

Over time, the activities and interactions of components cause changes to the state of the sys-
tem; this is called system behavior or dynamics. Systems can be mathematically straightfor-
ward, such as a flower growing in the soil and turning towards the sun to maximize
photosynthesis. Or they can be more complex, such as supply chain operations composed of
planning, selling, distribution, production, and sourcing subsystems.

Models
A model is an abstracted and simplified representation of a system at one point in time. Models
are an abstraction because they attempt to capture the realism of the system. They are a simpli-
fication because, for efficiency, reliability, and ease of analysis, a model should capture only
the most important aspects of the real system.

Most models can be classified into four basic types:

1) A scaled representation of a physical object, such as a 1:18 diecast model of a Tesla Model
X, a clay model of a proposed packaging bottle, or a scale model of the solar system.

2) A graphical or symbolic visualization, such as a flow chart of office procedures or an archi-
tect’s plans for a building.

3) An analytical or mathematical formula that yields a static, quantitative solution. For exam-
ple, an analytic model might consist of several independent sample observations that have
been transformed according to the rules of the model. Common examples of analytic mod-
els are spreadsheet models or linear programming models.

6 Simulation
Additional modeling terminology

Si
m

ul
at

io
n

4) A mathematical description that incorporates data and assumptions to logically describe the
behavior of a system. This type of model is typically dynamic—it has a time component
and shows how the system evolves over time. ExtendSim products are tools for building
mathematically-based, dynamic models of systems.

Dynamic modeling is the foundation for computer modeling. For purposes of this manual, the
word “model” will be used to mean a description of the dynamic behavior of a system or pro-
cess.

Simulation
The Merriam-Webster OnLine Dictionary defines simulation as “the imitative representation
of the functioning of one system or process by the functioning of another.” Thus to determine
how an actual system functions, you would build a model of the system and see how the model
functions.

Simulations run in simulation time, an abstraction of real time. As the simulation clock
advances, the model determines if there have been changes, recalculates its values, and outputs
the results. If the model is valid, the outputs of the simulation will be reflective of the perfor-
mance or behavior of the real system.

Simulation with ExtendSim means that instead of interacting with a real system you create a
logical model that corresponds to the real system in certain aspects. You simulate the opera-
tions or dynamics of the system, then analyze one or more areas of interest. You do this in
order to reduce risk and uncertainty so that you can make informed, timely decisions.

In summary
Simulation is the act of creating a mathematical model of a system then causing the model to
replicate over time to represent the operation of the system. The modeled system can be any
real world or proposed problem, situation, or process that you want to explore. Thus simulation
is:

• An analysis tool, used to predict the effect of changes on existing systems

• A design tool, for predicting the behavior or performance of potential new systems

Additional modeling terminology
These are terms you’re going to need to know, so it’s good to get them straight from the begin-
ning.

Modeling methodologies
A modeling methodology (continuous, discrete event, discrete rate, and so forth) is how you
model a system. See “Methods for specifying systems” on page 10 for more information.

Model parameters, inputs, and outputs
A parameter is any numerical characteristic of a model or system. Parameters describe some-
thing about the model and are known or can be estimated.

• An input parameter is a value that is required as part of the model specification.

• An output parameter is a value determined by the input parameters and the operation of the
system. They specify some measure of the system’s performance or dynamics.

An Overview of Simulation 7
Additional modeling terminology

Sim
ulation
Constants and randomness
Input parameters specify the settings for a model and can be constant or random. Constant val-
ues never change; random values are based on distributions and change each time they are
used. Models that have no random input parameters are referred to as deterministic models.
Models that are based on one or more variables that are random are said to be stochastic, as
discussed below:

• Deterministic models contain only non-random, fixed parameters. No matter how many
times a deterministic model is run, unless some parameter is changed there is no uncertainty
and the output will be exactly the same. Thus the behavior of the model is “determined”
once the inputs have been defined.

The advantage of a deterministic model is that only one run is necessary, since it produces an
exact measurement of the model's performance. It is also helpful when initially building a
model since you can be assured that changes in results will be due to changes made to the
model and not to randomness. The disadvantage is that these types of models can only accu-
rately be used to model a few types of processes, since real-world systems typically contain
some element of randomness.

• Adding randomness to one or more inputs to a deterministic model changes it to a stochastic
or Monte Carlo model. Stochastic models should be run repeatedly and then analyzed statis-
tically to determine a likely outcome. Notice that the occurrence of randomness does not
mean that the behavior of a process is undefinable or even that it is unpredictable. Random
variables vary statistically as defined by a distribution. This means that their range and pos-
sibility of values is predictable.

While stochastic models can be applied to very complex systems, a disadvantage is that the
output is itself random—the average of multiple simulation runs provides only an estimate
of the model's true behavior.

☞ ExtendSim provides several methods for including randomness in models. For instance, the
Random Number block (Value library) allows you to select a random distribution or enter a
table of values to specify an empirical distribution of probabilities. For more detailed informa-
tion about random number capabilities, see “Random numbers” on page 197.

8 Simulation
Additional modeling terminology

Si
m

ul
at

io
n

Simulation

Modeling Methodologies

10 Simulation
Methods for specifying systems

Si
m

ul
at

io
n

Methods for specifying systems
As mentioned in an earlier chapter, a system is the problem, process, situation, or entity that
you want to model. The method you use to specify the system is termed a modeling methodol-
ogy.

Main modeling methodologies
The three main modeling methodologies are:

• Continuous process modeling (sometimes just called process modeling) describes a time-
based system where state variables, which describe the system at any point in time, change
continuously as time advances.

• Discrete event models simulate event-based systems and processes that usually involve
queues. In a discrete event model, nothing happens between points in time unless an event
occurs.

• Discrete rate models share some aspects of both continuous and discrete event modeling.

These methodologies are described, compared, and contrasted in the later sections in this chap-
ter.

Other modeling approaches
In addition to the main modeling methodologies listed above, other modeling approaches are
useful and will be discussed in this chapter. These approaches are often based on one of the
three main methods and include:

• Monte Carlo

• Agent-based

• State/Action

• Reliability Block Diagramming (RBD)

These will be discussed in “Other modeling approaches” on page 13.

How time is treated in the main modeling methodologies
Time is an element of continuous process, discrete event, and discrete rate simulations. The
differences between them mainly involve how time is treated and what causes the state of the
model to change.

• In continuous process models, the time step is
fixed at the beginning of the simulation, time
advances in equal increments, and values change
based directly on changes in time. For a continu-
ous model, values reflect the state of the mod-
eled system at any particular time and simulated
time advances evenly from one time step to the next. For example, an airplane flying on
autopilot represents a continuous system since its state (such as position) changes continu-
ously with respect to time. Continuous simulations are analogous to a constant stream of
fluid passing through a pipe. The volume may increase or decrease at each time step, but the
flow is continuous.

Time line for continuous simulation; step = 1

1 2 3 40

Modeling Methodologies 11
Table of continuous process, discrete event, and discrete rate differences

Sim
ulation
• In discrete event models, the system changes
state as events occur and only when those
events occur; the mere passing of time has no
direct effect on the model. Unlike a continuous
model, simulated time advances from one
event to the next and it is unlikely that the time
between events will be equal. A factory that assembles parts is a good example of a discrete
event system. The individual entities (parts) are assembled based on events (receipt or antic-
ipation of orders). Accordingly, a discrete event model would not be a good choice for simu-
lating fluid flow.

• Discrete rate simulations are a hybrid type,
combining aspects of continuous and discrete
event modeling. Like continuous models they
simulate the flow of stuff rather than items;
like discrete event models they recalculate
rates and values whenever events occur. Using
the pipe analogy for a discrete rate simulation, there is a constant stream of fluid passing
through the pipe. But the rates of flow and the routing change when an event occurs, not at
set points in time.

☞ In some branches of engineering, the term discrete is used to describe a system with periodic or
constant time steps. This definition of discrete indicates a continuous model; it does not have
the same meaning as discrete event or discrete rate. Continuous models in ExtendSim are
stepped using constant time intervals; discrete event and discrete rate models are not.

Table of continuous process, discrete event, and discrete rate differences
Although not definitive, the following table will help to determine which style to use when
modeling a system.

Factor Continuous Process Discrete Event Discrete Rate

What is modeled Generic “stuff”, repre-
sented by values that
change when the
model changes state.

Distinct and identifi-
able entities (“items”
or “things”) that can be
individually tracked.

Streams of homoge-
neous “stuff”. Or bulk
or high speed flows of
otherwise distinct enti-
ties where sorting or
separating is neither
necessary nor wanted.

What causes a change
in state

A time change An event An event

Time steps

(see “How time is
treated in the main
modeling methodolo-
gies” on page 10)

Interval between time
steps is constant.
Model recalculations
are sequential and
time-dependent.

Interval between
events is dependent on
when events occur.
Model only recalcu-
lates when events
occur.

Interval between
events is dependent on
when events occur.
Model only recalcu-
lates when events
occur.

Time line for discrete event simulation

40 2.3 2.7

Time line for discrete rate simulation

40 2.3 2.7

12 Simulation
Which one do you choose?

Si
m

ul
at

io
n

Which one do you choose?
☞ The types of models that can be built in ExtendSim depend on the product that was purchased.

Characteristics of what
is modeled

Track characteristics in
a database or assume
the flow is homoge-
neous.

Use attributes to assign
unique characteristics
to items, which can
then be tracked
throughout the model.

Use attributes to assign
unique characteristics
to the flow, so it can be
tracked throughout the
model. Or assume the
flow is homogeneous.

Order method N/A Items can move in
FIFO, LIFO, Priority,
or a custom order
based on Item Attri-
butes

Flow moves in FIFO,
LIFO, or a custom
order based on Flow
Level Attributes

Routing Values need to be
explicitly routed by
being turned off at one
branch and turned on
at the other (values can
go to multiple places at
the same time.).

By default, items are
automatically routed to
the first available
branch (an item can
only be in one place at
a time.)

Flow is routed based
on constraint rates and
rules that are defined
in the model (flow can
be merged or divided
into multiple
branches.)

Statistical detail General statistics about
the system: amount,
efficiency, etc.

In addition to general
statistics, each item
can be individually
tracked: count, utiliza-
tion, cycle time.

In addition to general
statistics, effective
rates, cumulative
amount.

Typical uses Scientific (biology,
chemistry, physics),
engineering (electron-
ics, control systems),
finance and econom-
ics, environmental
impacts, System
Dynamics.

Manufacturing, ser-
vice industries, busi-
ness operations,
networks, systems
engineering, transpor-
tation, logistics, call
centers, emergency
departments.

Manufacturing of pow-
ders, fluids, and high
speed, high volume
processes. Chemical
processes, oil and gas,
mining, ATM transac-
tions. supply chains.

Examples Processes: chemical,
biological, economic,
electronics, water and
waste.

Things and Informa-
tion: traffic, equip-
ment, work product,
people, data, mes-
sages, and network
protocols at the packet
level.

Rate-based flows:
homogeneous prod-
ucts, high speed or
high volume produc-
tion, data feeds and
streams, fluids and
gases, minerals.

Main ExtendSim
library

Value library

Electronics library

Custom blocks in cus-
tom libraries

Item library Rate library

Factor Continuous Process Discrete Event Discrete Rate

Modeling Methodologies 13
Other modeling approaches

Sim
ulation
“The” model of a system
As you might expect, you can use different methods to model different aspects of real-world
systems. For example, at a chemical plant you could model the chemical reactions as a contin-
uous process, the control logic of the chemical process using discrete event modeling, and the
tanks, valves, and flow of the production process with discrete rate.

It is also good to note that there is no such thing as “the” model of a system: a system can be
modeled in any number of different ways, depending on what it is you want to accomplish. In
general, how you model the system depends on the purpose of the model: what type, level, and
fidelity of information you want to gather and the intended amount of detail, or level of
abstraction or granularity, of the model. Once that has been determined, you can intelligently
choose which type of model to build.

Mixing it up
Some systems, especially when a portion of the flow has a delay or wait time, can be modeled
using any of the three styles. In this case, you would generally choose how to model the system
based on the level of detail required. Discrete event models provide much more detail about
the workings of these types of systems than continuous models. Continuous and discrete rate
models, on the other hand, usually run faster than discrete event models.

Also, its very likely that you would want to combine blocks from different ExtendSim libraries
within the same model.

• For example, it is quite common to use continuous blocks from the Value library along with
discrete event blocks from the Item library. Note however that using blocks from the Item or
Rate libraries means that the model will be event-driven (non-continuous).

• And because discrete event blocks (Item library) and discrete rate blocks (Rate library) are
both event-based, it is very common to use them to simulate different aspects of the same
model.

☞ If you use any discrete event or discrete rate blocks in a model, the timing will change to event
driven (time steps will not be periodic) and it will not be a continuous model. That is because a
continuous model cannot use an Executive block (Item library), but discrete event and discrete
rate models require it.

One interface for all modeling needs
Even though ExtendSim manages these three modeling methodologies differently, the models
have the same user interface and are built and used in the same manner. ExtendSim takes care
of the internal differences, so you can easily transition between building a discrete rate, a con-
tinuous, or a discrete event model. This consistency and flexibility is why ExtendSim is the
product of choice for modeling all aspects of a business, from top to bottom and everything in
between.

Other modeling approaches
Although there are several other approaches to modeling, they usually fit within one of the
three major categories (continuous, discrete event, or discrete rate) discussed above. For exam-
ple, System Dynamics and Bond graphs are subsets of continuous modeling, and queueing the-
ory models are subsets of discrete event modeling.

Because of their specialized use, four specific modeling approaches (Reliability Block Dia-
gramming, Monte Carlo, State/Action, and Agent Based) are described below.

14 Simulation
Other modeling approaches

Si
m

ul
at

io
n

Reliability Block Diagramming
Reliability block diagramming (RBD) is an event-based methodology that graphically and sta-
tistically describes a system’s resource availability over time. An RBD captures complex avail-
ability behavior, describing when scheduled and unscheduled downs occur for individual
resources and specifying what impact that has on the availability of entire system.

Like the ExtendSim Item and Rate libraries used for discrete event and discrete rate modeling,
dedicated RBD tools have a simulation clock that moves forward in discrete chunks of time.
The advantage that dedicated RBD tools have over those process simulation tools is that
RBD’s visually capture and validate complex reliability logic and the relationships between a
system’s resources.

Using with process simulation software
When used with process simulation software, such as the ExtendSim Item or Rate libraries,
RBD tools gain additional capabilities such as:

• More accurate assessment of when wear-based failures occur.

• Detailed repair modeling.

• The ability to explore the relationship between resource availability and system performance
metrics such as throughput, production costs, repair costs, utilization, inventory, service lev-
els, and so forth.

 The Reliability library of ExtendSim Pro is used for creating either standalone RBD’s or com-
bined process simulation and reliability RBD’s. For a tutorial and additional information, see
the separate document titled Reliability; it is located at Documents/ExtendSim/Documenta-
tion.

Monte Carlo modeling
Widely used to solve certain problems in statistics, Monte Carlo simulations provide a range of
results rather than a single value. This approach can be applied to any ExtendSim model and
used wherever uncertainty is a factor.

Monte Carlo modeling uses random numbers to vary input parameters for a series of calcula-
tions. These calculations are performed many times and the results from each individual calcu-
lation are recorded as an observation. The individual observations are statistically summarized,
giving an indication of the likely result and the range of possible results. This not only tells
what could happen in a given situation, but how likely it is that it will happen.

Creating a Monte Carlo model in ExtendSim
You build a Monte Carlo simulation in ExtendSim by incorporating random elements in a
model and obtaining multiple observations. There are two ways to do this:

• The classical Monte Carlo method is to take a single mathematical equation or set of equa-
tions, then cause the equation to be calculated many times. In this type of simulation, time is
not a factor. The entire model is run to completion and evaluated at each step; each subse-

Modeling Methodologies 15
Other modeling approaches

Sim
ulation
quent step performs a new calculation. An example is the Monte Carlo model, discussed
later in this section.

• An alternative Monte Carlo approach, typically applied in a discrete event model, is to either
divide a single simulation run into multiple sections (batch means) or run the simulation
many times (multirun analysis). Monte Carlo is incorporated by adding randomness to the
model, running it many times, and analyzing the results. This method can be applied to any
continuous, discrete event, or discrete rate model. It is shown in the Queue Statistics model,
described later in this section. For more information about using the Statistics block (Report
library) for performing batch means or multirun analysis, see “Statistics” on page 134.

Monte Carlo model
An example of the classical method is the Monte Carlo model. This model determines the
expected revenue from a new product. It runs for 10,000 steps, from time 0 to time 9999, and
each step results in an observation. This cycle is repeated 24 times, once for each of the
cases. For scenario experimentation purposes, the inputs and outputs for this model are
stored in an ExtendSim database.

☞ The Monte Carlo model is located at Documents/ExtendSim/Examples/Continuous/Standard
Block Models.

Queue Statistics model
The Queue Statistics model is an example of an alternative Monte Carlo modeling approach.
It applies batch means analysis to a discrete event model. The model uses the batch-means
method to collect multiple observations of the queueing statistics. Every 100 time units a
new set of observations are recorded. Information (such as the maximum and average queue

Monte Carlo model

16 Simulation
Other modeling approaches

Si
m

ul
at

io
n

length, the number of arrivals and departures, and utilization) is stored and displayed in a
table in the dialog of the Statistics block (Report library).

 The Queue Statistics model is located in the folder Documents/ExtendSim/Examples/Discrete
Event/Statistics. It is not available with ExtendSim CP.

State/Action models
With state/action modeling a system is modeled as a collection of discrete states. Sometimes
known as a state chart, a state/action model represents a system that responds to an event by
transitioning to another state. The model is composed of a series of states where each state
depends on a previous state. A state has an associated action and an event that will cause that
state to change to another. The transition from one state to the next is not sequential; each state
can lead to any other state.

There are rules that govern the communication and transition between the states:

• All states accept events.

• One or more states may create an event as a result of a transition by another state or group of
states.

• A group of states can be set to transition conditionally, for instance to only change if another
state or group of states achieve a specific stage. These are known as guard conditions.

State/action models are independent of any of the three modeling methodologies (continuous,
discrete event, or discrete rate.) They are useful for specification and verification in many
areas, from computer programs to business processes.

Creating a state/action model in ExtendSim
In ExtendSim, the three most common ways of creating state/action models are:

1) Define as an item. Define one or more discrete event items as objects with behavior that is
determined by their states. The information about each state and its next state is stored in a
Lookup Table block (Value library) or an ExtendSim database table. This uses ExtendSim’s
internal event queue and scheduling capabilities to signal and manage events for the item/
objects within the system. This method can only be used with discrete event models and is
illustrated in the State Action model later in this section.

2) Define in a database table. Store each state, action, event, and next state for the system in
records in an ExtendSim database table. This maps the states for the entire model into one

Queue Statistics model

Modeling Methodologies 17
Other modeling approaches

Sim
ulation
database and works with any type of model -continuous, discrete event, and discrete rate. It
is illustrated in the “Markov Chain model” on page 17.

3) Program a block. Create new blocks that store their current state in a static variable and
send messages to other blocks at appropriate state change events. To do this, use Extend-
Sim functions and its simulation development environment to create custom blocks and
store them in a library. For more information about creating new blocks, see the Technical
Reference.

State Action model
In the State Action model, items are created with attributes that determine the item’s state. The
items are then routed to one of three operations depending on their state. After processing, the
item’s state is changed based on entries in a Lookup Table block (Value library). The item con-
tinues to be routed to various processes until it reaches state 4, at which point it leaves the sim-
ulation.

Initially, each item has a CurrentState attribute with a value of 1. The Lookup Table block
causes each item with CurrentState 1 to be changed to CurrentState 3 after processing, then to
CurrentState 2, and finally to CurrentState 4. The operations are represented by Workstation
blocks, which can hold and process the items. After each operation, the item is examined and
its state is transitioned accordingly.

Running the simulation with animation on shows the items changing from state 1 (green), to
state 3 (red), then state 2 (yellow), and finally state 4 (blue).

 The State Action model is located in the folder Documents/ExtendSim/Examples/Discrete
Event/Routing, It is not available with ExtendSim CP.

Markov Chain model
A Markov chain represents a transition from one state to another as defined by a table of prob-
abilities. The Markov Chain Weather model simulates the weather based on a Markov chain.
The states are the weather – sunny, cloudy, rainy, and so forth; they are stored in an ExtendSim
database named “Weather”. The model runs for 365 days. Each day there is a probability of
transitioning from one weather state to the next. For example, if today is sunny, the next day
could be sunny (50%), partly cloudy (30%), cloudy (10%), light rain (5%), or rainy (5%). As
the model runs, the states move through a probability table, changing the weather for each day.

State Action model

18 Simulation
Other modeling approaches

Si
m

ul
at

io
n

Most of the calculation in this model is done by a single Equation block (Value library) inside
the hierarchical “Weather Forecast” block. In the equation, a random input and the previous
state (the output of the equation) are used to lookup a probability for the next day’s weather in
the Weather database. The number and percent of days at each weather state is also calculated
and recorded in the database.

Additionally, if the model is run with animation on, the current
weather state is animated on the icon of the Weather Forecast
block. It does this by showing different icon views (Sunny,
Cloudy, Thunderstorms, etc.) depending on the state; you can
see the icon views by right-clicking on the icon. For informa-
tion about icon views, see page 66.

☞ The Markov Chain Weather model is located in the folder
ExtendSim/Examples/Continuous/Standard Block Models.

Agent-based models
Most of the models discussed in this document represent a system where the behavior of the
system’s components are known or can be estimated in advance. With agent-based modeling
you usually do not know model dynamics in advance; instead, you obtain that information
from the interaction of the agents in the model.

Agent-based models share the following characteristics:

• The identification of individual entities within the model

• A set of rules that govern individual behavior

• The premise that local entities affect each other’s behavior

Agent-based modeling is concerned with individual entities (called “agents”) that interact with
other agents within their specified locality. All the agents have a set of rules to follow but they
also have a degree of autonomy such that model dynamics cannot be predefined. This is
because agents can have intelligence, memory, social interaction, contextual and spatial aware-
ness, and the ability to learn.

Creating agent-based models
The agents used in agent-based modeling are programmed as ExtendSim blocks. Blocks and
their enclosed data have unique searchable identities and locations within the model. The
ExtendSim database and ExtendSim functions can find and send messages to blocks that have
specific characteristics, locations, and values. This makes it easy to create intelligent behavior,

Modeling Methodologies 19
Other modeling approaches

Sim
ulation
facilitate block-to-block interaction, and cause blocks to be moved in, added to, or removed
from, a model.

A good method for communicating with agents is through the ExtendSim database. This can
store all the data for the model and agents can post changes to the database and/or react
through links to database changes.

A separate document—the Technical Reference—lists several categories of functions that are
helpful when creating agents for agent-based modeling:

• Scripting functions are used to build a new model or to add or remove blocks from an exist-
ing model. They do this by creating, placing, and connecting blocks, then populating the
blocks with specific data. These functions can be called from an ExtendSim block within the
model or from an external application.

• Block and inter-block communication functions query the status of a block—its type, label,
data, location, size, and connectivity with the rest of the model. They also get information
about block dialog values and data table settings.

• Message sending functions can use the results of inter-block communications to send mes-
sages globally to unconnected blocks or blocks that are connected in specific ways.

• Database and linking functions can link the blocks to data in a database and dynamically
react to any change made to the database.

• Animation functions provide a visual indication of block-to-block interaction, such as the
influence of one block on another.

For example, in constructing an agent-based model of the robotic clean up of a chemical spill,
you could use the inter-block communication functions in a “Controller” block to locate all of
the “Robotic Clean Up” blocks in the model. The Controller could send messages to the robots
asking them to move towards a spill and clean it up. The robots could send messages back to
the Controller stating whether they were available or were currently being recharged, and
whether they were too far from a chemical spill or close enough to be useful. The scripting and
animation functions would show the robot blocks physically moving around within the model
and the spill being removed.

The Game of Life
The Game of Life was devised by British mathematician John Conway in 1970 and published
as an article in Scientific American. It is the most well known example of cellular automata
(CA), a type of modeling studied in computability theory, mathematics, theoretical biology,
and other fields.

A CA model represents a regular grid of finite state automata (cells) that sit in positional rela-
tionships to one another, with each cell exchanging information with the eight other cells to
which it is horizontally, vertically or diagonally adjacent. A cell can be in one of a finite num-
ber of states and the state of a cell at time t is a function of the states of its neighboring cells at
time t-1. Every cell has the same rule for updating; each time the rules are applied to the whole
grid a new generation of cells is produced.

You interact with the Game of Life by specifying an initial configuration of effects and observ-
ing how the CA universe evolves. At each step in time, the following happens:

• A cell is born if it has a specified number of neighbors who act as parents.

• “Loneliness” causes any live cell with fewer than a specified number of neighbors to die.

20 Simulation
Other modeling approaches

Si
m

ul
at

io
n

• “Overcrowding” causes any live cell with more than a specified number of neighbors to die.

The initial pattern constitutes the first generation of the system. The second generation is cre-
ated by applying the above rules simultaneously to every cell in the first generation. In other
words, births and deaths happen simultaneously. The rules continue to be applied repeatedly to
create further generations.

Life has a number of recognized patterns that emerge from particular starting positions, includ-
ing static patterns (“still lifes” such as block and boat), repeating patterns (“oscillators” such as
blinker and toad), and patterns that translate themselves across the board (“spaceships” such as
gliders).

The Life model
The one-block Life model was created using the Life block (Custom Blocks library) that was
specifically developed for this model. The code of the block contains the algorithm for Con-
way's Game of Life. The block's dialog has fields for specifying initial settings and rules; the
dialog items have been cloned to the model worksheet for convenience.

The concept for this model is that each cell of the grid is defined as living or empty. On each
generation, a given cell can give birth to a new life, survive, die, or remain empty. Using the
default settings in the Life block, the model adheres to the following rules:

• Count the number of neighbors a given cell has (the maximum possible is 8).

• If an empty cell has 3 neighbors, it will produce a new life (birth).

• If a full cell has less then 1 or zero (loneliness), or 4 or more neighbors (overcrowding), it
will die.

Changing the default rule values causes some interesting affects on the population.

There are two ways to set the starting population for the model:

• Define an initial number of cells (1000 is a reasonable starting population for the size of this
block.) The cells will be populated randomly.

Life model

Modeling Methodologies 21
Other modeling approaches

Sim
ulation
• Use the Custom Start grid to select up to 16 initially populated cells in specific locations.
This is a quick way to begin with a recognized pattern, such as a glider or a blinker.

One feature of the Life block that is not specified in Conway's algorithm is that the color of the
cells varies with the age of the cell - new cells are green and older cells vary from light gray to
black as they age.

Variations
The Life block is open source so you have complete access to the dialog editor and block code.
To see the underlying structure of the block, select it on the model worksheet and give the
command Develop > Open Block Structure. The procedures that define cell birth, death, or
survival are listed at the top of the block's structure window.

☞ The Life model is located in the folder Documents/ExtendSim/Examples?Agent Based. The
Life block is located in the Libraries/Example Libraries/Custom Blocks library.

Boids
The Boids model is based on an artificial life program, developed by Craig Reynolds in 1986,
that simulated the flocking behavior of birds. It can also be applied to schools of fish, herds of
animals, or any other type of flocking behavior.

 The Boids model requires 3D animation and is only available in release 9 of the ExtendSim
Suite product. For release 9, the model is located in the folder \Examples\3D Animation.

In the model, each bird is an individual agent that interacts with other local agents based on a
set of rules:

• Separation – birds steer to avoid crowding their local flock mates.

• Alignment – each bird steers towards the average heading of its local flock mates.

• Cohesion – birds steer toward the average position of their local flock mates.

Other agent-based models
Additional agent-based models, including “Sheep and Wolves Agents” (shown below) and
“Breakout” are located in the folder \Examples\Agent Based.

Boids model in E3D window

22 Simulation
Other modeling approaches

Si
m

ul
at

io
n

Simulation

There’s a Process To It
There’s a right way and then there are all the other ways.

“It must be remembered that there is nothing more
difficult to plan, more doubtful of success, nor more

dangerous to manage, than the creation of a new system.”
— Niccolo Machiavelli

24 Simulation
The modeling process

Si
m

ul
at

io
n

The modeling process
A simulation project involves creating a logical model of the system, running the simulation,
analyzing the data, optimizing the solutions, and interpreting and presenting the results.

Goals of modeling
As stated in Modeling Tools for Environmental Engineers and Scientists (N. Nirmalakhandan,
CRC Press), the “...goals and objectives of modeling are two-fold: research oriented and man-
agement oriented. Specific goals of modeling efforts can be one or more of the following: to
interpret the system, analyze its behavior, manage, operate or control it to achieve desired out-
comes; to design methods to improve or modify it, to test hypotheses about the system, or to
forecast its response under varying conditions.”

The simulation process
Like all tasks, you can start modeling simply by jumping into it. Also like all other tasks, it is
usually better to have a plan before starting. The basic steps to creating a model are:

1) Formulate the problem. Define the problem and state the objectives of the model. For more
about this step, see “Before you build a model” on page 25.

2) Describe the flow of information. Determine where information flows from one part of the
model to the next and which parts need information.

3) Acquire input data. Identify, specify, and collect the data you need for the model. This is
usually the most time-consuming step. It includes finding not only numerical data values
but also mathematical formulas such as distributions for random events. In the absence of
real data, distributions can be used to mimic the patterns that would be expected given the
actual data.

4) Build and test the model. Start small, test as you build, and enhance as needed. See also
“Refining models” on page 25.

5) Determine where and how to store and manage output data. This includes storing data in
an internal database, representing data in charts and graphs, and exporting to other applica-
tions.

6) Run the model. Determine how long you want to simulate and the granularity of results,
then run your model. NOTE: since most models contain statistical distributions, the models
should be run enough times to generate statistically reliable results.

7) Verify the simulation results. Compare the model results to what you intended and
expected. See “Model verification” on page 26 for more information.

8) Validate the model. Compare the model to the real system, if available. Or have system and
subject matter experts evaluate the model and its results. See “Model validation” on
page 26 for more information.

9) Analyze your results. Draw inferences from the model’s results and make recommendations
on how the system can change.

10)Conduct experiments. Implement and test recommended changes in the model.

There’s a Process To It 25
The modeling process

Sim
ulation
11) Document. State the model’s purpose, assumptions, techniques, modeling approaches, data
requirements, and results.

12) Implement your decisions. Use the results in the real world.

Before you build a model
Remember that building a model is an iterative process and each step in the process will
require comparing the model to the existing system, analyzing the results, and refining the
model. A natural inclination is to immediately start building the model. However, you will end
up with more useful models if you begin the model-building process by asking a few basic
questions, such as:

• What is the goal of the model? It is important to determine the purpose of a model. This will
indicate the levels of detail required and will help keep you focused.

• What are the boundaries of the model and what level of detail should be included? The
model goal should dictate what to include in the model and what to leave out.

• Where is the required data? It is useful to start collecting data early in the model building
process because it can often take a while to obtain all of the necessary information. You will
also need to know if the input data is an absolute value or if the data is from a statistical dis-
tribution. Additional data requirements may surface once the model building process has
begun. Your model may, for example, lead you to explore alternatives that had not been con-
sidered before.

• How shall the model be conceptualized? Before even launching ExtendSim, think about
what the various components of the system represent. Roughly determine the time delays,
resource constraints, flows through the system, and any logical actions that occur in the
model. This will help you determine how to build the model.

• What alternatives will be investigated? Although the model may lead you into new, unex-
pected directions, try to think ahead so that the model can be easily changed from one alter-
native to the next.

☞ It is common to use a constant or a uniform (integer or real) distribution in the early stages of
model building so that modeling problems and variations can be more easily detected. After
the model is verified, you can easily change the distributions to correspond to real-world pro-
cesses.

Refining models
It is important to remember that models may not give you a single “correct” answer. Instead,
they make you more aware of gaps in your thought process. These gaps may originate from
over-simplification in the model, false assumptions when creating the model, or missing con-
nections between parts of a model. Refining your model step by step helps eliminate these and
other pitfalls.

Every model can be made more complex by adding assumptions and interconnections. The
model-building process commonly begins with the creation of a simple model. After analyzing
the simple model, complexity is added, followed by further analysis, the addition of more com-
plexity, and so on. The complexity takes one of two forms:

26 Simulation
Model verification and validation

Si
m

ul
at

io
n

• Taking one block (a process) and turning it into many blocks (a more complex process)

• Adding a connection between two previously unrelated blocks, usually through a mathemat-
ical operation (finding an interconnection between two processes)

At each step, look at your results and make sure they make sense relative to the data. If you
can, verify the results in the real world. If one result is way off, check the output from each step
to determine where the process went awry.

Model verification and validation
These are terms you’re going to hear a lot, and for good reason! Gathering information and
building a model are fine, but it’s important that you make sure the model you’ve created rep-
resents the system and works as you intend it to.

Model verification
The process of debugging a model to ensure that every portion operates as expected is called
model verification. One way to accomplish part of this verification process is to build the
model in stages and with minimal detail, then run it at each stage to observe the results.

Another common verification technique could be termed reductio-ad-absurdum (reducing to
the absurd), which means reducing a complex model, or a part of a model, to an aggressively
simple case so that you can easily predict what the outcome will be. Some examples of “reduc-
ing to the absurd” are:

• Remove all variability from the model, making it deterministic

• Run the deterministic model twice to make sure you get the same results

• Output detailed reports or traces to see if the results meet your expectations

• Run a schedule of only one product line as opposed to several

• Reduce the number of workers to 1 or 0 to see what happens

• Uncouple parts of the model that interact to see how they run on their own

• Run very few or very many items through the model to determine if the model responds
properly and that all items are properly accounted for.

☞ ExtendSim ships with tools for model verification. See “Automated test environment (Win-
dows only)” on page 217.

Model validation
Once the model is verified you need to validate it to determine that it accurately represents the
real system. Notice that this does not mean that the model should conform to the real system in
every respect. Instead, a valid model is a reasonably accurate representation based on the
model’s intended purpose. When validating, it is important to make sure that you know what to
compare to and that you verify that measures are calculated in the same manner.

For validation, your model should accurately represent the data that was gathered and the
assumptions that were made regarding how the system operates. In addition, the underlying
structure of the model should correspond to the actual system and the output statistics should
appear reasonable. While you would normally compare critical performance measures, it is
also sometimes helpful to compare nonessential results that may be symptomatic and therefore
show the character of the system.

There’s a Process To It 27
Model verification and validation

Sim
ulation
One of the best validation measures is “Does the model make sense?” Other methods involve
obtaining approval of the results by those familiar with the actual process (those “working in
the trenches” as well as subject matter experts) and comparing simulation results with histori-
cal data. For example, when validating model performance compared to historical data, try to
simulate the past. If you have sufficient historical data, break the actual system performance
into various windows of time, where all of the input conditions correspond to the input condi-
tions for multiple runs of your model.

☞ Also see the chapter “Debugging Tools” on page 205 and especially the model verification
techniques discussed in “Automated test environment (Windows only)” on page 217.

28 Simulation
Model verification and validation

Si
m

ul
at

io
n

About ExtendSim

Capabilities, Products, and Licensing
Your questions have answers.

30 ExtendSim
What ExtendSim can do

Ex
te

nd
Si

m

ExtendSim is a powerful, leading edge simulation tool. Using ExtendSim, you can develop
dynamic models of real-life or proposed processes in a wide variety of fields. Use ExtendSim
to create models from building blocks, explore the processes involved, and see how they relate.
Then change assumptions to arrive at an optimum solution. ExtendSim and your imagination
are all you need to create professional models that meet your business, industrial, and aca-
demic needs.

What ExtendSim can do
ExtendSim allows you to simulate any system or process by creating a logical representation in
an easy-to-use format.

Modeling capabilities
With ExtendSim, you get powerful modeling capabilities, including:

• Multi-purpose simulation. ExtendSim is a multi-domain environment so you can dynami-
cally model continuous, discrete event, discrete rate, agent-based, linear, non-linear, and
mixed-mode systems.

• A complete simulation framework with graphical model building, smart connections,
internal relational data management, multiple notebooks, and unlimited hierarchical layers.

• A state-of-the-art UI with docking palettes, tear-off tabs in dialogs and worksheets, multi-
ple undo, object grouping, and scaled text. Create custom front end interfaces for your
models with buttons, check boxes, hyperlinks, cloned dialog items, pop-up menus, and
more.

• Libraries of pre-built components for continuous process, discrete event, discrete rate, and
reliability modeling plus equation editors for compiled logical statements and mini-pro-
grams that access 35 distributions and more than a thousand internal functions and proce-
dures.

• Data and process visualization as the model runs, with on-screen results, graphs, reports,
and integrated animation.

• Analysis power including an Evolutionary Optimizer, Scenario Analysis with export to JMP
and Minitab, Sensitivity Analysis, distribution-fitting with Stat::Fit, Gantt charts, quantile
and interval statistical analysis, warm-up periods with statistical clearing, and confidence
intervals.

• Robust data connectivity before, during, and after the run between ExtendSim and external
spreadsheets, databases, and analysis tools with import/export, COM, Automation, ADO,
and more. You can even interactively link block dialog parameters to internal and external
databases.

Simulation architecture
A robust architecture adds advanced features to make ExtendSim the most scalable simulation
system available:

• An integrated development environment (IDE) with a compiled language that is optimized
for simulation. Use equation blocks to create logical statements or mini programs by
accessing the ExtendSim IDE and thousands of internal functions and procedures. Or use the
ExtendSim API, dialog editor, and programming tools to modify or create new blocks with
custom code, dialogs, and icons. Take advantage of programming tools such as include files,

Capabilities, Products, and Licensing 31
What ExtendSim can do

ExtendSim
extensions, conditional compilation, a source code debugger, code completion, and external
source code capabilities. Save custom blocks in libraries for reuse in other models.

• Scripting support. Build and run models remotely, either from an ExtendSim block or from
an outside application.

• Integrated support for other programming languages. Use ExtendSim’s built-in APIs to
access code created in C++, Visual Basic, C#, etc.

• Thousands of functions. Directly access functions for integration, statistics, queueing, ani-
mation, IEEE math, matrix, sounds, arrays, FFT, debugging, ADO, COM, Automation,
ActiveX, string and bit manipulation, I/O, and so on; you can also define your own func-
tions.

• Message sending. Blocks can send messages to other blocks interactively for subprocessing.

• Sophisticated data-passing capabilities. Pass values, arrays, or structures composed of
arrays.

• Full support for a wide range of data types and structures. Arrays, linked-lists, and inte-
gers, real, and string data types are built in.

Levels of use
You can use ExtendSim on many levels:

• Run pre-assembled models and explore alternatives by changing the data. If you work in a
group environment, one or more authors can create models for others to run for experimenta-
tion. The author can also build a custom user interface to facilitate user interaction with the
model. Model developers can distribute ExtendSim models to colleagues who don’t own
ExtendSim.

• Create your own models from the blocks that come with ExtendSim. ExtendSim includes
libraries of blocks to handle most modeling needs. To build a model, pull blocks from librar-
ies and link connectors on the blocks. You can also use pre-built templates (Templates
library) or assemble your own hierarchical blocks of subsystems and save them in libraries.
This saves starting from scratch when you’re building a model of a process that has elements
in common with a previous model.

• Use the integrated development environment to create new blocks that conform to the
ExtendSim modeling architecture. The development environment is optimized for simula-
tion and allows you to create blocks with custom code, dialogs, and icons, then use them in
your models just as you would other ExtendSim blocks. You can also modify the blocks that
come with ExtendSim to work with your specific needs.

• Develop your own modeling architecture, conventions, and features. With the ExtendSim
development environment, you can create a custom set of blocks with unique interfaces,
communication protocols, and behaviors. This new architecture can be continuous, discrete
event, discrete rate, agent-based, or an entirely new type of simulation.

• Automate your model building using the scripting functions to build wizards, or by using
COM. You can use COM or block-based wizards to cause models to be automatically cre-
ated or modified. Models can also be programmatically created from a user input form or

32 ExtendSim
ExtendSim products

Ex
te

nd
Si

m

data file. This allows the modeling environment to be utilized indirectly by end-users who
have little or no simulation experience.

 While ExtendSim models can be freely distributed without license or cost, an ExtendSim
Cloud license is required to provide Internet or intranet access to ExtendSim or to its function-
ality. Contact Andritz Inc. for more information.

ExtendSim products

Simulation capabilities
ExtendSim is a multi-domain environment, so you can dynamically model the continuous, dis-
crete event, discrete rate, agent-based, Monte Carlo, state/action, linear, non-linear, and mixed-
mode systems discussed on page 10. ExtendSim also includes features and components for
animating discrete event processes and systems.

Core features in ExtendSim products
ExtendSim is the family name for a line of powerful simulation products and components.
Adopted throughout the world by corporations, academia, and governmental entities, Extend-
Sim is used to simulate processes and systems in business, engineering, and science.

All ExtendSim products contain a core set of features, including:

+ Pre-built blocks for data access (read/write/import/export), math, equations and logical
expressions, optimization, random number generation, scenario analysis, routing, statis-
tics, charting, and output reports. (Additional libraries of blocks are included, depending
on the product purchased.)

+ An equation editor for specifying the simplest to the most complex of logical statements,
writing compound conditions, and even full programming segments. Use the same
ExtendSim tools that programmers would use to create custom blocks.

+ A Chart library with blocks for graphically displaying outputs

+ A Report library with a Reports Manager, Statistics, and other blocks for output analysis.

+ Hierarchy for unlimited layers of submodels with customizable icons. Store hierarchical
blocks in libraries for reuse in other models.

+ Cloning of dialog items. Copy clones of parameter values to the model worksheet or to
notebooks for quick access to inputs and outputs.

+ An authoring environment for creating custom user interfaces and dashboards, including
buttons, popups, check boxes etc.

+ Interactive simulation runs - change parameters while the simulation is running.

+ Organize and manage data with internal relational databases, plus an Excel Add-In for
transferring data between Excel and an ExtendSim database.

+ Find an optimal solution using the Evolutionary Optimizer that can be added to any
model.

+ Run experiments and perform analysis using Sensitivity Analysis

+ Systemically and strategically examine the outcome of different model configurations
using the Scenario Manager with export to JMP and MiniTab.

Capabilities, Products, and Licensing 33
ExtendSim products

ExtendSim
+ Data connectivity (ADO database support, COM, etc) with Excel and external data-
bases such as Microsoft Access .

+ Activity-based costing for financial outcomes.

+ Integrated and customizable animation.

+ The ExtendSim IDE, described on page 30.

+ Extensive documentation with example models showing how to use every aspect of
ExtendSim and how to build professional models in every field.

+ And much more!

Model Developer Editions
The following products are used to create. run, and use models. They are available as Individ-
ual, Node-Locked, or Floating licenses.

☞ See “Licensing options” on page 36 for information about license types.

1) ExtendSim CP

• For simulating continuous, time-based processes, typically in the fields of business,
science, or engineering. Also used for creating custom libraries of blocks for specific
market segments.

• Build models using the pre-built blocks or create libraries of custom blocks using the
ExtendSim integrated development environment (IDE).

• ExtendSim CP is used to model control systems, environmental impact analysis, pulp
and paper processes, weather pattern prediction, electronic systems, waste treatment,
hydrologic systems, and more.

• ExtendSim CP includes all the core ExtendSim features mentioned on page 32

• For more information, see the Continuous Process Modeling QSG (Quick Start
Guide) located at Documents/ExtendSim/Documentation.

2) ExtendSim DE

• Robust discrete event capabilities for modeling any system where time advances when
events occur and tracking of model entities is important.

• ExtendSim DE is used to model production lines, supply chains, call centers, capacity
planning projects, emergency departments, logistics, service performance, transporta-
tion systems, and much more.

• ExtendSim DE includes:

o All the core ExtendSim features discussed on page 32.

o All the capabilities of ExtendSim CP discussed above.

o An Item library with pre-built blocks for:

34 ExtendSim
ExtendSim products

Ex
te

nd
Si

m

+ Quickly building discrete event models: item generation, queues, activities and
delays, batching, routing, shutdown and shift, and more.

+ Specifying item properties and attributes, warm-up periods, item logging, history,
etc.

o Advanced Resource Management (ARM)—a comprehensive system for systemati-
cally dealing with multiple types of resources and complex resource requirements
in simulation models.

o Query Equation block—intelligently ranks the records in an ExtendSim database
table and, based on a ranking rule that you set, selects one record.

• For more information, see the Discrete Event Simulation QSG (Quick Start Guide)
located at Documents/ExtendSim/Documentation.

3) ExtendSim Pro

• This package offers advanced technology that goes beyond the typical continuous or
discrete event modeling capabilities of other simulation applications.

• ExtendSim Pro includes:

o All the core ExtendSim features listed on page 32

o All the capabilities of ExtendSim CP on page 33

o All the capabilities of ExtendSim DE (above)

o Rate module

+ Model any system or process that involves tanks, levels, and valves and the stor-
age and rate-based movement of system components.

+ Simulate rate-based flows: data feeds and streams; liquids, minerals, and gases;
food and beverage, pharmaceuticals, paper: and any rate-based movement of oth-
erwise distinct entities where uniquely identifying individual entities is either
unneeded or unwanted.

+ Model high volume, high speed, or bulk processes: oil and gas production, refin-
ing or mining operations, power systems and grids, petrochemical and chemical
processing, high speed packaging and production lines, water treatment plants,
and more.

+ Combine with discrete event and reliability modeling to represent entire systems
and supply chains.

+ Merge and diverge flow using rule-based options such as distributional, priority,
and proportional. Customize flow attributes to provide information about the
flow and organize quantities or volumes of flow into layers.

+ Set indicators (set points) to report when a tank’s flow level is within a specified
range. Convey Flow block has multiple modes (accumulating, non-accumulat-
ing) and sensors for communicating the density of flow over time at points along
the conveyor.

Capabilities, Products, and Licensing 35
ExtendSim products

ExtendSim
+ For tutorials showing how to model using the Rate module, see the Discrete
Rate QSG (Quick Start Guide) located at Documents/ExtendSim/Documenta-
tion.

o Reliability module

+ Adds a Reliability Block Diagramming (RBD) capability to ExtendSim.

+ Graphically and statistically describe when scheduled downs (maintenance and
off-shifting) and unscheduled downs (failures) occur for individual resources and
determine what impact availability has on the entire system.

+ Use as a standalone RBD tool to determine resource and component availability.
Capture complex availability behavior of both individual resources and entire
systems.

+ Or, use with ExtendSim event-based process simulation capabilities to explore
the impact of resource availability on key process metrics such as throughput,
production costs, repair costs, utilization, inventory, service levels, and so forth.

+ To learn how to use the Reliability module, see the document named Reliability
at Documents/ExtendSim/Documentation.

+ Includes up to 100 Event Cycles per model. Additional Event Cycles can be pur-
chased separately.

RunTime and specialized products
In addition to the Model Developer Editions above, other ExtendSim products include:

• ExtendSim Analysis RunTime

• A cost-effective way for you or others to access ExtendSim analysis functionality with-
out needing to purchase additional model-developer licenses.

• Distribute the Analysis RunTime along with your models as part of the response to a
Request for Proposal, showcase your consulting capabilities to potential clients, or pro-
vide models to your company’s sales staff so they can show customers the outcomes of
various equipment or service options.

• Also useful for off-loading intensive analysis runs, such as Scenario Analysis or Opti-
mization, to other computers. With programming, you can also remotely cause the
model to run and transfer data between computers.

• Model files and libraries must have been developed in a Model Developer Edition of
ExtendSim.

• ExtendSim Player RunTime

• A free method for distributing your models to end users who only need to run models
(not save changes or perform analysis).

• Your colleagues can view and interactively run a simulation model you’ve developed
change dialog parameters and settings, see animation, view results, and more

• No limit on the number of blocks or size of model

36 ExtendSim
Licensing options

Ex
te

nd
Si

m

• Limitations: models and blocks cannot be built or saved in the Player RunTime; runs
are single-run only and cannot be done remotely; import/export of data is not allowed;
and Stat::Fit, Optimization, and Scenario Manager are not included.

• Model files must have been developed in a Model Developer Edition of ExtendSim

• Available as a free download only from www.ExtendSim.com

• ExtendSim Cloud

• Use this self-hosted cloud-based ExtendSim product to provide ExtendSim models in
the cloud for use by your internal or external end-user “clients”. Cloud deployment
allows a company's clients, such as its employees or customers, to have remote access
to ExtendSim simulations without installing the ExtendSim application on their
devices.

• Once a company has set up the ExtendSim Cloud framework on a server, its clients
submit credentials to get access to ExtendSim models. Using a customized GUI front
end (a web page in a browser or a standalone application) on their devices, the clients
can send inputs through the cloud to the models, run the simulations, and receive the
results on their computer, tablet, or smart phone.

• The Cloud architecture has been implemented in a framework that consists of a back-
end which responds to requests for Cloud services and a licensee-customized frontend
from which these requests are made.

• The ExtendSim Cloud product has the advantages of remote access via the web, cen-
tralized feature updating, and lower or even non-existent learning curves for non-mod-
elers.

• ExtendSim OEM

• For system builders who want to embed the simulation power of ExtendSim within
their own applications

• Provides the customized right to use and/or sell your product bundled with ExtendSim
or with ExtendSim technologies under your brand name

• Contact Andritz Inc. for more information

There are also ExtendSim licenses at reduced pricing for educators and students at accredited
universities. For more information about ExtendSim products, or about licenses for academic
use, go to www.ExtendSim.com.

☞ Individual licenses are available from the ExtendSim website and store. For Node-Locked or
Floating licenses, contact Imagine That Inc or your local distributor.

Licensing options
Most ExtendSim products are available as Individual, Node-Locked, or Floating licenses.

Individual licenses for a single user
• Licensed for use by one Authorized User.

• Activation of ExtendSim is required.

• An annual Maintenance Plan for technical support and upgrades is required. When purchas-
ing a new license, the first year’s maintenance and support is included in the purchase price.

Capabilities, Products, and Licensing 37
Licensing options

ExtendSim
Maintenance must be renewed annually after year one to avoid triggering our Lapsed Main-
tenance Policy.

Node-Locked licenses for sequential users
• Licensed for installation on a single computer for use by multiple individuals in succession.

• Activation of ExtendSim is required and is tied to the device’s ID.

• An annual Maintenance Plan for technical support and upgrades is required. When purchas-
ing a new license, the first year’s maintenance and support is included in the purchase price.
Maintenance must be renewed annually after year one to avoid triggering our Lapsed Main-
tenance Policy.

Floating licenses for concurrent users
• Licensed for installation on multiple computers for use by multiple individuals simultane-

ously.

• Limited to a maximum number of concurrent users and, unless a global license is purchased,
limited to use within a single continent.

• License Management software (included) must be installed on a central server to monitor
and control usage. Activation of the License Management Software is required.

• Licenses may be checked out (Roam) for off-network use.

• An annual Maintenance Plan for technical support and upgrades is required. When purchas-
ing a new license, the first year’s maintenance and support is included in the purchase price.
Maintenance must be renewed annually after year one to avoid triggering our Lapsed Main-
tenance Policy.

☞ For information about the annual Maintenance Plan, see “Technical support” on page 41.

38 ExtendSim
Licensing options

Ex
te

nd
Si

m

About ExtendSim

Support: Documentation, Training, and
Upgrades

Just in case you need some help.

40 ExtendSim
ExtendSim written documentation

Ex
te

nd
Si

m

ExtendSim written documentation
The documentation for ExtendSim is separated into several electronic books.

Quick Start Guides (QSG’s)
The guides are focused on specific simulation methodologies and associated technologies—
Continuous Process Modeling, Discrete Event Simulation, and Discrete Rate Simulation. Each
guide describes the methodology or technology, provides examples of use, and has short tutori-
als, terminology explanations, and more. Different guides are installed in the Documents/
ExtendSim/Documentation folder depending on the ExtendSim product purchased and the
type of models that can be built with that package.

Tutorial/Reference Books
The ExtendSim Tutorial & Reference books are eBooks describing specific ExtendSim fea-
tures, such as:

• The ExtendSim internal relational database

• The Reliability module for reliability block diagramming (RBD)

• ExtendSim Advanced Resource Management (ARM) capability

These eBooks explain the feature and contain tutorials showing how to use it, supported by
example models. Like the Quick Start Guides, these eBooks are installed in the Documents/
ExtendSim/Documentation folder.

User Reference
A general purpose manual for using ExtendSim; it is divided into five sections:

1) Simulation—overview, process, methodologies.

2) About ExtendSim—capabilities, products, licensing, support, and more

3) How To—a general purpose section showing how to build, run, and use ExtendSim models,
create a model dashboard, import and export data, and much more.

4) Reference sections for:

• Discrete Event Modeling (see also the Discrete Event Quick Start Guide)

• Discrete Rate Modeling (see also the Discrete Rate Quick Start Guide)

5) Appendices describing the menu commands and the blocks in the ExtendSim libraries.

Technical Reference
This is helpful for two types of ExtendSim users:

• Modelers who use the equation-based blocks

• Programmers who want to create custom blocks or effects for specific purposes

The Technical Reference describes the integrated development environment (IDE). It lists all
the ExtendSim functions and message handlers and shows how to use programming tools such
as include files, conditional compilation, external source code control, and the source code
debugger.

☞ All documentation is located in the Documents/ExtendSim/Documentation folder. They may
also be accessed by going to the ExtendSim > Help command or through the Quick Start inter-
face that launches when you launch ExtendSim.

Support: Documentation, Training, and Upgrades 41
Videos and additional resources

ExtendSim
Videos and additional resources
Andritz Inc. provides several resources to support your simulation experience.

Quick Start interface
The Quick Start interface (Getting Started model) opens by default when you launch Extend-
Sim. Use this interface to learn about ExtendSim, explore sample models, view tutorials, and
more.

Videos
Each of the Quick Start Guides has a corresponding set of videos that get installed with your
ExtendSim product. There are additional video tutorials, techniques, Master Classes, and more
at the ExtendSim Video Channel (https://www.youtube.com/user/ExtendSim).

Online help
• Access the electronic manuals by selecting the menu command or press F1 on your key-

board.

• Use tooltips to identify interface elements; see the Edit > Options > Model tab for settings.

• Get the complete definition of how a block works, including descriptions of its dialog items
and connectors, by clicking the Help button in a block’s dialog.

Web Advice
FAQs are available at www.ExtendSim.com/support/advice/faq.html.

Networking
Links for ExtendSim user forums, networks, webinars, and blogs are at www.ExtendSim.com.

Technical support
An annual Maintenance Plan for technical support and upgrades is required for most products.
When purchasing a new license, maintenance and support is included in the purchase price for
the first year; it must be renewed annually after year one to avoid triggering our Lapsed Main-
tenance Policy.

If the Maintenance and Support Plan is current, support includes:

• Technical assistance for installation issues, basic usage questions, and troubleshooting.

• Updates and upgrades released during the Maintenance period.

 You must be a registered user to receive technical support. Support for models used in limited
editions of ExtendSim is supplied by other parties—for the Student version, see your profes-
sor; for the Analysis RunTime version, see the model developer.

Contacting Technical Support
 Support is complimentary for the first year after purchase. After that, you must either subscribe
to the ExtendSim Maintenance Plan or purchase per-incident support.

To contact our support representatives, go to our website at www.ExtendSim.com, click the
Contact Us link, and fill out a support ticket.

 Be sure you are using the current version of ExtendSim. Software updates are available at our
web site (www.extendsim.com). Upgrades to newer versions may be purchased separately if
your license is not covered by a support plan.

42 ExtendSim
Technical support

Ex
te

nd
Si

m

An ExtendSim upgrade is a newer, more fully-featured version of your current software.
Upgrades are denoted by a change in release number; for example, ExtendSim 10 is an
upgrade from ExtendSim 9. See http://www.ExtendSim.com/Products/Purchase/
Upgrades.html for more information.

An ExtendSim update improves the quality and stability of a major release. Updates tend to be
mostly bug fixes but often also include new features. An update will append a release number
with ".x". During your maintenance period, updates are made available by download from our
website at www.ExtendSim.com/Support/Downloads/Updates.html.

Authorized ExtendSim trainers provide training several times a year as public courses at vari-
ous locations; training customized to your needs is also available at your site. See http://
www.ExtendSim.com/Support/Training.html for more information.

How To

The Big Picture

44 How To
Overview
Overview
This chapter summarizes most of the information in the “How To” chapters that follow.

 Depending on the ExtendSim product you have, some features, libraries, and blocks might not
be available.

Model-building to represent the dynamics of the system
Use these features and capabilities to build a model that represents the dynamic behavior of
any system.

• Quick model building

• Use pre-built modeling components from the librar-
ies shipped with ExtendSim to represent system
behavior. For example, place a Queue block (Item
library) on the worksheet, or select one of 35 built-in
distributions using the Random Number block
(Value library).

• See the list of libraries and blocks in the appendices that start on page 575.

• Equation blocks

• The Equation block (Value
library) directly accesses
the ExtendSim API, has its
own code editor, debugger,
and compiler, and supports
include directives.

• For more information, see
“Equation-based blocks” on page 189.

• Hierarchy

• Encapsulate sections of a model into hierarchical blocks for scalability. Create generic
model structures and store in libraries for reusability. Customize and animate the icons.

• For more information, see “Hierarchy” on page 78.

• C-based IDE

• Since the Item and Rate libraries are so extensive and complete, it is unlikely that you
will need to build a custom discrete event or discrete rate block. However, especially if
you do continuous process modeling, you may want to build a custom value-type block
using the ExtendSim integrated development environment (IDE).

• See the Technical Reference located at Documents/ExtendSim/Documentation.

Creating a user interface for the model
Use these ExtendSim features to create a custom graphical user interface, control panel, or
dashboard for the model, simplifying and localizing data entry and displays.

• Clones

Selecting a random distribution

Code in Equation block

The Big Picture 45
Creating a user interface for the model
• Exact copies (similar to a shortcut or alias) of dialog items,
tables, or graphs which behave identically to the original;
no programming required.

• Place on the model worksheet or notebook to create a cen-
tralized location for making changes or displaying inputs
and results.

• Go to “Cloning” on page 72 to see how it’s done.

• Notebooks

• Customizable windows for organizing and man-
aging a model’s information—control model
parameters, report simulation results, and docu-
ment the model.

• Clone objects onto a notebook, insert text and
graphics, and paste pictures, as shown to the right
and on page 72.

• Notebooks are discussed on page 79

• Control panel/dashboard interface

• Use blocks from the Utilities library to cre-
ate a dashboard or control panel for the
model without programming:

•Buttons block—set up pre-built buttons
or create your own for a custom inter-
face

•Meter, Slider, and Switch blocks—customizable controls for the model

•Model Interface block—create a button interface for running multiple trials for
experimentation

•Popups block—create popup menus with multiple custom options.
Can also be used to create buttons for accessing database tables.

•Pause Sim and Run Model blocks—place a button to run or pause
the simulation at specified times

• Create custom buttons using the Buttons block’s equation editor or
custom interfaces using the ExtendSim IDE or an external application such as VB.net.

• For more information, see “Creating a dashboard interface” on page 74 and “Control
blocks” on page 76.

• Animation

• Many blocks, such as the Tank (Rate library), automatically show 2D
animation on their icons if 2D Animation is on during the run.

• The Animate Value block (Animation library) displays text, a graphic
object, or pictures on the worksheet plus can be used to animate a hierar-
chical block’s icon.

Dialog item cloned onto model
notebook

Outputs cloned in Notebook

Dashboard created using Buttons block

Popup menu

46 How To
Getting data into the model
• Use the Equation block (Value library) or the ExtendSim IDE to programmatically cre-
ate custom animation behavior in blocks you create.

• See “Animation” on page 110.

• The Notify block (Value library) plays a sound, stops the simulation, or prompts for an out-
put value when its input is true

• Also see...

• The ExtendSim database as a tool for presenting data, as discussed on page 47

• Text, graphic objects, and pictures: ExtendSim supplies tools for, and supports the stan-
dard methods of, handling text and graphics. Pictures placed directly on the model
worksheet are automatically placed in the background.

• Interactivity: click a button or change parameters during a simulation run.

• Named connections: text labels that are used to represent one output at multiple loca-
tions in the model, without using connection lines. See page 118.

• The Throw and Catch blocks (Value, Item, and Rate libraries): use these blocks to
transfer values remotely, even between hierarchical layers, without connection lines.

• The Navigator tool: this explorer-like window is essential for navigating
through the hierarchical structure of a model. It is discussed on page 110.

Getting data into the model
Bring data into the appropriate parts of a model for use before or during the run.

 The preferred method is to get all the data into the model at the beginning of a run; importing
data during a run could unnecessarily and dramatically slow the simulation.

• Enter data into model components before the run starts:

• Type or use the Copy and Paste commands or tools to enter data into fields or tables in
block dialogs

• Enter data into parameter fields and tables that have been cloned from block dialogs
into notebooks (mentioned in page 45) or onto the worksheet

• Use a Read block (Value library) or Read(I) block
(Item library) to get model data, at the start or during
a run, from an Excel worksheet, a text file, local table,
global array, or ExtendSim internal database.

• Create an ExtendSim database, discussed on page 47,
to manage data; enter inputs directly into its tables

• Import data into a model’s internal relational database or (less common) global array; both
are discussed on page 47:

• Data Import Export block (Value library)—
transfer data before, during, or after a run
from an external source (Excel, ODBC data-
base, FTP file, text file, ADO database such
as Access or MySQL) to an internal target (ExtendSim database or global array).

• Read blocks, discussed above.

The Big Picture 47
Managing data for use in the model
• Database > Import New Database command—import into a model a database text file
that was created in another model or was generated by Excel using the Excel DB Add-
In (optional add-on for some ExtendSim products).

• Fit raw data to a distribution with Stat::Fit, as mentioned on page 48

• For more information, see the chapter “How To: Data Management” that starts on page 221,
especially the section for “User interfaces for data exchange” on page 222.

Managing data for use in the model
Localize and manage data so it is available before, during, and after a simulation run.

• Create an ExtendSim internal relational data-
base—a centralized repository for data—and
exchange data between the database and the
model:

• Many blocks have a built-in capability to
exchange data with the database during
the run:

•Equation, Read, Write, Query Equa-
tion, and Data Specs blocks (Value library)

•Read(I), Write(I), and Query Equation(I) blocks (Item library)

•Popups block (Utilities library)

• The Data Import Export block (Value library; see page 46) can access data before,
during, or after the run

• Dynamic data linking (DDL) links to data in an ExtendSim database during the run

•Dynamically link dialog items (parameters and data tables) to internal data struc-
tures—internal databases, global arrays, and (programmatically) dynamic arrays.

•See the Link button on a block’s data table or right-click a dialog
parameter and choose Create/Edit Dynamic Link

• Create custom interfaces using the ExtendSim IDE

• For more information, go to “ExtendSim databases for internal data storage” on
page 232.

• Use another data management method as described more on page 233 of the User Reference:

• Global array—a two-dimensional array of data accessible by any block in a model.

• Dynamic array—a multi-dimensional internal data structure only accessible through
programming.

• Linked list—an internal data structure that allows the construction and manipulation of
complex lists of data.

• Much more information can be found in the chapter “How To: Data Management” that starts
on page 221.

Analyzing data and assessing results
Perform calculations, analysis, experimentation, and optimization using information generated
by the simulation model.

Database tables; fields for Interarrival Times

48 How To
Analyzing data and assessing results
• Verification and validation

• Use ExtendSim debugging tools and methods to verify that models operate as expected
and to validate that they accurately represent the system. See more information starting
on page 206.

• The Model Compare block (Utilities library) helps determine if changes to the model
affect results. It is also helpful when validating models between ExtendSim releases.
Go to “Automated test environment (Windows only)” on page 217.

• Value library blocks:

• Mean & Variance block—calculate the mean, variation, and standard deviation of the
values input during a simulation run; specify the confidence interval.

• Report library blocks:

• Statistics block—accumulate data on certain types of blocks and report statistics in a
single table using a statistical method; specify the confidence interval.

• DB Statistics block—calculate statistics for all the records in a field of an ExtendSim
internal database table.

• Rate library block dialogs:

• Blocks in the Rate library have a Results tab that automatically calculates important
statistics such as effective inflow and outflow rates, utilization, and so forth.

• History(R) block—reports flow history, including times, rate, and quantity

• Distribution fitting (Windows only)

• Determine which distributions, if any, offer a good fit for the underlying raw data.

• In the Random Number block (Value library) choose Stat::Fit or another distribution
fitting software package to perform the analysis. Stat::Fit is an optional add-on for
some ExtendSim products.

• See “Stat::Fit (Windows only)” on page 172.

• Charts and data tables

• Blocks from the Charts library display a graphical representation of the numbers fed to
them as well as a table of the numerical values.

• See the descriptions of the Chart blocks in “Chart library” on page 174.

• Evolutionary Optimizer

• Use this Value library block to automatically determine ideal values for parameters,
then have it populate the model with the optimized parameter values.

• See “Optimization” on page 158.

• Scenario Manager

• Systematically and strategically explore the outcome of different model configurations
and analyzes alternatives.

The Big Picture 49
Reporting results and exporting data
• Use pre-built experimental designs (DOE) or export to Excel, JMP, or Minitab for fur-
ther analysis.

• See “Scenario analysis” on page 143.

• Sensitivity Analysis

• Conduct controlled experiments to explore how much of an impact one or more param-
eters have on model results.

• See “Sensitivity analysis” on page 138.

• Also see:

• Decision, Clear Statistics, and Max & Min blocks in the Value library

Reporting results and exporting data
Monitor and/or export intermediate information and simulation results

 The preferred method is to output the data at the end of a run; exporting data during a run could
unnecessarily and dramatically slow the simulation.

• Get data from the following components of your model:

• Fields and tables in block dialogs, especially on
the Results tabs in blocks such as the Activity
(Item library) or Valve (Rate library)

• Output parameter fields and tables that have been cloned from block dialogs into note-
books (mentioned on page 45) or onto the worksheet

• Animation, as mentioned on page 45

• Tooltips, which display current data each time the cursor is placed over an output con-
nector

• Connect outputs to blocks in the Chart library (page 174) to see graphs and tables of data
during or after the simulation run

• Add blocks to the model to obtain information:

• Blocks from the Report library

•Reports Manager block—the primary interface in ExtendSim for creating reports
from simulation runs for blocks, events, items, and resources. See “Model report-
ing” on page 184.

•Item Log Manager block—collects customized information about how item states
change over time. See “Using the Item Log Manager to get item information” on
page 399.

• Blocks from the Rate or Item library

•History(R) block (Rate library) records information about flow attributes as well as
the rate and its duration

•History block (Item library) reports item statistics and history

•Write(I) block (Item library) writes data to a database when an item arrives

•Item Log Manager (Report library) creates a log of information found in certain
blocks

50 How To
Communicating with external applications and devices
• Blocks from the Utilities library:

•Pause Sim block, Pause tool, or Run > Debugging commands to pause and step
through the simulation to monitor data.

•Record Message block (Utilities library) to the model to capture the messages
between connectors

• Blocks from the Value library:

•Use a Write block to write model data,
during or at the end of a run, to an Excel
worksheet, a text file, local table, global
array, or an ExtendSim internal database.

•Notify block sends alerts based on its set-
tings and input

•Display Value block displays the input value and can pause between updates

• Create an ExtendSim database as discussed on page 47 to manage data, and see results in its
tables

• Export data from the model’s internal relational database or (less common) from a global
array; both are discussed on page 47.

• Data Import Export block (Value library)—
transfer data during or after a run from an
internal source (ExtendSim database or
global array) to an external target (Excel,
ODBC database, FTP file, text file, or an
ADO database such as Access or MySQL).

• Write block, discussed above.

• Database > Export Database command—export an ExtendSim database as a text file so
it can be used in another model or can be imported into Excel using the ExtendSim DB
Add-In for Excel. To export specific tables, see the Database > Export Selected Tables
command.

• Use the Scenario Manager (Value library) to export data to Excel, Minitab, or JMP for
design of experiments. See page 48.

• For more information, see “User interfaces for data exchange” on page 222 and “Blocks for
data management and exchange” on page 245.

Communicating with external applications and devices
Methods and technologies for data sharing, communication, and control between ExtendSim
and external applications and equipment.

 Some functionality is Windows only

• Pre-built blocks in the Value library:

• Data Import Export block—exchange data between ExtendSim (internal database or
global array) and outside applications and files (Excel, ODBC database, FTP file, text
file, ADO databases such as Microsoft Access, SQL Server, and MySQL) at the start,
during, or end of a run

The Big Picture 51
Communicating with external applications and devices
• Read and Write blocks—exchange data between an ExtendSim database, Excel work-
book, global array, text file, or local table at the start, during, or end of a run

• Equation and Query Equation blocks—see “Equation-based blocks” on page 189

• Scenario Manager block—export scenario results to Excel, JMP, or Minitab for further
analysis. Mentioned on page 48.

• Random Number block—use this block to communicate with JMP, BestFit, ExpertFit,
and Stat::Fit to determine the appropriate distribution to use given the raw data

• ExtendSim DB Add-In for Excel (Windows only)

• Create, edit, and export files between Excel and the ExtendSim internal database

• Can also use Excel as the master for documenting the data and database structure

• See “Excel Add-In for ExtendSim databases” on page 233.

• ADO (ActiveX Data Objects) for databases (Windows only)

• Communicate between ExtendSim and external databases—Microsoft Access, SQL
Server, and MySQL—using the Data Import Export block (Value library)

• For programmatic control, the include file “ADO_DBFunctions.h” stores user-defined
functions for ADO

• See the Technical Reference, User-defined functions for ADO

• ExtendSim COM Object Model

• Primary method for ExtendSim to be controlled and communicated with as an Automa-
tion Server

• Allows external languages to control ExtendSim in many ways, as discussed in
“Scripting functions” on page 51

• See “ActiveX/COM/OLE (Windows only)” on page 242 and the Technical Reference,
ExtendSim as an Automation Server

• ActiveX Automation

• Primary method for ExtendSim to serve as an Automation Client

• Access and manipulate (set properties of or call methods on) automation objects that
have been developed in and exported by other applications

• See the Object Mapper block (Utilities library), the section “ActiveX/COM/OLE (Win-
dows only)” on page 242, as well as the OLE/COM functions and the section on OLE
and ActiveX Automation in the Technical Reference

• DLL functions

• Provide custom operations from within a block’s code by calling Dynamic Link Librar-
ies (DLLs) of routines or functions written in an external language

• Primary method for ExtendSim to communicate with DLLs created by other applica-
tions or by equipment

• See the Technical Reference.

• Scripting functions

52 How To
Communicating with external applications and devices
• Automate the process of building or making changes to models, either from within
ExtendSim or by external applications

• Create custom wizards to simplify tasks or interact with modelers; develop self-modi-
fying models

• See the Technical Reference, Scripting functions and Scripting technique

• Internet access

• Access and manipulate data and files using Internet protocols

• See the FTP block (ModL Tips library) or program using functions

• See the Technical Reference, Internet access

• Mailslot functions (Windows only)

• Communicate and control other computers in a network domain using this messaging
functionality supported by the Windows API

• Send unidirectional messages from a given machine to a specified mailslot on other
machines

• See the Technical Reference, Mailslot

• See also:

• Command block (Value library)

• Additional blocks in the ModL tips library: ActiveX Control, DLL Add Block, FTP,
ODBC, and Read Device

• The blocks in the ModL Tips library; the path is Documents/ExtendSim/Libraries/
Example Libraries.

• File I/O, Interprocess Communication (IPC), and OLE/COM (Windows only) func-
tions in the Technical Reference

☞ Also see the ExtendSim white paper titled “Interprocess Communication”.

How To

Libraries and Blocks
A description of ExtendSim libraries and blocks

and the many ways to use them

“The first thing to have in a library is a shelf.
From time to time, this can be decorated with literature.

But the shelf is the main thing.”
— Finley Peter Dunne

54 How To
Overview

H
ow

 T
o

Overview
Working efficiently with libraries and blocks is critical to simulation modeling.

The libraries that ship with ExtendSim
ExtendSim libraries are repositories for the blocks that you use to build models. ExtendSim
ships with several libraries, each one containing blocks that are used for modeling specific sit-
uations or types of systems. You can also develop your own libraries of custom blocks, or cre-
ate libraries to save and organize hierarchical blocks in a way that best works for your
modeling needs.

Libraries are located in the ExtendSim/Documents/Libraries folder.

☞ Some libraries are included in all products while others are only included with specific prod-
ucts, depending on the type of modeling the product is used for.

Item library (not available in ExtendSim CP)
The blocks in the Item library are used primarily in discrete event modeling, although they can
also be included in discrete rate models. The Appendix that starts with “Item Library Blocks”
on page 583 has a complete list and brief description of the blocks in this library.

Chart library
The Chart library holds all the common types of blocks used to graph and record data for mod-
els. All Chart library blocks are described in detail in “Chart library” on page 174.

☞ The Chart library replaces the Plotter library of previous releases. The Plotter library is now a
“legacy library”, included only so older models can be run.

Report library
The blocks in the Report library are also useful for any type of model. They gather information
as the model runs and display and calculate statistics on the results. All the Report library
blocks are described in detail in “Model reporting” on page 184.

Rate library (only available in ExtendSim Pro)
The Rate library is used for discrete rate simulations — modeling the flow of product or mate-
rial according to some rate-based calculations. Discrete rate models also often use blocks from
the Value and Item libraries. A complete list and brief description of the blocks in the Rate
library starts on page 592.

Utilities library
The Utilities library contains a collection of blocks that are helpful for performing various
tasks such as adding active buttons to models, fitting data to a curve, and synchronizing the
model to real time. A complete list and brief description of the blocks in this library starts on
page 595.

Value library
The Value library contains blocks that are used for continuous modeling and play a critical role
in other types of models as well. A complete list and brief description of the blocks in this
library starts on page 576.

Animation library
The Animation library lets you add custom animation to models and hierarchical block icons.
The Animate Item and Animate Value blocks in this library are used to add 2D animation to

Libraries and Blocks 55
The libraries that ship with ExtendSim

H
ow

 T
o

models and hierarchical blocks, as described in “Blocks for customized animation” on
page 112.

Electronics library
The blocks in the Electronics library are used to simulate system level design of analog, digital,
signal processing, and control systems. For example the Electronics blocks are used in the
example model Noisy FM System.

Example Libraries folder
The following libraries are located in the ExtendSim/Documents/Libraries/Example Libraries
folder.

Custom Blocks library
These blocks have been created for very specific purposes, such as to illustrate a concept or
hard-code certain behavior. For instance, the Planet block from this library is used in the con-
tinuous model Planet Dance.

ModL Tips library
This library contains blocks that illustrate the techniques described in the ExtendSim Technical
Reference.

Templates library (discrete event blocks are not available in ExtendSim CP)
Contains hierarchical blocks that serve as templates for specific behaviors, such as setting the
arrival time based on the time of day.

Tutorial library
Contains blocks built in conjunction with tutorials in the Technical Reference.

Legacy folder
Legacy libraries have been replaced by newer libraries and/or ExtendSim functionality and are
no longer supported. They are included with ExtendSim for a few years after decommissioning
to allow customers to run older models while transitioning them to use the new libraries.

Plotter library
In ExtendSim 10, the Chart library replaced the Plotter library which has now been relegated to
Legacy status. For the next few versions customers can continue running older models that use
the Plotter library but are encouraged to use the blocks in the Chart library for new models.

Legacy libraries from ExtendSim 7
☞ The following libraries are only available in ExtendSim releases prior to 10.

Certain libraries were transferred to Legacy status as of ExtendSim 7. These libraries were
only included in releases 7-9 so that customers could continue running older models while
transitioning to new libraries. Depending on which ExtendSim product you had, those Legacy
libraries were:

• Animation (v6 and prior)

• BPR—replaced by the Item library

• Discrete Event—replaced by the Item library

• Flow—replaced by the Rate library

• Generic—replaced by the Value library

56 How To
Opening, closing, and searching for libraries

H
ow

 T
o

• Items (DB)—not needed; the ExtendSim database is fully integrated with ExtendSim blocks

• Mfg (Manufacturing)—replaced by the Item library

• Quick Blocks—replaced by the Templates library

• SDI Tools—replaced by ExtendSim functionality

 Do not use these legacy libraries to build new models. They are not supported and will not be
included in future releases.

Opening, closing, and searching for libraries
Libraries are the repositories for the blocks used to build models and the entire definition for a
block (its program, icon, dialog, and so on) is stored in the library. When you place a block in a
model, the block itself is not copied to the model. Instead, a reference to the block is included
in and stored with the model. On the other hand, any data you enter in the block’s dialog is
stored within the model, not within the library.

There are many advantages to this method of using references to libraries instead of actual
blocks in models. If you change the definition of a block in a library, all models that use that
block are automatically updated. Also, block definitions are quite large, so storing just a refer-
ence to the library saves memory and reduces processing time.

When you save a model, ExtendSim saves the names of the blocks as well as the locations of
the libraries that store the blocks. The next time you open the model, ExtendSim automatically
opens the libraries the model uses.

Opening a library
Whenever you open a model, ExtendSim automatically opens the libraries that are used in the
model.You can also open a library directly by:

• Choosing Library > Open Library. This opens a window for selecting which library file(s) to
open. If an “Alternate path” has been entered in the Edit > Options > Libraries tab, this com-
mand will open that folder. Otherwise (or if can’t find the library in the alternate location), it
opens the Documents/ExtendSim/Libraries folder.

• Double-clicking the library file or drop-launching it.

☞ The command Edit > Options > Libraries tab allows several libraries to load automatically
whenever ExtendSim is launched. By default, the most common libraries for your ExtendSim
product will already be in that list. See “Libraries tab of Options command” on page 547 for
more information

By default, when a library opens the ExtendSim application:

• Opens the library window for that library. (See see “Library windows” on page 58.)

• Adds the library name, in alphabetical order, to the bottom of the Library menu.

☞ By default, blocks in the Library menu are listed by category. To view them alphabetically, go
to the Edit > Options > Libraries tab and uncheck List blocks in Library menu by category.

Libraries and Blocks 57
Opening, closing, and searching for libraries

H
ow

 T
o

Closing a library
Unless you close ExtendSim, libraries stay open whether
they are used in a model or not. To close libraries that are
not used in a model, choose Library > Close Library and
select the libraries you want to close. It is unlikely that you
will need to close libraries often since open libraries do not
take up much memory and it is usually convenient to leave
all your commonly-used libraries open.

Closing a library also closes its library window. Note how-
ever that closing a library window does not close the library.
Library windows are discussed on page 58.

☞ ExtendSim will not let you close a library that is being used by an open model.

Searching for libraries and blocks
When you open a model, ExtendSim opens the libraries that were last used in the model. Then
it tries to find the model’s blocks within those libraries. The search methods are detailed below.

☞ These searches are based on the name of the library or block. If you’ve changed the name, also
see “Substituting one library for another” on page 68.

Library searches
ExtendSim searches for libraries based on the name of the library. Unless you’ve unchecked
the Automatic search option in the Edit > Options > Libraries tab, the search order ExtendSim
uses to locate the needed libraries is:

1) The folder containing the model (but not any sub-folders within that folder)

2) The Alternate path, if one is specified in the Edit > Options dialog

3) The Libraries folder within the Documents/ExtendSim folder, including any sub-folders
within the Libraries folder

You can manually stop this search process at any time by pressing Ctrl+period (Windows) or
Command+period (Mac OS).

To avoid extensive searches, libraries should be kept in the same folder as the model that uses
them or in the Documents/ExtendSim/Libraries folder.

If ExtendSim can’t find a library when the model opens, or if the Automatic search option is
unchecked, it will put up a file selection dialog that asks “Where is the library xxx?”. Your
choices are:

• Cancel the library search operation. ExtendSim will then try to find the missing blocks, as
described in “Block searches” below.

• Find and open the library manually. Since ExtendSim only needs to know where the blocks
for the model are, you could also use this choice to substitute a library that has a different
name (but the same named blocks) as the search library. See “Substituting one library for
another” on page 68 for more information.

When the model file is subsequently saved, any new library name and/or location will be saved
as well, so searching will not be necessary the next time the model file is loaded.

58 How To
Library windows

H
ow

 T
o

☞ To force ExtendSim to ask for all the libraries to open when opening a model, uncheck the
Automatic search option in Edit > Options > Libraries tab.

Block searches
ExtendSim automatically searches for each block that the model uses. It first searches for the
block in the library in which the block last resided. If you have renamed the blocks or removed
them from the library, ExtendSim may not be able to find them. In that case, ExtendSim
prompts you to locate any missing blocks. The dialog offers two choices:

• Choose Open to locate and open another library where the block resides. If ExtendSim is
unable to locate the block in this library, the Substitute Block dialog will open so you can
substitute an alternative block from any open library. When the model file is subsequently
saved, any new block name and/or location will be saved as well, so searching will not be
necessary the next time the model file is loaded.

☞ Any substituted block must be substantially the same as the searched-for block, or ExtendSim
will report error messages.

• Select Cancel if the block no longer exists or if you can’t substitute another block. In this
case, ExtendSim notifies you that it will put text in the place of the block.

Library windows
.A library window is a separate window that shows all the blocks
inside the library in alphabetical order. Library windows are one
of the main methods for adding blocks to models, so by default
they open whenever a library is opened. If you program blocks,
you can also use library windows to manage blocks, as discussed
in “Managing blocks” on page 69, and to access a block's struc-
ture as discussed in the Technical Reference.

Opening library windows
Library windows open automatically based on choices in the
Edit > Options > Libraries tab. By default ExtendSim opens the
most commonly used libraries upon launch and also opens their
library windows. As discussed below, library windows stack on the right side of the application
window and each library window has its own tab on the right side, as shown here.

☞ The order of the stacked library windows depends on the order in which the libraries are listed
in the Edit > Options > Libraries tab. If there are no libraries listed, or if an unlisted library is
subsequently opened, the stacked list of libraries reflects the order in which the libraries were
opened.

To open a library window manually, go to the Library menu and choose Open Library Window,
the first choice in the list of blocks for each library.

The top portion of the library window gives the library name. Below the library’s name is its
version and the date last modified. If selected in the Edit > Options > Libraries tab, this section
also shows the path to the location where the library resides.

☞ Hovering over the library’s name will also show the path to the library.

The blocks in the library are listed with pictures of their icons and, if the Show block modified
and compiled dates option is selected in the Edit > Options > Libraries tab, their modified
dates.

Libraries and Blocks 59
Working with blocks

H
ow

 T
o

Docking and stacking
Library windows are docking windows that by default stack on the right side of the application
window.

To have a library window be a floating window, click its tab to bring it to the front. Then click
in its title bar and tear it off from the dock. To return a library window to a docking position,
double-click its title bar or drag it into the docking area such that the area above it contains no
other blocks.

☞ Double-clicking the library window’s title bar performs the tear off action if the library window
is docked, or returns the window to its docking area if it has been torn off.

Code management and debugging designations
• If a block has been compiled with external source code, it will be listed in

the library window with the designation CM (code management) on the right
side of its icon. The CM designation does not appear when the block is
placed on the model worksheet.

• If a block has been compiled with debugging code, its icon in the library
window will have a red border around it. The border also appears if the
block is placed on the model worksheet.

• Blocks that have been saved in a library but not compiled will appear in the
library window with their names in red italics.

Compiling options are used by block developers and are discussed in the
Technical Reference.

Closing library windows
Close an individual library window by clicking its red close box.

To close all open library windows, use the Library > Close All Library Windows command or
the corresponding button in the toolbar at the top of the windows. The Open All Library Win-
dows command and button re-opens the library window for every open library.

☞ Closing a library window only closes that window, not the library itself.

Working with blocks
ExtendSim blocks have a user interface (their icon, dialog, and help) and internal, integrated
ModL code that determines how the blocks behave.

As discussed on page 56, blocks are stored in repositories called libraries and the entire defini-
tion for a block (its program, icon, dialog, and so on) is stored in the library. When you place a
block in a model, the block itself is not copied to the model. Instead, a reference to the block is
included in and stored with the model. On the other hand, any data you enter in the block’s dia-
log is stored within the model, not within the library.

Placing blocks on the model worksheet
As discussed below, there are three methods for placing blocks on a model worksheet without
programming: Point and Click, Smart Block technique, and Bump Connect.

The Smart Block and Bump Connect methods not only place the blocks but connect them to
other blocks. In addition, scripting allows you to place and connect blocks on the worksheet
programmatically (see the Technical Reference).

60 How To
Working with blocks

H
ow

 T
o

Point and Click
Click once on the block in the Library menu or library window, then click on the model work-
sheet wherever you want the block to be placed. Unlike the other methods, this works for every
type of block in every library.

☞ To place multiple copies of the same block on a worksheet, hold down the Alt or Option key
while clicking on the worksheet. Use the Escape key if you have selected the wrong block.

Smart Block technique
Blocks in most libraries of the libraries that ship with ExtendSim (Item, Value, etc) have an
easier method to using Point and Click to add blocks to the model, and this method also auto-
matically connects the blocks.

 The Smart Block technique involves right-clicking on a connector, so an ExtendSim library
block (other than the Executive) must already be on the worksheet. Smart Block does not work
with hierarchical blocks.

To connect a block at a connector
Right-click on one of the block’s input or output connectors. The
window that appears lists at the top the blocks that are most com-
monly connected to that connector; below are the libraries so you
can access the entire list of blocks in a library.

Select the block you want from the list and it will automatically be
placed on the worksheet and connected to your first block. For
example, if you right-click on the value input connector on a Set block (Item library), you can
quickly connect a Random Number block (Value library). Repeat as desired for the second and
subsequent blocks.

To connect a second block at a connector
To add and connect a block at a connector where there is already a block connected, hold down
the Ctrl/Cmd key while right-clicking on the connector. Select the desired new block from the
list.

To insert a block between two connected blocks
To insert a block between two connected blocks, move the two blocks apart to provide room
for the new block. Then right-click on an input or output connector of one of the existing
blocks and select the desired block.

The Smart Block technique uses scripting functionality and is database driven; the list of com-
mon blocks adapts depending on which block you are connecting to.

☞ The Smart Blocks feature is implemented for blocks in the libraries that ship with ExtendSim.
You can add the functionality to your custom blocks by having their code call the relevant
include files.

Bump Connect
To add an Item or Rate library block to a model using Bump Connect, click on the block in the
library menu or library window, then place the block in the model by bumping its itemIn or
inFlow connector to the corresponding output of a block on the worksheet. This adds and con-
nects the new block to the existing block using whichever connection line choices you’ve
made.

Libraries and Blocks 61
Working with blocks

H
ow

 T
o

☞ This technique is only available for blocks from the Item and Rate libraries. To disable this fea-
ture, go to the Edit > Options > Model tab.

Connectors
Connectors are used to input and output values, items, or flow for each block.

The Model menu has commands that let
you show or hide the connectors in the
model workspace. Hiding connectors can
improve the appearance of the model,
especially for complex models with many
blocks.

Connector types
Connectors on a block are visually differ-
ent, depending on how they’re used. This
table describes the different types of connectors that can be seen on or (if you program) added
to blocks in ExtendSim.

☞ Other than some specific instances, you cannot connect from one type of connector to another.
For example, attempting to draw a connection from an itemOut connector to a Value input will

Type Input Output How they’re used

Value Continuous blocks use value input and output connectors to pass
values from one block to another. Blocks in the Item and Rate
libraries may also use value connectors for the same purpose.

Item Discrete event blocks use itemIn and itemOut connectors to pass
discrete items from block to block. Blocks in the Rate library
may also use item connectors for the same purpose.

Flow Discrete rate blocks use inflow and outflow connectors to pass
information about the effective rate from one block to another.
You can also connect from a flow connector (input or output) to
a value input connector.

Reliability Blocks in the Reliability use Reliability connectors to pass
information between nodes.

Universal Universal connectors are usually used as inputs. Value, Item,
Flow, and User-Defined output connectors can connect to Uni-
versal inputs.

Array Array connectors are for passing arrays of information from one
block to another.

User
Defined

User Defined connectors can be programmed to behave in any
manner the developer wants.

Box A user defined connector shaped like a box. It can be pro-
grammed to behave in any manner the developer wants.

Reservoir model with connectors hidden

62 How To
Working with blocks

H
ow

 T
o

result in an error message. The two exceptions are that Value, Item, Flow, and User-Defined
outputs can be connected to Universal inputs, and Value outputs can be connected to Flow
inputs.

Variable connectors
Regardless of type, each connector can be single or variable depending on how the block is
constructed. Variable connectors act like a row of single connectors, where the row can be
expanded or contracted to provide a required number of connectors. Some blocks have only
single connectors, some have only variable connectors, and some have a mix. Variable connec-
tors are usually designated by a black arrow.

The Constant block has two single input connectors and one single output connector:

A Math block in Add mode has a variable connector exposing two inputs as well as a single
output connector:

The Math block's variable connector expanded with dragging cursor to expose three inputs:

Each block's functionality determines whether or not it has variable connectors, where they are
located, and what each connector represents. For example, a variable connector could have
connectors captioned minimum and maximum placed on the bottom of the block for downward
expansion.

Variable connectors can be expanded or contracted using the dragging cursor—an up/down or
left/right arrow as seen above; they can also be collapsed. As explained more below, you
expand or contract a variable connector to provide the desired number of inputs or outputs.
You collapse a variable connector to improve model appearance.

Expanding or contracting a variable connector
Wherever possible a block will anticipate its usage and provide the required number of connec-
tors. For example, the Holding Tank block (Value library) has a variable connector that can be
expanded to provide three inputs: the amount wanted from the tank, a trigger to reset the tank's
settings, and the amount of initial contents. You might use one, two, or all three of those inputs,
but the block won't allow more than three inputs.

For other blocks, the number of connectors you might need depends on choices you make in
the dialog or how you use the block in a model. There are two primary methods for causing a
variable connector to change the number of available connectors:

Libraries and Blocks 63
Working with blocks

H
ow

 T
o

• Drag the variable connector (as discussed below) until the desired number of connectors is
achieved. This is available if the block allows unlimited inputs or outputs.

• Change some setting in a dialog, causing an increase or decrease in the number of connec-
tors allowed. An example of this is the Random Number block (Value library), where you
select a distribution from a popup. Depending on the distribution chosen, the variable con-
nector will provide from two to four inputs for specifying the distribution's arguments. Since
the number of arguments for each distribution is fixed, you will not be able to expand the
number of connectors beyond the proper number. You can, however, contract the variable
connector as discussed below. Note that some blocks with variable connectors, such as the
Equation blocks, do not allow you to increase or decrease the number of connectors except
through dialog settings.

To increase the number of connectors when there is a variable connector:

Hover over the dark gray arrow that is below the
input or output connector. (Don’t hover over or click
on the connector, just hover over the gray arrow.) If
you are in the correct spot, the cursor will turn into a
dragging cursor—a double-headed up/down or left/
right arrow—indicating that the array of connectors
can be resized.

Once the cursor turns into the double-headed arrow, click and drag in the direc-
tion of the double-headed arrow until the desired number of connectors are
exposed, as shown here on the left side of an Activity block. As you drag, more
connectors appear; in most cases, the number of connectors is displayed.

☞ You will not be able to expand a variable connector beyond what is reasonable for the block,
given its usage and dialog settings. And some blocks, for example the Equation blocks, do not
provide an arrow for expanding the number of connectors; the number of connectors in those
blocks is only controlled through the dialog.

To decrease the number of connectors, hover the cursor over the dark gray arrow at the end of
the last connector until it becomes a dragging (double-headed) cursor. Then click and drag
back towards the variable connector's starting point.

☞ The number and location of connections to the variable connector affect its ability to be con-
tracted. You can only contract the variable connector to the point of its outermost connection.
In this case, to reduce its size you need to collapse it, as discussed below.

Collapsing a variable connector
As discussed above, if you have made connections to a variable connector you might not be
allowed to contract it back to its unexpanded position. This is a safety mechanism, so that it is
clear what connections have been made. However, to simplify the appearance of the model,
you can collapse a variable connector to an unexpanded state even if it has many connections
to it.

To collapse a variable connector, place the cursor over the black arrow until it
becomes a dragging cursor, then double-click. The connector now appears
with a red + sign in place of the black arrow, as shown on the right.

At left: dark gray arrow below connector.
At right: double-headed arrow indicating
number of connectors can be increased.

64 How To
Working with blocks

H
ow

 T
o

To reverse the process, place the cursor over the red + sign until it becomes a dragging cursor,
then double-click.

Connecting to different connector types
As you saw in earlier chapters, you can use continuous blocks (such as those from the Value
library) in your discrete event and discrete rate models, which means you can have blocks in a
single model that use different types of connectors (some blocks have multiple types of con-
nectors on them as well).

You can connect value connectors together, item connectors together, and flow connectors
together. You can also connect value and flow connectors to each other, but you cannot connect
value and flow connectors to item connectors. This is because value and flow connectors only
pass values while item connectors pass unique items.

☞ Any type of connector—value, flow, or item—can be connected to universal input connectors.

Also note that if you create blocks that have user defined connectors, those connectors can
only be attached to other user defined connectors and to universal connectors.

Dialogs
Most block dialogs let you change or view the settings before, during, and after a simulation
run. Some of the things you can do using a dialog include:

• Choose from multiple functions (e.g. the Math block)

• Enter initial values

• View simulation results

• Add comments to help document your models

• Set animation criteria

• Choose notification options

To open a block’s dialog, double-click it or right-
click it and select Open Dialog. For example, if
you double-click the Holding Tank’s icon, the
dialog at right opens.

In the dialog’s title bar is the block’s global
object ID, its name, and, in braces, the library it
resides in.

☞ When there are multiple open models and dia-
logs, it can be difficult to remember which block
comes from which model. To see which model a
block is in, hover over the block’s name in the
dialog’s title bar.

Every object on the worksheet has an ObjectID.
As each block or other object is added to a model
it is assigned a unique and sequential global object ID from 0 to n-1. This sequence does not
change. If a block or any other object is deleted, its number becomes an “unused slot” which is
available when another object is added to the model window.

Libraries and Blocks 65
Working with blocks

H
ow

 T
o

Each object within a hierarchical block has a second, local, ID that reflects its relationship to
the other objects in the hierarchical submodel.

At the bottom of every dialog is a Help button that provides more information, such as the
block’s purpose and use, what each connector does, the meaning of each dialog item, and so
on. Beside the button is a text box where you can enter a label for the block. When available, a
View popup lets you change how the icon for the selected block is presented; icon views are
discussed later in this section.

Some dialogs also calculate and display values that are generated as the model runs, so if you
leave a dialog open during the simulation you can watch the impact on different variables. You
can even change some of the settings in a dialog as you run the simulation, such as choosing
different buttons or typing new values.

☞ When you click a button while the simulation is running, the block gets that changed value on
the next step. However, if you type text or enter numbers into a field, the model pauses while
you are typing in order to get your entire input.

Animating blocks
ExtendSim provides built-in animation for many blocks and you can also create custom anima-
tion for any block. To learn more, see “Animation” on page 110.

Customizing block icons
The blocks in the libraries that come with ExtendSim (such as the Value and Chart libraries)
are displayed on the screen as icons that depict their function. Once you place a copy of these
blocks in your model, you might want to make its icon more closely indicate its role in your
particular model. However, using programming to change a block’s icon in one model will
change it in every model using that block, since blocks and their internal descriptions reside in
libraries, not in models. In addition, since some blocks are animated, it is not easy to change a
block’s icon without having to modify its ModL code. For these reasons, you should not
change the icon on the blocks in the libraries that come with ExtendSim.

If you build your own blocks, you can give them any icon you want. And there are two better
ways to customize blocks in your model without having to directly modify icons:

• You can paste pictures on the worksheet to customize the model. Pictures automatically go
behind blocks and text. For example, you can place a map of a region behind your model, or
show the layout of a plant. This is described in more detail in “Working with pictures” on
page 109.

• You can also add a picture to a block without affecting the original one in the library by mak-
ing the block hierarchical. This technique is described in more detail in “Modifying hierar-
chical blocks” on page 128.

Left: Random number block on worksheet, global number is 13
Right: Inside hierarchical block, global number is still 13, local number is 0

66 How To
Hierarchical blocks

H
ow

 T
o

Icon views
At the bottom right of many dialogs is a popup for icon views. Some blocks have multiple icon
views; some have none. If a block has icon views, the choice of view will determine how the
block looks on the model worksheet.

For example, an icon view could provide:

Alternate connector positions, such as an input connector on the right side of the block. This
helps avoid awkward connection line placements when building models.

Choices of icon size, such as regular and reduced size. An example
is the History block (Item library) where the Status view is smaller
than the Default view.

Different icons depending on choices that have been made in the
block’s dialog. For example, a block that represents a flow could be
pointed forward in the view labeled Forward and pointed back-
ward in the view labeled Backward.

Alternate icons depending on what the block represents in a model. This is often used for
hierarchical blocks that represent a specific process in one part of the model but a different
process, with the same functionality, in a different part of the model. For instance, in the
Markov Chain Weather model discussed on page 17, the hierarchical block “Weather Fore-
cast” uses views to indicate the current state for a state/action model.

Blocks without icon views will not have any
choices in the Views popup menu at the bottom
of the block’s dialog. If additional views are
present, they can be selected by right-clicking
on a block’s icon or by using the Views popup
menu. They can also be called by functions.

ExtendSim facilitates the creation of different
icon views while developing or editing a
block’s structure. For more information see the
Technical Reference.

Hierarchical blocks
It’s not unusual for models to have thousands
of blocks, which can make it difficult to under-
stand what is happening in the model. Hierar-
chy helps solve this problem by grouping
multiple blocks into one hierarchical block that
represents a portion of the process being modeled. A hierarchical block can contain submodels,
text, graphics and clones of dialog items and tables. Hierarchical blocks can even contain other
hierarchical blocks, so there are multiple levels of hierarchy.

☞ The Navigator is a useful tool for quickly drilling down through the different levels of hierar-
chical blocks to find the one you’re looking for.

Because hierarchy is mainly used to enhance or simplify model appearance, it is discussed in
further detail in “Hierarchy” on page 120.

History icon: Default and
Status views

Libraries and Blocks 67
Creating and maintaining libraries

H
ow

 T
o

Creating and maintaining libraries
☞ This section is only for those who build custom blocks or want to save hierarchical blocks in

libraries.

Creating a new library
To start a new library, choose Library > Library Tools > New Library. A dialog appears for
selecting a location for the new library and giving it a name. Note that libraries should be saved
in the Documents/ExtendSim/Libraries folder or in the same folder as the model; otherwise
ExtendSim will not be able to find them.

 Whether you build new blocks or modify ExtendSim blocks, give them a new name and
put them in a new library. Do not name them the same as the ExtendSim blocks and do not
put them in the libraries that come with ExtendSim.

Saving and compiling libraries
Every time you make a change to a library, such as adding a new block or moving a block from
one library to another, ExtendSim automatically saves the library. If you build a block and save
it, both the block and the library are saved.

When you create or make changes to blocks using the ModL programming language, the
blocks need to be compiled to machine code so they can be used to build models. If you make
a change to an Include file that is used by more than one block, its usually simplest to recom-
pile the whole library so the appropriate blocks incorporate the updated Include file.

☞ Unless you program your own blocks or move a library from one operating system to another
(for example, if you move a library from Windows to Mac OS) you do not need to compile.
The libraries and blocks that are packaged with ExtendSim are already compiled.

To compile a block or a library, use the compile commands in the Develop and Library menus:

• The Library > Library Tools > Compile Selected Blocks command causes the blocks
selected in the library window to be recompiled. Uncompiled blocks show in the library win-
dow with their names in red italics.

• The Develop > Compile Block command compiles the block to machine code without sav-
ing or closing the block. This is useful for testing new code for syntax errors when you are
building a block. The command is only enabled if a block’s structure is open.

• The Library > Library Tools > Compile Libraries command compiles the libraries selected
in the popup window and saves changes.

Compiling a library or block with debugging information allows you to set breakpoints, watch
points, and so forth. Compiling with external source code causes ExtendSim to generate an
external file that contains the source code; this is useful for version control.

☞ Blocks with external source code will show in the library window with CM (code management)
next to their icons. Blocks with debugging code show in the library window and on the model
worksheet with a red border around their icon. Uncompiled blocks show in the library window
with their names in red italics.

For more information about saving and compiling libraries, see the Technical Reference.

68 How To
Creating and maintaining libraries

H
ow

 T
o

Substituting one library for another
If you create your own blocks, you might want a model to use the blocks from a library with a
different name. For example, if you have developed a newer version of a library and you want
the model to use those blocks. Normally ExtendSim opens the library too fast for you to stop it.

In order to bypass this process, move the original library so that it is not in either the Docu-
ments/ExtendSim/Libraries folder nor in the folder that contains the model. Then make sure
your new library is in the Libraries folder.

If you do this before opening the model, ExtendSim will stop and request the location of the
library, as discussed in “Searching for libraries and blocks” on page 57. You can then use the
dialog to find and open the libraries you want the model to use. This will work even if the
library name is different than the one the model originally used, because what is important to
ExtendSim is the block name within the library, rather than just the library name.

Once all the required libraries are open, save the model so that the new libraries get saved with
the model.

☞ To force ExtendSim to ask for all the libraries to open when opening a model, uncheck the
Automatic search option in Edit > Options > Libraries tab.

Arranging blocks in libraries
If you build your own blocks, you could put all of the blocks you use in one huge library. That
way, you would never have to try to remember which block was where or remember where
your libraries are on your hard drive. However, this arrangement could make it difficult to
maintain your blocks.

Simulations run neither faster nor slower when you group your blocks in a single or multiple
libraries. The only performance consideration is that it initially takes more time to open multi-
ple libraries than it does a single library.

Do not add blocks, even hierarchical blocks, to the libraries that come with ExtendSim or
move blocks from those libraries. If you add blocks to an ExtendSim library, your work will be
lost when you update. If you move blocks from an ExtendSim library to a library you create,
the blocks in your library will not be updated when the ExtendSim library is updated.

Protecting the code of library blocks
If you build your own
blocks, you may not
want others to have
access to your code. As
discussed in the Techni-
cal Reference, Extend-
Sim blocks contain
ModL code and can also
reference Include files.

You can prevent others
from accessing the code in your libraries by either

• Not giving them the Include files, and/or

• Removing the ModL code of the blocks in a library

Libraries and Blocks 69
Managing blocks

H
ow

 T
o

To remove ModL code from your blocks, use the Library > Library Tools > Protect Library
command. This process creates a duplicate of the library with all the source code removed.
Keep the original library in a safe place, since there is no way to recover the ModL source code
from the protected library.

A protected library can be used in the same way as any other library except that the ModL code
cannot be altered or viewed. This means that someone using the library has all the functionality
of the blocks in that library but no ability to see how the blocks work.

☞ To protect a hierarchical block's structure and prevent a user from double-clicking the hierar-
chical block to see the underlying submodel, use the Model > Protect Model command dis-
cussed at “Protecting the model” on page 255.

Converting libraries to RunTime format
The ExtendSim Analysis and Player RunTime versions are useful for distributing models to
those who do not have a full ExtendSim license. To have your custom blocks be available to
run models in a RunTime version, but not be available for building models, convert the blocks
to RunTime format. Converting libraries to RunTime format also prevents them from being
used in the full version of ExtendSim. The conversion process is described in “Convert Library
to RunTime Format” on page 553.

Managing blocks
☞ This section is only for those who build custom blocks or want to save hierarchical blocks in

libraries.

Do not add blocks to the libraries that come with ExtendSim or move blocks from those librar-
ies. If you add blocks to an ExtendSim library, your work will be lost when you update. If you
move blocks from an ExtendSim library to a library you create, the blocks in your library will
not be updated when the ExtendSim library is updated.

Copying blocks
To make a copy of a block in the same library, select the block in the library window and right-
click to Duplicate Blocks. This copies the block into the current library and renames it with the
block name followed by a sequential number. This is common practice when you want to use
the ModL code in one block as the template for a different block.

To copy a block from one library to another, open the library windows for each of the libraries.
Right-click to Copy Selected Blocks in the source library window, then right-click to Paste
Blocks into the target library window.

Changing a block’s name
To change the name of a block, select the block in the library window and right-click to
Rename Block. In the window that opens, enter the new name.

If you change the name of a block, models that use that block will not be able to find it because
they are expecting the original name. ExtendSim will then ask you where the block is located
and present a dialog box for searching, as discussed in “Block searches” on page 58.

Removing blocks
It is rare that you will want to remove a block from a library but, if you do, select the block in
the library window and right-click to Delete Block or press the Delete or Backspace key.
ExtendSim will not let you remove a block that is in use in an open model. If you remove from
a library a block that is used by a model and later open that model, ExtendSim will present an

70 How To
Managing blocks

H
ow

 T
o

error message and give you the opportunity to indicate the location of the missing block; if it
can't find the block, it will put a placeholder in the model window.

Corrupted blocks
On rare occasions, you may get a message as you open a library that indicates that a block has
been corrupted or is bad. The corrupted block will appear in the library window as
*BAD*Blockname. To save the rest of the library, copy the uncorrupted blocks to a new library
and discard the old library. Then copy a backup copy of the block (hopefully you have one)
into this new library. This is a good reason to always back up your work! (If your block is cor-
rupted, contact Andritz Inc. and we may be able to fix the block.)

How To

Customizing the User Interface
Personalize the ExtendSim

modeling environment

“If you can dream it, you can do it.”
— Walt Disney

72 How To
Overview

H
ow

 T
o

Overview
Every modeler’s needs are different. ExtendSim offers a variety of methods to customize the
model interface so you, or those you give models to, can work in the most convenient and
effective manner. Most of these methods use non-programming techniques.

Cloning
In most programs, buttons and dialog parameters are found only in dialogs. The advantage of
this is you always know where to find them. However, having all your choices in dialogs can
be a disadvantage in large models. For instance, you may want easy access to parameters in
blocks that are scattered in multiple hierarchical layers throughout the model. Or you might
want to provide a more accessible interface for other users of the model. ExtendSim over-
comes these problems by giving you freedom to clone dialog items, tables, and graphs and
place them in a more convenient location, effectively creating a link with the original dialog
item.

☞ A clone is an exact copy (similar to a shortcut or alias) of a dialog item, table, or graph that
behaves identically to the original.

Cloning gives easier access to inputs and outputs when you want to change settings or monitor
simulation results. Dialog parameter fields, tables, text, buttons, checkboxes, and radio but-
tons, as well as graphs and data tables from blocks in the Chart library can all be cloned.
Cloned items can be placed in the model worksheet, notebook, or a hierarchical block’s work-
sheet, and text labels can be used to make the cloned item easy to understand.

You can clone multiple items from the same location or clone the same item to more than one
location. Every clone acts exactly like the original: if you change the original or any clone, all
instances are updated immediately.

Using cloned dialog items puts you in direct control of your models. Clone the dialog items to
a centralized location so you can easily change parameters. Label the clones so they are well-
documented and use them as the simulation runs, such as clicking buttons or entering values in
text entry boxes. For example, clone a Constant block’s Constant value field to change the
value between simulations, making it easier to test different assumptions without having to
open the block’s dialog. Or have an area of the model or a notebook that lets you monitor sev-
eral numeric values at a time, rather than just using a chart to watch the simulation results.

 Clones that display changes during a run will cause the simulation to run slower.

How to clone a dialog item
The Point and Click technique is used to clone an item onto the model or hierarchical block’s
worksheet or into a notebook.

Customizing the User Interface 73
Cloning

H
ow

 T
o

Open the Reservoir 1 model (located in the Documents\ExtendSim\Examples\Tutori-
als\Continuous folder)

Open the dialog of the Holding Tank block, labeled Reservoir using the Block/Text cursor

Select the Clone cursor either by right-clicking or from the toolbar

Select both the Current level text and its parameter field by either holding down the Shift
key as you click each item, or dragging a frame around the two items

Then click on the model window (or Notebook) where you want the clones to be located.
Clones can be moved, resize, and aligned after they are placed.

Close the Holding Tank block’s dialog.

Run the simulation. The cloned item will display the changing Reservoir level as the simu-
lation runs.

☞ If the model runs too quickly to see the change, go to Run > Simulation Setup > Setup tab and
change the end time to something much larger, such as 1000, then run the simulation again.

Using cloned items
Once you have a cloned item, you can use the Clone cursor to drag it almost anywhere you
want. Many people prefer to have all the items together at one side of the model window, for
example, or to clone all dialog items into a notebook or into a hierarchical block’s worksheet.

 You cannot move a cloned item from one hierarchical block to another unless the target hierar-
chical block contains the source hierarchical block.

Moving
To move a cloned item, right-click or choose the Clone tool from the toolbar, click on the item,
and drag it. To align two or more clones, select them and use the Alignment tools.

To move a cloned frame and all the dialog items it contains, use the Clone tool to frame- select
the frame and everything within. Then click on the frame using the Clone tool, and drag to
reposition it and its contents.

Resizing and deleting
To resize a cloned item, choose the Clone tool and click on the
cloned item so that the resizing handle appears in the lower right
side. Then click and drag the handle to change the size and shape of
the clone.

To remove cloned items from a model, simply select them (using the Clone tool) and press the
Delete key or choose Edit > Clear.

☞ If you delete the block from which you cloned a dialog item, the cloned item is automatically
deleted.

Cloned Holding Tank dialog items

Resizing cloned item

74 How To
Creating a dashboard interface

H
ow

 T
o

Locating the original
To find and open the dialog from which an item was cloned, choose the Clone tool and double-
click the cloned item.

Unlinked clones
If a block’s structure is modified by deleting a dialog item or changing the
tab order of the dialog items, clones associated with that block may become
unlinked. In this case, the clone will be grayed out and “???” will appear in
place of the cloned dialog item.

Choosing the clone tool and double-clicking the unlinked clone will cause an alert message to
appear and the dialog of the block from which the clone originally came will open. You may
then select a replacement item to clone, or simply delete the clone if it is no longer needed.

Creating a dashboard interface
In addition to permitting cloned
items in a notebook or model
worksheet, ExtendSim lets you
add customized buttons, popup
menus, controls, and more to
facilitate user interaction with a
model. For instance, the model window shown on the right has a custom button (Run Simula-
tion), a custom popup menu for the Inventory Strategy, and a cloned dialog item for the aver-
age WIP.

Buttons
The Buttons block (Utilities library) makes it easy to create buttons that will acti-
vate frequently-used commands. A number of predefined buttons can be selected
from the popup menu in the block’s dialog; you can also create custom buttons.

Predefined buttons

The predefined buttons are:

☞ The predefined Animation buttons only control 2D animation.

Animation On Animation Off

Animation On/Off Open Notebook

Run Simulation Pause Simulation

Save Model Open Block

Open H-block Open Database

Open Database to Tab Run Optimization or Scenarios

Unlinked clone

Customizing the User Interface 75
Creating a dashboard interface

H
ow

 T
o

Custom buttons
You can also create a
custom button for a
specific purpose by
changing the label
and/or its equation.

For example, the
Buttons block dia-
log shown here has
an About This Model
button. After the button is cloned to a worksheet, clicking it opens a hierarchical block (objec-
tID # 22) that has text and pictures describing the model, as shown below.

Using the Buttons block
To use a button, select or create
the button in the Button block’s
dialog, then clone the button
from the dialog to the model
worksheet, notebook, or hierar-
chical block. Whenever it is
clicked the button will execute
the command during the
enabled conditions on its
Options tab, shown here.

Each button requires a separate
Buttons block. To store the
block, place it anywhere on the model worksheet or within a hierarchical block. A common
place is to store the Buttons block behind its cloned button.

Examples
The Buttons block is a favorite because there are so many things you can do with it. To see
some of the ways it can be used, go to the Markov Chain Weather Simulation model located at
Documents/ExtendSim/Examples/Continuous/Standard Block Models. On the Worksheet,
scroll down until you see the 6 Buttons blocks. They provide the following functionality to the
6 buttons at the top of the model:

• Opening to a specific database
table (Weather or Forecast)

• Causing the simulation to run

• Turning animation on and off

• Opening to the model’s note-
book, which contains a clone of
the equation used in the model

• Opening a hierarchical block
that gives information about the
model as shown here

76 How To
Control blocks

H
ow

 T
o

Popup menus
The Popups block (Utili-
ties library) lets you create
a popup menu with custom
options that a user can

select from to control model behavior.

To create a popup menu, enter a name
for each option in the block’s Label col-
umn. Then clone the menu item from
the block’s dialog to a model worksheet, hierarchical block’s worksheet, or a notebook.
Finally, connect the Popups block’s output to the input of the block you want to control.

You can create a popup menu with as many options as you want. When the user selects an
option from the menu, the Popups block outputs the corresponding numeric value from the
first column in the dialog’s table.

For an example where the Popups block is used, see the Monte Carlo model,
located in the folder \Documents\ExtendSim\Examples\Continuous\Stan-
dard Block Models. The “Base case” popup menu in the upper right corner is
cloned from a Popups block.

☞ You can also link the table in the Popups’ dialog to an ExtendSim database table, creating a
popup menu for selecting a database record.

Model Interface template
The Model Interface block (Utilities
library) is a template for creating a
custom interface to a model. As seen
on the right, checkboxes in its dialog
allow you to customize which inter-
face elements will be cloned onto the
model worksheet.

Run Model and Pause Sim
While the Run/Pause and Stop tools in the toolbar are most commonly used, the Run Model
and Pause Sim blocks (Utilities library) give the user more customized control over model exe-
cution.

These blocks have settings in their dialogs that determine what happens when a model is run or
paused. And you can clone dialog items to the model worksheet as part of creating a user inter-
face. For more information, see “Blocks that control or monitor simulation runs” on page 91.

☞ See also the Notify block, discussed on page 77, which can be used to stop a simulation and
alert the model user.

Control blocks
The Utilities library has three blocks—Meter, Slider, and Switch—that are used to control
other blocks and show values as the simulation runs. The Slider and the Switch are used to set
values in models. The Meter is used to see values as the model is running.

Customizing the User Interface 77
Interacting with the model user

H
ow

 T
o

Meter
The Meter block (Utilities library) visually displays how a value varies between a
specified maximum and minimum. Set the maximum and minimum values in the
block’s dialog or by connecting other blocks (such as Constant blocks from the
Value library) to the top and bottom inputs. The clone from the block’s dialog is
shown here.

This is a good control to use if you want to see values while the simulation runs but you don’t
need to save them to a graph.

Slider
The dialog of a Slider block (Utilities library) lets you set minimum and
maximum levels and slide an indicator along a scale to change the value of
its output.

The current value is displayed on the block’s icon and on its clone, and is
output through the block’s middle output connector. The block also has
connectors to output the minimum and maximum values.

The Slider is useful to output a number within a range when the number
does not need to be exact or to experiment with model parameters. For example, if you have an
Activity block where you want to specify the delay as the simulation is running and a delay of
8 is slow but a delay of 2 is fast, set the Slider with 8 as the maximum and 2 as a minimum.
Then clone the Slider onto the worksheet and move the indicator up and down as the simula-
tion is running.

Switch
The Switch block (Utilities library) can be used like an On/Off switch to control
some aspect of a model. The block’s input connector is used to turn the Switch on
and off; its output connector reports the status. A value of 0 (zero) indicates the
Switch is off and the icon turns red; and a value of 1 (one) indicates it is on and
the icon turns green. This block has several uses:

• Its dialog has a Switch that can be cloned to the model worksheet, notebook, and so forth

• A dialog parameter allows the Switch’s status value (1 or 0) to be linked to a database, global
array, or Excel spreadsheet

• In a discrete event model, the Switch block can send a message to a connected block to
notify it of a status change

Interacting with the model user
Some ExtendSim blocks provide a convenient method for monitoring conditions in the model,
requesting input from the user, and reporting changes. In addition, if you build your own
blocks you can add customized alerts and prompts to display results and prompt for input data.

Notify block
The Notify block (Value library) provides three options for sending messages to the
user: Play a sound, Prompt for output value, and Stop the simulation. For all three
options, the Notify block has an input connector that receives a True or False value

that is used to determine whether or not to play a sound, stop the simulation, or issue a prompt.
When the Prompt option is selected, the block also has an output connector to output the value
the user enters after being prompted.

Maximum

Current

Minimum

78 How To
Hierarchy

H
ow

 T
o

All three options define True as being 0.5.

Play a sound
This option plays a sound when its input connector gets a True value (alternately, you can
choose to have it play only when the input value is True and animation is on). To use a sound,
choose the Play a sound option and enter the sound name in the Notify block’s dialog. You can
enter the name (such as click or crack) for any sound located in the ExtendSim Extensions
folder. To hear that sound, click the Play Sound button.

☞ Sound files you create and place in the Extensions folder must be in .wav format (Windows) or
an snd resource (Mac OS). On Windows, you can also enter the name for any sound in Win-
dow's Sounds Control Panel.

Prompt for output value
This option is mainly used to prompt the
user to change the block's output value.
Until the input connector gets a True value,
the block outputs the value specified in the
dialog. When the input is 0.5, the block
prompts the user to enter a different value
to output.

You use this block to pause a simulation,
request a value from the user, then continue
the simulation using the new value. The
output value can be any number, including

0. If the user clicks the Cancel button in the prompt dialog, the simulation stops.

Stop the simulation
This option is used to stop the simulation and alert the user if the monitored parameter gets a
True value.

• You can customize the block to display any warning message you want, up to 255 charac-
ters. You can also set the message to include the block's number and the time the event
occurred.

Hierarchy
Hierarchy is useful for customizing a model’s interface. It reduces the number of blocks visible
on the model worksheet, so models are easier to understand and navigate. It is also used to
organize the model into easily-recognized components, separating the model into process ele-
ments that are more closely tied to reality.

You can encapsulate portions of a model into hierarchical block then clone dialog items to the
top of the hierarchical block's worksheet for easy access. Or add custom pictures as icons for
groups of hierarchical blocks that all relate to a certain part of the process you’re simulating.
You could also create a hierarchical Help block for the model user, as discussed at “Help
block” on page 80.

For more information about working with hierarchy and customizing and animating hierarchi-
cal blocks, see “Hierarchy” on page 120.

Customizing the User Interface 79
Notebooks

H
ow

 T
o

Notebooks

A notebook is a model window you can customize to help organize and manage model data.
By default each model has at least one notebook which can contain clones of dialog items,
tables, and graphs (see “Cloning” on page 72), as well as text, pictures, and drawing objects
(see “Text and graphics” on page 80.

Notebooks can be renamed by double-clicking
their title bar. For example, changing the
names to Model Inputs and Model Results, as
shown at the right.

A typical use for notebooks is for collecting all of the items you might want to watch in one
place. Since you can leave a notebook open as a simulation runs, use it as a central display for
all of the important values in all the dialogs.

Another common use is as a control panel. Clone all the dialog items that you might want to
change while the simulation is running to the notebook so you do not need to open the dialogs
from the worksheet in order to make a change.

When you save a model with the notebook open, the notebook will automatically open with the
same configuration the next time the file is opened. A notebook can be many pages long. With
the notebook as the active window, choose File > Show Page Breaks to show the number of
pages and how they would print.

You can copy the contents of a notebook as a picture which can be pasted into other applica-
tions such as a word processing document or a presentation. Simply select the items you want,
then choose the Edit > Copy To Picture command to copy the picture into the Clipboard.

☞ Notebooks provide a conveniently accessible location for
important information that is buried deep in hierarchy. For
example, see the Equation notebook of the Markov Chain
Weather Simulation model located at Documents/ExtendSim/
Examples/Continuous/Standard Block Models.

80 How To
Documenting models

H
ow

 T
o

Documenting models
Creating a user interface also involves adding information or graphics to clarify what is hap-
pening in a part of the model or to explain why a particular modeling approach was used. You
do this by putting text, pictures, or draw objects on the worksheet or by creating a hierarchical
“Help” block, as shown below.

Text and graphics
You can improve the organization of your model or Notebook by grouping elements together
and using text and graphics to identify or highlight different sections. To learn more about add-
ing text and graphics, including using colors and patterns to enhance them, see “Text” on
page 106, “Graphic shapes, tools, and commands” on page 107, and “Working with pictures”
on page 109.

Help block
To create a Help block, choose Model > New Hierarchical Block and name the hierarchical
block “Help”. Then add explanatory text, pictures and/or draw objects to the hierarchical
block's worksheet, close and save the block, and place it where you want on the model.

For more information about working with hierarchy and customizing hierarchical block icons,
see “Hierarchy” on page 120.

Equation blocks
The Equation block (Value library) and Equation(I) block (Item library) provide
flexibility and control for creating user interface elements. Most ModL functions
can be called from an Equation block, including functions specifically for interact-

ing with the model user. The blocks provide similar functionality, but the Equation block cal-
culates its equation when it gets a value and the Equation(I) block calculates its equation when
an item arrives. Equation blocks are useful when you want a more complex set of rules for the
interaction than the Notify block provides.

For example, you could use an Equation block to prompt for a value if a certain condition
exists and then change the result based on input from the user, like the Prompt block. But then
add another condition, such as a delay between when the user is prompted.

Customizing the User Interface 81
Centralizing data in a database

H
ow

 T
o

The equation in the following screen shot causes a message to appear to the model user, asking
for a new processing time if the length of the queue exceeds 50 and at least 10 time units have
elapsed since the last value was requested.

☞ For more about using equation blocks, see “Equation-based blocks” on page 189.

Centralizing data in a database
Cloning is a quick and easy way to create a user interface and notebooks provide a convenient
central location for data. However, for large models it may be too tedious to clone all the nec-
essary items for easy access. ExtendSim databases are useful for organizing data for complex
models into a central location.

You create databases to store parameters to be used in the model, model results, or a combina-
tion of the two. Use the linking technologies to dynamically link dialog parameters or tables
with the database. Or use Read and Write blocks to dynamically access database data. The
model user can easily access important data through buttons or popups placed on the model
worksheet. Since databases are primarily data management systems, see further discussion at
“ExtendSim databases for internal data storage” on page 232.

Additional interactive features if you program
If you develop your own libraries of blocks or want to modify existing blocks, ExtendSim pro-
vides additional capabilities for delivering messages and interacting with users. Here are some
ideas from the ExtendSim Technical Reference:

• Change what is shown in a dialog depending on what occurs in the model or what the user
selects or enters in the dialog. For example, you can change the text that is displayed in a
block’s dialog depending on which button a user clicks.

• Some of the available functions include displaying a message, prompting the user to input a
value, or making a sound. These functions can also be used for debugging the ExtendSim
ModL code, although using the Source Code Debugger is the preferred approach.

82 How To
External applications as an interface

H
ow

 T
o

• DLLs (Windows) and Shared Libraries (Mac OS) are especially handy where you want to
add a feature or functionality that the ExtendSim language (ModL) does not support. For
example, you could use a DLL or Shared Library to display a picture or graphic in a separate
window when a user clicks a button or to create a customized sound resource based on
numerical values from the model. DLLs and Shared Libraries are segments of code written
in any language, such as Visual Basic or C++. These DLL and Shared Library functions
allow you to call these code segment resources from within a block’s ModL code and per-
form operations.

• COM/ActiveX Automation allows ExtendSim to communicate with other applications either
as a server or a client. As a client, ExtendSim uses the external application’s COM object
model to communicate with it. As a server, ExtendSim responds to COM/ActiveX messages.
For more information, see “ActiveX/COM/OLE (Windows only)” on page 242.

External applications as an interface
Other applications can serve as an interface to an ExtendSim model. This is accomplished by
linking to ExtendSim models or blocks directly, using technologies such as ActiveX com-
mands, or indirectly through text files.

Using an external application works much the same as using the ExtendSim database feature,
since the application stores the parameters to be used in the model and the results of the simu-
lation. For more information, see “Exchanging information with external applications (IPC)”
on page 236.

How To

Model Execution
Tips for running simulations

“The future is something that everyone reaches
at the rate of sixty minutes an hour.”

— C. S. Lewis

84 How To
Overview

H
ow

 T
o

Overview
This chapter discusses how to setup and run a model, determine the number and lengths of
simulation runs, use time units in models, and speed up or slow down the simulation run.

Simulation setup
When creating a model, you will need to specify how long it will run and define other parame-
ters. To access the Simulation Setup window, choose Run > Simulation Setup. The dialog has
five tabs which are described in detail below.

Setup tab

Choice Description

End time The time that the simulation will end.

Start time The current time at the start of the simulation. By default this is set to 0, since
that is the most common starting point.

Runs The number of consecutive times to run this simulation. Note: the Optimizer
and Scenario Manager have their own methods of setting the number of runs;
see “Length and number of runs” on page 96.

Global time
units

Time unit for the entire model. Unless the global time unit is set to Generic, you
can also define local time units. See “Time units” on page 93.

Calendar date
definitions

For specifying calendar-based timing if Use Calendar dates is selected. Note:
Models cannot use calendar dates if the global time unit is set to Generic, and
Discrete Rate models have other restrictions. See “Calendar dates” on page 95.

Non-Calendar
date definitions

Only available if Use Calendar dates is not selected. Used by ExtendSim to
automatically convert local time units to the global, non-genereic, time unit.
See “Time unit conversions (non-Calendar dates)” on page 96.

Model Execution 85
Simulation setup

H
ow

 T
o

Continuous tab

The Continuous tab is only used for changing the time step, stepsize calculation, or simulation
order for a continuous model—models that do not contain an Executive block and where time
advances in steps rather than when events occur.

Choice Description

End time, Start time,
Runs, Global time
units

For the convenience of continuous modelers who want to change stepsize,
these four settings from the Setup tab are repeated on the Continuous tab.
Changing any of these settings on one tab will change them on the other.
See their descriptions in “Setup tab” on page 84.

Time per step (dt) Represents delta time (dt), or the length of time per step. This is the default
choice for determining the granularity of the simulation run. For most pur-
poses use the default setting of 1, meaning that each step will be one time
unit long. A value for the number of steps is automatically calculated based
on the dt entered. The value is computed as: floor(((EndTime-StartTime)/
DeltaTime) + 1.5). To see this, select the Number of steps option after
changing the Time per step (dt). See the Continuous Process Modeling
Quick Start guide for more information.

Number of steps Another method for determining the granularity of time for the simulation
run. In most cases, this would be a number equal to the duration (length of
the simulation run) plus 1; the model calculates values once for each step
and each step is one time unit long. A default value for delta time is auto-
matically calculated based on the number of steps you enter. The value is
computed as (EndTime-StartTime)/(NumSteps - 1). To see this, select the
Time per step (dt) option after changing the Number of steps. See the Con-
tinuous Process Modeling Quick Start guide for more information.

Stepsize calculations These are only used in continuous simulations that change the DeltaTime
system variable, such as electronics models. Most models should use Auto-
step fast. If the blocks that you create change DeltaTime and demand more
accuracy, use Autostep slow (which divides the calculated value for Delta-
Time by 5). If your custom blocks change DeltaTime but you want to
ignore the changes, select Only use entered steps or dt.

86 How To
Simulation setup

H
ow

 T
o

Random Numbers tab

☞ For the table that follows, consecutive simulation runs means setting the number of simulation
runs in the Setup tab to something greater than 1.

Simulation order Flow order should be used for most models. See the Continuous Process
Modeling Quick Start manual for more information.

Choice Description

Random seed (blank
or zero is random)

The “interface” for the random number generator. Leaving the field empty
or entering a value of 0 uses a random seed. Any other value causes repeat-
able sequences of pseudo-random numbers and the word “Seed” will show
in the model’s status bar during the run. Note: Each block that outputs ran-
dom numbers will generate its own independent sequence. For more infor-
mation see “Random seeds” on page 198.

Starting seed used in
last model run

Reports the random seed from the previous run. To repeat the exact
sequence of random numbers used during the previous run, copy that run’s
starting seed and paste it into the field for this run’s random seed.

Reset random num-
bers for every run

When this option is selected from the popup menu, random numbers are
initialized at the start of every simulation run. If the global random seed is
blank or 0, a new randomized seed will be generated at the start of every
consecutive simulation run. If the global random seed is a positive integer,
the same seed value will be used for every consecutive run.

Continue random
number sequence

When this option is selected from the popup menu, the sequence of seeds
for each consecutive simulation run is continued from the previous run.

Choice Description

Model Execution 87
Running a simulation

H
ow

 T
o

Comments tab
Use this tab to enter comments about the simulation run.

Running a simulation
In the Quick Start guides you learned the basic steps in running a model. Some additional
points are discussed in the following sections.

Menu commands and toolbar buttons
Use the right-click menu, the Run buttons in the Model toolbar (as shown
here), or the commands under the Run menu to configure a simulation run
and to start, pause, resume, and stop a simulation.

Run modes
There are two modes toggled using the Run Mode toolbar button:

1) To run a single model as quickly as possible, even if you are running that model multiple
times, use the default fastest run mode as shown here and in the Model toolbar above.

2) To run multiple different models at the same time, use the multi-threaded run mode .
This takes advantage of the ExtendSim multi-threading capability—the user interface is
processed in one thread and the processing for each model occurs in separate threads. In
this mode, the Run Simulation button changes to .

Use database
table__seed for
values

When this option is selected from the popup menu, the starting seed for
each consecutive run is read from the __Seed table in the selected Extend-
Sim database (note that Seed is preceded by 2 underscore characters). This
option allows you to specify exactly which seeds will be used for each sim-
ulation run. It also is a convenient method for recording a set of seed val-
ues. To specify a set of random seeds, create a table in a database with one
field and a number of records equal to the number of simulation runs. The
model will access sequential records for each consecutive simulation run,
and that record’s value will be the seed value for the run. If you leave the
records blank or enter zeros, ExtendSim will fill the table with seed values
on the first run. It will then use those seed values for each subsequent set of
runs.

Check blocks for
duplicate random
number seeds

At the start of the simulation, all blocks that use random numbers are
checked to make sure that no two blocks are using the same seed values.
This option is not necessary unless the use block seed option is selected in
the individual blocks.

Use recommended
random number gen-
erator (default)

When checked, ExtendSim will use the recommended Minimum Standard
random number generator. When unchecked, ExtendSim will use the
optional Schrage random number generator used in earlier versions (back-
wards compatibility). For details about the ExtendSim random number
generator see “Random number generators” on page 197.

Antithetic random
variates (off by
default)

Generates antithetic variates for possible variance reduction using multiple
runs. It can be controlled by the Optimizer block (Value library), or by cus-
tom blocks, to alternate on and off in alternate runs using the Antitheti-
cRandomVariates global variable. See the ExtendSim Technical Reference
for more information. This setting should be off under normal use.

Choice Description

88 How To
Running a simulation

H
ow

 T
o

☞ Whichever mode is active when the model is save, is saved with the model.

Run operations
There are two “Run” operations:

1) Run Simulation. Starts a simulation run, or the first of multiple simulation
runs, for the active model window. Note that the toolbar’s Run button:

• Is a single green arrow if the Run Mode (discussed above) is set to fastest run. It has
multiple arrows if the Run Mode is set to multi-threaded.

• Changes to a Pause button (shown on the left) while the simulation is
running and to a Resume button (shown on the right) while the simula-
tion is paused.

2) Run Optimization or Scenarios. Runs an optimization or scenarios. This com-
mand is disabled unless there is an Optimizer or Scenario Manager block (Value
library) in the model. See “Optimization” on page 158 and “Scenario analysis” on
page 143. Also note that you cannot run optimization and scenarios at the same time.
ExtendSim will warn if you try to do this with both an Optimizer and a Scenario Manager
block in the model.

The Run menu commands are discussed at “Run menu” on page 565. Buttons to activate the
Run commands are shown at “Model toolbar” on page 569.

Running a model multiple times
It is common that you will build a model and run it repeatedly. Running a model multiple times
gives a range of values indicating possible outcomes and facilitates model analysis. For exam-
ple, you would do this when the model has random inputs, for Monte Carlo simulations, or
when performing sensitivity analysis.

☞ It is most common to use the Simulation Setup > Setup tab to set a model to run multiple con-
secutive times and to run the model with Run Mode set to Fastest.

• As discussed in “Constants and randomness” on page 7, models with one or more random
inputs are called stochastic models. Stochastic models are run repeatedly and then analyzed
statistically to determine a likely outcome.

• Monte Carlo simulation is commonly defined as applying random behavior to a static or
dynamic model and evaluating the results over a number of trials or observations. Applying
Monte Carlo simulation techniques to a dynamic model is also known as stochastic model-
ing, which is discussed above. You can build both static and dynamic models with Extend-
Sim. For more information, see “Monte Carlo modeling” on page 14.

• When you perform Sensitivity Analysis on a model, you select a variable for analysis and
vary it to determine how much of an impact the variable has on the model as a whole. Sensi-
tivity analysis is discussed in detail in “Sensitivity analysis” on page 138.

• Simulations are also run multiple times as part of Scenario Analysis (strategically examining
the outcome of different model configurations) and for Optimization (finding the ideal value
in a model). Note that for these technologies, the runs are setup based on settings in the
block’s dialog, not based on the Simulation Setup command. Scenario analysis is discussed
on page 143; Optimization is discussed on page 158.

Model Execution 89
Running a simulation

H
ow

 T
o

You should plan on running a simulation at least 3-5 times to estimate the variability in output
whenever a model contains random variables. Then you can use statistical sample-size calcula-
tions (discussed in “Determining the length and number of runs” on page 98) to determine how
many additional simulation runs are required to obtain an accurate estimate of the model’s per-
formance. Some tools in ExtendSim for evaluating multiple simulation runs are:

• Blocks in the Chart library

• Confidence intervals (reported by the Statistics block in the Report library) that show the
probability that a certain range captures the true mean for a simulation model result

☞ See also “Length and number of runs” on page 96.

Stepping through a model
Sometimes you want to pause a simulation run to observe something of special interest, or step
through the run to verify the action. There are several ways to accomplish this:

• Use the Pause Sim block (Utilities library)
and clone one of its buttons (Run, Pause, or
R/P/R) onto the worksheet to control the
simulation run. This block causes the simu-
lation to pause when certain conditions are
met; the conditions are specified in the
block’s dialog (seen at right). These options
are particularly useful when stepping
through a model.

• Use the commands in the Run > Model Debugging menu to tell
ExtendSim how far to go when the Step button or command is
clicked.

• The Pause at Beginning command automatically pauses the
simulation after it starts so that you can step through the run
from step zero. The first pause occurs before the first step but after the initial model
processing (initialization, error checking, etc.) While the simulation is paused, the
word Paused appears in the model’s status bar.

• The Step Each Block command controls the behavior of the Step command or button so
that you can step through a simulation block by block. Only active when the Pause but-
ton or command has been activated.

• The Step Entire Model command controls the behavior of the Step command or button
so that you can step through an entire cycle of all the blocks in the model. Each Step
command starts at the selected block and continues the simulation run until the execu-
tion order returns to the original block. Only active when the Pause button or command
has been activated. This is a good way to examine what happens in the intervals
between when a block is called.

• Slow down the simulation run as discussed on page 100.

• Give the command Run > Pause, or click the Pause/Resume button in the toolbar, as the sim-
ulation runs. Then give the command Run > Resume or click the Pause/Resume button to
continue execution. This method works well for pausing a run one time to observe some-

90 How To
Running a simulation

H
ow

 T
o

thing of interest, but is not that useful for stepping through the entire model since it depends
on your dexterity.

• Finally, if you use equation-based blocks you can set debugging points in the equation to
step through model calculations.

Other points when running models
• When a model finishes running the status bar will state “Finished at TimeX” and display

how long the simulation run took. If the device’s sound is on and ExtendSim is set in the
Options command to make a sound at the end of the run, there will also be a beep.

☞ If you run a model multiple times, the status bar reports the times for each run during the run,
and the cumulative time at the end of the runs. Also consider using the RealTimer block (Utili-
ties library) if you want more precise information.

• You can run multiple models simultaneously. However, the Run > Run Simulation command
only activates one model at a time. See “Working with multiple models” on page 100 for
how to activate multiple model runs.

• Windows and dialogs, such as a notebook, a block’s dialog, or a hierarchical block’s work-
sheet, can be left open when the model runs. However, you cannot run a simulation with a
block’s structure open. In addition, leaving too many windows open (especially if they have
parameters that update constantly) can slow simulation speed.

• The ExtendSim application communicates with blocks in a model and the blocks can com-
municate with each other by sending and receiving messages before, during, and after a sim-
ulation run. This unique communication method allows powerful modeling constructs and
results in models that are visually logical and easily understood. See also “How ExtendSim
passes messages in models” on page 101.

For more information about running models under different circumstances, see the following
sections:

• “Animation” on page 110

• “Scenario analysis” on page 143

• “Sensitivity analysis” on page 138

• “Optimization” on page 158

• “Dotted lines for unconnected connections” on page 214

• “Model reporting” on page 216

• “Confidence intervals” on page 138

Status bar
ExtendSim shows information for
the active model worksheet in a Sta-
tus Bar at the bottom of the application window.

When you start the simulation run, ExtendSim displays some initial status information in the
form of messages that appear momentarily in the status bar area. Depending on the speed of
your computer, you may see the following messages: Wait, Checking Data, or Initializing
Data. These messages inform you of status as ExtendSim checks and initializes the model prior
to starting the run. On fast computers, the messages may appear too quickly for you to read.

Model Execution 91
Running a simulation

H
ow

 T
o

While the simulation is running
The Status Bar changes as each running model is brought to the front. The following informa-
tion is displayed while the simulation runs:

• An estimate of the actual time left in the simulation (expressed as hours:minutes:seconds) so
you can determine how long it will run.

• The current time of the simulation in simulation time.

• The number of the simulation run (internally the numbering of simulation runs starts at 0 but
the number is displayed as starting at 1 in the Status Bar).

• The word “Seed”, if the model has been set to run with the same sequence of random num-
bers.

These values are determined by the entries in the Simulation Setup dialog described in “Setup
tab” on page 84.

☞ The time remaining shown in the Status Bar is only an estimate. For continuous simulations, it
is usually accurate. For discrete event and discrete rate simulations, however, it can be inaccu-
rate, as discussed below.

After the run has finished
Once the run has completed, the Status Bar reports when the run finished and the total elapsed
time it ran (for all runs, if there were multiple runs). The Status Bar also reports the settings for
Runs and End time as specified in the Simulation Setup dialog.

Timer inconsistencies (event-based models only)
In discrete event and discrete rate models, the value for the actual time left sometimes varies
from one moment to the next, especially at the beginning of a run when it is impossible to
know when events are going to happen and thus how long it will take to run a model. The esti-
mated time remaining may even increase if the simulation starts to run slower because items
are being delayed more or because more events are being generated. The Status Bar will some-
times show the phrase Initializing Data during the initial steps of a discrete event simulation if
there is a great deal of fast activity (for instance, if you use preprocessing).

Since it is only an estimate, do not be concerned about the value in the Status Bar; the model is
running correctly regardless of the value shown there. However, if the timer continues to
increase throughout the run and the simulation clock does not advance, it may indicate that
there is an infinite loop in the model. Running the model with 2D animation on may help iden-
tify the cause of this.

Blocks that control or monitor simulation runs
In addition to the menu commands and toolbar buttons and the Status Bar, several blocks pro-
vide customized control over or information about the simulation run. And as is true for other
blocks, you can clone dialog items from these blocks onto the model worksheet as discussed in
“Cloning” on page 72.

Buttons (Utilities library)
Creates buttons to activate frequently-used commands such as running a simula-
tion, opening a notebook, and saving the model. Since this block is most often

92 How To
Timing

H
ow

 T
o

used to create a user interface for a model, it is discussed in “Creating a dashboard interface”
on page 74.

Pause Sim (Utilities library)
Pauses the simulation when certain conditions are met. You can clone the block’s
Pause, Resume, and R/P/R (Run/Pause/Resume) buttons to the worksheet. Fur-
thermore, this block’s options give more flexibility than cloning the Buttons
block’s Pause Simulation button (discussed on page 74). See “Stepping through a

model” on page 89

RealTimer (Utilities library)
Reports information about simulation run times and profiles block usage. It
should be placed at the far right on the model worksheet. Its Duration tab reports
the duration of the current run as well as a specified number of previous runs. Its
Profile tab reports the proportion of simulation time each block used. At the con-

clusion of the run, the dialog opens to display the run duration in hours, minutes, seconds,
tenths of seconds, and ticks (sixtieth of a second). Block profiling information is stored in a
database table.

Run Model (Utilities library)
Runs the simulation when the Run Simulation Now button is pressed. The options
in this block give you more flexibility than cloning the Run Simulation button
from the Buttons block (discussed at “Buttons” on page 74.)

Time Sync (Utilities library)
Synchronizes the model to run in real time. It does this by pausing on each simu-
lation step until the amount of simulation time that has passed equals the amount
of real time that has passed. This is only effective if the model is running faster
than real time. If the model is running slower then real time, the block will have

no effect. The timing starts at the beginning of simulation execution after all of the blocks have
been initialized.

Notify (Value library)
This block has an input connector that receives a True or False value that is used
to determine whether or not to play a sound, issue a prompt, or stop the simula-
tion and alert the user. It is discussed more at “Notify block” on page 77.

Timing
Unless you stop them earlier, all simulations run for a specified period of time. ExtendSim
determines the duration of a simulation run based on the values entered in the Run > Simula-
tion Setup > Setup tab; the duration is the period from the start time to the end time.

Continuous simulation timing
In continuous simulations, the duration is divided into intervals or steps of equal length, where
start time is the first step and end time is the last step. The length of time, in time units, for each
step is known as delta time or dt. The delta time determines how frequently model data is
recalculated. For more information, see the Continuous Process Modeling guide.

Model Execution 93
Simulation order (continuous models)

H
ow

 T
o

Discrete event simulation timing
In discrete event and discrete rate simulations, ExtendSim progresses from start time through
end time through a series of events. Time progresses from one event to the next and the time
between events is unlikely to be equal. The application calculates the time between events
internally based on when an event occurs. The number of steps in a discrete event or discrete
rate model is the number of events.

Simulation order (continuous models)
The Run > Simulation Setup > Continuous tab allows you to choose the order in which
ExtendSim executes block data for continuous models. The choices are Flow order (the
default), Left to right, and Custom.

 It would be unusual to change the simulation order from the default choice, Flow order.

Since this information pertains to running continuous models, it is discussed in the Continuous
Process Modeling Quick Start guide.

Time units
Time is the most common unit of measure in simulation. Each model has its own time unit that
is managed in the Simulation Setup dialog.

Global time unit
The global time unit is the base unit for the entire model, defining the units
for the start and end times of the simulation.

There are two ways to specify a global time unit:

• Use the Generic time unit as the default for the whole model.

• Select a specific global time unit, such as hours or seconds, to be the
default for the whole model.

Global time units are set by going to the Run > Simulation Setup > Setup tab and selecting and
defining the unit of time. Once you select a global time unit, all blocks with time-based param-
eters, including those subsequently added to the model, use it by default as their local time
unit.

Using a generic global time unit
By default, the non-specified “Generic” time is a new model’s global time unit. Generic is a
conceptual unit of time and has whatever meaning you give it. Generic time is the same for the
whole model and for each block that has time-based parameters.

This option is used by most modelers to quickly create a model without having to select a spe-
cific time unit. It is also commonly used when the model’s blocks use the same time units as
the model.

With the Generic global time unit, time-based blocks do not
have a local time unit. Instead, all blocks that include a time-
based parameter will specify generic “time units.”

Make sure to maintain all time-based parameters throughout the model in that same unit of
conceptual time. For example, if you have a model that simulates a factory over the course of
three hours and your conceptual time unit is minutes, set the end time of the simulation to be
180 in the Simulation Setup dialog and enter parameters based on minutes in block dialogs.

94 How To
Time units

H
ow

 T
o

The Comments tab in the Simulation Setup dialog is a convenient place for noting what unit of
time Generic represents in your model.

☞ Models cannot use Calendar dates or specify a local time unit if the global time unit is set to
Generic.

Using a specific global time unit
In the Run > Simulation Setup > Setup tab you can change the default global time unit to be
something specific, such as hours or seconds. Using a specific global time unit can add to the
understanding of the model, since it allows you to specify parameters based on different time
units throughout the model.

When a specific global time unit is selected, that setting
becomes the default global time unit for the model as
well as the default local time unit within time-based
blocks. There will be an asterisk (*) next to the name of
the time unit in the dialog of each block.

As discussed below, when the model uses a specific global time unit, you can change the local
time unit to be anything you want.

☞ If you change the global time unit in the Simulation Setup dialog, be sure that the new time unit
is appropriate for all blocks that use the default time unit. For example, if the global time unit
was in hours and you change it to days, a block that used two hours will now use two days if it
is set to use the default time unit.

Local time unit
You can only change the local time unit in a block if the model is using a non-generic global
time unit such as minutes, as discussed on page 94. By default, a block’s local time unit will be
the same as the global time unit for the model as a whole. For instance, if you change the
global time unit in the Simulation Setup dialog, it will also change in every time-based block.
However, as soon as you select a different time unit from the popup menu in a block, the local
time unit changes from the default to that new time unit.

You can thus choose any unit of time for each time-based
parameter in each block in the model. This means you
can specify the parameter’s time locally as milliseconds,
seconds, minutes, hours, days, weeks, months, or years,
regardless of the global time unit.

☞ In continuous and discrete event models, a local time unit applies only to its associated time-
based parameter. For instance, an Item library block could have two local time units, each
associated with a different parameter. In discrete rate models however, the local time unit
applies to the entire block. There can only be one local time unit for a discrete rate block.

If a local time unit is specified, ExtendSim will automati-
cally convert parameters based on the local time unit’s
relationship to the global time unit. If the model is using
Calendar date definitions (see “Calendar dates”, below)
that conversion will be based on the calendar—the actual
number of days in the specific month selected. If the model
is not using Calendar dates, the conversion will use the
non-calendar definitions entered in the Simulation Setup

Asterisk indicates time unit in block is
the same as global time unit

Local time unit is minutes; global time is
set to a different time unit

Model Execution 95
Time units

H
ow

 T
o

dialog, as shown at right and discussed in “Time unit conversions (non-Calendar dates)” on
page 96.

Selecting a specific global time unit provides consistency when adding new blocks to the
model, since every new block will initially be using the same time unit. However, in some
cases you will not want to keep all parameters in default mode. Explicitly selecting a time unit
(even the same unit of time as the global time unit) for each local parameter in the model is a
safer choice. Then, if you subsequently decide to change the global time unit, you will not
accidentally affect the simulation results.

☞ If you do not want the local time unit to change based on a change in the global time unit, select
a time unit from the popup that is not the default but which has the same name as the default
global time unit. For instance, select hours from the popup, rather than hours*.

Calendar dates
Sometimes it is helpful to have the duration of simulation expressed in terms of a calendar-
based starting and ending time. Calendar dates is a time and date format that corresponds to the
calendar and a 24-hour clock. It is an option that you can choose in the Simulation Setup dia-
log, along with the Start time, End time, and Global time unit entries.

 Calendar dates are not available if the global time unit is Generic or Milliseconds for most
models, or if anything other than Seconds, Hours, Days, or Weeks has been selected as the spe-
cific global time unit for a discrete rate model. (If Calendar dates has been selected, individual
Rate library blocks will not be able to select Months or Years as their local time unit.)

To enable Calendar dates:

Choose Run > Simulation Setup > Setup tab

Select Use Calendar dates

Click the Start field

A calendar appears from which to select a date and
time that represents the beginning of the simulation.
ExtendSim will use that information and the other
entries you have made in the Setup tab to calculate
the End date. (Of course, all dates are in simulation
time, not in real time.)

There are two other options that affect Calendar
date definitions. The European format option places
the day before the month. The Macintosh date
option, selected by default for Mac OS, is needed when Excel is set to use the “1904 date sys-
tem” (see Excel > File > Preferences > Calculation.) If “1904 date system” is not checked in
Excel on the Macintosh, uncheck this option in ExtendSim.

Selecting Use calendar dates for a model can also affect blocks that deal with time. For exam-
ple, if Calendar dates is enabled, you can use the calendar format to create a schedule in the
Create block (Item library). An example of this is the block named “Schedule” in the Schedul-
ing Resources model located in the folder Documents\ExtendSim\Examples\Discrete
Event\Resources and Shifts. (The model is discussed in “Scheduling resources” on page 370.)

The following allow you to select Calendar dates:

• Create (Item library) when it is set to Create items by schedule or Create values by schedule

96 How To
Other Units

H
ow

 T
o

• History and Shift blocks (Item library)

• Lookup Table (Value library) when it is set to Lookup the: time

• Some blocks in the Chart library

• Database tables

 Do not use Calendar dates if block dialogs are set to use values smaller than 1 second (such as
0.0005 seconds), as it may affect numerical precision.

Time unit conversions (non-Calendar dates)
If a model has not been set to use Calendar date definitions
when it runs, ExtendSim converts all time-based parameters
from their local time units to the specific global time unit
based upon constants entered in the Run > Simulation
Setup > Setup tab. You can use the default settings or set
your own definitions for all the time categories. Specifying
that there are 8 hours in a day is an easy way to model a
standard 8 hour working day. Note that, since each month is
set to have 30 days, the default value for a year is 360, not
365.

For example, assume you are using the default constants and the global time unit for the model
is days, but you have selected a local time unit of hours for a block’s time-based parameter.
When the model runs, ExtendSim will cause that parameter to be divided by 24, converting it
into the appropriate value for one day.

☞ Time unit conversions are only applicable if the model uses specific global time units and does
not use Calendar dates.

Other Units

Flow units
Flow units (gallons of liquid, cartons of cereal, rolls of paper, tons of flour, and so forth) can be
defined in the Rate library blocks. For more information, see “Units and unit groups” on
page 441.

Length
The Transport and Convey Item blocks (Item library) utilize a unit of distance (feet or meters)
to calculate the delay required to move an item from one point to another. Similarly, the Con-
vey Flow block (Rate library) uses a user-defined unit of length to calculate a delay for moving
units of flow.

Length and number of runs
An important consideration when building a model is to determine how long and how often the
simulation should be run. Your entries for the End time and Runs in the Simulation Setup dia-
log will depend on four factors:

• Whether the system being modeled is terminating (has a natural end point) or non-terminat-
ing (has no obvious end time)

• The period of interest (what portion of time you are modeling)

• Your modeling objectives (estimating performance, exploring alternatives, or other)

Default constants in the
Simulation Setup dialog

Model Execution 97
Length and number of runs

H
ow

 T
o

• How the samples for statistical analysis are obtained (from running multiple short simula-
tions or by analyzing portions of one very long simulation run)

A brief discussion of terminating and non-terminating systems follows. A comprehensive dis-
cussion on this matter is beyond the scope of this manual.

Terminating systems
Some systems obviously lend themselves to a natural determination of end time. For instance,
most service operations have a point at which activities end. In these terminating systems there
is an obvious time when no more useful information will be obtained by running the simulation
longer. For example, when modeling one day at a walk-in customer service center that is only
open 8 hours each day, you could safely set the simulation end time for 8 hours. Since custom-
ers would not wait overnight in line for service, the service queue would be empty or cleaned
out at the end of the day and further simulation time would be unproductive.

Because terminating systems do not typically reach a continuing steady state, your purpose in
modeling them is usually to look for changes and identify trends, rather than obtain system-
wide statistical averages. For instance, in the customer service center mentioned above, it is
more important to determine the peaks and valleys of activity than to calculate overall aver-
ages. Basing your decisions on average utilization in this case could obscure transient prob-
lems caused by multiple periods of understaffing.

Since the initial conditions in terminating systems will have an impact on results, it is import-
ant that they be both realistic and representative of the actual system. Terminating systems are
simulated using multiple runs for short periods of time using different random seeds for each
run. As discussed in “Confidence intervals” on page 138, the more frequently a simulation is
run, the more confidence you can have in the results.

Non-terminating systems
A non-terminating system does not have a natural or obvious end time. Models of non-termi-
nating systems are often called steady-state systems since, if they are run long enough, the
results tend to a steady state. In these situations, simulation runs could go on indefinitely with-
out materially affecting the outcome. Most manufacturing flow systems and some service situ-
ations (for example, 24-hour convenience stores, emergency rooms, and telephone service
centers) are non-terminating systems.

Systems that have off-shift periods, for instance a manufacturing plant that operates only two
shifts a day, may still be considered non-terminating. If the operation does not clear out at the
end of the second shift, but instead the first shift starts up where the second shift ended, the
system is considered non-terminating and the off shift period is just ignored for modeling pur-
poses.

The important considerations when modeling non-terminating systems involve eliminating the
initial bias caused by the warm-up period, deciding how to obtain samples for statistical analy-
sis, and determining the length of the run.

• The warm-up period is the period from start-up to when processes operate at their normal or
steady-state level. In simulation models, start-up conditions may be unrealistic or nonrepre-
sentative of the actual system and may bias simulation results. To overcome this, you can
either wait until after the warm-up period to gather statistics, reset statistics as discussed in
“Clear Statistics” on page 136, or run the simulation for a long period of time to “swamp”
the biasing effect of the initial conditions.

98 How To
Speeding up a simulation

H
ow

 T
o

• To obtain multiple samples for statistical analysis, you could perform repeated runs after
eliminating or compensating for the warm-up bias or you could do one extremely long run
and calculate statistics on results occurring during various windows of time. As with termi-
nating systems, the greater the number of samples, the higher the confidence in the results.

• The run length of a non-terminating system depends on various factors, including how you
obtain samples, your period of interest, and your modeling objectives, as discussed below.

Determining the length and number of runs
When modeling terminating systems, the length of the simulation run is usually determined by
the natural end point of the process being modeled. For instance, the 8 hours that a bank would
be open is modeled for 8 simulation hours. For statistical analysis purposes, however, you may
want to build a model that looks at a specific time period of a terminating system. For example,
you could model the bank’s busiest time period (say from 11 AM to 2 PM) to run multiple
times to get a better statistical picture of how the bank operates during that time period.

For non-terminating systems, the length of the run depends on how you decide to obtain your
samples (as discussed above) and on your period of interest. Theoretically, a model of a non-
terminating system could be run indefinitely. In reality, it is usually simulated until the output
reaches an adequate representation of steady-state. For example, you would run a model of a
manufacturing operation for a long enough period of time that you feel confident that every
type of event happens at least several times. In other situations you might want to limit the run
to an artificially short period of time. For instance, you may want to only model the time it
takes the manufacturing operation to go from start-up to operating in a normal manner.

The number of simulation runs is determined by statistical sample size calculations and your
modeling goals. If your goal is to estimate performance, the number of runs is determined by
the required range in a confidence interval. If your goal is to compare alternatives, the number
of runs is based on acceptable levels of risk.

For more information on determining the length and number of simulation runs, please refer to
a simulation or statistics textbook.

Speeding up a simulation
The more complex your model, the more important it is to have it run quickly. Models become
complex as you add more detail to the workings of each part, or as you run it for longer or, for
continuous models only, with smaller delta time increments. Although ExtendSim runs models
at extremely high speeds relative to other programs, it can never hurt to think about speed con-
siderations. The following topics discuss some common reasons why a simulation might run
slower than it should and how to speed it up.

Select fastest run time
Unless you are running multiple different models at the same time, be sure the Run Mode is set
to fasted. See “Run modes” on page 87 for more information.

Decrease the display of data or movement
The most important thing to remember about running speed is that anything that causes the
screen to update will inherently slow down your model. Tips to keep in mind include:

• Only use animation when you need it, since animation will slow your model down more than
any other activity.

Model Execution 99
Speeding up a simulation

H
ow

 T
o

• Close hierarchical block worksheets if animation is on or if the worksheet contains cloned
dialog items.

• Do not keep graphs open when running your model if you are concerned about speed. To
keep a graph closed, in the Display tab of the Chart block’s Dialog tab select either does not
open automatically or opens at end of run.

• Close dialogs and notebooks that have parameters updating while the model is running.

• Limit the number of cloned objects that update frequently during the simulation.

Look for inefficient settings or code
In some situations the simulation settings, or a block’s code or the settings in its dialog, will
cause a model to run slowly.

• Delta time. For continuous models, consider using larger delta time increments so that
ExtendSim does fewer computations. For example, if each step is a day in your model, con-
sider making each step a week. Of course, this will not work with every model because some
calculations are based on the number of steps and will thus be not accurate if you reduce the
number of steps.

• Model profiling. In some situations a block’s code or the settings in its dialog will cause a
model to run slowly. For example, you might have 80,000 items arriving in a Queue that is
set to prioritize its inputs, or an inefficient section of code in a block you have created.
ExtendSim provides two methods for profiling blocks:

• Use the RealTimer block (Utilities library). Place the RealTimer block at the far right
of the model. In its Block Profiles tab, enable block profiling and choose a location to
store the report. Then run the simulation. A database table stores information about
each block in the model: name, number, label, time spent executing, percentage of total
time spent executing, the size (allocated memory) of the block at the beginning of the
run, the difference in the allocated memory at the end of the tun, and information about
hierarchical blocks. Since profiling significantly slows the simulation, the Block Pro-
files tab provides options for disabling profiling during subsequent runs.

• Profile the model using a Model Debugging command. Select the command Run >
Model Debugging > Profile Block Code, then run the model. A text file is generated
with the following information for each block the model uses: name, number, time
spent executing, percentage of total time spent executing.

• If a block is linked to a data source in a global array or an ExtendSim database, it will
receive a message whenever the value in that data source changes. If a simulation is running
slowly, and blocks have links to data sources, consider sending or receiving link alert mes-
sages only at the start or end of the simulation. For more information, see the caution at
“Dynamic linking to internal data structures” on page 229.

• Change settings in the Display Value block (Value library. This block may cause the simula-
tion to run more slowly because the block pauses while it shows you information. To speed it
up, set its dialog’s Wait value to 0 ticks or seconds. You can also unselect the Dialog opens
option if you don’t want to see the dialog during the entire model run.

100 How To
Slowing down simulations

H
ow

 T
o

• Executive block. The Executive block (Item library) stores information about each item in
the model. As the simulation is run, the Executive block allocates additional items in groups
of a fixed size when necessary. In the Control tab of the Executive block’s dialog, you can
specify how many items are allocated at the beginning of the run and the number of addi-
tional items allocated when required during the run. The procedure of allocating additional
items during the run can slow the simulation down if performed numerous times. Therefore,
set the number of items initially allocated to be the maximum number of items that are
expected to be in the model at any given time, plus 10%. Note that unnecessarily allocating
too many items will take up available memory and can slow down the simulation.

Other factors that affect simulation speed
• Increase the amount of physical memory (RAM) in your computer. If your computer runs

out of RAM, it will use virtual memory, which can slow down your model significantly.

• Using a large number of Value library blocks connected together to perform a simple calcu-
lation can slow a model down. Where possible, replace large “webs” of blocks with equa-
tion-based blocks that perform the same calculation.

• For discrete event models, you may be able to scale the number of items you generate. For
example, if your model is of a factory floor, instead of generating one item for each object
manufactured, you might generate one item for each set of five objects. And if your factory
is high-volume or high-speed, consider using the Rate library to model it instead of the Item
library.

• When using equation-based blocks, limit making string comparisons if possible.

Slowing down simulations
You might want a model to run more slowly to debug it or critically visualize what the model is
doing. If this is the case, the best way to slow down your model is to turn on animation and use
the Slower Animation (turtle) button.

Another example of when you might want to slow down a model is if you want to synchronize
the model to real-time events. This might be required if you are receiving real-world data. To
accomplish this, refer to the TimeSync block (Utilities library).

If you set it to leave the dialog open while the simulation runs, the Display Value block (Value
library) is also useful for slowing down the simulation.

See also “Stepping through a model” on page 89.

Working with multiple models
ExtendSim can have multiple model windows open and run multiple models simultaneously.
This facilitates copying model sections or hierarchical blocks between models and running
models that communicate with each other. You can also run one model in the background
while constructing another.

The Run Simulation command only works on the active model. To run multiple models, start
the front model running. Then bring each model forward and start their runs. While some mod-
els are running, other models can be built.

☞ Use the multi-threaded run mode when running multiple models at the same time. See “Run
modes” on page 87 for more information.

Model Execution 101
How ExtendSim passes messages in models

H
ow

 T
o

How ExtendSim passes messages in models
ExtendSim uses a sophisticated messaging architecture to signal blocks into action. While
messages can originate either from the ExtendSim application or from individual blocks, it is
always a block that is on the receiving end of a message. Different types of messages result in
the receiving block doing different types of things.

Since messages have the potential to affect the speed and behavior of simulations, understand-
ing the ExtendSim messaging architecture will help you build more accurate and efficient
models and will make debugging models easier.

Model messages can be divided into two categories:

3) Messages typically sent from the application to one or more blocks

4) Messages typically sent between blocks.

☞ All types of blocks can receive application messages. Continuous blocks neither receive nor
send block messages.

Application messages
Application messages are usually sent to blocks by the ExtendSim application. There are sev-
eral types of application messages: Simulation, Model Status, Block Status, Dialog, Connector,
Dynamic Link, and OLE. They are discussed completely in the Technical Reference.

When sent
The application can send message before, during, and after the simulation run, including:

• At the start of the simulation

• At each step

• When a parameter is changed

• When a dialog is opened

• If a button is clicked

• At the end of the simulation

At the start of the model run, all blocks receive application messages to check their dialogs and
connections for consistency and to initialize variables, import data, or allocate any arrays used
during the simulation. At the end of the simulation run, blocks are triggered to collect statistics,
dispose of any temporary arrays, and update the status of the model. Other application mes-
sages are sent only when a specific event, parameter change, or dialog click occurs. The Tech-
nical Reference has a complete list of application messages, including CheckData, InitSim,
Simulate, EndSim and FinalCalc.

Major messages
The major application messages are:

• PreCheckData

• CheckData

• StepSize

• InitSim

• PostInitSim

• Simulate

102 How To
How ExtendSim passes messages in models

H
ow

 T
o

• BlockReceive0-9

• FinalCalc

• EndSim

Link alerts
Link alerts are a special, and very powerful, type of application message that may cause
changes in a block’s data. For example, if a block is linked to a data source in a global array or
an ExtendSim database, it has options to receive a message whenever the value in that data
source changes.

The ExtendSim application automatically sends link alert messages in continuous, discrete
event, and discrete rate models. In a discrete event or discrete rate model, the alerted block
may, in turn, send messages out its connectors.

Managing this message is important because linking blocks to a data source that frequently
changes may slow down the simulation. If a simulation model is running slowly, and blocks
have links to data sources, consider sending or receiving link alert messages only at the start or
end of the simulation. For the message options, see:

• “Link dialog” on page 230 for managing the alerts when block parameters and data tables
are linked to an ExtendSim database or global array

• The check box When receive database link alert msgs in the Equation block (Value library)

• The data source changes check box in the Options tab of the Read block (Value library)

Continuous model messaging
In a continuous model, the most important application message is the simulate message, which
causes code in blocks to execute as simulation time advances. At each step of the simulation,
the application sends a simulate message to every block in the model in the sequence defined
by the model’s simulation order. (Simulation order is determined by the application at the start
of the run based on settings in the Simulation Setup dialog, as discussed in “Continuous tab”
on page 85.) In the simulate message handler, each block will perform its intended calculation.
For example, if Add is selected in the Math block (Value library), the block will add all its
inputs when it gets a simulate message. Likewise, a Decision block (Value library) will check
its inputs and output a true or false value based on the options selected in its dialog.

Block to block messages
Blocks can send messages to each other either through connections or “through the air.” This
often happens when one block has calculated a new value and wishes to alert one or more
blocks to this change. Continuous blocks, such as those in the Value library, do not typically
send or receive block messages. Discrete event (Item library) and discrete rate (Rate library)
blocks often send and receive block messages.

Discrete event block messaging
In addition to receiving application messages, discrete event blocks communicate with each
other using block messages. A variety of messages are sent between blocks during the course
of the simulation. These block messages fall into the following categories:

• Event. Communication between the Executive and various Item library blocks in the model.
• Value connector. Notifies connected blocks that the value of a output connector has changed

or requests updated input connector information.

Model Execution 103
How ExtendSim passes messages in models

H
ow

 T
o

• Item connector. Propels items through the model.
• Block-to-block. Updates the status of other blocks in the model.
 To avoid modeling errors and simulation speed issues in discrete event models, it helps to
understand how the discrete event messaging architecture works. See “Messaging in discrete
event models” on page 419 for additional information.

Discrete rate block messaging
In addition to receiving application messages, discrete rate blocks intensively use messages in
order to initiate the calculation of the effective rates and to propagate information through the
blocks. These block messages fall into the following categories:

• Event. Communication between the Executive block and various Rate library blocks.
• Value connector. Notifies connected blocks that the value of a output connector has changed

or requests updated input connector information.
• Flow connector. Updates the effective rate through the connected blocks.
• Rate blocks flow. Defines the LP area – that part of the model that could be impacted by a

change in the effective inflow and outflow rates.
• Executive flow. Updates all the blocks in an LP area with a new effective rate.
 The discrete rate technology has a complex and unique messaging architecture. For optimal
performance, it is important to understand discrete rate messaging when building rate-based
models. For more information, see “Messaging in discrete rate models” on page 537.

104 How To
How ExtendSim passes messages in models

H
ow

 T
o

How To

Presentation
Organize and enhance models

so they communicate your ideas

“In the modern world of business,
it is useless to be a creative original thinker

unless you can also sell what you create.
Management cannot be expected to recognize a good idea

unless it is presented to them by a good salesman.”
— David M. Ogilvy

106 How To
Overview

H
ow

 T
o

Overview
Simple models are easy to follow. But as models become larger and more complex, worksheets
can become crowded with thousands of blocks, making it harder to communicate what’s hap-
pening. As shown in this chapter, ExtendSim provides several features that let you organize,
explore, and enhance models.

For additional ideas to enhance a model’s appearance, see the chapter “Customizing the User
Interface” on page 71.

Text
Text is used to:

• Document or enhance a model or a block

• Create the text labels used as named connections on model worksheets

• Create text connections so hierarchical blocks can communicate with the model outside

☞ All the objects in an ExtendSim model, including text, have properties so you can label them,
search for them, move them programmatically, and so forth.

Entering text
To add text to your model, either:

• Double-click the location (worksheet or notebook) where you
want the text to appear; that opens a text box.

• Or, select the Text Box button from the Shapes tool and click on
the desired location to open a text box.

When you’ve finished entering text, click anywhere else in the window and the box surround-
ing the text will disappear.

Formatting text
The style, font, color, and size of text can be selected before the text is entered or changed after
selecting the text box. Text can have color; individual letters can be styled using the Text tools.

To type new text with a particu-
lar format, select the desired for-
mat (Text toolbar) and color (Fill
Color button in the Shapes tool-
bar), before you start the text
box. ExtendSim will remember
that format every time you start
new text in that model.

To change the style or size of existing text, access the text box and select the text, then choose
a Text tool button, such as Bold. The Align Text button (located to the right of the style
options, as shown above) is for toggling the text to be left, right, or center adjusted. By default
text has a transparent background; to cause text to instead have a white (opaque) background,
select the text then use the Transparent Background button that is to the right of the Align Text
button.

To change the color of existing text, use the Shapes tool’s Fill Color button—select the text in
the box then click the tool and select a color. Use the handles in the corners of the text box to
resize or reshape the box, for instance to have some of the text be on a second line.

Adding text to a model

Text toolbar (top) and Fill Color button (bottom)

Presentation 107
Graphic shapes, tools, and commands

H
ow

 T
o

☞ If you change the format or color of text while within an existing text box, ExtendSim won’t
use that format as the default for the model. To cause a format or color to be the default, change
it before creating a text box.

By default, text does not have a border. To cause text to have a border that
will move with it, use the Shapes tool’s Line/Border Thickness button and
select a size for the border. Then use the Shapes tool’s Border Color but-

ton to select a color for the border. Putting a border around text is useful for distinguishing
descriptive text from block labels or named connections. The text example above has a red
border.

☞ The Border Color button in the Shapes toolbar, as well as the corresponding button in the text’s
Properties dialog, won’t draw a visible border around the text unless the Line/Border Thick-
ness has been set to have a width greater than 0.

Moving and copying text
To move the text, select it then drag the text box to the desired location.

When text is selected, you can use the Copy and Paste commands, then move the pasted text
where you want it (or click on the window before pasting to position it in that spot). You can
also use the Edit > Duplicate command or Ctrl+D to copy and paste model elements slightly
offset from the original.

Drag and drop text
It is often easier to drag and drop a portion of some text than to copy and paste it. To do this,
select a piece of text within the text box and drag it. When you drag the selection, an insertion
point appears at the end of the cursor. Drag the insertion point to the desired location and
release the cursor.

Drag and drop can be used within a text box on a worksheet, a text file, a block’s structure win-
dow, and between any combination of the above with one exception: it will not work between
two separate text boxes. For example, if you double-click on the worksheet to open a text box,
enter text into the text box, then select a portion of the text, you will not be able to move that
text to another text box using drag and drop. This is because you can have only one text box
open for editing at a time.

Graphic shapes, tools, and commands
There are three sets of toolbars for creating and managing graphics, including text:

• Text tools (discussed in “Formatting text” on page 106)

• Shapes tools (discussed below)

• Alignment tools (see page 109)

Shapes tools
☞ All the objects in an ExtendSim model, including text and graphic objects, have properties.

This means you can label them, search for them, move them programmatically, and so forth.

The buttons in the Shapes toolbar let you add graphic objects and text to the model, color them,
and add borders.

108 How To
Graphic shapes, tools, and commands

H
ow

 T
o

Using the tools
To use a Shape, select one of the buttons (shown above) then click on the worksheet where you
want the graphic object to appear. Resize as necessary.

• Use the Rectangle, Rounded Rectangle, Oval, and Polygon buttons to add those shapes, as
well as circles and squares, to your worksheet or a notebook.

• To get a square or circle, place a Rectangle or Oval, respectively, on the worksheet or
notebook. Then hold down the Shift key while resizing the shape. Or right-click a Rect-
angle or Oval shape to access its Properties, then set the object’s width and height to be
the same.

• The Polygon button draws a shape with custom lines. Draw the desired shape by click-
ing multiple times on the worksheet or notebook to create hinge points, then double-
click to finish the shape. Each hinge-point can be manipulated using the cursor or
arrow keys

☞ Arrow keys move graphic objects 1 pixel at a time. To move objects 0.1 pixels per arrow key
click, hold down the Alt key while clicking.

• Lines:

• Have a default width of 1 pixel and can have other thicknesses depending on the selec-
tion in the Line/Border Thickness button, discussed below.

• Can be colored using the Fill Color or Border Color buttons.

• To get a perfectly straight horizontal or vertical line, select the Line button then hold
down the Shift key while drawing the line on the worksheet or notebook.

• For Text, its font, style, and other properties are determined by buttons in the Text and
Shapes tools, as described on page 106.

• Fill Color sets the color of text and shapes, including lines. Choosing this tool opens the
Select Color window:

• Choose a basic or custom color for the current object, or add a selected color as a cus-
tom color for future objects

• The red, green, and blue (R, G, B) fields can be set from 0 (for no color) to 255 for full
color

• The alpha channel setting determines the amount of transparency, with 0 being fully
transparent and 255 being fully opaque

• Border Color uses the Select Color window (discussed above) to sets the color of lines as
well as the color for the borders around text and shapes. (Since text and shapes by default
have no border, first select a line width using the Line/Border Thickness button.)

• By default, text and other shapes don’t have a border and lines have a width of 1. The Line/
Border Thickness tool sets the width of lines and the thickness of borders around text and
shapes. The first option is for no thickness; the other options are from 1 to 5 pixels.

Presentation 109
Working with pictures

H
ow

 T
o

Resizing and controlling a shape’s properties
Use the Graphics Cursor
to move or edit shapes.

To resize or reshape a
graphic object, select the
shape using the Graphics
Cursor, then click the
small rectangle in the bot-
tom right corner and drag
to create the desired
shape.

To resize an object pro-
portionately, hold down
the Shift key while resiz-
ing.

Every shape, including
Text, has a Properties
window that can be

accessed by selecting the object and right-clicking or going to File > Properties. Properties let
you customize and manipulate the shape. And if you program, you can cause a shape to appear
or disappear, change shape or size, and so forth depending on model conditions or data.

☞ To get a square or circle, hold down the Shift key while resizing a Rectangle or Oval shape. Or,
right-click the Rectangle or Oval shape to access its Properties, then set the object’s width and
height to be the same.

Alignment tools

The Alignment toolbar allows you to align selected text and graphics, cause an overlapping
object to be sent to the back or brought to the front, flip a selection of multiple objects, and
rotate a selected object either 90 degrees from where it is or (with Free Rotate) rotate it a spec-
ified number of degrees from zero.

☞ When using these tools on a mixed group of objects (for example, both text and graphics), the
type of cursor you used to select the objects determines what happens. For example, to align all
selected objects, use the All Objects cursor.

 The Flip buttons only flip the relative positions of multiple objects that have been selected
together. They do not result in the displaying of the reverse image of a graphic. Use an applica-
tion such as Photoshop to create reverse images of graphics.

Working with pictures
☞ All the objects in an ExtendSim model, including pictures, have properties so you can label

them, search for them, move them programmatically, and so forth.

To add a picture to ExtendSim, create or open the picture in a painting or drawing program and
copy it; this places it in the operating system’s internal clipboard. Then with an ExtendSim
window open (model worksheet, notebook, or icon pane) choose Edit > Paste Picture to paste

110 How To
Navigator

H
ow

 T
o

the picture into the window. For more information, see “Copy/Paste and Duplicate commands”
on page 250.

ExtendSim supports multiple formats for pictures; see “Picture file formats” on page 115.

☞ It doesn’t matter what the original file format for the graphic was (JPEG, TIFF, GIF, etc.) After
it has been copied into the system’s clipboard, ExtendSim treats it as a graphic object.

Navigator
The Navigator is an explorer-like window that is useful both
for navigating through a model’s hierarchical structure and
for getting quick access to block dialogs in large models.

The Navigator is especially useful when presenting a model
to others. Use it to explore the model by drilling down
through hierarchical layers to show subsystems or to quickly
find blocks and access their dialogs, no matter where they
are in the model.

To open the Navigator:

Select the command Window > Navigator or click the
Navigator button in the toolbar.

The name of the active model is listed at the top of the window. Each block’s icon is shown
along with its information (object ID, name, and label). If no model is open, the Navigator
opens as empty.

Animation
When presenting models to others you can show how graphs or cloned outputs change as the
simulation progresses. However, the ExtendSim animation capabilities give a more visually
descriptive representation of what is happening in the model.

Overview
As discussed in detail below, models can be animated using:

1) Blocks that have built-in animation

2) Specialized blocks for creating customized animation

3) Animation functions called in equation-based blocks or programmed into blocks you create

To see animation in a model:

Choose Run > Show 2D Animation or click the Show 2D Animation button in the toolbar.

Run the simulation.

Due to redrawing, animation tends to slow the simulation. You may want to leave animation on
while you are testing, debugging, or presenting your model and then turn it off when you are
running the model for analysis.

Use the Animation Slider, or click the Faster Animation (rabbit)
and Slower Animation (turtle) buttons, to change the speed of the
animation.

☞ If animation is running at its slowest speed, the Slower Animation button will be grayed out.
Likewise, if the animation is already running at the highest speed, the Faster Animation button
will not be available.

Presentation 111
Animation

H
ow

 T
o

Blocks with built-in animation
Many of the ExtendSim blocks have animation built into them. A block’s online Help says
whether it is animated and, if so, which aspects are. The two types of built-in animation are:

• Animation on and around a block’s icon, including displaying information

• Animation of items traveling from block to block (discrete event models only)

Animation on a block’s icon
Many ExtendSim blocks have been programmed to show 2D animation on and around their
icons. The amount and type of animation is specific to the block and is described in the block’s
Help. For example, the Holding Tank block (Value library) shows its contents relative to a min-
imum and maximum, the Select Item Out (Item library) shows which path items take, and the
icon of the Convey Flow (Rate library) displays the distribution of its contents as the simula-
tion runs.

Some blocks have an Animation tab for customizing some aspect of the 2D animation. For
example, the Valve (Rate library) has a checkbox for displaying the rate above the block’s icon
and the Exit (Item library) has a checkbox to display the total number of items that have exited.

The icon of a hierarchical block can also be animated. See “Animating a hierarchical block’s
icon without programming” on page 113.

To see icons animate, select Show 2D animation from the Run menu or select Show 2D Ani-
mation in the Model tools toolbar.

Animating the movement of items between blocks (discrete event modeling only)
The blocks in the Item library can track the movement of items with animation pictures that
travel along connections between blocks.

To animate the flow of items along connection lines in a discrete event model:

Choose Run > Show 2D Animation or click the Show 2D Animation button in the toolbar.

Choose Run > Animate Connection Lines.

Run the simulation.

The Final Car Wash model, located in the folder ExtendSim\Examples\Tutorials\Discrete
Event, shows cars moving between blocks and along connection lines.

To see animation pictures also move along the paths of named connections:

With Show 2D Animation checked, choose Run > Animate Named Connections.

☞ Items can travel on curved paths if you right-click a connection line and choose Bézier to create
a curved connection. See “Connection line appearance” on page 116 for more information.

Selecting an animation picture
When Show 2D Animation is enabled in a discrete event model, pictures representing items
pass from block to block. Initially, all items are represented by the default animation picture (a
green circle). You can cause a block to use any other animation picture included with Extend-
Sim, existing clip art, or pictures created in an external drawing package. The selection of
which picture to use is made in each block’s Item Animation tab.

☞ To find out how to add custom animation pictures, see “Pictures for animation” on page 115

112 How To
Animation

H
ow

 T
o

For example, the screenshot at right shows the Item
Animation tab from an Activity block (Item library).
There are three options for animation of items:

• Do not change item animation. In this mode, items
that leave the block will have the same picture they
had when they entered.

• Change all items to. This activates the 2D picture
popup menu for selecting a picture to represent
items as they leave the block. This is especially use-
ful for showing the transformation of one type of item (e.g. cans) into another (e.g. cases of
cans).

• Change item animation using property. With this choice, the item’s animation will change
depending on its property (attribute, quantity, or priority). For this option to work, the item’s
attribute, quantity, or priority must have been set in a preceding block. Then in this block
you create a lookup table with properties corresponding to the desired animation pictures.

To cause the animation to change based on an attribute value:

Choose Change item animation using property in the popup.

From the popup menu to the right of
that popup, select a value attribute.

Click the green +/- resize button in the
bottom right of the table. In the dialog
that opens, enter the total number of
attribute values that you want to assign
animation pictures to. For example, if
you enter “3” and click OK, 3 rows
will appear in the table.

Enter values in the Property Value column, then use the 2D popup menu to select which pic-
ture will animate the item when its attribute has that value.

For information about creating item attributes, see the Discrete Event Modeling section of this
User Reference.

☞ As discussed on page 113, the Animate Item block (Animation library) is also useful for chang-
ing the animation picture of items that pass through it.

Blocks for customized animation
There are two ways to use blocks from the Animation library to add custom 2D animation to a
model without programming:

• Show animation when an item enters the block or when the block gets a value.

• Animate the icon of a hierarchical block.

Showing animation in response to model conditions
When connected to other blocks in a model, the Animate Value and Animate Item blocks (Ani-
mation library) show customized animation in response to model conditions.

Presentation 113
Animation

H
ow

 T
o

Animate Value block
The Animate Value block can be connected to value connec-
tors. There are several choices for how this block animates:

• Display the value that is input to the block. This is similar to
using the Display Value block (Value library), except the
value can be displayed in a selected color.

• Move a level up and down between limits. If you choose this,
it can be displayed in a specific color that will move between the top and bottom of the
block’s icon. Be sure to specify maximum and minimum values that represent the entire
range of possibilities.

• Flash a box, text, picture, or circle when the input goes above a specified value. To flash ani-
mation when the input is greater than or equal to a value, select a box, text, picture, or circle.
Text must only be a few characters long so that it fits within the block’s icon. To show an
animation picture, select its name from the popup menu of pictures stored with ExtendSim;
to find out how to add custom animation pictures, see “Pictures for animation” on page 115.

• For Mac OS only, play a movie when the input goes above a specified value. To play a
movie in Mac OS, the movie must be stored in the Extensions folder and must be a Quick-
Time movie.

Animate Item block
The Animate Item block can only be connected to the item connectors of
discrete event blocks. Depending on choices in its Block tab, when an item
enters the block a colored box, piece of text, a selected picture, or a
selected movie (Mac OS only) is shown on the block’s icon. To show an
animation picture, select its name from the popup menu of pictures stored
with ExtendSim; to find out how to add custom animation pictures, see “Pictures for anima-
tion” on page 115. The Item tab is useful for changing the animation picture of the item travel-
ing through the block.

Animating a hierarchical block’s icon without programming
To animate a hierarchical block in 2D without programming, you create an animation object on
the hierarchical block’s icon, include the Animate Item or Animate Value block from the Ani-
mation library on the submodel worksheet, and select options in those blocks.

The animation block (either Animate Item or Animate Value) in the submodel reads the values
from other submodel blocks and, using the animation object, controls the hierarchical block’s
icon animation based on those values.

Step 1: Create an animation object on the hierarchical block’s icon
Open the hierarchical block’s structure window:

Select the hierarchical block in the model worksheet.

Choose Model > Open Hierarchical Block Structure or right-click and select Open
Hierarchical Block Structure.

Go to the block’s Icon tab.

Add an animation object to the icon:

If the Icon toolbar isn’t already open, go to the menu command Tools > Icon

114 How To
Animation

H
ow

 T
o

Select the Animation Object button, the last button in the Icon toolbar.

Click on the hierarchical block’s icon where you want the animation object to
appear

Resize the animation object until it’s the size you want

Animation objects display as rectangular shapes on the icon. You can add more
than one animation object and you can resize them. Each animation object is
assigned a number starting with 1. For example, a hierarchical block’s icon with an
animation object near the output might look like the image at right.

Step 2: Include an animation block in the model
Go to the hierarchical block’s Worksheet tab

and determine which output you want ani-
mated.

Select an Animate Value or Animate Item
block (whichever is appropriate) from the
Animation library.

Attach the animation block to the output of
the submodel’s block that you want to ani-
mate. In the example to the right, The Ani-
mate Value block is used to animate the sum
of the two water sources in the Water Sources hierarchical block. (If the output were an item
output, you’d instead use the Animate Item block from the Animation library.)

 As shown here, the Animate Value block can be connected in parallel and its output does not
need to be connected. For the Animate Item block items must pass through, so it cannot be
connected in parallel. Instead, its item output must be attached to the item input of another
block. Otherwise an item coming into the Animate Item block would have no way to exit.

Step 3: Select options in the animation block’s dialog
In the dialog of the animation block, choose the type of animation you want from the Spec-

ify icon animation popup menu,

Enter the number of the animation
object that the block is to control in
the Animation object number of
enclosing H-block field. For exam-
ple, to animate an animation object
that has number 1, enter “1” in the
field.

Close the hierarchical block’s structure and save changes as appropriate.

☞ If the animation object number cannot be located on the hierarchical block’s icon, ExtendSim
will search the icon of the next highest enclosing hierarchical block. If it still fails to locate that
animation object number, it will give an error message.

If you create custom blocks, including hierarchical blocks, use this same process of identifying
the animation object number to add animation objects to your blocks.

Animate Value block added to submodel

Presentation 115
Animation

H
ow

 T
o

☞ For an example of an animated hierarchical block, see the discussion of the “Markov Chain
model” on page 17 or the “Animating Queue Contents” model discussed in the Discrete Event
Modeling Quick Start guide (that model is not available with ExtendSim CP.)

Animation functions
If you build your own blocks, ExtendSim offers a suite of functions to design how the block
will animate. For example, the Planet Dance model (located in the folder ExtendSim\Exam-
ples\Continuous\Custom Block Models) shows three planets orbiting in space. Their orbits are
determined by numbers entered in the blocks’ dialogs.

See the Technical Reference for a description of the animation functions. Also, see “Animating
a hierarchical block’s icon without programming” on page 113 for an example of how to add
animation to a block’s icon. You would use that same process to add animation to any blocks
you create.

Pictures for animation
ExtendSim includes many animation pictures as bitmaps (Windows) or PICT resources (Mac
OS). These pictures are used by discrete event blocks to show the flow of items, by the Ani-
mate Value and Animate Item blocks (Animation library) to show custom pictures, and in any
custom block that calls the appropriate animation functions.

To add your own animation pictures to the available list, they must be of the correct file format
and they must be stored in the ExtendSim/Extensions/Pictures folder. After placing the anima-
tion pictures in the Pictures folder, restart ExtendSim and the pictures will be available in ani-
mation picture popup menus. For information about these and other extensions, see the
Technical Reference.

Picture file formats
ExtendSim supports the following image file types:

• BMP (Windows Bitmap)

• GIF (Graphical Interchange Format)

• JPG/JPEG (Joint Photographic Experts Group)

• PNG (Portable Network Graphics)

• PBM (Portable Bitmap)

• PGM (Portable Gray Map)

• PPM (Portable Pix Map)

• XBM (x11 Bitmap)

• XPM (x11 Pixmap)

• For backwards compatibility, Mac OS PICT (picture) resource files that have been converted
to Windows format using the ExtendSim Mac/Win converter.

Pictures with names that start with the symbol “@” will not show up in the block’s animation
tab popup menu. This prevents the animation tab menus from being filled with other, larger
types of pictures that are not suitable for animation between blocks.

☞ ExtendSim will scan all the pictures at the top level of the Pictures folder and add them to an
internal list of images. They can then be accessed via Modl functions and through the anima-
tion picture popup menus in ExtendSim blocks.

116 How To
Connections

H
ow

 T
o

Connections
Connections are the main method blocks use to send data, items, or flow between each other.
ExtendSim has two types of physical connections, line connections and named connections. In
addition, Throw and Catch blocks allow data, items, and flow to be sent remotely between
blocks. The following discussion shows how to draw and format connection lines and dis-
cusses the use of named connections.

☞ All the objects in an ExtendSim model, including connection lines, have Object ID’s and prop-
erties so you can label them, search for them, move them programmatically, and so forth.

☞ The Value, Item, and Rate libraries each contain Throw and Catch blocks for sending data,
items, or flow remotely without using connection lines or named connections. Use these blocks
in situations where you cannot use a line or named connection, such as when sending between
hierarchical levels.

Drawing a connection line
☞ The following shows how to draw a connection line so that data can be transferred between

blocks. There are other ways to connect blocks so they transfer data, such as Named Connec-
tions (discussed on page 118), Throw and Catch blocks, and the Smart Block technique (dis-
cussed on page 60).

Connection lines are drawn using Point and Click. For example, to draw from one block’s out-
put connector to another block’s input:

• Place the cursor over the block’s output connector. Notice that the cursor changes color and
shape and the output connector enlarges.

• Click once on the output connector, then move the cursor to the corresponding input connec-
tor on another block. (Connector types must be compatible!)

• When the connection lines thickens and turns blue, and the input connector enlarges, click
once on the input connector. This draws a connection line between the two blocks so that
information is transmitted during the simulation.

• Connection lines will turn solid dark gray when properly connected; they appear as a dashed
red line if the connection has not been made correctly.

Note that it doesn’t matter in which direction the connection line is drawn; you can start at one
block’s input and go to another block’s output and vice versa.

Rather than needing to draw a connection line, blocks in the Item and Rate libraries automati-
cally connect if they are added to the model using the Smart Blocks technique (where blocks
are added from a right-click list) or the Auto Insert and Bump Connect techniques, which place
and connect blocks. For more information about these techniques, see “Placing blocks on the
model worksheet” on page 59.

☞ If the connection line is dashed red, it indicates that the connection has not been properly made.

Connection line appearance
ExtendSim provides several options for altering the appearance of connection lines

• A checkbox in the menu command Edit > Options > Model tab determines whether the
default connection line for each type of connector is used in models. For instance, most dis-
crete event models track flows of items as well as calculate and show values. The default

Presentation 117
Connections

H
ow

 T
o

line makes it easier to visually differentiate the flow of items from the processing of values.
The defaults are shown in this table:

.

• As discussed in Styles below, the Edit > Options > Model tab is also where the default style
of connection lines for all new models—Smart, Right Angle, Straight, or Free Form—is set.
The right-click menu can be used to override the default style for any selected line.

• The menu command Model > Connection Line Style, discussed below, has options for set-
ting the style of connection lines for a particular model, as well as for choosing custom col-
ors and other attributes for a model’s connection lines.

• The right-click menu has options for adding or removing points along a connection line,
making it easier to position the line in the model.

• If the connection line style is Free Form, the right-click
menu has an option for changing it into a Bézier curve;
adding points on the line can help here too. Right-click
the line and toggle Bézier again, and the line returns to
Free Form.

Connector type Default line

Value

Item

Flow

118 How To
Connections

H
ow

 T
o

Model > Connection Line Style
This menu command is shown at right.

Styles
The default connection line style for all new models—Smart,
Right Angle, Straight, or Free Form—is set in the Edit >
Options > Model tab.

This can be changed for each model by right-clicking on the
model worksheet or by selecting one of the first four options in
the Model > Connection Line Style window before drawing the
connection line. Furthermore, after a connection has been made,
each line’s style can be changed by selecting the connection line
and right-clicking to choose a style.

Arrows
The second set of choices in the menu specifies whether or not
you want arrows to appear on the connections.

Line attributes
The third set of choices gives the ability to make the line solid or
dotted.

Colors
The fourth choice in the Connection Lines command deals with
the color of connection lines. Like text or drawing objects, con-
nection lines can be any color you choose. To have all connection
lines be a specific color, choose the color before you draw the
line. To change the color of an existing line, select the line and
choose a color.

Line thickness
The final section is for setting the thickness of connection lines. The Default Thickness choice
indicates that the thickness of the connection line will be based on the connector type, as
shown on page 116. For example, the default connection between Item connectors is a double
line. Choosing one of the other choices changes from the default for the connector type that is
set in the Edit > Options > Model tab.

Named connections
Named connections are text labels used to represent one
output at many locations in your model without using con-
nection lines. If you have two text labels with the exact
same text, you can use these to have the data, items, or flow
jump from one part of the model to another. Named con-
nections are often used when you do not want to clutter up
your model with many lines. You can place the names near
the blocks to which they connect and leave much of the
area of your model free from connection lines.

Presentation 119
Connections

H
ow

 T
o

By using named connections, you can eliminate a lot of connection lines in your model, mak-
ing it easier to see which blocks are connected to each other and preventing lines from crossing
over blocks or other model elements.

Named connections only work within one level of the model. This means that the data will not
flow between hierarchical levels if you have a named connection on one level and a corre-
sponding named connection in a block at a lower or higher level. To connect between hierar-
chical levels, use the Throw and Catch blocks in the Value, Item, or Rate libraries, or add
connectors to hierarchical blocks. For more information on adding connectors to hierarchical
blocks, see “Step 4: Add connectors to the icon in the Icon tab” on page 125.

How to create a named connection
Create two text labels:

Use the Text tool or double-click the model worksheet to create a text box

Enter the relevant word; click elsewhere on the worksheet when finished

Copy the text box and paste onto the worksheet, creating a second text label with the
same spelling

☞ Named connections are not case sensitive and spaces and returns are ignored, but you must use
identical spelling in the text names.

Draw a connection line to the first text label:

Without selecting the connector, hover the cursor over the first connector
until the cursor becomes blue and double-ended, as shown here

Click once in the connector, then drag the cursor to either side of the text
label until the connection line turns thick and solid blue. (As Dan Cum-
mings noted, there is a “magic, invisible spot” on the left and right of the text label.)

When the connection line turns thick and blue, click once on the text
label to complete that segment of the connection

Release the cursor.

If drawn correctly, the connection line should be red and segmented,
indicating that part of the connection has been made but the complete
connection has not yet been made

Draw a connection line to the second text label

Repeat the process, using the double-ended cursor to draw a connection line from the
second connector to the second text label

Once the connection line turns thick and solid blue, click once on the text label, then
release the cursor

If done correctly, the first connection’s segmented red line will
change to a normal connection line, indicating the full connec-
tion between text labels has been made

☞ It doesn’t matter if you draw the connection line from the connector to
the text label or from the text label to the connector. Also, you don’t
have to copy the original text label but it saves you from making a spelling error if you create a
new text label from scratch.

120 How To
Showing and hiding model elements

H
ow

 T
o

Show Named Connections command
If you use many named connections in a model, you may accidentally connect a block to the
wrong named connection. The Model > Show Named Connections command draws a connec-
tion line directly between all named connections. This helps you check that you made the con-
nections that you wanted.

Showing and hiding model elements
Commands in the Model menu can change how model elements appear. Choose the Show
Block Labels, Show Named Connections, Hide Connections and Hide Connectors commands
to display or not display those elements of the model. These commands are especially useful
when you have a lot of connections and blocks and you want to present the model to others
without so much clutter in the workspace.

☞ These commands work at each level of hierarchy separately and take effect in whichever level
is the active window. Thus if you want only the top level of the model to not show connectors,
but the hierarchical levels to show connectors, choose the command when no hierarchical lev-
els are open.

Hierarchy
The ExtendSim hierarchical capability lets you combine basic modeling constructs (such as a
group of connected blocks that represent a process) into a single, higher-level construct, then
combine several of those new constructs into an even higher-level construct, and so forth. This
causes portions of a model, or even the entire model, to be displayed in layers, where you can
drill down from the highest system level to the smallest detail. Note that this doesn’t result in
just a pictorial representation of a process; all of the submodel’s behavior is encapsulated and
incorporated into the new modeling construct.

The mechanism for creating hierarchical layers in ExtendSim is through the creation of a hier-
archical block—a special type of block that usually has a group of blocks encapsulated onto its
worksheet. Each grouping of blocks represents a portion of the model—a subsystem or sub-
model. Using hierarchical blocks you can create new modeling constructs without program-
ming, by nesting subsystems in an unlimited number of layers for top-down or bottom-up
modeling.

☞ Top-down modeling is starting with a new hierarchical block and building a model or a series
of submodels in it. Bottom-up modeling involves selecting a group of blocks within a model
and making them into a hierarchical block. You can create multiple hierarchical layers from the
top down or from the bottom up.

Uses for hierarchy
Although you do not have to use them as you build models, hierarchical blocks can help orga-
nize models logically, make models appear more attractive, improve productivity, and enhance
comprehension.

• Simplify a complex model by grouping areas of the model into hierarchical blocks contain-
ing submodels. These submodels can then be reused in other models without having to
reproduce all of the connections.

• Instead of showing all the detail, present a model as a few simple but logical steps. To reveal
the subsystems within a step, just double-click the hierarchical block.

Presentation 121
Hierarchy

H
ow

 T
o

• To increase productivity and comprehension, create a hierarchical block that represents a
process element, then use it in several models that have that element in common. By chang-
ing the parameters, each instance of the hierarchical block can be customized for its model.

• When developing a new model, go from the simplest assumptions to more complex ones by
creating more and more levels of hierarchy. This helps structure your thinking and makes
models easier to follow as they become more complex.

• Although hierarchical blocks usually contain submodels of blocks, they don’t have to. They
can also be useful for enhancing and documenting the model, serving as popup windows that
reveal pictures, text, and so forth when double-clicked. For an example, see “Help block” on
page 80.

Characteristics of hierarchical blocks
Hierarchical blocks are unique; they have some characteristics of a block and some character-
istics of a model worksheet. All hierarchical blocks have the following in common:

• A hierarchical block can contain no blocks, one block, a group of blocks, or even other hier-
archical blocks. It can also contain text, graphics, cloned dialog items, and pictures.

• Hierarchical blocks can be copied to other areas of the model or to other models and used
just like other blocks.

• The settings within a hierarchical block can be changed by double-clicking the hierarchical
block, then double-clicking the desired interior block’s icon, or by changing the desired
block’s cloned dialog items.

• Hierarchical blocks have a worksheet with notebooks and a structure.

• Hierarchical blocks’ worksheets are similar to model windows. On the hierarchical
block’s worksheet you can add blocks from a library, create a hierarchical block, add
graphics, type labels and other text, clone dialog items, and so forth.

• Hierarchical block notebooks are used in the same manner as for any model.

• The components of a hierarchical block (icon, connectors, or Help text) can be changed
by accessing the hierarchical block’s structure window.

• Unlike other blocks, by default hierarchical blocks are saved directly in the model as copies.
This characteristic allows them to be treated much like a copy of a portion of the model. You
can copy a hierarchical block to another part of your model and make changes to its work-
sheet window without affecting the original hierarchical block. This is known as physical
hierarchy.

• You can choose to save a hierarchical block in a library, in which case it can be treated much
like a regular block. When you make changes to the hierarchical block’s structure window
and you also choose to update all instances of that block, it is known as pure hierarchy.

Important notes about hierarchical blocks
 Named connections (discussed on page 118) only connect within one hierarchical level in a
model. This means that the data will not flow between levels if you have a named connection
on one level and a corresponding named connection in a block at a lower or higher level. To

122 How To
Hierarchy

H
ow

 T
o

connect between hierarchical levels, use the Throw and Catch blocks in the Value, Item, or
Rate libraries, or add connectors to hierarchical blocks. For more information on adding con-
nectors to hierarchical blocks, see “Step 4: Add connectors to the icon in the Icon tab” on
page 125.

 If an ordinary ExtendSim block is changed in its library, its manifestation in a hierarchical
block is also updated. However, because hierarchical blocks contain both blocks and data, and
because updating a hierarchical block might change its existing data, hierarchical blocks saved
in a library will not automatically update their corresponding hierarchical blocks in a model.

Creating and accessing hierarchical blocks
Unlike blocks that are created using programming, hierarchical blocks are created using menu
commands.

Creating
There are two ways to create a hierarchical block:

1) The easiest method is to select a group of blocks and either right-
click or use a menu command to encapsulate them into a new hier-
archical block. This is most often used to organize the complexity
of an existing model and is discussed at “Making a selection into a
hierarchical block” on page 123.

2) An alternative is to use a menu command to create a new hierar-
chical block from scratch; then build a submodel on its worksheet. This is used for top-
down modeling as discussed in “Creating a new hierarchical block” on page 124.

Ways to access a hierarchical block
Once created, hierarchical blocks have two views:

• The worksheet window. This is what is displayed if you just double-click the icon of a hierar-
chical block. Use this window to label the hierarchical block, make changes to the submodel,
and so forth as discussed below.

• The structure window. This is displayed if you create a new hierarchical block by giving the
command Model > New Hierarchical Block or if you select an existing hierarchical block
and either right-click or give the command Model > Open Hierarchical Block Structure. The
structure window contains another view of the worksheet and additional panes for modifying
the hierarchical block’s icon, adding Help, and so forth. It is shown on page 124.

Hierarchical block
outputs water sources

Presentation 123
Hierarchy

H
ow

 T
o

Worksheet window
The most direct way to see a hierar-
chical block’s submodel is by dou-
ble-clicking the block’s icon. Instead
of a dialog inside, you see a work-
sheet and notebook, just as for a reg-
ular model window. The blocks that
make up the submodel are on the
worksheet and are laid out like a
model, with connections, labels, and
so on. Depending on how the hierar-
chical block was created, it might
also contain text, pictures, or cloned
dialog items that control the blocks
within the hierarchical block.

The block’s title bar shows the name
of the top level model in braces. The submodel’s connections with the rest of the model are
shown as connection text boxes (named connections with red borders around them). In the
example here, RainOut is one of the outputs of the hierarchical block named Water Sources.

Making a selection into a hierarchical block
This is the easiest method for creating a hierarchical block. The steps are:

Open an existing model or place blocks, text, and/or graphic objects on a new model work-
sheet.

Since the selection tool determines what gets selected, choose the appropriate cursor (Block/
Text, All Objects, etc.) for what you want to include in the hierarchical block.

Use the cursor to select blocks and other objects by dragging over them or by holding down
the Shift key and clicking each item.

 Do not select the text labels of any named connections, otherwise communication between the
submodel within the hierarchical block and the model outside of it will break.

Right-click or choose the command Model > Make Selection Hierarchical.

Enter a descriptive name for the hierarchical block
and click Create Hierarchical Block.

When it creates the hierarchical block, ExtendSim
makes all the connections and replaces the selected
blocks in the model worksheet with the new hierarchi-
cal block and its default icon, a rounded rectangle
with a border.

Double-click the hierarchical block’s icon to see the
worksheet and its submodel.

To alter aspects of the hierarchical block (such as changing from the default icon, adding
blocks to the model, or moving or renaming connections), see “Modifying hierarchical
blocks” on page 128.

Hierarchical blocks can be saved in libraries or just in the model, as discussed at “Saving hier-
archical blocks” on page 127.

124 How To
Hierarchy

H
ow

 T
o

Creating a new hierarchical block
The following example shows how to create a new hierarchical block.

Step 1: Start a new hierarchical block
Open an existing model or open a new model window.

Give the command Model > New Hierarchical Block.

ExtendSim prompts for a name for the hierarchical block, then opens its structure window.

The hierarchical block’s structure window has three tabs on the left side (Icon, Worksheet, and
Help). The Worksheet tab is where the submodel for this hierarchical block will be built; this is
what appears when you double-click a hierarchical block’s icon. The Help tab is for entering
any comments or assistance you want

The Icon tab, shown above is divided into three work areas or panes for creating the block’s
icon and connectors:

• The area at the top left of the Icon tab is the Icon Views pane, for creating different views for
the icon, such as a right-to-left view.

• The Icon pane in the middle is for designing the block’s icon and adding connectors.

• The Connectors pane on the right displays the names of the input and output connectors for
the block. It also appears on the Worksheet tab and can be used to rename the connectors.

• The Icon Positioner is only used if the position of the icon needs to be adjusted due to a
change caused by a newer release of ExtendSim.

☞ You can also access a hierarchical block’s structure by right-clicking on its icon.

Icon pane Connectors paneIcon Views pane

Presentation 125
Hierarchy

H
ow

 T
o

Step 2: Build the submodel in the Worksheet tab
To build a submodel in a new hierarchical block,
add blocks and/or graphic objects to the Work-
sheet tab using the same methods used as for a
model worksheet.

For example, the Water Sources hierarchical
block at right contains three connected blocks
from the Value library: a Lookup Table block
labeled Rainfall, a Random Number block
labeled Stream, and a Math block set to add its
inputs.

If you prefer, use the Copy and Paste commands
from the Edit menu to copy a portion of an exist-
ing model onto the Worksheet.

 Do not place an Executive block within a hierarchical block. There should only be one Execu-
tive block in the model and it needs to be at the top level of the model worksheet.

Step 3: Modify the icon in the Icon tab
In the Icon tab, a new hierarchical block starts with a default icon, a gray square. You can mod-
ify this icon, for example by changing its shape or color or by adding text or a picture. Or you
can delete it and create a new icon using the graphic tools in the toolbar, or by pasting a picture
from another program. For information on using the graphic tools, see “Graphic shapes, tools,
and commands” on page 107.

Step 4: Add connectors to the icon in the Icon tab
Since the model encapsulated within a hierarchical block needs to be connected to the model
outside of the hierarchical block, you must add the appropriate connectors to the hierarchical
block’s icon.

Some hierarchical blocks have both input and output connectors, while others have just one
kind. Also, as is true for other blocks, hierarchical blocks use specific types of connectors
(value, item, flow, etc.) depending on what they are connected to.

Choosing a connector type
If the Icon tool isn’t already open, give the menu command Tools > Icon. This opens the
Icon toolbar, a portion of which is shown on the right.

The first eight buttons add connectors: Value, Item, Flow, Reliability, Universal, Array,
User defined, and Box. (These are discussed at “Connector types” on page 61.)

For this example, you would select the Value connector since the output comes from a
value connector (ResultsOut) on the Math block.

☞ The connector types must match the input or output connectors of the blocks in the
Worksheet tab that will be getting data from the main model worksheet or sending out
data to the model.

Adding a connector
Connectors are added to icons the same way blocks are added to a worksheet—point
and click.

Go to the hierarchical block’s Icon tab.

126 How To
Hierarchy

H
ow

 T
o

From the Icon toolbar, click the appropriate type of connector.

Click at the desired position on the hierarchical block’s icon. For this example, click on the
right side of the icon.

☞ To add multiple connectors, hold down the Alt key and click multiple times.

This creates the default Con0In connector on the
icon in the Icon pane, lists it in the Connector
pane, and adds a red-bordered connector text label
(similar to a named connection) in the Worksheet
tab.

☞ If you choose the wrong type of connector, just
select the connector in the Icon pane, then select the
correct type of connector from the Icon Tools.The
connector will change to the new type.

Changing to an output connector
By default, when a connector is first added to an icon it is an input connector, as indicated by
the word In at the end of its name. To cause it to be an output connector, the connector name
needs to end in Out. And, since Con0 isn’t very descriptive, you’ll want to change the connec-
tor name to something more relevant such as “Water”.

☞ You can name a connector anything you want as long as the name ends in In or Out and is 32
characters or less. Also, every connector must have a unique name.

Double-click the connector name in the Connector pane and change its name to something
that ends in Out, such as WaterOut.

Connect to the submodel in the Worksheet tab
When this connector is added to the icon in the Icon tab, a text label “WaterOut” is placed on
the Worksheet tab. The connector label is how the submodel communicates with the model
worksheet.

The next step is to connect the connector text label to the
appropriate block in the model.

In the Worksheet tab, move the WaterOut text label to
the right of the Math block.

Use point and click to connect from the output of the
Math block to the WaterOut text. Once the line thick-
ens and turns blue, release the mouse and the connec-
tion is made.

Step 5: Connect the hierarchical block in the model
To connect the finished hierarchical block to the rest of the model:

Close the hierarchical block’s structure window.

When you close the structure window of a new hierarchical block, a dialog gives options for
saving the block. These options are discussed in the following topic. For this example:

Choose Save Changes to This Block.

Value connector added to hierarchical block

Connector changed to output connector
and added to Math block

Presentation 127
Hierarchy

H
ow

 T
o

Connect the connector on the hierarchical block to other con-
nectors in the model, just as you would any other block. In the
example, the hierarchical block is connected to a Holding
Tank block.

Saving hierarchical blocks
By default, hierarchical blocks are saved with the model. You can
copy such a hierarchical block to other parts of the model or even
to other models using Copy/Paste. Unless the block has been saved in a library, each instance
of the block in a model can be then be made unique by modifying it as described in “Modify-
ing hierarchical blocks” on page 128. You can also save a hierarchical block to a library, which
makes it easier to add them to new models.

Saving hierarchical blocks in a model
How a hierarchical block is saved depends on how it was created and whether its structure has
been modified:

• If you make a selection hierarchical, the hierarchical block is automatically saved with the
model when the model is saved. Any subsequent changes made to the hierarchical block’s
worksheet also get saved when the model is saved.

• If you create a new hierarchical block, or make changes to an existing hierarchical block’s
structure window, closing the block’s structure prompts with options to: Save Changes to
This Block, Discard Changes, or Cancel. Note that the Save Changes option affects only this
specific instance of the block in the model.

☞ The two additional options for saving (Also Save to Library and Also Update Blocks in Open
Models) are not enabled unless the block already exists in a library, as discussed below.

Saving hierarchical blocks to a library
You can save a hierarchical block in a library, but what is saved in the library is only a “snap-
shot” of the hierarchical block at the time you saved it.

 If you modify a hierarchical block’s worksheet and the hierarchical block has been saved in a
library, those changes will not be reflected in the master block in the library unless you specif-
ically tell ExtendSim to also save the changes to the library. Furthermore, saving changes to
that hierarchical block can only update copies of it that are in OPEN models. If a copy of that
hierarchical block is in a model that is not open when the changes are saved, that copy will not
get updated.

To save a hierarchical block in a library or to cause changes made to a hierarchical block to be
reflected in its master block in a library:

If it is not already open, open the structure of the hierarchical block by right-clicking on its
icon or by selecting its icon and choosing Model > Open Hierarchical Block Structure.

Hierarchical block connected
to Holding Tank

Options for saving a hierarchical block that hasn’t been saved in a library

128 How To
Hierarchy

H
ow

 T
o

Choose File >
Save Hierarchical
Block to Library
As

In that dialog,
select a new or
existing library
for the hierarchi-
cal block and
select Install in
Selected Library.

 Do not save hierar-
chical blocks in the
libraries that come
with ExtendSim!

Close the hierar-
chical block’s
structure window
and choose one of
the save options:

• Save Changes to This Block affects only this specific instance of the block in the
model. It does not affect any other copies of the block in this or any other model.

• Also Save to Library affects this instance of the block, the master block in the library,
and blocks placed from the library into a model after the save.

• Also Update Blocks in Open Models also saves the changes to instances of this hierar-
chical block in any OPEN models.

• Discard Changes

• Cancel

These options are discussed more in “Summary of results of modifying hierarchical blocks” on
page 129.

A hierarchical block that is saved in a library has its name listed in the
library and in the library window preceded by the symbol >. Like
other blocks, hierarchical blocks that are saved in libraries list the
name of the library in their title bar in angle brackets. If no library is
listed, the hierarchical block is not saved in a library.

Modifying hierarchical blocks
How you modify a hierarchical block depends on whether the block is saved in a library and
the type of modification you want to make:

• If the block hasn’t been saved in a library, or you don’t want to save the changes to the mas-
ter block in the library, simply double-click the hierarchical block’s icon and change the set-
tings for individual blocks or modify the layout and appearance of the submodel (e.g. add
blocks, clone items onto the worksheet, add text and drawings, etc.).

Presentation 129
Hierarchy

H
ow

 T
o

• To save the changes to the master hierarchical block in a library, you must open the hierar-
chical structure window. (You must also use the structure window to make any changes to
the hierarchical block’s icon, connectors, or Help, even if you don’t want to save these
changes to the library.)

The following indicates where to make changes to a hierarchical block:

Changing the icon and adding alternate views
To change the icon to better suit the purpose of the hierarchical block:

Open the hierarchical block’s structure window.

Click the icon in the icon pane.

Change the size, color or pattern of the icon, or delete it and create another icon.

To create a new icon, use any of the ExtendSim graphic objects or paste pictures from out-
side of ExtendSim. See “Graphic shapes, tools, and commands” on page 107, for information
on how to use the drawing tools.

You need to delete the icon before creating a new one, but do not delete any connectors. If you
do, ExtendSim will warn you. If you accidentally delete a connector, undo the delete or add
another connector. Be sure to check the block’s connections in the model.

Optionally add alternate views using the Icon Views pane at the top of the Icon tab. An
example of this is the Markov Chain Weather model discussed on page 17. See “Icon views”
on page 66 for more information.

Renaming the block
With the structure window of a hierarchical block open, rename it by choosing Develop >
Rename Block.

Adding animation
Hierarchical block icons can be animated, as discussed on page 113.

Summary of results of modifying hierarchical blocks
There are different results when a hierarchical block is modified, depending on whether its
worksheet window or structure window was modified and whether the block is saved just in a
model or is also saved in a library:

Action
Worksheet
Window

Structure
Window

Add blocks and connections X X

Change parameters in submodel blocks X X

Add text, drawing objects, and pictures X X

Clone dialog items X X

Change icon, add alternate views X

Rename the block X

Add Help X

Add animation X

130 How To
Hierarchy

H
ow

 T
o

• If you modify a hierarchical block’s submodel in its worksheet (accessed by double-clicking
the icon), those changes only apply to that block. Changing a hierarchical block’s submodel
is similar to changing parameters in a regular block’s dialog: the changes affect only that
instance of the block on the worksheet and are saved with the model. This is true even for
hierarchical blocks that were originally saved in libraries.

• If you modify the structure of a hierarchical block that is not saved in a library, those
changes also only apply to that block. This has the same result as modifying a hierarchical
block’s submodel in the worksheet window. For example, you can make several copies of
that hierarchical block in a model, but when you change one of the copies, the other blocks
remain unchanged.

• If you modify the structure of a hierarchical block that has been saved in a library, you can
choose how those changes should be reflected:

• Only to this instance of the block on the model worksheet (choose Save Changes to
This Block).

• Also in the master block in the library, which only affects blocks placed in the model
from the library after the change has been made (choose Also Save to Library).

• Also in all instances of the block in open models (note that this does not affect models
that are not open at the time); this is also called pure hierarchy (choose Also Update
Blocks in Open Models).

 Changing a hierarchical block that is saved in a library can have unintended consequences if
the block is used in multiple places. Do not make changes to the master block in the library
unless you understand the effect those changes could have on other models that use that block.

• To modify the structure of a hierarchical block saved in a library, copy a fresh hierar-
chical block from its library window onto the model worksheet, then work on the block
directly in the model. Do not work on a hierarchical block that is already in the model
or you might overwrite the master hierarchical block with a block that has been cus-
tomized for a specific purpose in the model.

• If you change the hierarchical block’s submodel, rename the block and save it to the
library using the new name. This will prevent existing instances of that hierarchical
block from being changed.

• Use caution if you change a parameter in a block in a submodel, then save the hierar-
chical block to the library with the “Also update blocks in open models” choice. In
that case, each instance of the hierarchical block will have the changed parameter
value.

 Changes made to the structure of a hierarchical block that is saved in a library will not be
reflected in models that were NOT open when the change was made. If that happens, open the
model and replace its hierarchical block with a fresh copy from the library.

☞ The Constant block (Value library) has an option to Retain constant if updated from hierarchy.
If that option is checked, the Constant will retain its value when the enclosing hierarchical
block is updated from a library and existing instantiations of the block will not be changed

Presentation 131
Other presentation features

H
ow

 T
o

inside of existing hierarchical blocks. This is useful if each hierarchical block needs a unique
identifier which does not reset if the hierarchical block is updated from a library.

Other presentation features
The How To chapter on “Customizing the User Interface”, which starts on page 71, discusses
many features that will help when presenting your models to others, such as the following.

ExtendSim databases
Databases are very useful when presenting models to others because a model’s inputs and out-
puts can be stored in a centralized location and data can be organized in a logical manner. Each
model can have one or more ExtendSim databases for storing, managing, and reporting infor-
mation.

☞ For more information, see the separate document titled “ExtendSim Database Quick Refer-
ence”.

Notebooks
Worksheets and hierarchical blocks have notebooks that you can customize to help organize
and manage model data, facilitate presentations, and more. See “Notebooks” on page 79 for
further information.

Cloning
A clone is an exact copy (similar to a shortcut or alias) of a dialog item, table, or graph that
behaves identically to the original. Presentations can be enhanced by placing clones of dialog
items in strategic locations on a model’s or hierarchical block’s worksheet or notebook. For
more information, see “Cloning” on page 72.

Creating a custom user interface
ExtendSim lets you add customized buttons, popup menus, controls, and more to facilitate user
interaction with a model. These are also helpful when presenting and explaining models to oth-
ers. See “Creating a dashboard interface” on page 74.

132 How To
Other presentation features

H
ow

 T
o

How To

Analysis
Making sense of your models

“Prediction is very difficult, especially if its about the future.”
— Niels Bohr

134 How To
Overview

H
ow

 T
o

Overview
Although simulation is a quantified subject, there is still room for analysis and judgmental pro-
cedures. This is especially true when your purpose in building a model is to spot trends or iden-
tify patterns of behavior, or when you must make an immediate “go, no-go” decision. How
statistically precise your models should be depends on several factors, including:

• The nature of the problem

• The importance of the decision

• The level of risk you are willing to accept

• The sensitivity of the system to the input data

One of the main benefits of ExtendSim is that it provides several methods for analyzing the
results of simulation runs. This chapter covers those techniques, including statistics, confi-
dence intervals, scenario and sensitivity analysis, optimization, Stat::Fit, and graphs.

☞ Remember that when you use statistical methods to analyze simulation output, you are per-
forming the analysis only on model results, not on the actual system. It is important to ensure
that the numbers entered accurately represent the details of the actual system. The significance
and relevance of your analysis will depend on how closely the model’s inputs correspond with
real-world data (“garbage in = garbage out”).

Blocks that calculate statistics
Many ExtendSim blocks automatically calculate relevant statistics and display them on their
Results tab. For example, the Activity block (Item library) reports utilization, average wait,
maximum length, and so forth.

You can also use blocks in the Value library, such as the Equation and Math blocks, to perform
calculations on model outputs.

As described below, other ExtendSim blocks are specially designed to report statistical infor-
mation for particular types of blocks or for items that pass through the block, or to refine statis-
tical data collection.

Statistics
The Statistics block (Report library) accumulates data and calculates statistics using
a specified statistical method.

Types of blocks it reports on
Place a Statistics block anywhere in the model and, depending on selections made in its dialog,
it will report statistics for the following blocks and types of blocks:

• Activities (Activity, Convey Item, and Transport blocks in the Item library)

• Mean & Variance block (Value library)

• Queues (Queue, Queue Equation, and Queue Matching blocks in the Item library)

• Resource Item block (Item library)

• Resource Pool block (Item library)

• Workstation block (Item library)

• Convey Flow block (Rate library)

Analysis 135
Blocks that calculate statistics

H
ow

 T
o

• Tanks (Tank and Interchange blocks in the Rate library)

• Rate library blocks

• Resource Manager block (Item library)

• Queue Matching block (Item library)

• Mixed blocks (Shift-click or clone drop, as discussed below

Shift-click or clone drop
The Mixed blocks option is useful for
adding a custom selection of output
fields to the Statistics block’s table.
For example, in the screenshot here
the length and utilization statistics from an Activity block have been added to the table. You
can use either Shift-click or clone drop to add each targeted output field to the table.

☞ The output field must be in one of the supported types of blocks.

• To Shift-click, open the target block’s dialog and hold down the
Shift key while you click once on the targeted output field (utili-
zation, length, etc.). Then click on the appropriate option that
appears (Statistics: Add Parameter). This causes the output
information to be displayed in the Statistic block’s table.

• To clone drop, open the target block’s dialog and use the Clone cursor to
click once on the targeted output field (utilization, length, etc.). Then hover
the Clone cursor over the icon of the Statistics block. When the icon of the
Statistics block is highlighted, click once on that icon to release the cloned
parameter. This causes the cloned output information to be displayed in the Statistics block’s
table.

Statistics/Confidence Interval popup
A popup menu on the Statistics tab allows you to choose whether
the raw data (Statistics option) or calculated confidence interval
information (compressed or expanded options) will be displayed in
the table. Also see “Confidence intervals” on page 138.

Accumulating data
When a simulation is run, one row of information is recorded in the Statistics block’s table for
each block of the specified type each time an observation is made. Observations can be
recorded continuously, which significantly slows simulation time, or at the end of the simula-
tion. They are also made in response to an item or value arriving at the Go universal input con-
nector. For instance, attach a Pulse block (Value library) to the Go connector to force a periodic
or scheduled update of statistical information.

☞ The first column of the table in the Statistics block’s dialog lists the block’s label. For a block
without a label, the first column gives the block’s name.

To immediately see the current statistics, click the Update Now button; this is also useful if you
want to see which blocks will have their statistical information collected during the simulation
run.

136 How To
Blocks that calculate statistics

H
ow

 T
o

Statistical methods
The Statistics block’s Options tab allows you to select one of three statistical methods:

• Multirun analysis

• Batch means

• Custom

Choosing one of the first two methods causes specific settings to be selected in the block’s
Options tab. For the “custom” option, manually select which settings you want.

Export data
The block’s Export tab is for exporting the results to Excel using a new or existing worksheet
and for setting other export options. You can also create a database table and link the data to
that.

Queue Statistics model
The Queue Statistics model uses the Statistics block to
gather information about queues. This discrete event
model is located in the folder ExtendSim/Examples/Dis-
crete Event/Statistics.

Clear Statistics
As discussed in “Non-terminating systems” on page 97, when you start a simu-
lation run there is no data in the model. After a stochastic model has been run-
ning for a while, it gets to the point where it is functioning more like the real
system. The interval from when the model starts to when it is functioning in a

steady or normal state is called the warm-up period.

The Clear Statistics block (Value library) clears the statistics for selected blocks, eliminating
the statistical bias of a warm-up period. The type of blocks include:

• Activities (Activity, Convey Item, Transport, Workstation)

• Exit block

• Mean & Variance block (Value library)

• Queues (Queue, Queue Equation, Queue Matching)

• Rate library blocks

• Resources (Resource Item, Resource Pool)

• Information block

• Max & Min block (Value library)

The block can reset statistical accumulators at periodic intervals or in response to a system
event. It can be placed anywhere in the model. Choose in its dialog which types of blocks will
have their statistics cleared. The Clearing Statistics example, a discrete event model located in
the ExtendSim/Examples/Discrete Event/Statistics folder, uses the Clear Statistics block to
restart model statistics after 40 seconds.

Analysis 137
Blocks that calculate statistics

H
ow

 T
o

Mean & Variance
The Mean & Variance block (Value library) calculates the mean, variance, and
standard deviation of the values that it receives during a simulation run, based on
a specified confidence interval. The block reports these data points along with the
number of observations, the confidence interval, and the relative CI error.

Methods for capturing statistics
The dialog provides four methods of captur-
ing statistics:

• Entire run

• Moving average

• Interval

• Multiple runs

These settings allow you to use time
weighted statistics, calculate a moving aver-
age for a selected interval, calculate the sta-
tistics over multiple runs, and more. See also
“Confidence intervals” on page 138.

Options and use
There are also two options for how the vari-
ance is calculated:

• Use number of inputs to calculate variance. The variance is computed as the sum of (valid
inputs - mean)^2 (number of inputs).

• Use number of inputs-1 to calculate variance. The variance is computed as the sum of
(valid inputs - mean)^2 (number of inputs - 1).

A Quantiles option on the Results tab allows you to see what proportion of the observations
fall within an interval.

The Mean & Variance block uses 1/(N-1) as an averaging factor. If an input is a NoValue, it is
ignored and does not affect the statistics.

To use this block, connect a value output from the block of interest to the Mean & Variance
block’s input.

The Monte Carlo model, located in the folder ExtendSim/Examples/Continuous/Standard
Block Models and discussed on page 14, is an example of using the Mean & Variance block.

Information
The Information block (Item library) reports statistics about the items that pass
through it. It is useful for counting the number of items and for determining cycle
time statistics and the time between item arrivals (TBI). The block reports the
average and the current statistics, as well as the minimum and maximum.

The Information block can only be used in models that use item-based blocks, and it must be
connected to a block’s item output. This block is also used to calculate cycle time.

138 How To
Confidence intervals

H
ow

 T
o

Cost Stats
The Cost Stats block (Report library) records in a table the input costs and total
cost generated by each costing block in a model. This block reports cost informa-
tion for item-based blocks, such as for a discrete event model. Information can be
exported to a spreadsheet. The block can be placed anywhere in the model and
can be set to different confidence intervals. See also “Confidence intervals” on

page 138.

Confidence intervals
Confidence interval estimation tells you, with a given level of probability or confidence, how
close the average simulation results are to the model’s true average or mean. The confidence
interval is the range within which it is predicted the true mean is located. This is expressed as
the probability that the true mean lies within interval x± y, where “x” is the average obtained
by multiple observations and “y” defines the outer limits of the interval’s range. The confi-
dence level is the probability that the true mean will be located within the range. Typical confi-
dence levels are 90%, 95%, and 99%. Notice that, at higher levels of probability, the interval
gets wider.

Used in blocks
The Statistics and Cost Stats blocks (Report library) and the Mean & Variance block (Value
library) provide the option to specify a confidence level in their dialogs. For example, the Sta-
tistics block not only summarizes and reports statistical information, but also calculates confi-
dence intervals for the information given various levels of confidence.

How to generate
To generate a confidence interval where each sample is the result from a single simulation run,
in the Run > Simulation Setup > Random Numbers tab do one of the following:

• Randomize the seed by entering a blank or zero random seed.
• Or, select Continue random number sequence in the popup.
• Or, select Use Database table __seed for values in the popup.

 To obtain sufficient sample data to determine the confidence interval, multiple observations of
each statistic must be made and appended to the table of data. This is shown in the “Run for
CI” model located in the ExtendSim/Examples/Tips/Modeling Tips folder. The model runs
repeatedly based on the Mean & Variance’s Options tab settings Calculate for multiple simula-
tions and Replicate until relative error is <= 0.01.

Sensitivity analysis
Sensitivity analysis allows you to conduct controlled experiments to explore how much of an
impact a particular parameter has on model results. The ExtendSim sensitivity analysis fea-
tures make it easy and convenient to specify a parameter to investigate and settings to use for
the analysis.

Overview
You use sensitivity analysis to investigate the effect of changing one or more parameters upon
an area of interest. Sensitivity analysis works with all numeric parameter fields. It also works
with clones of those numeric items. You can add sensitivity to as many dialog values as you
like. However, it is recommended that you only vary one or two dialog values at a time so as
not to confuse the analysis. Once a parameter has been sensitized, specify a multiple number of
runs and run the simulation.

Analysis 139
Sensitivity analysis

H
ow

 T
o

The resulting values for the area of interest are usually graphed. Although you can use any of
the standard graphs from the Chart library, it is most common to use the Line Chart and choose
that each run be graphed on separate traces. To do this, use the Run and Run# columns in the
Line Chart’s Data Collection tab. The results of varying the parameter value over the selected
settings will be displayed as the simulation is run multiple times.

Parameters are sensitized by right-clicking or by using the Model > Sensitize Parameter com-
mand. The Model > Open Sensitized Blocks command shows all the dialogs for blocks that
have sensitivity settings, even if sensitivity analysis is not enabled. This is convenient if you
have entered sensitivity settings for many parameters in a large model.

☞ To utilize sensitized parameters, the number of simulation runs must be greater than one.

Use sensitivity analysis
For this example, use the Reservoir 1 model discussed in the Tutorial module.

Open the Reservoir 1 model; it is located in the Documents/ExtendSim/Examples/Tutorials/
Continuous folder.

So that you don’t overwrite the original model, give the command File > Save Model As
and save the model as “Sensitivity”.

Sensitize the parameter
Open the dialog for the Random Number block labeled “Stream”.

Open the Sensitivity dialog by doing one of the following to the Maximum entry field:

• Click the entry field and choose the command Model > Sensitize Parameter.

• Or right-click the entry field and choose Sensitize Parameter.

The Sensitivity dialog appears
with the Enable sensitivity
checkbox selected by default.

Enter Set Simulation Setup
to: 4 runs.

☞ The number of runs can be set in
either the Sensitivity Setup dia-
log or the Simulation Setup dia-
log. Each controls the other so
that the last value selected in
either of them controls the num-
ber of runs.

Enter Starting at 1 and
change by 0.5.

This will cause the stream’s
flow to increase by 0.5 for
each subsequent run.

☞ Parameter values can be sensi-
tized using values from a file, a
specified range of values, a ran-

140 How To
Sensitivity analysis

H
ow

 T
o

dom distribution, or values from a database. The choices are described in “Specifying the sen-
sitivity method” on page 140.

Close the Sensitivity Setup dialog using the OK button, to save your changes.

In the Random Number block’s dialog, the parameter field now
has a green border around it, indicating that it has a sensitivity
setting and sensitivity analysis is active for the parameter.

Output the results to a Line Chart block
Add a Line Chart block (Chart library) to the right side of the model

and expose 4 inputs.

Copy the text of the Contents named connection and create 4 named
connections to the Line Chart’s inputs, as shown here.

In the Dialog tab of the Line Chart, go to the Data Collection tab
and click on the header of the Run column to see the popup.

Change the popup from current to only run#, as shown here.

In the new Run# column that appears

Leave row 0 at 0 for the Run#

Change row 1 to 1, row 2 to 2, and row 3 to 3

Notice that the Run > Use Sensitivity Analysis command is checked by
default.

Run the simulation. ExtendSim runs the simulation four times, from run 0 to run 3.

If you zoom in on the chart you can see the variation between
the runs in the four lines. As expected, increasing the
stream’s flow increased the amount of water in the reservoir.
In more complex models, the effect of making a change
would not be so obvious.

Specifying the sensitivity method
The Sensitivity dialog lets you specify that a sensitized parameter will change from a list in a
file, incrementally, randomly, or from based on the value of a database field. The choices are:

Analysis 141
Sensitivity analysis

H
ow

 T
o

☞ If you are a developer, you can use the CurrentSense variable to control the order of use for the
values set for specific runs from within a block. For example, you can cause the first simula-
tion run to use row 4 of a file, rather than the default use of row 1.

Turning sensitivity on and off
You can control sensitivity either globally for the model as a whole or locally at the dialog
parameter level for a specific block:

• Use the Run > Use Sensitivity Analysis command to turn sensitivity analysis on and off for
the model as a whole.

• Enable, disable, and delete sensitivity settings for a particular parameter using the Sensitivity
dialog.

When you enter sensitivity settings for a value, sensitivity analysis is enabled as long as the
Enable sensitivity box is checked in the Sensitivity Setup dialog. If you uncheck the box, a dia-
log value’s sensitivity is temporarily disabled so that you don’t have to re-enter the number for
subsequent analysis.

To remove sensitivity settings from a parameter (as compared to simply temporarily disabling
the settings by turning off the parameter’s Enable sensitivity box), open the Sensitivity dialog
using any of the methods discussed on page 139, then click Delete.

☞ Editing a sensitized parameter in a block’s dialog disables the sensitivity settings for that block.
When this happens, ExtendSim automatically unchecks the Enable sensitivity choice. Extend-
Sim assumes that if the value is edited, you want to use that new value, not the one that was
entered in the Sensitivity dialog. To turn off sensitivity analysis for a parameter for the foresee-
able future, open that item’s Sensitivity dialog and click the Delete button. This will help pre-
vent accidentally changing the value in a future run of the simulation.

A parameter that has sensitivity settings has a frame inside of it. If sensitivity analysis is active
for the parameter (that is, if the Enable sensitivity choice is checked), the frame is green. If the

Option Description

Read from col-
umn x of file

Assigns the values from a text file. This is the option you will most likely use
when performing ad-hoc experiments. If the file has more than one column sep-
arated by tab characters, specify the desired column. Starting with the first row
of the specified column for the first run, this option uses the value of each suc-
cessive row in that column for subsequent runs.

Starting at...

change by...

Specifies the starting value and the amount of change. By default, the starting
value is the same as the parameter’s value in the dialog. Increase the variable
with a positive number or decrease it with a negative number.

Random distri-
bution

Uses a random distribution to set the parameter. This is an easy way to make a
single value in a model change randomly over many simulation runs while
keeping the value constant within a single run. Choose one of the five distribu-
tions and enter the distribution parameters in the options to the left of the distri-
bution. The seed is the number to use for the random number generator. As in
the Simulation Setup dialog, BLANK or 0 for the seed is random.

Database field Assigns values from the fields in an ExtendSim database. Starting with the first
record of the specified field for the first run, this option uses the value of each
successive record for subsequent runs.

142 How To
Sensitivity analysis

H
ow

 T
o

sensitivity analysis is inactive for the parameter or if it is turned off for the model as a whole,
the frame is red.

The Model > Open Sensitized Blocks command shows the dialogs of all blocks with sensitized
parameters, regardless of whether or not sensitivity is enabled.

Reporting the results
The ExtendSim reporting and tracing features are useful when analyzing output after using
sensitivity analysis. The Reporting features show final values and the Trace feature shows val-
ues at each step or event. For more information, refer to “Model reporting” on page 184 and
“Model tracing” on page 216.

Multi-dimensional scenarios
Sensitivity can be enabled on more than one item at a time. For instance, you may want to vary
the values of two Constant blocks and see the interaction between the two items. If you set the
sensitivity for the parameters with the Starting at option, both values will increment at the
same rate. For instance, if you have one parameter start at 5 and increment by 1, and the second
parameter start at 100 and increment by 50, and the simulation is run seven times the value
pairings will be:

Often, however, you want to look at all the possible pairings of the two (or more) variables. In
this example, you would want to run the model 36 times, with the following pairings:

In order to perform this kind of multi-dimensional analysis, you need to get the values from a
file. The most convenient way to do this is to create a file that has two columns separated by a

Run # Variable 1 Variable 2

0 5 100

1 6 150

2 7 200

3 8 250

4 9 300

5 10 350

6 11 400

Run # Variable 1 Variable 2

0 5 100

1 5 150

2 5 200

3 5 250

...

7 6 100

8 6 150

...

35 11 400

Analysis 143
Scenario analysis

H
ow

 T
o

tab character with all the desired pairings. For instance, the file for this example would start
with:

5 100

5 150

5 200
...

In the Sensitivity Setup dialogs for the two parameters, choose Read from file and enter the
file name. For the first variable, enter 1 for the column number; for the second variable, enter 2
for the column number.

When you run a multi-dimensional analysis, you usually use a Write block (Value library) to
write out the values to examine. In the Write block, select a data destination on the Send Data
tab and check Row (or record) index is equal to run number on the Options tab. If the data
takes a long time to transmit, you should check Only write to (data destination) at the end of
the run on the Send Data tab.

Scenario analysis
Scenario analysis is a method for systemically and strategically examining the outcome of dif-
ferent model configurations. The purpose is to support the exploration and analysis of alterna-
tives, gaining insight into why your system behaves the way it does and how it can be
improved and managed. ExtendSim facilitates scenario analysis through the Scenario Manager
block (Value library) which can be added to any model to control all aspects of the analysis.
The Scenario Manager essentially keeps track of multiple what-if models, all based on the
same model. It offers a highly flexible framework for experimentation and analysis.

The ExtendSim Scenario Manager is a data storage and analysis system that supports analysts
as they input, view, manage, and analyze various scenarios. It allows them to use a single
model to explore and evaluate an unlimited number of options while providing precise control
over model changes as well as easy access to the results. And it provides automated methods
for quickly changing variable information and for generating scenario reports. It does this by
assigning a named scenario to each combination of variables you choose to examine. For
example, you can create best-, worst-, and typical-case assumptions for input values. Then
recall each of these scenarios to see how the model behaves under different conditions. You
can also recall scenarios in combination, such as best-case sales and worst-case costs.

The ExtendSim database is a central part of the Scenario Manager's data storage and organiza-
tion. A reserved (hidden) database named Scenario DB is automatically created when a Sce-
nario Manager block is added to the model. This database is used to store the inputs and results
for the scenarios. The Scenario Manager also facilitates using a design of experiments (DOE)
methodology for more efficient performance.

The Scenario Manager is one of three ExtendSim analysis tools; see “Comparison of analysis
methods” on page 157 for differentiators. While the Scenario Manager will meet the needs of
most ExtendSim modelers, like most ExtendSim blocks it is open source. Thus a programmer
can modify and enhance it should the need arise.

How the Scenario Manager works
For scenario management you evaluate and compare a number of model configurations or sce-
narios, where each scenario is one set of model inputs or factors. These factors are typically
specific dialog parameters (such as the maximum number of items in an Activity) but can also
be complete databases, tables, fields, or records. A scenario can have any number of factors

144 How To
Scenario analysis

H
ow

 T
o

and each factor can have any number, or levels, of different values that it can take on. (For
example, setting the maximum number of items in the Activity to 2, 6, or 10 would be 3 lev-
els.)

At the beginning of each set of simulation runs, or replications, the Scenario Manager copies
the model factors for the current scenario into the appropriate locations in the model. Typically
each scenario is run multiple times to capture any stochastic behavior. At the end of each of
these replications, the results of interest (responses) are generated, recorded, and summarized.
After all replications have completed, the scenario results are stored in tables in the Scenario
DB database, which is a reserved database. You can also generate a report and export the data
to a different ExtendSim database, an Excel workbook, JMP, Minitab, or a text file.

☞ It is best to set aside some time, or use the ExtendSim Analysis RunTime version, for all of the
scenarios to run. Depending on the size and complexity it may take minutes to hours to com-
plete the entire set of runs. You should also be careful not to create too many scenarios. This is
particularly easy to do if you create a full factorial design.

 If you use the Scenario Manager block to exchange data with JMP or Minitab, those applica-
tions and their drivers must be 64-bit compatible.

Tutorial I (dialog parameters)
☞ Most analysts would only use dialog parameters in their scenarios, so this tutorial focuses on

those. For advanced analysis, you can also use databases, tables, and so forth, as discussed on
page 150.

The following example uses a tutorial discrete event model to investigate how changes in a
number of factors affect the average wait time and throughput. However, the same concepts
apply for continuous process and discrete rate models.

The table below shows the model factors and how they will be varied:

Each scenario will be run 5 times to capture the variation in the results between one run and the
next. To evaluate all of the possible combinations requires 225 replications (45 scenarios [5 x 3
x 3] at 5 runs each).

☞ Fortunately, this model runs very quickly so this number of replications is not a problem. How-
ever, if the model took significantly longer to run or if there were more factors, a design of
experiments (DOE) should be used to reduce the number of scenarios.

Steps
The steps for performing scenario analysis are:

1) Add a Scenario Manager block (Value library) to a model

2) Identify and add the factors (model inputs) you want included in the analysis

3) Identify and add the responses (model results) you want to analyze

Factor Values

Car interarrival rate 3, 3.5, 4, 4.5, 5

Wash only time 5, 6, 7

Wash and wax time 6, 7, 8

Analysis 145
Scenario analysis

H
ow

 T
o

4) Determine what you want in the report

5) Determine the DOE, then generate and run the scenarios

6) Analyze the results

7) Optional. Export the scenarios to Excel, JMP, Minitab, a text file, or an ExtendSim data-
base for further analysis

Add the Scenario Manager block
Open the model named Step 4 DE Tutorial (Documents/ExtendSim/Examples/Tutorials/

Discrete Event)

Save the model as “My Step 4 DE Tutorial” so you don’t overwrite the original model

Place a Scenario Manager block (Value library) in the model. The block can be placed any-
where but the top of the model will provide easiest access.

Since all the other blocks are labeled, label the block “Scenario Manager”

☞ Adding a Scenario Manager block to a model automatically creates a reserved (hidden) data-
base named Scenario DB to the model. This is where the results of each individual scenario, as
well as model factors, are stored. See “Analyze results” on page 149 for more information.

Your model should now look similar to the following screen shot:

Open the dialog of the Scenario Manager block

As seen above, the Scenario Manager has tabs for Factors, Responses, Scenarios, and Export.
These represent the steps in using the Scenario Manager.

Identify and add factors and values
The next step is to determine and add to the Dialog Factors table any dialog factors (model
parameters that are inputs) that you want to include in the analysis.

146 How To
Scenario analysis

H
ow

 T
o

 Don’t perform scenario analysis on input parameters that have been cal-
culated by the system and are displayed in non-editable fields. For
instance, don’t use as a factor a delay time that is determined by an
item’s attribute value, such as the delay shown here in a display-only field.

The information is in the following table.

Methods for referencing dialog variables as factors
There are 3 ways to add a dialog variable as a factor to the Dialog Factors table:

• Shift-click. Shift-click the target parameter in the target block’s dialog and select where it
should go.

• Clone drop. Click on a clone of the target parameter from the target block’s dialog, then click
on the Scenario Manager’s icon.

• Manual. Manually enter the dialog variable name into the factors table.

Interarrival time factor
☞ This section uses Shift-click to associate the parameters with the Scenario Manager. The

response section that follows uses clone-drop.

In the Queue (Dirty Cars) dialog:

While holding down the Shift key, click the Mean variable.

In the popup menu that appears, select Scenario Manager:
Add Factor

In the dialog that appears (shown
on the right), name the factor Cars
Rate and click OK to save the
name.

Close the Queue (Dirty Cars) dialog.

Notice that the Scenario Manager’s Dialog Factors table now contains all the information
about Dirty Cars – the block it came from, the number it is currently set at, and so forth.

Other factors
Repeat the steps used for the Cars Rate factor, above, to place the remaining two factors

(from the table on page 145) in the Scenario Manager’s Dialog Factors table

The Dialog Factors table should now look like this:

Block Name (Label) Parameter Factor Name Values

Create (Dirty Cars) Mean Cars Rate 3, 3.5, 4, 4.5, 5

Activity (Wash Only) Delay (D) Wash Time 5, 6, 7

Activity (Wash & Wax) Delay (D) Wash&Wax Time 6, 7, 8

Analysis 147
Scenario analysis

H
ow

 T
o

Entering values
Now that the factors have been entered, it is time to enter their proposed values. There are two
methods for entering the values:

• If you choose a DOE method, enter the minimum, maximum, and step (the increment
between the minimum and maximum values) for each dialog variable factor in the table in
the Factors tab.

• If you choose to manually enter the scenario configuration, enter a value for each factor and
every scenario directly in the Scenarios table of the Scenarios tab.

Since this example will use the Full Factorial DOE method:

Go to the Factors tab of the Scenario Manager block

Enter the minimum, maximum, and step values for each of the factors as shown below

The Wash Time has a Step of 1 with a Min Value of 5 and a Max Value of 7. That means that
the Scenario Manager will explore times of 5, 6, and 7 minutes as requested in the table on
page 145.

Identify and add targeted responses
The next step is to add responses to the Scenario Manager.

☞ While you could use any of the 3 options from page 146, this section uses the clone drop
method to associate the parameters with the Scenario Manager.

The responses (results of interest) are in the following table:

Wash Bay
Close the dialog of the Scenario Manager block

Open the Queue block and go to its Results tab

Select the Clone cursor, either by right-clicking in the dialog or by going to the menu

Use the Clone cursor to click in the variable field for Length: Average; this creates a clone
of that variable

Factor Name Min Value Max Value Step

Cars Rate 3 5 0.5

Wash Time 5 7 1

Wash&Wax Time 7 9 1

Block Name (Label) Tab Parameter Response Name

Queue (Wash Bay) Results Length: Average Ave Length 1

Queue (Wash & Wax) Results Length: Average Ave Length 2

148 How To
Scenario analysis

H
ow

 T
o

Hover the cursor over the icon of the Scenario Manager block until the
icon is highlighted and the cloned variable appears on the block’s icon,
as shown here

Click once on the Scenario Manager’s icon

In the dialog that appears, select Response

Name the response Ave Length 1

Close the Wash Bay’s dialog

This causes the selected variable to be placed in the Scenario Manager’s Responses tab.

Wash & Wax
Use either the Shift-click or the clone-drop method to add the field for Length: Average

response of the Wash & Wax queue to the Scenario Manager

Select the Response option and name the response Ave Length 2

The Dialog Responses table in the Responses tab should look like the following:

Determine what will be in the report
The fourth step is to determine what type of report you want and what you want in the report.

The Dialog Responses table in the Responses tab is where
you specify what level of statistics you want the report to
calculate and which responses you want included in the
report. In most cases, you would leave them set to the
defaults. However:

• If you are using JMP, the Min/Max column provides additional information for analyzing the
results in JMP.

• The Report Set column determines
which report is run for the specific
response. The default is to only show
the mean or average value of the
response for each scenario, but more
detailed statistics can be added by
selecting a different report set as shown
here.

• The Include in Report column is for choosing which responses will be included in the report.

For this example:

Keep the default settings

Select the DOE and run scenarios
The Scenarios tab of the Scenario Manager block is for choosing a method for the DOE as well
as for creating and running the scenarios. There are several DOE methods you can choose:

Analysis 149
Scenario analysis

H
ow

 T
o

manual, full factorial, JMP custom, and Minitab optimal; they are described more on page 157.
For this tutorial you will use the full factorial method.

Go to the Scenarios tab of the Scenario Manager block

In the Run Control section, choose DOE method: Full factorial design

Click the Create Scenarios button

This generates all of the combinations of the factor values. There will be a total of 45 rows (5 x
3 x 3 levels) in the Scenarios table. By default all of the scenarios are selected; to not run a spe-
cific scenario, uncheck its Select check box.

Since you want all of the scenarios to run, leave all of the Select check boxes selected

In the Scenarios tab, enter Runs per scenario: 5

Click the Run Scenarios button

As the scenarios run, the Status frame reports the run count and the scenario count. As dis-
played, 225 replications (5 runs x 45 factors) are required to complete the scenario analysis.
When the scenarios have completed running, you should see the following in the Scenarios
table:

☞ See page 156 for suggestions on how to cause scenarios to run faster.

Analyze results
The Scenario DB database, a reserved database, automatically stores all the responses of each
scenario in a series of tables. The tables correspond to the rows of the Scenario Name column
in the Scenarios table. The All Scenarios table of the Scenario DB contains information about
all the model factors and responses. You can use the Scenario DB to perform analysis, or
export selected information to a different ExtendSim database, to Excel, or to JMP or Minitab,
as discussed on page 150.

Some additional things to notice for your analysis are:

• To not include a response in the report, uncheck Include in Report in the Responses tab

• Each response will have the type of report indicated in the Report Set column of the
Responses tab. The default is to display the mean value for each response variable but you
can also display the confidence interval, standard deviation, and so forth.

☞ Changing a Report Set after the scenarios have been run causes the Scenario Manager to recal-
culate the results with the new set. This is useful if you change your mind about the report you
want.

• Depending on what has been selected as the Response tab’s Report Set, each response will
have one or more columns in the Scenarios table of the Scenarios tab. These columns sum-
marize the results of each set of replications for each scenario. The type of report, for exam-
ple CI for confidence interval, is indicated in parentheses in the header of the column.

150 How To
Scenario analysis

H
ow

 T
o

• On the Scenarios tab, the Details column in the Scenarios table opens a database table con-
taining the original data that was used to calculate all the statistics. The table is from the Sce-
nario DB database that was created when the Scenario Manager block was first placed in the
model.

• By default all of the scenarios are selected in the Scenarios table; to not run a specific sce-
nario, uncheck its Select box

Export the results (optional)
The form of the Scenario DB database tables may not be exactly what you want. To do addi-
tional analysis using a different format, export a report on the Export tab. For example, you
could export complete results, including the values from every scenario, to JMP. Then use
JMP's analysis capabilities to compare the different scenarios. To export the results:

Choose the type of report.

• Complete Results exports the contents of the Scenario DB database – the factors and
responses for every run in every scenario

• Displayed Statistics exports the statistics for each scenario as shown in the Scenarios
table. What gets displayed depends on what is selected in the Response tab’s Report
Set column.

• Complete Statistics exports all of the available statistics for each scenario. This is every
possible statistic allowed by the Report Set column of the Responses tab.

Select the destination for the report: an ExtendSim database, Excel, Minitab, JMP, or a text
file.

 So that you don’t accidentally overwrite the data, do not export to the Scenario DB database.

Set the destination parameters for the exported data. This varies based on the selected export
destination.

Click Export Report

Once you have exported the results, analyze the scenarios by sorting, plotting, or generating
comparison statistics.

Tutorial II (database variables)
 This section assumes you understand how to create ExtendSim databases, including how to
link to them and how to enter parent/child relationships. Databases are described “ExtendSim
databases for internal data storage” on page 232 and in the separate document titled ExtendSim
Database.pdf.

So far you have controlled only dialog variables with the Scenario Manager. While most ana-
lysts would use only dialog parameters as factors and responses, a select few of you will want

Analysis 151
Scenario analysis

H
ow

 T
o

to do more advanced analysis. With the Scenario Manager you can use entire databases or a
subset of a database (tables, fields, or records), as factors and/or responses. These database
variables can be used in addition to, or instead of, dialog variables.

☞ Using database variables is more complicated than using dialog parameters. However, it is very
useful when you have sets of data, rather than single variables, that you want to swap in and
out for each scenario. For example, several production schedules for a manufacturing model.

To use the Scenario Manager with a database variable, you must create an ExtendSim database
and any necessary tables, fields, and records (this tutorial assumes you already know how to do
that). You also need to specify targets and sources, as discussed below.

Targets and sources
The concept of targets and sources is specific to the Scenario Manager and allows more sophis-
ticated analysis.

Definitions
• A database variable is a variable that references an entire database or a subset of a database,

such as a database table or field.

• A source is a database variable that gets copied to a target

• Factor sources are the set of values that a database variable can take for all the different
scenarios. They contain all of the information for all of the scenarios.

• A response source is the value of a database output variable for a particular replication.
Each response source only has the information for the current set of replications.

• A target is a database variable whose value is defined by a source

• A factor target is a database input variable whose value has been defined by a particu-
lar factor source. Each factor target only has the information for the current set of sce-
nario replications.

• Response targets are a collection of output database variables where each variable’s
value is defined by a particular response source. They contain all of the results for all of
the scenarios.

Overview
• The architectures of the targets and the sources must match. For example, if the source is a

database table, the target must also be a database table with the same number of fields.

• A minimum number of sources and targets must be created for the model:

• For database factors, at least two sources and at least one target is required. (Each set of
data is a source so having one source does not make any sense when there are sets of
data.)

• For database responses, one source and a number of targets is required. The number of
targets depends on whether ExtendSim creates the source and targets or you do it man-
ually. If Auto-Create Target is selected in the Database Responses table, ExtendSim
will create a new database target for every simulation run. If you do it manually, create
one source and one target per scenario.

152 How To
Scenario analysis

H
ow

 T
o

• If you run the model for testing purposes without using the Scenario Manager, the identified
variables can be used in the model. However, these variables are just placeholders and their
contents will change when you use the Scenario Manager.

• Factor target. When testing the model, use the target database factor in your blocks.
(Either link a parameter or data table to the target variable or use a Read or Write block
to reference the target variable.)

• Response source. Similarly to the above, build the model as if you will be using a
placeholder database response variable. However, use the source rather than the target.

• Sources are always copied to targets. When and how this happens depends on whether the
database variable is a factor or a response.

• Factor. At the start of each set of scenario replications, the Scenario Manager copies
the contents of the source database factor variable into the target database factor vari-
able. This is done automatically by the Scenario Manager.

• Response. At the end of each simulation run the database variables used in the model
are copied from the source to the target database variables for that scenario.

☞ The contents of the table, rather than the table itself, is copied. Thus the index of the target
database variable does not change.

Diagram of sources and targets
The following diagram shows how sources and targets are related to factors and responses.

☞ Database factors are copied from the sources to the target at the start of each scenario run.
Database responses are copied from the source to the targets at the end of each run.

Steps for scenario analysis
The steps for performing scenario analysis using database variables are:

1) Open a model

2) Create the required database, tables, fields, and records for the model

3) Optional. If you plan to perform DOE, create an additional table for each database variable,
where each table has a list of the possible values for that variable.

4) Create links between the model and the database variables

5) Enter information in the Database Factors table

6) Enter information in the Database Responses table (this example does not do this step)

7) Generate and run the scenarios

Sources for
DB Factors

Targets for
DB Responses

Targets for
DB Responses

Sources for
DB Factors

Sources for
DB Factors

DB variables used by model Targets for
DB Responses

Target for
DB Factors

Source for
DB Responses

Analysis 153
Scenario analysis

H
ow

 T
o

8) Optional. Export the report.

☞ The above steps assume database tables are used for factors and responses. You can also use
fields or records, or even entire databases, as targets and/or responses.

Open the model
In the previous tutorial you used dialog variables as factors and responses. This tutorial uses
database tables as factors and responses.

☞ This tutorial uses a similar model that already has the required database structure in it.

Open the Scenario Manager Final Car Wash model (ExtendSim/Examples/How To/Scenario
Manager)

So that you don’t overwrite the original, save the model as My Scenario Manager Final Car
Wash.

This model has some differences from the previous model, but like that model this model has:

• Three factors in its Dialog Factors table: Wash Time, Wash&Wax Time, and Cars Rate

• Two responses in its Dialog Responses table: Ave Length 1 and Ave Length 2

This tutorial will keep these dialog factors and responses but will add a fourth factor (the per-
centage of cars wanting Wash or Wash & Wax) and put it in the Database Factors table.

About the tutorial
In the model, the proportion of cars wanting either wash only or
wash and wax is set in the empirical table of the Random Number
block (labeled “Preference Percentage”). The table is shown at
right.

For this tutorial the Wash or Wash & Wax factor will have three combinations of percentages,
which represent 3 levels:

1) 75% wash and 25% wash & wax – the base case

2) 90% wash and 10% wash & wax – the more wash case

3) 50% wash and 50% wash & wax – the less wash case

154 How To
Scenario analysis

H
ow

 T
o

As in the earlier tutorial, each scenario will be run 5 times to capture the variation in the results
between one run and the next. To evaluate all of the possible combinations now requires 675
replications (135 scenarios [5 x 3 x 3 x 3 levels] at 5 runs each).

A database structure for the model
So that you can focus on the tutorial, the required database has already been created for this
model. As shown at the bottom of the Database menu, the Scenario Manager Final Car Wash
model has a Model Data database. This database stores the different options and probabilities
for the wash or wash/wax factor in 6 tables:

• A Parent table, Wash Type, that lists the options for the two wash types:
wash only and wash & wax. Its contents are shown on the right.

• Three factor source tables, each of which has one of the probability combi-
nations: Base Case (75% wash/25% wash&wax), Less Wash (50%/50%),
and More Wash (90%/10%). These are Child tables that get their wash type
information from the Wash Type table.

• A factor target table named Wash Preference. Each record in the factor target table has a
wash type field and a probability field associated with that wash type. This table is used as a
placeholder for model data. Thus before the scenario runs begin, the table is identical to the
Base Case source table.

• A factor source list table, named Preference Sources. This
table has one field named Wash Preference Table Name; its
field type is List of Tables. (In other words, this is a table of
tables.) The field has three records where each record is the
name of one of the factor source tables. The field and its
records are shown at right. This table is used when perform-
ing DOE, so that you will know which tables to select from when creating the design. See
“Create a source list (optional)”, below, for more information.

☞ Because they would commonly be used, the Model Data database has two tables that weren’t
strictly required for the example: the Parent table (Wash Type) and the list of source tables
(Preference Sources).

Analysis 155
Scenario analysis

H
ow

 T
o

The structure of the Model Data database is shown below.

Create a source list (optional)
If you plan to perform DOE, you should consider creating an additional table for each database
factor variable where each table has a list of the possible values for that variable. This is a table
of tables, or a factor source list.

Using a factor source list allows you to choose from a subset of database variables rather than
from all of the database variables in the model. This makes it easier to create the scenarios
manually and to use DOE. Without this list of factor sources, any table in the database would
be listed in the Database Factors table as a possible factor source table.

As discussed above, a factor source list named Preference Sources, has already been created
for this example. As you will see later, checking Use Source List in the Database Factors table
limits the possible entries to those in the source list (in this case, to the Preference Sources
database table).

Link to the target table
To control the model’s wash preference probabilities, the Random Number block’s empirical
probability table must be linked to the target table – Wash Preference:

Click the Link button in the Random Number block’s Preference/Probability table

In the Link dialog popup menu, select the database named Model Data

Choose the table named Wash Preference, then click the Link button

Close the Random Number dialog

Enter database factors
Unlike with dialog variables, you cannot Shift-click or clone drop a database variable. How-
ever, the Database Factors table also has popups for selecting the appropriate information.

In the Factors tab of the Scenario Manager’s dialog, check the Enter database factors
check box to enable the Database Factors table

Factor
Target

Factor
Sources

List of Factor Sources

156 How To
Scenario analysis

H
ow

 T
o

Use the +/- resize button to add one row to the table

Use the down arrows to select, or if needed manually enter, the following information in the
Database Factors table:

Generate and run the scenarios
Go to the Scenarios tab and generate and run the scenarios as you did in “Select the DOE and
run scenarios” on page 148. If you use the Full Factorial method and have 5 runs per scenario,
135 scenarios should be created and it will take 675 replications.

Other models
For other example scenario analysis models, see the Scenario Manager DB Factors model or
the Call Center Scenario Manager model. They are located at Documents/ExtendSim/Exam-
ples/How To/Scenario Manager.

Suggestions for running scenarios faster
To have the scenarios run as fast as possible:

• Turn off animation

• Set all the charts and graphs to not open automatically

• Rather than use the Run Scenarios button in the Scenario Manager’s dialog, close the dialog
and run the scenarios using the Run Optimizations or Scenarios button in the Model toolbar.
Or clone the Run Scenarios button from the dialog to the worksheet and use that to run the
scenarios, after closing the block’s dialog. (If you use the Run Scenarios button in the dialog,
you won’t be able to close the dialog until all the runs end.)

• Close any other open dialogs.

• Off-load the model and its runs to a different device using the Analysis RunTime version of
ExtendSim.

• Uncheck Play sound at end of run in the Edit > Options > Model tab. It won’t cause the sce-
narios to run any faster but you’ll avoid the annoying beep at the end of each run.

☞ Running scenarios can take a long time. Once the runs have started, you can click the Stop but-
ton in the Scenario Manager’s dialog to stop the remaining scenarios from running. That works

Column Header Enter or Select This Information

Target Name Wash or Wash/Wax

Target Type Table

Target DB Model Data

Target Table Wash Preference

Target Field (leave this cell blank)

Target Record (leave this cell blank)

Use Source List (Check the box. See page page 155 for
more about source lists.)

Source Database Model Data

Source Table Preference Sources

Source Field Wash Preference Table Name

Analysis 157
Comparison of analysis methods

H
ow

 T
o

better than clicking the Stop button in the toolbar or pressing Ctrl/Command + period on the
keyboard, which only stop the current scenario run.

DOE methods
As introduced on page 148, the Scenarios tab of the Scenario Manager block allows you to
choose the DOE method. These are described more fully below.

The options for JMP and Minitab require either JMP from SAS Corporation or Minitab from
Minitab Inc. to generate the design and analyze the results.

☞ The JMP custom and Minitab optimal methods result in far fewer scenarios than full factorial.

 If you use the Scenario Manager block to exchange data with JMP or Minitab, those applica-
tions and their drivers must be 64-bit compatible.

Comparison of analysis methods
The Scenario Manager is just one of the ExtendSim analysis tools. As described in the table
below, each tool has a different purpose.

DOE Method Description

Manual Enter factors for each scenario manually

Full factorial Create Scenarios creates one scenario for each combination of factor values.
Since every possible combination of factors is generated, this takes the lon-
gest to run.

JMP custom
(Windows only)

Create Scenarios opens JMP and causes it to create a custom or D-optimal
design, then displays the factors and responses in both ExtendSim and JMP.

JMP custom –
create and run
(Windows only)

Create and Run Scenarios opens JMP, causes it to create a Custom or D-
optimal design, displays the factors and responses in both ExtendSim and
JMP, then immediately runs the scenarios.

Minitab optimal
(Windows only)

Create Scenarios opens Minitab and causes it to create an Optimal or D-
optimal design, then displays the factors and responses in both ExtendSim
and Minitab.

Minitab optimal
- create and run
(Windows only)

Create and Run Scenarios opens Minitab, causes it to create an Optimal or
D-optimal design, displays the factors and responses in both ExtendSim and
Minitab, and then immediately runs the scenarios.

Technique Sensitivity Analysis Scenario Manager Optimization

Purpose Study the behavior of the
model in response to
changes in a single input
parameter

Study and compare the
behavior of the model in
response to changes in
multiple input parame-
ters. Learn how the sys-
tem behaves under
different conditions.

Determine the best con-
figuration of model
parameters, given a spe-
cific goal (usually to min-
imize cost or maximize
profit)

158 How To
Optimization

H
ow

 T
o

Optimization
Optimization is a powerful feature that can automatically determine ideal values for parame-
ters in a model. It does this by running the model many times using different values for
selected parameters, searching the solution space until it is satisfied that it has found an accept-
able solution. It then populates the model with the optimized parameter values.

ExtendSim facilitates optimization by making the optimization algorithm available within a
block that can be added to any model to control all aspects of the optimization. Furthermore,
having a block do the optimization increases flexibility and opens up the method and source
code to users who might want to modify or create their own customized optimization blocks.
The Optimizer block (Value library) uses an evolutionary algorithm to reduce the number of
times the model has to run before a solution is found.

Question If a parameter had this
value, how would it effect
model outputs?

If several parameters had
these values, how would
that effect model outputs?

What configuration of
parameters allows a
model to behave opti-
mally?

Advantages Easiest to specify

Included in all ExtendSim
products

Gives the most complete
understanding of how the
model reacts to different
factors

Factors can be from data-
bases as well as dialog
variables

Automatically records
each response for every
simulation run

Design of experiments
can reduce the number of
scenarios required to
study factor interactions

Determines the optimum
model configuration

Constraints can be added
to filter out infeasible
model configurations

Included in all ExtendSim
products

Disadvan-
tages

Evaluating more than one
factor is cumbersome

Additional modeling is
required to record model
results

A set of scenarios must be
created by the modeler

May require many simu-
lation runs to evaluate all
of the scenarios

An objective function is
required

Does not record the
results of each individual
run

There is a practical limit
on the number of factors,
and their possible values,
that can be examined

May require many simu-
lation runs to determine
the optimal configuration

Refer to “Sensitivity analysis” on
page 138.

“Scenario analysis” on
page 143.

“Optimization” on
page 158.

Technique Sensitivity Analysis Scenario Manager Optimization

Analysis 159
Optimization

H
ow

 T
o

How optimization works
Optimization, sometimes known as “goal seeking,” is a useful technique to automatically find
the best answer to a problem. The “problem” is stated as an objective function or cost equation
that ExtendSim tries to minimize or maximize to save you going through the tedious process of
manually trying different values with each model run.

Like most optimization algorithms, the ExtendSim Optimizer solves models using an initial
population of possible solutions. Each solution is explored by running the model several times
using different values for some selected parameters, averaging the samples (for stochastic, ran-
dom models), and sorting the solutions. The best solution sets of parameters are then used to
derive slightly different but possibly better solutions. Each new derived solution is called a
generation. This process continues for enough generations until the Optimizer determines that
there are probably no better solutions in sight. The Optimizer then terminates the simulation
runs and populates the model with the best solutions it has found.

The downside to optimization is that the model needs to run repeatedly and this can take a long
time with large models. Also, optimization algorithms have an inability to tell when the best
solution has been found, or even if the best solution has been attempted. A good approach is to
allow the optimization to run for a sufficient number of cases and to then see if the population
of solutions has converged. Then try the optimization procedure several additional times to
make sure that the answers agree (or are close) and that the first answer is not a false or sub-
optimal one.

☞ There are no optimization algorithms that are guaranteed to converge to the best answer in a
finite time. The more time that you can give optimization to run, the better chance that it will
provide the optimum answer. Consider using the Analysis RunTime version of ExtendSim
when running optimizations, since you can off-load the model and its runs to a different
device.

Steps for using optimization
The steps needed to optimize a model are listed below. The tutorial that follows illustrates
these steps.

1) Add an Optimizer block (Value library) to a model.

2) Define the form of the objective function.

3) Determine which variables the equation needs and “clone-drop” them onto the Optimizer.

4) Set the limits for those variables in the Optimizer’s Variables table.

5) Derive the equations for the objective function.

6) If variables need to constrained to certain values, add constraint equations.

7) Set the Optimizer’s Run Parameters for a random or non-random model, then run the opti-
mization.

☞ The following tutorial assumes that you know how to clone parameters (see “Cloning” on
page 72) and that you are comfortable deriving equations (if not, see “Equation-based blocks”
on page 189).

160 How To
Optimization

H
ow

 T
o

Tutorial assumptions
The model for this tutorial represents a drink stand at a county fair; it has these assumptions:

• Drinks are dispensed from beverage tanks that can range in size from 1000-8000 drinks. (In
the example model, 1000 is used for the initial tank size setting.)

• A truck delivers the beverage tank at the start of the day and exchanges it periodically
throughout the day. (The model is initially set to get a second tank after 240 minutes.)

• The truck exchanges the beverage tank for a new one of the same size. There is a $1 per
drink beverage charge plus a delivery charge of $1,000 per tank.

• So that the beverage company will know when to deliver tanks and what size tank you will
use for the day, arrangements regarding tank size and delivery frequency must be made at
the beginning of the day.

• People purchase drinks according to a random distribution; the cost per drink is $2.50.

• If the beverage tank becomes empty, you lose an estimated $100 per minute in sales because
customers already in line go to another stand and new customers are discouraged from get-
ting in line.

• If you exchange the tank too often, you lose money because the beverage inside the old tank
gets taken away along with the tank.

• This model ignores other expenses, such as labor.

• The model runs for a simulation time period of 480 minutes (8 hours).

The goal of this tutorial is to optimize both how big of a tank you should order and how often
the tanks are exchanged. It is a simple continuous model, but a good example to show some of
the optimization techniques you will use in any type of large model.

Open the model
Open the Optimize 1 model from the folder Documents/ExtendSim/Examples/How To/

Optimization

So that the example file isn’t overwritten, save the model as “MyOptimizer”.

To provide a starting point for the optimization, this model has been populated with initial
assumptions for the decision variables: deliveries are repeated every 240 minutes and the tank
size is 1,000 drinks.

Analysis 161
Optimization

H
ow

 T
o

Add an Optimizer block
Place an Optimizer block (Value library) in a convenient location in the model.

To get an idea of what it looks like without any entries, open the Optimizer’s dialog.

As seen here, the Optimizer’s Objectives tab has two sections:

• A Variables table for entering variables and specifying their limits.

• An Equation pane for entering an objective function. An objective function consists of one
or more equations that use the variables.

Close the Optimizer’s dialog.

Determine the form of the function
The Optimizer block will try to reach a goal by changing the values of model variables based
on an equation that measures how close the goal is.

The first step is to lay out the form of the objective function. This helps clarify what will be
optimized and which factors affect that goal. In most cases, you want to minimize a cost or
maximize a profit.

This model tries to maximize the beverage stand’s profit. The factors that affect profit are:

• Beverage costs ($1 per drink plus $1,000 per tank)

• The revenue for each drink sold ($2.50 per drink)

• A penalty or reduction in profit if you run out of drinks to sell ($100 per minute)

Using this information, a (non-code) form for the objective function could be:

MaxProfit = $2.50*#Sold - #Deliveries*($1000 + #Drinks*$1.00) - time empty * $100

☞ You’ll see the actual objective function below. For now, note that you cannot use the # sign in
the actual equation since # indicates a preprocessor directive, such as #include.

How to add variables to the Optimizer
The form for the objective function is the basis for the cost equation that you will enter in the
Optimizer’s dialog. Before doing that, you need to obtain the necessary model variables (called
decision variables) so the equation can reference them. In some cases the required variable
will be a dialog parameter and in others it will need to be calculated based on a dialog parame-
ter.

162 How To
Optimization

H
ow

 T
o

An Optimizer block’s access to dialog variables is accomplished by using either:

• Clone dropping, where you use the Clone cursor to place clones of the desired dialog vari-
ables on the Optimizer’s icon

• Or Shift-clicking the variable with the Block/Text cursor and selecting Optimizer: Add
Parameter.

Either operation adds information about the variable to the Variables table. It also enables the
Optimizer block to remotely read and change the value of that variable in the model, so that it
can explore possible solutions.

Creating the variables
Using the variables nomenclature from the form for the equation (MaxProfit = $2.50*#Sold -
#Deliveries*($1000 + #Drinks*$1.00) - time empty * $100), the steps are:

sold
The total number of sales for the day is an output variable calculated by the model; it is directly
available in a block’s dialog.

Use Shift-click to add the total sales variable:

Open the dialog of the Holding Tank block labeled “Total sales”.

While holding down the Shift key, use the Block/Text cursor to click once on the value (not
the label) for the Current level parameter (2000).

In the dialog that appears, select
Optimizer: Add Parameter.

In the subsequent dialog, enter num-
Sold as the name for the variable. This puts the variable into the first row of the Optimizer’s
Variables table.

Close the Holding Tank’s dialog.

☞ Starting with the first row, each dialog item is automatically placed into successive rows of the
Optimizer’s variables table.

deliveries
Unlike the other required variables for this example, the number of deliveries is not directly
available as a dialog item. However, that value can be calculated using the frequency of deliv-
eries, as you will see on page 164.

Use clone-drop to add the variable:

To get the repeat delivery time, open the dialog of the Lookup Table block labeled “Filler
Truck”.

Select the Clone cursor, either by right-clicking in the dialog or by going to the menu.

Using the Clone cursor, click once in the variable field (but not the label or checkbox) for
the Repeat table every parameter (240). This creates a clone of that parameter.

Hover the Clone cursor over the icon of the Optimizer block until the icon is highlighted and
the cloned variable appears on the block’s icon.

Click once on the Optimizer’s icon to release the clone.

Analysis 163
Optimization

H
ow

 T
o

In the dialog that appears, name the variable deliveryTimes.

Keep this dialog open.

☞ From now on, use whichever method you felt most comfortable with: Shift-click or clone drop.

#drinks
The decision variable for the number of drinks per tank is also located in the Lookup Table
block labeled “Filler Truck”.

Use Shift-click or clone drop to add the data table in the Lookup Table’s dialog to the Opti-
mizer block.

Name the data table delTankSize.

Close the Lookup Table’s dialog.

time empty
The model calculates the amount of time that the drink tank is empty; this is an output variable.

Open the dialog of the Holding Tank block labeled “Empty Time”.

Use Shift-click or clone drop to add the Current level parameter to the Optimizer block.

Name the parameter emptyTime.

Close the Holding Tank’s dialog.

The Optimizer’s variables table
The variables table in the dialog of the Optimizer block
should appear as shown here.

Setting limits for the variables
Now that the Optimizer has the necessary variables, you
need to enter limits for some of the variables so the Optimizer will know that it should try to
change them. For data tables, you also need to specify which cell is to be used in the equation.

☞ Variables without limits are considered outputs from the simulation and the Optimizer will not
try to change them.

Open the Optimizer’s dialog so that the Variables table in the Objectives tab is visible.

On the first row of the Variables table (numSold) do not enter any limits. This value is not
an input to be changed but rather an output value from the Holding Tank.

On the second row (deliveryTimes) enter a Minimum Limit of 30 minutes (an estimated
minimum) and a Maximum Limit of 480 minutes (the simulation end time). This sets the
time between deliveries.

On the third row (delTankSize), you need to tell the Optimizer which cell of the data table to
use and what its limits are:

In the Block column click once on the cell named “Filler Truck”, causing the dialog of
the Lookup Table block to open. Since data table rows and columns start at 0, the cell
that holds the number of drinks per tank is at row 0 and column 1 (# Drinks) of the data
table.

Close the dialog of the Filler Truck.

164 How To
Optimization

H
ow

 T
o

In the Optimizer’s dialog, for the Row, Col value enter 0,1.

For this variable’s limits, enter a Minimum Limit of 1000 and a Maximum Limit of
8000 drinks.

☞ Do not enter a decimal point. The absence of a decimal point tells the Optimizer that the value
for the number of drinks has to be an integer.

On the fourth row (emptyTime) do not enter any limits because this value is a model output.

The columns of
the Objectives
table should now
look similar to the
table on the right.

How to determine the objective function
Now that the limits have been entered, substitute each variable’s name for the row that holds
the value of interest. The result is:

MaxProfit = 2.50*numSold - numDeliveries*(1000.0+delTankSize*1.00) -
emptyTime*100;

The only variable from this equation that has not yet been specified is the #deliveries factor,
which can be calculated using the deliveryTimes variable. The form for an equation to convert
the deliveryTimes variable to the #deliveries factor is:

numDeliveries = int((endTime-1)/deliveryTimes + 1)

How this equation is structured is as follows:

EndTime is a global variable representing the end time of the run, in this case 480 min-
utes. DeliveryTimes is how frequently the deliveries are repeated, or every 240 minutes.
If you were to divide the endTime value of 480 by the deliveryTimes value of 240, it
would result in 2 deliveries a day, which appears correct. However, if you instead divide
by 250, you get only 1.92 deliveries, even though you still have 2 deliveries, one at the
beginning of the day and one at 250 minutes. There will always be a delivery at the
beginning of the day, so you need to add 1 to deliveryTimes and truncate any fractional
result with the int() function. This results in 2.92, which when truncated gives 2, the cor-
rect answer.

If you had a delivery every 480 minutes, there would be 2 deliveries, but the last one
would happen at the same time as the stand closes. To remedy this, reduce the endTime
by 1, preventing the 480 minute case (the maximum limit) from causing 2 deliveries.

For more details about objective functions, see page 169.

Enter the objective function
The entire objective function can now be entered in the Optimizer block’s Objectives tab:

Delete the default equation from the Equation pane.

Define a new variable for the number of deliveries by entering it in the Equation pane

Integer numDeliveries;

☞ Don’t forget the semicolons that are needed to end each statement!

Below that variable definition, enter the equation that converts deliveryTimes into numDe-
liveries:

Analysis 165
Optimization

H
ow

 T
o

numDeliveries = int((endTime-1)/deliveryTimes + 1);

Below the conversion equation, enter the cost equation:

MaxProfit = 2.50*numSold - numDeliveries*(1000.0+delTankSize*1.00)
- emptyTime*100;

☞ The variable definition and the two equations are the objective function for the Optimizer.

The Optimizer block’s equation pane should looks like:

Run the optimization
Open the Optimizer block’s dialog.

Select the Run Parameters tab. Since this model has random elements, in the Random model
section click the Quicker Defaults button. This quickly sets up all the parameters for a sto-
chastic (random) model needing multiple samples, but limits the number of samples by
default so you can get results more quickly.

Run the optimization by clicking New Run in the Optimizer’s dialog, clicking the Run
Optimization or Scenarios tool on the toolbar, or by giving the command Run > Run Opti-
mization or Scenarios.

☞ For comparison purposes to your model, see the model Optimize 2 located at Documents/
ExtendSim/Examples/How To/Optimization

Results
While the optimization run is progressing, notice how the MaxProfit and convergence values
are increasing on the graph.

☞ The graph in the Optimizer’s dialog has many of the same features and customization opportu-
nities as the blocks in the Chart library discussed starting on page 174.

At the end of the run, you should get a message stating the convergence value of approxi-
mately 95%. When the run is finished, the Optimizer opens and displays the Results tab.

The best values for the selected parameters (delivery times and tank size) will have already
been placed into the model, the drink tank is never empty, and the profit will be maximized.
The results of the run as seen on the Objectives and Results tabs are:

• NumSold (total sales) is blank because it has not been changed; it is an output from the
model.

• DeliveryTimes (Filler Truck repeat prm) = around 240 minutes between deliveries (2 deliv-
eries).

166 How To
Optimization

H
ow

 T
o

• DelTankSize (Filler Truck data_tbl) = around 5200 drinks per tank delivered.

• EmptyTime (Empty Time contents) is blank because it is an output value from the model.

• MaxProfit (on the Results tab) = around $12,000.

Your results will vary a little from those shown here because of the randomness of the model
and because you have set the convergence and samples for a quick result.

☞ As mentioned earlier, it is a good idea to run the model with optimization additional times to
make sure that the answers agree or are at least close. This provides assurance that the first
answer is not false or sub-optimal.

About constraints
The optimization results indicate that the profit would be maximized if you ordered tanks that
hold approximately 4900 drinks and if the second tank were delivered about mid-day. But what
would happen if the drink distributor only had specific size tanks and delivery times? By con-
straining a parameter, values that fall outside the constrained boundaries are not considered as
part of the possible solution space.

You can constrain parameter values in almost an infinite number of ways by entering con-
straint equations in the Optimizer’s Constraints tab. There are two types of constraints:

• Individual constraints are applied only to the specific variable and cause it to be changed in
some manner. For example, an individual constraint could cause all tank sizes to be in incre-
ments of 1000. Individual constraints are expressed as equationVariable = (calculate con-
strained value).

• Global constraints can cause an entire set of parameters to be rejected so that the Optimizer
will try a different set. For instance, a global constraint could reject a solution set if the sum
of all the variables was greater than a certain value. Global constraints are expressed as if
(conditions) Reject = True.

These are discussed more in “Constraints” on page 171. For this model the constraints to con-
sider are:

• Delivery tanks only come in sizes that hold 1000, 2000, 3000, 4000, 6000, or 8000 drinks.

• Tanks can be exchanged every 30 minutes except...

• Tanks with 6000 drinks or greater can’t be exchanged more often than every 60 minutes.

Calculating individual constraints
There are two individual constraints: the size of the delivery tank and how often it can be
exchanged if it holds fewer than 6000 drinks.

The constrained tank size
The individual constraint equation to granularize the drink tank sizes recalculates delTankSize
as follows:

// round to delivery amounts (e.g. 1k, 2k, 3k, 4k, 6k, 8k)

if (delTankSize<=4000) delTankSize = int(delTankSize/1000.0 +
0.5)*1000.0;
else delTankSize = int(delTankSize/2000.0 + 0.5)*2000.0;

☞ Comments are preceded by // or ** and are omitted from the calculation.

Analysis 167
Optimization

H
ow

 T
o

This equation puts the tank sizes of 4000 or less into multiples of 1000, and tanks sizes greater
than 4000 into multiples of 2000, using an individual constraint. For example, if the Optimizer
suggests a size of 3300, the equation would convert it to a potential tank size of 3000. If the
suggested size were 5200, the ELSE part of the IF statement would round it up to 6000 since
5200 is closer to 6000 than to 4000.

The constrained delivery time
The individual constraint equation to granularize the delivery times is:

// round fillup time to listed delivery times (e.g. 30 minutes)

DeliveryTimes = int(DeliveryTimes/30.0 + 0.5)*30.0;

The delivery time is converted to multiples of 30 minute intervals using an individual con-
straint, similar to how the delivery tank size was converted, above.

Calculating global constraints for 6000 and 8000 drink tanks
Although the preceding equation constrains the delivery times for most cases, you also need to
reject cases where the drink tank is 6000 drinks or more and the delivery time is less than 60
minutes.

Rather than the individual constraints used in the previous two equations, for this equation you
need a global constraint. Delivery times for tanks of 6000 and 8000 drinks are not limited to
multiples of a specific number as was true for the tank size; they can be any value as long as it
is greater than or equal to 60. So the solution space is somewhat unlimited. In addition, it
would not be valid to just round up a delivery time that is less than 60. If the equation rounded
up all the potential delivery times below 60 to exactly 60, as the preceding delivery time equa-
tion does, it would cause a severe bias toward getting deliveries every 60 minutes. Instead the
equation needs to reject the entire solution set if the delivery time is below 60. This will cause
the Optimizer to use a new random delivery time to generate a different set of solutions that
will be less biased.

☞ If you use too many global constraints, or constraints that are too restrictive, the equation
would unnecessarily reject almost all cases and the Optimizer could take too long to run or
might fail to reach an acceptable solution.

The global constrained equation for deliveries of 6000 or more drinks is:

// can't deliver 6000 or more drinks sooner than 60 minutes apart

if (DelTankSize >= 6000 && DeliveryTimes < 60)

Reject = TRUE;

The Optimizer pre-defines “Reject” as a special variable to be used only with global con-
straints. The Reject variable, if set to TRUE, will reject that case and cause the block to calcu-
late another possible case that could be acceptable. If Reject is not set to TRUE, the current
case will be used for the next series of runs.

Enter the constraint equations
In summary, the equations to enter on the Constraints tab of the Optimizer block are:

// round to delivery amounts (e.g. 1k, 2k, 3k, 4k, 6k, 8k)

if (delTankSize<=4000) delTankSize = int(delTankSize/1000.0 +
0.5)*1000.0;
else delTankSize = int(delTankSize/2000.0 + 0.5)*2000.0;

168 How To
Optimization

H
ow

 T
o

// round fill-up time to listed delivery times (i.e. 30 minutes)

deliveryTimes = int(deliveryTimes/30.0 + 0.5)*30.0;

// can't deliver 6000 or more drinks sooner than 60 minutes apart

if (delTankSize >= 6000 && deliveryTimes < 60) Reject = TRUE;

After entering the equations in the Optimizer block, the Constraints tab should look like:

Running the optimization
Click the New Run button in the Optimizer’s Run Parameters tab or give the command Run >
Run Optimization or Scenarios. It is a good idea to run the optimization with the new con-
straints multiple times to make sure that the first answer is not a false or sub-optimal.

Because there are random elements in the model, the results will differ from, but should be
close to, the following:

• numSold (total sales) is blank because it has not been changed; it is an output value from the
model.

• deliveryTimes (Filler Truck repeat time) = 270 minutes between deliveries (2 deliveries a
day).

• delTankSize (Filler Truck data_tbl) = 6000 drinks per tank delivered.

• emptyTime (empty time) is blank because it is an output value from the model.

• MaxProfit = around $10,500.

Note that the profit may have decreased slightly from the previous optimum results. This is due
to the constraints put on the model parameters.

☞ For comparison purposes, the model with constraints titled Optimize 3 is located in the Docu-
ments/ExtendSim/Examples/How To/Optimization folder.

Using the Optimizer block
This section examines, in detail, how to get the most out of the Optimizer block.

Variables table
When a dialog’s variable is added to an Optimizer block, the Optimizer places that variable
into its Variables table. This table holds the variables needed in the Optimizer’s cost or profit
equation. These variables can be of two types:

Analysis 169
Optimization

H
ow

 T
o

• Decision variables to be optimized. These need their lower and upper limits entered.

• Output variables from the model. These should have no limits entered.

Both lower and upper limits for a decision variable need to be entered directly in the Variables
table. Variables that are outputs from the model, such as Exited from an Exit block (Item
library), should not have any limits entered or the Optimizer will attempt to incorrectly change
them.

☞ If the variable is an integer type, such as a number of machines, do not enter a decimal point in
the limits. Conversely, variables that need to have real values, such as a delay time that could
vary from 1.0 to 2.2, need both limits entered with decimal points.

Specifying data table cells in the Variables table
If a data table is added as a variable to the Optimizer block, the Row,Col indexes need to be
entered, separated by a comma. Since data tables are zero-based and start at row 0 and column
0, the first cell would start at 0,0.

For example, to use the first row and second column cell of a data table, enter the Row,Col
value 0,1 where 0 is the first row and 1 is the second column.

☞ The Variables table’s Row,Col column is only used to access a cell within a data table.

Objective functions
Optimizations can maximize profit, minimize a cost, or approach a constant, depending on the
form of the equation. Just like the equation field of the Equation block (Value library), optimi-
zation equations can be multi-lined, define variables, have control constructs (i.e. IF-ELSE,
FOR...), and call ModL functions. To see more information on equations, see “Equation-based
blocks” on page 189.

Maximizing profit or minimizing cost
For example, you may want to optimize the number of machines used to maximize the profit.
In that case, you can set up an equation:

MaxProfit = thruput*dollarsPerUnit - numMachines*dollarsPerMa-
chine;

Or, you might want to write the equation as a cost, and minimize that cost:

MinCost = numMachines*dollarsPerMachine - thruput*dollarsPerUnit;

The variable names used in the MaxProfit or MinCost equations come from the Equation
Variable column of the Optimizer’s Variables table. Depending on how you write the equa-
tion, the Optimizer will either maximize or minimize the equation value by changing the val-
ues of the decision variables until the correct condition converges.

Approaching a constant
A special case for an objective function would be that the result needs to approach a constant K
as close as possible. In this case, you can write a profit equation.

For the case where the equation should approach a nonzero constant K, the form would be:

// maximizes when equation equals constant
MaxProfit = 1.0 - RealAbs(1.0 - equation/K);

Note that the RealAbs(x) function returns the positive absolute
value of x.

170 How To
Optimization

H
ow

 T
o

For the case where the equation should approach zero, the form would be:

// this becomes maximum when equation equals zero
MaxProfit = ConstantValue - RealAbs(equation);

In this case, ConstantValue should be small, but large enough so that most of the population
MaxProfit results are initially positive. If ConstantValue is too small, the convergence calcula-
tion will fail because there will be both negative and positive values in the final population
results. If ConstantValue is correct, all of the values will tend to become positive as the system
converges, and the convergence calculation will then be valid. If ConstantValue is too large,
the convergence calculation will tend to be insensitive and high all of the time, causing a pre-
mature end of the optimization run.

These techniques can be adapted to solve any “approaching a constant” type of problem.

Run Parameters tab

In most cases, clicking either of the default buttons for the type of model you are optimizing
(random or non-random) will quickly set all of the parameters in this tab to useful values.

Two of the parameters are especially important to convergence of the optimization:

• Maximum samples per case: The maximum number of runs averaged to get a member result.
For non-random models, this should be 1. For random models, this needs to be high enough
to get a useful mean value at the expense of run time. The Optimizer block starts the number

Analysis 171
Optimization

H
ow

 T
o

of samples at 1 and increases them with each generation until it reaches the maximum.
Sometimes it is useful to reduce the maximum number of samples (possibly to 5), to get a
rough idea of the best solution without spending too much time running samples. Most of the
time, a useful result will occur and, even if it is not the optimum one, it will be close.

• Terminate if best and worst within (percent): This value is used to examine the current popu-
lation of results to see if they are within a specified percentage of each other. The default of
0.99 might not be high enough for a precise answer in a noisy model. Increasing this value
(i.e. 0.9999) will cause the optimization to continue until the population converges more
closely, increasing the likelihood of a more optimum answer at the expense of run time.

Constraints
When building a model, there are almost always some parameter constraints that have to be
satisfied. The two types of constraints are individual constraints and global constraints. The
Optimizer block makes it easy to apply virtually any kind of constraint to a model’s parame-
ters.

Individual constraints
Individual constraints are used to change a decision variable’s value if the value has to be lim-
ited or if it depends on the values of other decision variables. These constraints are entered as
equations, usually with IF or IF-ELSE statements. For example:

if (NumQueueSlots > 7)

NumSlots = NumActivities+3; // change it

Sometimes you might need the IF-ELSE form:

if (Var2 >= 3)

Var2 = Var3-Var4;

else// var2 was less than 3

Var2 = Var5/2;

In some cases you just need to modify the value of a variable. For example, if you need to con-
strain its values to multiples of 0.5 (i.e. 1.0, 1.5, 2.0). You do this by multiplying the variable
by 2, adding 0.5 before the Int() function truncates it so that it rounds it to the nearest integer,
and then dividing by 2.0, forcing the result to floating point values that are granular to 0.5:

Var2 = Int(var2*2.0+0.5)/2.0; // 0.5 Granularity

In any case the newly calculated Var2 value will replace the old Var2 value.

Global constraints
Global constraints are useful to reject an entire case if any or all of the decision variables don’t
meet a specific criteria. Global constraints are entered as equations, usually with IF statements,
to assign the value TRUE to the variable REJECT if the variables are not within the constraint.
They are entered like this example:

if (Var4+Var5 > 7)

Reject = TRUE; // only reject if the sum is too large

☞ Reject is a special optimization variable for use with global constraints. If set to TRUE, it will
reject that case and cause the block to calculate another possible case that could be acceptable.
If Reject is not set to TRUE, the current case will be used for the next series of runs.

172 How To
Stat::Fit (Windows only)

H
ow

 T
o

Sometimes you might need a more complex form:

if (Var4+Var5 > 7 || Var4 < 2) // the || means OR, && means AND

Reject = TRUE;

In any case, any global constraint will abort that particular case and the Optimizer block will
keep attempting to create cases until the global constraint doesn’t set REJECT to TRUE. It will
try to create 500 new cases before it gives up and prompts the user with an error message. If
this occurs, the global constraint is probably faulty.

Interpreting results
The Results tab shows the entire population of solutions, sorted with the best one on top (row
0). As the optimization progresses, new and better solutions will replace inferior solutions in
the population table.

If the optimization terminates for any reason, either via normal convergence or running for the
maximum number of generations, the best solution set found so far is automatically placed in
the model.

☞ For comparison purposes, see the Optimize 2 and Optimize 3 models located in the Docu-
ments/ExtendSim/Examples/How To/Optimization folder. For additional examples, see the
Inventory Lab model (Examples/Discrete Event) and the Call Center Optimizer model (Exam-
ples/How To/Optimization).

Stat::Fit (Windows only)
In simulation models, it is often useful to characterize a random input (for example, inter-
arrival times and demand rates) using a probability distribution. Typically, this involves obtain-
ing historical data that documents the system’s behavior, then analyzing the data to determine
an appropriate distribution to represent it. There are two advantages to using statistical distri-
butions rather than raw historical data as inputs to a model:

• Values for input random variables are not limited to what has happened historically.

• For continuous distributions, an infinite pool of data exists. With historical data, there is sel-
dom enough collected data to support multiple simulation runs.

Stat::Fit is a software package from Geer Mountain Software (www.geerms.com) that helps
the analyst determine which distributions, if any, offer a good fit for the underlying data.
ExtendSim has an interface so you can easily access the power of Stat::Fit.

☞ Stat::Fit is a Windows application included with the ExtendSim DE and ExtendSim Pro prod-
ucts. It can be purchased separately for use with ExtendSim CP.

Tutorial
The discrete event model shown on the right has a
Random Number block (Value library) set to the
Uniform Real distribution with a Minimum of 0 and
a Maximum of 1.

This tutorial uses a Stat::Fit project file—a pre-built
text file with 32 historical data points—to define
which distribution and associated parameters might
be more appropriate than what is set in the Random
Number block.

Analysis 173
Stat::Fit (Windows only)

H
ow

 T
o

Open the StatFit Example model located in the folder Documents/ExtendSim/Examples/
How To.

In the Distribution Fitting tab of the Random Number block:

Select Stat::Fit as the distribution fitting software

If it isn’t already there, enter the path (statfit/statfit3) in the block’s path field

Click Open
Stat::Fit

The Stat::Fit appli-
cation launches and
opens a new blank
document.

In Stat::Fit, select
File > Open to open
the project file.

Find and select the
file StatFtEx.sfpx.
It should be in the
same folder
(ExtendSim/Exam-
ples/How To) as the
StatFit Example
model.

In Stat::Fit, choose the menu command Fit > Auto-
fit or click the Autofit button in the toolbar. This
opens the dialog shown here.

In the Autofit window, click OK to use the default
settings.

After Stat::Fit does some computation, a window
appears displaying a list of parameterized distributions
that have been ranked according to goodness of fit.

In Stat::Fit, choose File > Export > Export Fit or
click the Export button in the Stat::Fit toolbar.

In the Export Fit window:

Select “ExtendSim” as the Application (it
should be the default).

Then choose the distribution you want based on the goodness of fit results. (The Trian-
gular distribution, which had the highest ranking, is selected by default.)

For the Output, select Clipboard.

Click OK

Return to ExtendSim and the Distribution Fitting tab of the Random Number block.

Click the Import Distribution from Clipboard (Stat::Fit) button.

174 How To
Chart library

H
ow

 T
o

You may exit Stat::Fit if you wish

If you selected the highest ranking distribution, the Distribu-
tions tab in the Random Number should reflect the Triangular
distribution and parameters Stat::Fit selected (Triangu-
lar,3,86.3,83.7).

Additional Stat::Fit documentation is available in Stat::Fit’s
Help menu and in the Statfit3 documentation located within the
ExtendSim/Documentation folder.

Chart library
 As of ExtendSim 10 the Plotter library is in legacy status and has been replaced by the Chart
library, discussed here. The Plotter library is only supplied with the current release so that you
can open older models and convert them to using the new Chart library. Do not use the Plotter
library to create new models as it will be discontinued in a future release.

While the Chart library blocks also store and display data, their main
purpose is to provide a graphical representation of simulation data.
The Quick Start Guides show some basics of how to use the Chart
blocks. This section discusses the blocks in more detail and describes
how to customize their functioning and appearance.

Using charts
All the stand-alone ExtendSim charts and graphs are located in the
Chart library. Certain other blocks, such as the Optimizer, use ModL
functions to show charts or graphs in their dialogs. Likewise you can
create your own charts, graphs, and plotters or add those features to
your custom blocks, using ModL functions. However, as shown
below, chart appearance and function can easily be customized with-
out programming.

You can have multiple and different types of charts in a model, and
you can place them at any location in the model. Chart blocks can have up to 20 traces on their
graphs.

By default chart blocks open automatically after the simulation is run. If a chart block is set to
not open (as discussed on page 176), you can open it by double-clicking its icon on the model
worksheet. For constant visibility, the graph portion of a Chart block can be cloned onto the
model worksheet or notebook.

The blocks in the Chart library adapt to the type of model they are placed in and change their
options accordingly. For example, if the model contains an Executive block from the Item
library, the chart block will accommodate discrete event or discrete rate messaging. Also note
that some of the chart features discussed here will be absent or slightly different when used in
continuous models.

☞ Once a chart block is in a model, it adapts to the type of model. Thus if you remove the Execu-
tive block from a model that has one or more chart blocks, you must replace all the chart
blocks with new chart blocks. If you don’t, you will get an error message when the simulation
is run.

Types of charts
As indicated in the following table, each Chart block has a distinct purpose.

Analysis 175
Chart library

H
ow

 T
o

☞ These blocks can be used in any type of model—continuous, discrete event, etc. If a model has
an Executive block, which marks it as being discrete event or discrete rate, the chart block will
automatically adapt to that environment. Otherwise, the chart block assumes the model is con-
tinuous.

Chart structure
Whether they open automatically
during or after a run, or are opened
manually by double-clicking their
icons, chart blocks open to the Graph
tab as shown here.

Most of the ExtendSim chart blocks
have these features in common:

• Three tabs on the left side as seen
here and described in the table
below.

• Legend and Cursor Values boxes that
appear by default on the graph, as seen here.

• Trace Editor and Graph Properties dialogs that appear if the graph is right-clicked or if the
Legend or Cursor Values boxes are double-clicked. These dialogs are used for customizing
the appearance and format of the traces and graph.

Chart Description

Bar Chart Displays comparisons between Categories of data for one or more Series. Data is catego-
rized into discrete groups (categories) such as months in the year, age group, types of
machines, etc. Can have multiple Series and be used as a grouped bar chart; for example,
rainfall data from 4 locations (4 series) for each month of the year (12 categories). The
bars for a grouped bar chart can be stacked or side by side.

DB Line Chart Displays ExtendSim database data as a graph and reports that data in a table. Either
traces the history of values received in a database cell over time or traces the content of
database tables. Can be used for multiple runs. See the ExtendSim Database Tutorial and
Reference for how to use this block.

Histogram Displays the frequency distribution of data. Groups data into bins, where bins are succes-
sive numeric intervals of equal size.

Line Chart Charts values over time. Gives graphs and tables of data for up to 20 time-associated
inputs. Can be used for multiple runs and also as a worm chart.

Scatter Chart Shows two sets of data plotted as X,Y value pairs on up to 20 traces. You must connect
both the X and Y inputs of at least one pair in order to plot data. Can also be used for
multiple runs and also as a worm chart.

176 How To
Chart library

H
ow

 T
o

• Underlying structure with a user-interface dialog and ModL code that determines how the
block appears and behaves.

The three tabs on the left side of chart blocks

☞ Click the chart block’s Help button for specific information about each option in its tabs. The
Help button is active whenever the Dialog tab is the active window.

Display tab (top of the Dialog tab)
The Display tab is one of the three tabs that appear at the top of the window when the Dialog
tab is the active window.

General display section
The General display section of the Display
tab determines if and when the graph auto-
matically opens:

• Never (the default)

• At the beginning of the simulation

• At the end of the simulation

Depending on the block, there could be
additional options in this section, as seen
here for the Line Chart block.

Background picture option
For example, to insert a background picture:

Left-Side tabs Description
See
Page

Dialog Determines how the block works. At the top of this tab are three additional
tabs:
1) The Data Collection tab controls which points will be plotted and if/when
the data will be recorded.
2) The Display tab determines if/when graph the appears during the simulation
run and if/when it will autoscale.
3) The Comments tab is for making notations.
(The Histogram has two additional tabs: Bins and Results)

177

176

Graph Displays the data visually and provides access to dialogs that control how the
traces and chart appear.

Legend and Cursor Values boxes are displayed on the graph by default.

Trace Editor is opened by right-clicking on the graph or double-clicking the
Legend.

Graph Properties is opened by right-clicking on the graph or double-clicking
the Cursor Values.

182

182

183

Data Reports the data in a table format. 183

Analysis 177
Chart library

H
ow

 T
o

1) Put an @ sign at the beginning of the name of the file

2) Place the file in the ExtendSim/Extensions/Pictures folder

3) Restart ExtendSim

4) In the Display tab’s General display section, check the Insert background picture checkbox

5) Select the file from the popup menu

Stacked option (Bar Chart and Histogram)
If multiple Series are specified in its Data Collection tab, the Bar Chart becomes a grouped Bar
Chart. In this situation, the bars for each Series can be displayed either side by side (the
default) or stacked on top of each other. See “Configure the bar chart options (Bar Chart and
Histogram)” on page 179 for more information about Series.

Scaling section
The Scaling section of the Display tab determines if and when the graph will be auto-scaled:

• Never

• During the simulation

• At the end of the simulation (the default).

There are also additional options for defining what happens during autoscaling and for setting
fixed minimum and maximum axis limits rather than the limits deduced from the simulation.

Data Collection tab (top of the Dialog tab)
The Data Collection tab is one of the tabs that appear at the top of the Dialog tab when it is the
active window. As discussed below, the Data Collection tab controls which points will be plot-
ted on each trace (or how bars will appear) and provides options for how much data is recorded
and when.

☞ The options shown below will be displayed in most chart blocks in discrete event and discrete
rate models; there are fewer options in continuous models. Also, the options differ depending
on the chart block.

Data collection options (Bar Chart, Histogram, Line Chart, Scatter Chart)
☞ The following information applies to the Bar Chart, Histogram, Line Chart, and Scatter Chart

blocks. See page 180 for the corresponding information for the DB Line Chart block.

Data Collection Tab->
Data Collection Options
Frame

Recording Options
Frame

Other

Bar Chart page 177 “Configure the bar
chart options (Bar
Chart and Histo-
gram)” on page 179

DB Line Chart page 181 page 179 “Data collection type
(DB Line Chart)” on
page 180

Histogram page 177 page 179

Line Chart page 177 page 179

Scatter Chart page 177 page 179

178 How To
Chart library

H
ow

 T
o

Each block has options for setting how the block will collect information from its inputs.

• The Line Chart and Scatter Chart have a table with one line per trace.

• The Bar Chart and Histogram offer different options for setting data collection and specify-
ing how the data is organized between bars.

This frame contains a table with multiple columns. Each row in the table represents one trace
on the graph; the columns are customizable properties. Since they aren’t needed in a continu-
ous model, most of these options only appear in discrete event and discrete rate models.

• Trace Name. Name each trace in this table or in the Trace Editor discussed on page 182.

• Series. Name each series in this table or in the Series Editor that appears if you right-click on
the Graph. Applies to the Bar Chart and the Histogram.

• Con checkbox (Histogram, Line Chart, and Bar Chart) and X and Y checkboxes (Scatter
Chart). These checkboxes indicate if there is a connection to the input connector represented
by the column and row.

• Filtering. Fine tunes which points are written on the graph. An additional Duration column
appears if the Scheduled filtering option is selected.

• Start Time and End Time. Controls whether or not a point is graphed at the beginning or end,
respectively, of the simulation run. Use this for discrete event models, where it is more accu-
rate for the graph to stop drawing the trace at the last event rather than at the End Time of the
model run.

• Blank. If a Blank value is received, the block can ignore it or interrupt the line. Applies to the
Line Chart and Scatter Chart.

• Offset By. Offsets the display of values on the Y or Y2 axis (Line Chart) or the X, Y, or Y2
axis (Scatter Chart) so that traces don’t get written on top of each other.

• Cross Msg (Histogram, Line Chart, and Bar Chart). Auto is the default option. If you don’t
see points you think should be appearing on the graph, consider choosing one of the other
options. Those options give more control over messaging in case a block does not actively
notify the chart that the value it is sending has changed. This setting is only enabled if filter-
ing is not scheduled and the block is used in a discrete event or discrete rate model.

• Auto means that the connector is dependent by default but becomes independent if it
gets a message.

• Dependent causes a point to be written if the value at the corresponding input has
changed and that connector doesn’t get a message but one of the other connectors does
get a message.

• Independent means that a point is only written if the corresponding input connector
gets a direct message.

Analysis 179
Chart library

H
ow

 T
o

• X Msg (Scatter Chart). Scatter Charts need values for both the X axis and the Y axis. When
the input for the X axis gets a message, the block has three options for how to get a value
from the opposite (Y) axis:

• Pull from the opposite connector, which causes the Y input to actively refresh then
report its value to the block.

• Read from the opposite connector, which causes the Y input to passively report to the
block whichever value it currently has.

• Ignore message

• Y Msg (Scatter Chart). Reverse the explanation for the X Msg, above, so it is about the input
for the Y axis getting a message and what the option is for the opposite (X) connector.

• Run (Bar Chart, Histogram, Line Chart, and Scatter Chart). Use this when performing multi-
ple simulation runs. The Run options are “Current” or “only run#”. By default, “Current” is
selected and each simulation run will overwrite the traces. If “only run#” is selected and
traces are specified in the Run# column that appears, each run in a multiple run will be writ-
ten to a different trace. This is equivalent to having a multi-sim plotter. To see how this is
used, go to “Output the results to a Line Chart block” on page 140.

☞ The Scatter Chart and Histogram also have an “all runs” option that accumulates data over all
the runs.

Data recording options (Histogram, Line Chart, Scatter Chart, DB Line Chart)

For the Line Chart, Scatter Chart, and DB Line Chart blocks, the bottom frame in the Data Col-
lection tab allows you to either:

• Completely turn off data recording (saves recalculating time and memory)

• Only collect data during a specific window of time

• Record only the latest specified number of points (“worm chart”). This applies only to the
Scatter Chart, Line Chart, and DB Line Chart.

Configure the bar chart options (Bar Chart and Histogram)
At the top of the Bar Chart’s Data Collection tab is a frame for configuring the chart’s catego-
ries and series.

• Data is categorized into one or more discrete groups (categories) such as months in the year,
age group, types of machines, etc. The categories being compared are listed along the

180 How To
Chart library

H
ow

 T
o

graph’s horizontal axis; the height of a bar is proportional to the bars' represented values. By
default, there is one series (and therefore one bar) for each category.

• Specifying two or more series allows the Bar Chart to be used as a grouped bar chart. In this
case each categorical group would have two or more bars, each representing a series. Each
series can have its own color and is listed in the legend. For example, a grouped bar chart
could have rainfall data from 4 locations (4 series) for each month of the year (12 catego-
ries). By default, the bars are side by side; an option in the Display tab allows them to be
stacked.

• The Histogram is close to the Bar Chart except the categories are called Bins, which are set
in the Bins tab.

 The Bar Chart can have up to 250 bars, 20 Categories, and 20 Series. However, those numbers
are constrained by the fact that the number of bars equals the number of Categories multiplied
by the number of Series. So if you have 20 Categories, you are limited to 12 Series.

Data collection type (DB Line Chart)
The DB Line Chart block graphs and displays ExtendSim database information. Instead of
reading values from input connectors, this block displays values from the database. Its Data
Collection tab is very different from the one discussed above.

 To use this block, the model must contain an ExtendSim database. To learn more about how
this chart is used, see the document titled ExtendSim Database Tutorial & Reference.

The Data collection type frame at the top of the Data Collection tab is for deciding what should
be shown on the graph and when data is collected.

What should be shown on the graph
• One cell per trace. This is the easiest way to view the history of one or more database cells.

The values for each selected cell are displayed on a separate trace in the block’s Graph tab
and reported in a separate column in the Data tab. The source cells can be from the same or
different databases. The block reports and displays the values of the cells during the simula-
tion run such that each point on the graph’s trace represents the value of the cell at that spe-
cific time.

• One field per trace. For graphing data from different fields of the same database table. This
choice gets the time information from one (and only one) of a table’s fields and gets the data
information from one or more other fields in that database table. All the fields must come
from a single specified database table and that database table must have a time field. The
block will report and display the value of each field’s records at the associated times in the
time field. Thus each record is a point on the graph and a value in the block’s data table. The
display can occur during or after a simulation run or whenever the graph is manually plotted.

• One table per trace. Used to chart data coming from fields in different database tables. For
this option, each table must have its own time field as well as at least one data field and each
trace will represent one time field and one data field from one database table. If all the fields

Analysis 181
Chart library

H
ow

 T
o

come from the same database table, it is similar to what happens if you choose “one field per
trace”.

When the source data is collected
The options for when the data is collected are:

• For the “One cell per trace” mode, the data is always collected during the simulation run.

• For the “One field per trace” and “One
table per trace” modes, the data collec-
tion options are:

• During the simulation. Note: this
option can slow the run because data will be constantly collected.

• After the simulation.

• Only when the Plot Now button is clicked. Use this option if you just want to view
what is currently in the database. For example, when you don’t want to run a simula-
tion or you have paused the simulation and want to view intermediate results.

Data collection options (DB Line Chart)
The Data collection options per trace frame in the middle of the DB Line Chart’s Data Collec-
tion tab is for selecting the location that holds the data to be graphed, one row per trace. Most
of the option headers are self-evident; the rest are explained here.

☞ Depending on what data is collected, the following options may not all appear.

• Open. After the complete data source location (address of database, table, field, and record,
as appropriate) has been entered, click the button in the Open column to open the Database
Viewer. Until then, the button will have an x on it and won’t be able to open the Database
Viewer.

• Selection. If present, use the Selection column to quickly specify the exact database address,
rather than selecting each component of the address from the other columns.

• For the Blank, Offset By, and Run columns, see the data collection options for the Line Chart,
on page 177.

Graph tab
The Graph tab is one of the three tabs that appear
on the left side of a chart block; the graph visually
displays data collected during the simulation run.

• The values that actually get displayed depend on
settings in the Dialog tab’s Data Collection and
Display tabs, discussed above.

• You can directly name the chart, change the
beginning and ending axis numbers, and format
the axis labels by selecting and changing the text
on the Graph tab. To control more properties,
right-click on the graph or double-click the Cur-
sor Values box to open the Graph Properties dialog, discussed on page 183.

By default the Legend and Cursor Values boxes appear on the graph, as discussed below.

182 How To
Chart library

H
ow

 T
o

Legend
Each chart block has a key or Legend that appears by default on the Graph tab and
shows the name and color of each trace.

• The appearance of the Legend (its border, color, and whether it gets displayed or
not) is controlled in the Graph Properties dialog, discussed onpage 183.

• The name, color, thickness, style, symbol, and Y1 or Y2 display of each trace shown in the
Legend is controlled by the Trace Editor, discussed below.

To resize the Legend, select it and use the resizing square that appears on its lower right side.
To reposition the Legend, select it and move it with the cursor.

☞ Double-clicking the Legend opens the Trace Editor.

Cursor Values
Each chart block has a Cursor Values box that appears by default on the
Graph tab. It reports the X and Y coordinates of whichever point the cur-
sor is at.

To resize the Cursor Values box, select it and use the resizing square that appears on its lower
right side. To reposition the box, select it and move it with the cursor.

☞ Double-clicking the Cursor Values box opens the Graph Properties dialog.

Trace Editor
The Trace Editor allows you to set the proper-
ties for each trace; the selected name and color
are displayed in the Legend that appears by
default on the Graph tab.

To open the Trace Editor, right-click on the
Graph tab or double-click the Legend on the
Graph tab.

The Trace Name text at the left of the dialog describes the traces and is used to label the col-
umns in the data pane.

The Color and Thickness choices affect how the trace looks. Clicking the color box opens the
standard color window. To change the width of the line, repeatedly click in the Thickness box
to select one of the five line widths.

The Style choice affects how the trace is drawn. Repeatedly click in the Style box
to select one of the three styles:

• The top style shown here indicates that the data points are connected by diago-
nal lines (interpolated)

• The middle style indicates that points are connected by horizontal and vertical lines
(stepped).

• The bottom style indicates that you want the points plotted with no lines between them.

The Trace Editor also has many Symbol types, such as dots, squares, and circles, as well as a
trace numbering choice that displays a different number for each trace depending on the row.
Repeatedly click in the Symbol box to select one of the symbols. If you choose a non-numeric
symbol, it will be drawn at each point on the trace. Numbers will instead be spaced evenly
along the trace. Each symbol is drawn using the trace color and width settings.

Colo
r

Thic
kn

es
s

Sty
le

Sym
bol

Y1/
Y2

Show/H
id

e

Analysis 183
Chart library

H
ow

 T
o

The Y1/Y2 choice tells which axis to plot the numbers against. The default choice, Y1, plots
values on the left axis. Click once on the Y1/Y2 box to change it to the axis on the right side.

The Show/Hide choice tells whether to display the trace at all. If you click on this choice, the
eye is crossed out and the trace is not drawn. This is useful if you have many traces and you
temporarily want to hide one or more of them or if one trace is on top of another and you want
to make the chart clearer. (See also the Offset By option discussed in “Data collection options
(Bar Chart, Histogram, Line Chart, Scatter Chart)” on page 177.

Graph Properties
To see the Graph Properties dialog, shown below, right-click on the Graph tab or double-click
the Legend.

The Graph Properties dialog is for formatting the titles, colors, and other properties of the
graph. (The Trace Editor is for formatting the traces that appear in the graph.)

As seen above, the Graph Properties dialog allows for a lot of customization. Most options are
self-evident. The rest are explained below:

• For the Graph row, the Bkgrnd (background) choice colors the area around the actual chart-
ing area while the Chart choice colors the charting area.

• For the X, Y, and Y2 rows:

• Ticks are the short lines that appear around the perimeter of the charting area.

• Intervals indicate how many spaces are used to separate the numbers on the axis
between the beginning and ending numbers—each interval represents one space
between two numbers on the axis. If the default (#) is used, the number of intervals will
change with the size of the window. Using any other option fixes the number of inter-
vals regardless of window size.

• Places determines how many significant digits are displayed on the corresponding axis.

Data tab
The Data tab is one of the three tabs that appear on the left side of a chart block.

184 How To
Model reporting

H
ow

 T
o

If you change the data in the Data tab, those changes are reflected in the Graph tab. You can
change numbers, paste in rows, and so on. Use this capability to view how various data would
be graphed, or to plot a reference line.

The color of the column header text is the same as for its corresponding trace; those colors are
set in the Trace Editor, described on page 182.

Model reporting
The blocks in the Report library track simulation results and provide statistical analysis of data.

☞ The ExtendSim database is also useful for storing results for output to external applications.

Report Library Description

Cost Stats Place this block anywhere in the model and it will report the following
statistics, with confidence intervals, for each block that has costing
enabled: Block Number (or label, if a label is entered in the block), Block
Name, Cost Per Item, Cost Per Time Unit, and Total Cost. If costing is
enabled, statistics are reported for the following categories of blocks:
Activities, Generators, Queues, and Resources.

DB Statistics Calculates the mean, variance, standard deviation, minimum, maximum,
median, and mode for a field in an ExtendSim database table. Select a
field and the results will be calculated automatically. Choose calculate
statistics at the end of each run to only calculate the values when each run
completes or at the end of all runs to calculate when all of the simulation
runs have completed.

Item Log Manager Collects customized information about how item states change over time,
then packages this information into a customizable database report. The
block allows you to customize which blocks will contribute to the report,
what information will be included in your log, and in what order the infor-
mation will appear. For example, you may only want blocks with the label
“Process 52” to collect data for attributes “SKU” and “waitTime”. You
can place as many different Item Log Manager (ILM) blocks in your
model as you want.

See also “Using the Item Log Manager to get item information” on
page 399.

Reports Manager The primary interface for creating reports from simulation runs. See
page 185 for more information.

Statistics Accumulates data on certain types of blocks and reports statistics in a sin-
gle table using a specified statistical method. You can select which blocks
or types of blocks will have their information collected: activities, queues,
Mean & Variance, Resource Item, Resource Pool, Resource Manager,
Workstation, Convey Flow, Queue Matching, Rate blocks, and tanks.

To choose a selection of fields from supported blocks, select the “mixed
blocks” option. Then either Shift-click or clone drop output fields as dis-
cussed on page 135. This causes the output information to be displayed in
the table on the Statistics tab.

Analysis 185
Model reporting

H
ow

 T
o

Reports Manager block
The Reports Manager block is the primary interface for creating reports from simulation runs
for blocks, events, items, and resources. The dialog of the Reports Manager block provides fil-
tering interfaces to specify which blocks, events, items, and resources to generate reports for.

• Block reports collect and centralize information from the Results tabs of user-specified
blocks organized by block category.

• Event reports collect information for events that have properties matching user-specified fil-
tering conditions.

At the end of the simulation run the information collected for these reports is stored in tables in
an internal ExtendSim database. These tables can be accessed from the dialog of the Reports
Manager block as well as from the database menu of the ExtendSim application.

Block filters
In the Blocks tab, blocks can be filtered by the following:

• Category that was defined when the block was created, such as Inputs or Math

• Name of the block, such as Activity or Lookup Table

• Label on the block, as entered in the block’s dialog

• Enclosing hierarchical block

Selections can be made across more than one block filter type, such as for category and for
label.

186 How To
Model reporting

H
ow

 T
o

Event names
In the Events tab, you can select one or more of the following general categories of events:

• Creation

• Arrival

• Downstream blocking

• Resources unavailable

• Departure

• Exit

• Route

• Batch

• Unbatch

• Spawn

• Preempt

• Shutdown

• Item allocation

How To

Math and Statistical Distributions
Working with equations and distributions

“I know that two and two make four - & should be glad to prove it too if I could –
though I must say if by any sort of process I could convert 2 and 2 into 5

it would give me much greater pleasure.”
— George Gordon Noel Byron

188 How To
Overview

H
ow

 T
o

Overview
ExtendSim provides an extensive palette of tools for integrating mathematical equations and
randomness in a model. You can even control the exact moment that calculations will take
place. This chapter discusses equation-based blocks, randomness, and probability distribu-
tions.

☞ See also the How To chapter titled “Analysis” on page 133.

Blocks that represent functions
ExtendSim libraries are toolkits of blocks for quickly building a graphical representation of
model logic. As shown below, some blocks have specific mathematical functionality and per-
form calculations automatically based on settings in their dialogs. Other blocks provide even
more flexibility and perform calculations based on equations you enter in their dialogs; they
are discussed on “Equation-based blocks” on page 189.

☞ For information about blocks that perform statistical analysis, see “Blocks that calculate statis-
tics” on page 134.

The following blocks may be used in any type of model to provide mathematical functionality
based on dialog selections:

Decision (Value library)
Compares the value at one input to the value at another input and reports a result.
For example, use this block to determine if one model value is greater than, less
than, or equal to another value during the simulation run.

Integrate (Value library)
Provides different integration methods to integrate the input value over time. You
can also set an initial value in the dialog.

Math (Value library)
Calculates a mathematical, financial, logical or trigonometry function depending
on the option selected in its dialog. Set the block to add a number to its input
value and output the result. Or have it calculate the exponent of the input value.
Provides over 30 functions from a popup list.

Mean & Variance (Value library)
Calculates the mean, variance, and standard deviation of the input. You can set an
initial value in the dialog and select options to calculate a moving average, use a
specified confidence interval, collect interval statistics for a specified time
period, and use time weighted statistics.

Math and Statistical Distributions 189
Equation-based blocks

H
ow

 T
o

Random Number (Value library)
Generates random numbers for the distribution selected in the dialog. Select from
over 30 distributions or use an empirical table to create a custom distribution.
This block is discussed more in “Random numbers” on page 197.

Data Fitter (Utilities library)
Uses matrix techniques to obtain a least mean square curve fit to a set of data.
Enter or import the data into the dialog’s data table and select a fitting function to
solve for.

☞ In addition to the blocks listed above, most blocks automatically calculate and report statistical
information during or at the end of a simulation run. For example, the Math block (Value
library) reports the results of the selected mathematical calculation in its Options tab and the
Queue block (Item library) displays statistics about the queue length, average wait time, utili-
zation and so forth in its Results tab.

Other options
There may not be an ExtendSim block that provides the specific function or equation that you
want. Or, you may want to combine the functionality of several blocks into one. Some possible
solutions are:

• Select several blocks and make them into a hierarchical block, as discussed in “Hierarchy”
on page 120.

• Add features to an ExtendSim block by modifying the structure of a block (its dialog and
code) as discussed in the ExtendSim Technical Reference.

• Use the Equation block (Value library) or the Equation(I) or Queue Equation blocks (Item
library) to directly combine functions or to obtain behavior not available in other blocks.
These blocks are discussed in the next topic.

Equation-based blocks
The equation-based blocks calculate values for, and perform operations in, models based on
formulas and ModL code entered in their dialogs. There are five mathematical equation-based
blocks:

Block Library Purpose

Equation Value Computes user-defined equations and outputs the
results

Equation(I) Item Computes user-defined equations when an item arrives,
then outputs the results

Queue Equation Item Stores items and releases them based on the results of
user-entered equations.

Query Equation Value A user-defined equation selects one record from an
ExtendSim database table

Query Equation(I) Item A user-defined equation selects one record from an
ExtendSim database table when an item arrives

190 How To
Equation-based blocks

H
ow

 T
o

☞ The Buttons block (Utilities library) is also equation-based but is used for more specific pur-
poses. It is discussed on page 74.

Advantages
• Access to over 1,200 internal functions plus you can use operators to enter logical state-

ments, write compound conditions, and specify loops.

• The equation can be as simple as performing a mathematical operation on the value from an
input connector or it could be as complex as a full programming segment.

• You can use include files (See Include Files in the Technical Reference) within your equa-
tion to reuse your own functions among many equation blocks

• You can use the source code debugger (See “Debugging equations” on page 211) to check
the equation if you have a problem. The equation is automatically compiled when you click
OK in the block’s dialog.

 Equation-based blocks support most but not all of the programming features available when
creating blocks. However, message handlers cannot be used. And in order to be used in equa-
tion blocks, user-defined functions and procedures and constants must be defined in an include
file. See “Include files for equations” on page 196 for more information.

The Equation(I), Queue Equation, and Query Equation(I) blocks can only be used in non-con-
tinuous (discrete event and discrete rate) models. They typically perform calculations when
items arrive or depart. Although they are continuous blocks, you can use the Equation or Query
Equation block in non-continuous models. This is common when you want the equation to cal-
culate independent of item status.

Overview
An equation-based block takes input variables, uses those values in an equation, and outputs
the results of the calculation. Equation-based blocks are similar to the formula bar of a spread-
sheet. Most of the usual components (operators, values, functions, and so on) are the same.
There are two differences - instead of a cell reference, these blocks have input and output vari-
ables that are identified by name in the equation, and the results of the equation can be output
to different destinations.

Equation components
The components of an equation are the input variables, the equation, and the output variables.

All of the equation-based blocks have a scrollable area for entering the equation. Most equa-
tion-based blocks also have a separate Equation Editor for viewing and editing the equation; it
is discussed on page 195.

You can define local (temporary) input and output variables in the equation area or the Equa-
tion Editor as well as static (permanent) input and output variables using include files.

As described below, most equation-based blocks also have two tables, Input Variables and Out-
put Variables, with predefined static variables you can use in equations.

Input variables
Input variables are the model values used
in an equation. With the exception of the
Buttons and Optimizer blocks, the equa-
tion-based blocks have a table for creating

Math and Statistical Distributions 191
Equation-based blocks

H
ow

 T
o

the input variables. Each row in the Input Variables table (shown on right) has a popup menu
for selecting a pre-defined type of input variable and a field for its name and value. Variables
created here are static (permanent).

To modify the number of rows used in the variable tables:

• Change the number of rows in the table by clicking the green +/- resize button in the table’s
bottom right corner, selecting Resize, and entering the number of rows desired.

• Delete rows by first selecting the rows you wish to delete, clicking the green +/- resize but-
ton, and then selecting the option to “delete selected rows”.

• Duplicate any rows by first selecting the row you wish to duplicate, clicking the green +/-
resize button, selecting the option to “copy selected row”, and choosing how many copies
you want to create.

The Variable Type popup provides many options for input variables, as shown below. For more
information about each option, see the blocks’ Help.

☞ The Queue Equation, Query Equation, and Query Equation(I) blocks have additional specific
input variable types not listed in this table. See “Query Equation and Query Equation(I)
blocks” on page 246 for more information.

Input Variable Type
E

qu
at

io
n

E
qu

at
io

n(
I)

Q
ue

ue
 E

qu
at

io
n

Q
ue

ry
 E

qu
at

io
n

Q
ue

ry
 E

qu
at

io
n(

I)

AR Order ID – reads an item's advanced resource order ID. If an
item has advanced resources attached, the value of this property is
the record index into the Resource Orders table.

X X X

Connector – value input connector X X X X X

DB read value – reads a value from a fixed location in a database
table. Specify location in the Variable Value column.

X X X X X

DB read value using attrib – reads a value from a variable database
location specified by a DB address attribute

X X X

DB read PRI – reads the Parent Record Index (PRI) from a cell in a
Child field. Read location is fixed and is specified in the Variable
Value column. See note below.

X X X X X

DB read PRI using attrib – reads the PRI from a variable database
location specified by a DB address attribute. See note below.

X X X

DB address – a database address chosen in the Variable Value col-
umn

X X X X X

DB database index – a database index chosen in Variable Value col-
umn

X X X X X

192 How To
Equation-based blocks

H
ow

 T
o
 For the Variable Name column, use the default names, assign names that have more relevance

to the model, or select a name from a popup, depending on the type of variable selected. The
type of input variable selected also determines the options for the Variable Value field: enter a
value directly, select the value from a database location, and so forth.

☞ The notation PRI (Parent Record Index) is used in blocks that interface with the ExtendSim
database. It describes the type of value that is being read or written when dealing with a Child
field.

Output variables
Output variables are where the results
are recorded when the equation is calcu-
lated. With the exception of the Buttons
and Optimizer blocks, the equation-
based blocks have a table for creating the

DB table index – a database table chosen in the Variable Value col-
umn

X X X X X

DB field index – a database field chosen in the Variable Value col-
umn

X X X X X

DB record index – a database record chosen in Variable Value col-
umn

X X X X X

Static first run init – a static variable that gets initialized to its start-
ing value only at the beginning of the first run of a multirun simula-
tion. Specify starting value in the Variable Value column.

X X X X X

Static mult run init– a static variable that gets initialized to its start-
ing value at the beginning of each run for a multirun simulation.
Specify starting value in the Variable Value column.

X X X X X

Static open model init – a static variable that gets initialized to its
starting value when the model is opened. Specify starting value in the
Variable Value column.

X X

Next calc event time –Used to get this block's next event time. (Only
enabled if the “Use ‘calc event time’ output variable” option is cho-
sen.)

X X

Attribute – the value of the attribute named in Variable Name X X X

Item quantity – the item’s quantity value X X X

Item priority – the item’s priority value X X X

Item index – the item’s index value from the Executive’s item array X X X

Input Variable Type

E
qu

at
io

n

E
qu

at
io

n(
I)

Q
ue

ue
 E

qu
at

io
n

Q
ue

ry
 E

qu
at

io
n

Q
ue

ry
 E

qu
at

io
n(

I)

Math and Statistical Distributions 193
Equation-based blocks

H
ow

 T
o

output variables. Each row in the Output Variables table (shown at right) has a popup menu for
selecting a pre-defined type of output variable and a field for its name and value. Variables cre-
ated here are static (permanent).

To modify the number of rows used in the variable tables:

• Change the number of rows in the table by clicking the green +/- resize button in the table’s
bottom right corner and entering the number of rows desired.

• Delete rows by first selecting the rows you wish to delete, clicking the green +/- resize but-
ton, and then selecting the option to "delete selected rows"

• Duplicate any rows by first selecting the row you wish to duplicate, clicking the green +/-
resize button, and then selecting the option to "copy selected row."

The Variable Type popup provides many options for output variables, as shown below. For
more information about each option, see the blocks’ Help.

☞ The Queue Equation, Query Equation, and Query Equation(I) blocks have additional specific
output variable types. See “Query Equation and Query Equation(I) blocks” on page 246 for
more information.

Output Variable Type

E
qu

at
io

n

E
qu

at
io

n(
I)

Q
ue

ue
 E

qu
at

io
n

Q
ue

ry
 E

qu
at

io
n

Q
ue

ry
 E

qu
at

io
n(

I)

Connector – value output connector X X X X X

DB write value – writes a value to a fixed location in a database
table. Specify location in the Variable Value column.

X X X X X

DB write value using attrib – writes a value to a non-fixed database
location specified by a DB address attribute

X X X

DB write PRI – writes a Parent Record Index (PRI) to a fixed loca-
tion in a database table. Specify location in the Variable Value col-
umn. PRI is the index of the parent cell that is being written to the
child.

X X X X X

DB write PRI using attrib – writes the PRI (see above) to a non-
fixed database location specified by a DB address attribute. See note
below.

X X X

Calc event time – Used to set this block's next event. (Only enabled
if the “Use ‘calc event time’ output variable” option is chosen.)

X X

Attribute – the value of the attribute named in Variable Name X X X

Item quantity – the item’s quantity value X X X

Item priority – the item’s priority value X X X

194 How To
Equation-based blocks

H
ow

 T
o

For the Variable Name column, use the default name, assign a name that has more relevance to
the model, or select a name from a popup, depending on the type of variable selected. The
Variable Value field reports the results for the selected output variable. In the Equation(I) block
there is also a column to specify what should happen to the result if an output is needed but
there is no item to trigger the equation’s recalculation.

☞ The notation PRI (Parent Record Index) is used in blocks that interface with the ExtendSim
database. It describes the type of value that is being read or written when dealing with a Child
field.

Equation
An equation is a list of commands to be executed on one or more input variables, resulting in
one or more output variables. In the equation pane, enter an equation that uses the names of the
input and output variables and any of ExtendSim’s built-in functions and operators. (Note that
user-defined functions and procedures must be defined in include files; they cannot be called
directly in the equation block.) The equation must be of the general form output = equation;
(the semicolon at the end is required).

For example, an equation that uses the values from input connectors named Input1 and Input2
and outputs the result to an output connector named OutputA would be:

if(Input1 > Input2)

OutputA = 2;

else

OutputA = 5;

☞ To find out how to debug your equations, see “Debugging equations” on page 211.

The equation does not have to use all the names assigned to the input and output variables.
However, if an input connector is connected, ExtendSim assumes that you will want to use it in
the equation. If you don’t use it, ExtendSim will give a warning when the simulation runs.
ExtendSim will also warn if the equation uses a connector that is not named or is not con-
nected.

☞ Equation-based blocks can calculate separate results and output them using any number of out-
put variables.

The timing and control of equation calculations
The equation-based blocks evaluate their equations:

• Equation, Equation Query. In a continuous model, at every step. In a discrete event or dis-
crete rate model, when a message is sent to its value input or output connectors. The fre-
quency of calculations can also be customized in the block’s Options tab.

• Equation(I), Equation Query(I). Each time the block gets an item at its item input connector.

• Queue Equation. Each time an item arrives or leaves and when a message is sent to one of
the value input connectors.

The timing of equation calculations can have significant consequence in a simulation, affecting
model behavior. To control when the equation is evaluated so that extraneous messages aren’t
generated, see the Step Message block (Utilities library) or the Pulse block (Value library).

Math and Statistical Distributions 195
Equation-based blocks

H
ow

 T
o

Equation block example
As seen in the Reservoir 3 model (Examples/Tutorials/Continuous) one Equation block
replaced four blocks in the Reservoir 2 model that calculate and remove overflow from a Hold-
ing Tank block.

Equation Editor
All of the equation-based blocks have a scrollable area for entering equations. Other than the
Optimizer (Value library) and Buttons (Utilities library) blocks, the equation-based blocks also
have a separate Equation Editor window for viewing and editing the equation.

Although the equation could be edited within the block’s dialog, there are advantages to edit-
ing the equation in the Equation Editor window:

• The Equation Editor window can be resized to fit larger equations

• Tabs can be used for indenting

• Code colorization is allowed, so code is more understandable

• Other editing commands, such as matching braces, are supported

☞ Code completion is enabled in the Equation Editor window. That makes it easier to recall func-
tion names and their arguments, since you just start typing the first part of a function’s name
and choose it from the list that appears. Once the function has been placed in the script, enter
an open parenthesis “(” immediately following it. This causes the parenthesis to turn red and
causes call tips to display the function’s arguments. The first argument will be bolded. When
you enter it, the parenthesis will turn black. As you enter each argument, subsequent arguments
get bolded until all are entered.

To see the Equation Editor:

Open the Reservoir 3 model located at Documents/ExtendSim/Examples/Tutorials/Continu-
ous

In the model, open the dialog of the Equation block; it is labeled Calculate Overflow

196 How To
Equation-based blocks

H
ow

 T
o

In the block’s dialog,
click Open/Close
Equation Editor. A
portion of the win-
dow that opens is
shown in the screen-
shot to the right.

As you can see, the contents of the window automatically uses the indenting and code coloriza-
tion features. To use code completion, type the first part of the function name in the code pane,
then scroll through the list of functions that appears and choose the one you want.

Include files for equations
It is common that several blocks would use the same or similar variable definitions and func-
tions. Include files simplify programming tasks that are repeated in multiple blocks. They are
especially helpful when you define your own functions for one block and want other blocks to
have access to those functions. In addition, include files allow you to use constants and user-
defined functions and procedures in equation-based blocks, which don’t directly support them.

For those who are building complex equations, most of the equation-based blocks have an
interface for adding include files. This feature is implemented in the Equation and Query
Equation blocks (Value library), Equation(I), and the Queue Equation, and Query Equation(I)
blocks (Item library).

Include files in equations are similar to the standard ModL include header files used when cre-
ating a block and discussed in the Technical Reference. They can contain ModL symbol defini-
tions such as #define, conditional compilation statements such as #ifdef, and function
definitions.

The main differences between the two methods of using include files are:

• Include files used with equations are normally saved in the same location as the model using
them; this makes it easy to move both the model and the includes it uses to a different loca-
tion. Include files used in block code should be saved in the Extensions/Includes folder.

• Include files are added to block
code via the #include syntax in
the code, such as #include “file-
name.h”. However, include files
in equations are added via an
interface (the checkbox labeled Use include files) in the equation block’s dialog. You cannot
use the #include syntax in an equation block.

To create a new include file for an equation-based block:

Check Use include files in the block’s Equation tab

Click the Create New button

Give the new include file a name

In the window that appears, enter the procedure or function. For instance:

//**********************************

//START: Equation Include Prototypes

Math and Statistical Distributions 197
Random numbers

H
ow

 T
o

procedure myproc();//this will be displayed in the prototype list

//END: Equation Include Prototypes

//**********************************

procedure myproc()

{

userError("Hello World");

}
Use the procedure in the equation. In this case, when the equation is called the block will

display a user error that says Hello World.

☞ If you have ExtendSim DE or Pro, see also the Equation Include File model; it is located at
Documents/ExtendSim/Examples/Discrete Event/Tips.

Random numbers
The ability to include randomness and show dynamic aspects through time is one of the most
valuable characteristics of a simulation experiment. Introducing randomness into a model
mimics the patterns and unpredictability of the real world, increasing model accuracy. Since
most models have randomness, it is important to understand random numbers.

ExtendSim has blocks, features, and functions that provide randomness in models. For exam-
ple, the Random Number block (Value library) and the Create and Shutdown blocks (Item
library) calculate random numbers using random distributions accessed through ModL func-
tions. You can also specify random settings when using Sensitivity Analysis and for values in
the ExtendSim database, and developers can directly access several random number functions.

Random number generators
The random functions produce random numbers based on a repeatable algorithm known as a
pseudo random number generator. This generates the uniform random numbers used in the
distribution functions. These 32-bit functions are seed-based and update their seed after being
called. ExtendSim supports two types of random number generators:

• The recommended, default generator known as the minimal standard random number gener-
ator initially by Lewis, Goodman, and Miller, using new coefficients by Gerald P. Dwyer, Jr.
(See Numerical Recipes in C, 2nd edition, pp.279 “A portable and reasonably fast minimum
standard random number generator that uses Schrage's algorithm” and L'Ecuyer - Comm. of
the ACM, Oct. 1990, vol. 33 and L'Ecuyer and Cote, ACM Transactions on Mathematical
Software, March 1991.)

• An optional generator based on Schrage, “A More Portable Fortran Random Number Gener-
ator,” ACM Transactions on Mathematical Software, Vol 5, No. 2, June 1979, pages 132-
138.

The first type of generator is specified by default in the Run > Simulation Setup >Random
Numbers tab and is highly recommended for building models. The second generator is used
mainly for backwards compatibility, so that models developed before ExtendSim 4.0 will
retain results that are consistent with those older versions of ExtendSim.

198 How To
Probability distributions

H
ow

 T
o

Random seeds
A random number stream is a sequence of random numbers; the numbers in the stream are
derived based on seed values. The pseudo random number generator is the internal mechanism
in ExtendSim which calculates the numbers in the stream.

ExtendSim provides independent random number streams with the ability to specify a seed so
that sequences of random numbers can be repeated. A random number is generated based on a
seed.

You can specify a seed for the model as a whole in the Run > Simulation Setup > Random
Numbers tab. A seed value of 0 or blank uses a random seed. Any other value causes repeat-
able sequences of pseudo-random numbers and the word “Seed” will appear in the model’s sta-
tus bar during the run. This gives repeatable results, allowing you to determine exactly how
changes affect the model.

ExtendSim automatically assigns a separate seed to each block in the model that generates ran-
dom numbers. To specify your own seed, enter a value in the Use block seed field in the dialog
of those blocks. Any number entered as a seed in a block dialog will result in an independent
random number stream that will not change across runs. Since each stream of random numbers
is based on a seed, and you can have a separate seed for each block that generates random
numbers, random number generation in ExtendSim is independent. The blocks that generate
random arrivals or numbers are the Create and Shutdown blocks (Item library) and the Ran-
dom Number block (Value library).

Each cell in an ExtendSim database can have an independent seed for the selected distribution.
The database seed is dependent on what is set in the Run > Simulation Setup > Random Num-
bers tab. The seed field in the Sensitivity Setup dialog is independent of the seed that is set in
the Random Numbers tab.

Resetting random numbers for consecutive runs
The Run > Simulation Setup > Random Numbers tab has three options for when a model is run
repeatedly:

• Reset random numbers for every run

• Continue random number sequence

• Use Database table __Seed for values

These options are described in “Random Numbers tab” on page 86.

Probability distributions
In real life you cannot know exactly when an event is going to occur until it happens. For
example, you do not know when the next customer will enter your store. However, by using
the correct statistical distribution you can approximate what happens in the real world.

A distribution (also known as a probability distribution or a random distribution) is a set of
random values that specifies the relative frequency with which an event occurs or is likely to
occur. ExtendSim’s random number distributions express both a probability that something
will occur and a range of values that specify the maximum and minimum value of occurrence.

Distributions represent the data observed in real-world situations. When you gather data for a
simulation model, it is seldom in a useful form. By “filling in the gaps,” distributions help to
compensate for information which was overlooked during data collection. For example, distri-
butions account for extreme or outlying values which may have been missed during typically

Math and Statistical Distributions 199
Probability distributions

H
ow

 T
o

short data-gathering intervals. Stochastic models use distributions as a handy method for con-
verting data into useful form and inputting it into models.

Characteristics of distributions
The functions that produce a distribution have one or more parameter arguments which define
and control its characteristics. The most important characteristics are a distribution’s shape, its
spread, and its location or central tendency. Shape is often used to identify distributions; for
example, the bell-shaped curve of a normal distribution is widely recognized. Shape can be
characterized according to skewness (leaning to one side or another) and kurtosis (whether it is
peaked or flat). You specify the characteristics for the selected distribution by the values you
enter for these arguments.

Choosing a distribution
Using random numbers means either choosing the theoretical distribution that best describes
the variability of the raw data, describing the data using a user-defined or empirical distribu-
tion (such as the empirical distribution in the Create block), or fitting known data to a distribu-
tion. As seen below, there are many distributions in ExtendSim and it also has the ability to
interface with external distribution-fitting software, as discussed in the next topic.

The choice of one distribution over another is not an exact science, but rather is dependent on
the type and extent of the data which is gathered, the detail required for the process being mod-
eled, and (in the case where little data is available), informed guesswork. If the data does not fit
any of the distributions described below as “typical” for your process, but fits a distribution
which is not typical, go with what your data tells you. It is usually better to use an approximate
distribution than it is to keep a value constant.

Distribution fitting
There are also software applications which fit data to distributions. Use these tools in situations
where there is empirical data you want to model using random distributions, but the Extend-
Sim distributions do not exactly fit. These products can help find the statistical distribution that
best emulates the real-world data.

Some ExtendSim packages come with the Stat::Fit distribution fitting application (see
“Stat::Fit (Windows only)” on page 172.) The Random Number block has a Distribution Fit-
ting tab from which to launch a distribution fitting package, analyze empirical data, and deter-
mine the appropriate statistical distribution for a given data set.

ExtendSim distributions
When there is sparse or no data, this list of common uses may help you select a plausible distri-
bution in the Create, Shutdown, or Random Number blocks, within the Sensitivity Setup dia-
log, or when formatting a cell in the ExtendSim database:

Distribution Definition

Beta Distribution of random proportion, such as the proportion of defective items
in a shipment, or time to complete a task.

Binomial The number of outcomes in a given number of trials. Most often used to
express success/failure rates or the results of experiments, such as the num-
ber of defective items in a batch or the number of customers who will arrive
who are of a particular type.

200 How To
Probability distributions

H
ow

 T
o

Cauchy Used to represent the ratio of two equally distributed parameters in certain
cases or wildly divergent data as long as the data has a central tendency. It
has a sharp central peak but broad tails that are much heavier than the tails of
the Normal distribution.

Chi Squared Used in statistical tests but, since it does not have a scaling parameter, its uti-
lization is somewhat limited. It is a subset of the Gamma distribution with
beta = 2 and alpha = nu/2.

Constant This does not produce a random number, but a constant value which does not
change. Used when there is exactly the same amount of time between arriv-
als or as a method to reduce the effects of randomness in the early stages of
model building.

Empirical Used to generate a customized or user-defined distribution with a special
shape when the probability of occurrence is known. The options are: discrete
(the block will output the exact values given in the table); stepped (values in
the table will be used as probabilities of ranges of data); and interpolated
(the probability distribution will be interpolated between the data points).

Erlang Frequently used for queueing theory to represent service times for various
activities or when modeling telephone traffic.

Exponential Primarily used to define intervals between occurrences such as the time
between arrivals of customers or orders and the time between failures (TBF)
or time to repair (TTR) for electrical equipment. Also used for activity times
such as repair times or the duration of telephone conversations.

Extreme Value
Type 1A

describes the limiting distribution of the greatest values of many types of
samples. Used to represent parameters in growth models, astronomy, human
lifetimes, radioactive emissions, strength of materials, flood analysis, seis-
mic analysis, and rainfall analysis. Its peaked shape is always the same but it
may be shifted or scaled.

Extreme Value
Type 1B

Describes the limiting distribution of the least values of many types of sam-
ples. Represents parameters in growth models, astronomy, human lifetimes,
radioactive emissions, strength of materials, flood analysis, seismic analysis,
and rainfall analysis.

Gamma Typically used to represent the time required to complete some task. The dis-
tribution is shaped like a decaying exponential for shape (2) values between
0 and 1. For shape values greater than 1, the distribution is shaped like a bell
curve skewed towards the low end.

Geometric Outputs the number of failures before the first success in a sequence of inde-
pendent Bernoulli trials with the probability of success on each trial. Typi-
cally used for the number of items inspected before encountering the first
defective item, the number of items in a batch of random size, or the number
of items demanded from an inventory.

HyperExponential Usually used in telephone traffic and queueing theory.

Distribution Definition

Math and Statistical Distributions 201
Probability distributions

H
ow

 T
o

Hypergeometric Describes the number of defects, x, in a sample of size s from a population
of size N which has m total defects. It is used to describe sampling from a
population where an estimate of the total number of defects is desired. It has
also been used to estimate the total population of species from a tagged sub-
set.

Inverse Gaussian Originally used to model Brownian motion and diffusion processes with
boundary conditions. It has also been used to model the distribution of parti-
cle size in aggregates, reliability and lifetimes, and repair time.

Inverse Weibull Describes several failure processes as a distribution of lifetime. It can also be
used to fit data with abnormal large outliers on the positive side of the peak.

Johnson SB Used in quality control to describe non-normal processes, which can then be
transformed to the Normal distribution for use with standard tests. It is a
continuous distribution that has both upper and lower finite bounds.

Johnson SU Used in quality control to describe non-normal processes, which can then be
transformed to the Normal distribution for use with standard tests. It is an
unbounded continuous distribution.

Laplace Used in error analysis and to describe the difference of two independent, and
equally distributed, exponentials.

Logarithmic Describes the diversity of a sample, that is, how many of a given type of
thing are contained in a sample of things. For instance, this distribution has
been used to describe the number of individuals of a given species in a sam-
pling of mosquitoes, or the number of parts of a given type in a sampling of
inventory.

Logistic Most often used a growth model: for populations, for weight gain, for busi-
ness failure, etc. Can also be used to test for the suitability of such a model,
with transformation to get back to the minimum and maximum values for
the Logistic function. Occasionally used in place of the Normal function
where exceptional cases play a larger role.

Log-Logistic For Shape = 1, it resembles the Exponential distribution. For Shape < 1, it
tends to infinity at Location, and decreases with increasing X. For Shape > 1,
it is zero at Location, and then peaks and decreases.

LogNormal Often used to represent the time to perform an activity (especially when
there are multiple sub-activities), the time between failures, or the duration
of manual activities. This distribution is widely used in business for security
or property valuation, such as the rate of return on stock or real estate
returns.

Negative Binomial Number of failures before Sth success. P specifies the probability of success.

Normal The well-known Gaussian or bell curve. Most often used when events are
due to natural rather than man-made causes, to represent quantities that are
the sum of a large number of other quantities, or to represent the distribution
of errors.

Distribution Definition

202 How To
Integration vs. summation in the Holding Tank block

H
ow

 T
o

These distributions and their arguments are described more fully in the Help of blocks that use
them.

Integration vs. summation in the Holding Tank block
he Holding Tank block (Value library) has integration capabilities. The block’s dialog gives the
option to either sum or integrate its input. In general, a good rule of thumb is:

• Integrate when the value going into the Holding Tank is based on simulation time units, such
as a rate. For example, you would integrate when the Holding Tank block’s input represents
dollars per year or gallons per hour.

Pareto Represents the income distribution of a society. It is also used to model
many empirical phenomena with very long right tails, such as city popula-
tion sizes, occurrence of natural resources, stock price fluctuations, size of
firms, brightness of comets, and error clustering in communication circuits.

Pearson Type V A distribution typically used to represent the time required to complete some
task. The density takes on shapes similar to lognormal, but can have a larger
“spike” close to x = 0.

Pearson Type VI A distribution typically used to represent the time required to complete some
task. A continuous distribution bounded by zero on the left and unbounded
on the right.

Poisson Models the rate of occurrence, such as the number of telephone calls per
minute, the number of errors per page, or the number of arrivals to the sys-
tem within a given time period. Note that in queueing theory, arrival rates are
often specified as poisson arrivals per time unit. This corresponds to an
exponential interarrival time.

Power Function A continuous distribution with both upper and lower finite bounds. It is a
special case of the Beta distribution with q = 1. The Uniform distribution is a
special case of the Power Function distribution with p = 1.

Rayleigh Frequently used to represent lifetimes because its hazard rate increases lin-
early with time, e.g. the lifetime of vacuum tubes. This distribution also
finds application in noise problems in communications.

Triangular Usually more appropriate for business processes than the uniform distribu-
tion since it provides a good first approximation of the true values. Used for
activity times where only three pieces of information (the minimum, the
maximum, and the most likely values) are known.

Uniform Integer Describes a integer value that is likely to fall anywhere within a specified
range. Used to represent the duration of an activity if there is minimal infor-
mation known about the task.

Uniform Real Describes a real value that is likely to fall anywhere within a specified range.
Used to represent the duration of an activity if there is minimal information
known about the task.

Weibull Commonly used to represent product life cycles and reliability issues for
items that wear out, such as the time between failures (TBF) or time to repair
(TTR) for mechanical equipment.

Distribution Definition

Math and Statistical Distributions 203
Integration vs. summation in the Holding Tank block

H
ow

 T
o

• Sum when the value is to be added to the block at each step or dt calculation. For example,
you would sum when the Holding Tank block’s input is orders or people.

Summing adds the given input to the total at each step, regardless of the time units. Integration
considers the input to be spread evenly over each time unit; at each step integration adds a por-
tion of the input to the total. For example, the following table shows the effect of inputting
$2000 to the Holding Tank block when the time units are in years and dt (delta time) is set to
0.25 (for 1/4 of the year).

As seen in the table, if the Holding Tank is set to sum its inputs, it would be the equivalent of
adding $2000 to the account every quarter. If the Holding Tank is set to integrate, it would be
the equivalent of adding $500 per quarter.

• Summation occurs at each step so there is an amount calculated at time 0. Since summation
treats its input as an amount, the entire 2000 is added at each step.

• The integrated (delay) choice treats its input as a rate and calculates a new result at the next
step. Because this backward Euler integration occurs during the interval between steps, there
is no amount at time 0.

• The integrated (no delay) choice also treats its input as a rate. However, it calculates a new
result at the current step. Because its integration occurs at each step, there is an amount at
time 0.

It is also important to note that if you subsequently change the delta time to something other
than 0.25, the total amount in the summed Holding Tank would be different from the amounts
shown above, but the total amount in the integrated Holding Tank would remain the same.

Your choice of integration methods depends on the model:

• You would generally use the integrated (delay) choice when there is only one integrating
block in the model, when the integrating blocks are not interdependent or cross-coupled, or
when there is no feedback.

• In models with more than one integrating block, where the integrating blocks are interdepen-
dent or cross-coupled, the feedback between the blocks is usually a correction factor. If this
feedback is delayed, the system may correct too late or overcorrect, causing the model
results to become unstable. This is often observed as a graph where the traces oscillate with
increasing magnitude as time progresses. The integrated (no delay) choice compensates for
the feedback delays by outputting results one step earlier. For example, the Predator_Prey
model is an example of interdependent Holding Tank blocks; the model is located in the
folder Examples/Continuous/Standard Block Models.

Time Step Summed Integrated (delay) Integrated (no delay)

0 0 2000 0 500

0.25 1 4000 500 1000

0.50 2 6000 1000 1500

0.75 3 8000 1500 2000

1 4 10000 2000 2500

204 How To
Integration vs. summation in the Holding Tank block

H
ow

 T
o

How To

Debugging Tools
Learn how ExtendSim can

help find errors in your models

“If debugging is the process of removing bugs,
then programming must be the process of putting them in.”

— Unknown author

206 How To
Debugging hints

H
ow

 T
o

Creating a model is not so fool-proof that your work is finished once the model has been built.
Two important steps in any simulation project are verification of simulation results (compare
the results to what was intended or expected) and validation of results (compare the model to
the real system).

ExtendSim provides several methods for detecting problems in models and for debugging
models that are not working as expected, including:

• Hints for debugging models

• Debugging item flow using item Contents tab of queues and activities

• Debugging equations in equation based blocks

• Verifying results at each step of the model-building process

• Specific blocks used for debugging

• Getting the information you need to debug a model

• Using the Find command or the Find and Replace block (Utilities library) to easily locate
blocks or dialogs that require attention

• Dotted lines to show unconnected connection lines

• Running with animation to see if a model is behaving as expected

• Using the Notebook to keep track of critical parameters in one location

• Stepping through the model as it progresses

• Show Simulation Order command

• Model tracing for comparison with the real system

• An automated test environment to compare model results between one release of ExtendSim
and another

☞ This chapter is concerned with debugging a model, not with debugging custom blocks. The
ExtendSim Technical Reference discusses in detail how use the ExtendSim Debugger to find
bugs in blocks you create.

Debugging hints
Efficient debugging of a simulation requires an organized, logical approach. Following the fol-
lowing steps will shorten the process:

• Duplicate the bug. Fix the random number stream so that the problem occurs the same way
and at the same time whenever the model is run.

• Describe the bug. Defining the difference between the correct behavior and the observed
behavior can lead to insight into the source of the problem. This also helps in formulating a
strategy for locating the source of the bug.

• Assume the bug is yours. The vast majority of modeling errors are caused by the modelers
themselves. It makes sense to start with the most likely source of the bug.

• Divide and conquer. Determine the source of the bug. And, determine where the bug is not.
Build the simplest model that duplicates the error. This will make the model run faster and
there will be fewer variables to consider in the debugging process.

Debugging Tools 207
Verifying results as you build a model

H
ow

 T
o

• Think creatively. Bugs don't always come from the expected locations. If the source of the
problem is not immediately evident, you may be looking at only a symptom. Look at other
places in the model that could be the actual source of the error.

• Leverage tools. ExtendSim comes with a variety of tools for debugging a simulation model.
For discrete event models, adding a History (Value library), Item Log Manager (Report
library), or Record Message (Utilities library) block can provide insight into the operation of
the model. In continuous models, writing a sequence of values to the ExtendSim Database or
to a global array is an easy way to record the values at a specific point in the model. Trace
files are also useful at this point.

• Start heavy debugging. Focus on the problem at hand and on how it can be fixed

• Learn and share. This may be a problem that could occur in someone else’s models. Share
your experiences with other modelers through the ExtendSim E-Xchange or the ExtendSim
LinkedIn site.

Verifying results as you build a model
One of the most efficient methods for debugging models is to verify that the model is working
correctly at each step during the model building process. It is a lot easier to find problems as
you create each section of the model than to try to debug a finished model. You can use almost
any of the debugging features discussed in this chapter, but the two most common methods to
debug at each step are by examining connector information and cloning dialog items.

Connector information
Connectors provide helpful information when you are debugging models. Run the model at
any point in the model building process. As the model runs, or at the end of a run, hover the
cursor over a connector to see its name and current value. You may also see additional infor-
mation depending on how the block is programmed.

Cloning dialog items
To focus on a particular parameter, clone it to the model worksheet and watch it change as the
simulation runs. You can also turn animation on to compare the cloned parameter to the behav-
ior of the surrounding blocks. Cloning dialog items is discussed at “Cloning” on page 72.

Blocks for debugging
ExtendSim libraries have many blocks that are useful for debugging models either during or
after a simulation run, including:

Block Library Category Use

Display
Value

Value Inputs/
Outputs

Displays the value of its input connector at each simula-
tion step on the block’s icon and in the dialog. In the
dialog, set the time between displays.

Notify Value Inputs/
Outputs

Plays a sound or stops the simulation when its input is
0.5. Optionally displays a message set in its dialog.

Statistics Report Statistics Displays information about all blocks of a certain type,
such as all queues or all activity blocks.

208 How To
Measuring performance to debug models

H
ow

 T
o

Measuring performance to debug models
ExtendSim provides several methods for obtaining model information when debugging mod-
els:

• Dialog boxes display data pertinent to the specific block and in some cases automatically
perform statistical calculations. For instance, the dialog of the Queue block (Item library)

History Item Information Displays statistics and history (arrival time, priority, and
attributes) of items that pass through it. See “Using the
History block to get item information” on page 398.

Information Item Information Counts items that pass through it and reports the time
between item arrivals and cycle time statistics. See
“Information” on page 137.

Item Log
Manager

Report Information Collects specified data in selected History blocks and
blocks with Contents tabs. Stores the data in an Extend-
Sim database for analysis and output as a report. See
“Using the Item Log Manager to get item information”
on page 399.

Reports Man-
ager

Report Information The primary interface for creating reports from simula-
tion runs for blocks, events, items, and resources. See
“Reports Manager block” on page 185.

Event Moni-
tor

Utilities Discrete
Event Tools

Reports the contents of the ExtendSim discrete event
calendar.

Find and
Replace

Utilities Information Finds specified dialog items and replaces their values.
Drag a clone of a dialog item onto this block’s icon to
search for similar dialog items.

Item Mes-
sages

Utilities Discrete
Event Tools

Records the messages sent over item connectors.

Link Alert Utilities Discrete
Event Tools

Sends a message when the data in the linked database
location changes. Use with the Record Message block.
See the ExtendSim Database Tutorial and Reference.

Memory
Usage

Utilities Information Reports the size of each block, array, or database table
in the model in bytes.

Model
Compare

Utilities Information An automated testing environment for model verifica-
tion.

Pause Sim Utilities Model
Control

Causes the simulation to pause when certain conditions
are met. Click Resume to continue execution

Record Mes-
sage

Utilities Discrete
Event Tools

Records messages sent over value connectors in a dis-
crete event or discrete rate model.

any graph Chart Add a chart block any place in a model and connect it to
the values you want to track. See “Chart library” on
page 174.

Block Library Category Use

Debugging Tools 209
Measuring performance to debug models

H
ow

 T
o

reports utilization and maximum queue length as well as the number of arrivals and depar-
tures.

• You can clone dialog parameters to the model window or to the Notebook to create custom-
ized reports and control panels, as shown in “How to clone a dialog item” on page 72.

• Many of the blocks in the libraries have value output connectors that give direct access to
specific information. For example, the U output connector on the Activity block outputs uti-
lization values. You can attach any value output to a plotter to display information about
model performance. You can also attach value outputs to value inputs on diagnostic-type
blocks, such as to the Display Value block (Value library) to display information about that
output.

• Charts, from the Chart library, conveniently display graphs and tables of data over time.
These blocks are useful not only for showing results but for identifying trends and anoma-
lies. You can choose what you want plotted and how you want it displayed, and you can use
as many plotters in a model as you want. See “Chart library” on page 174 for more informa-
tion.

• Animation shows the flow of items in a model, levels of values, etc. ExtendSim blocks have
built-in customizable animation; you can also add custom animation using the Animate tabs
in block dialogs or by using blocks from the Animation library. Animation is especially use-
ful for verifying a model since it can show if portions of the model are operating as expected.
Since animation can slow model performance considerably, it is common that you would use
animation in the early stages of model-building or for presentations. See “Animation fea-
tures for debugging” on page 215 for more information.

• There are numerous blocks that can be used for debugging models and verifying results. For
instance, the Notify block (Value library) can stop the simulation and notify you when its
input goes above or below a specified level. The Information block (Item library) provides
information about the output of the block it is connected to (the interval between arrival
times, how many items are currently present at the output, and so forth).

• Sensitivity analysis allows you to vary a parameter incrementally, randomly, or in an ad hoc
manner to determine how sensitive model results are to changes in one variable. See “Sensi-
tivity analysis” on page 138 for more information.

• Running simulations multiple times, such as for Monte Carlo simulations, gives ranges of
values indicating the possible outcomes for the model. See “Running a model multiple
times” on page 88 for more information.

• The Statistics block (Report library) reports and statistically evaluates results. For example,
it can display information about every queue-type block in the model and calculates the con-
fidence intervals based on the results. As discussed in “Clear Statistics” on page 136, the
Clear Statistics block (Value library) resets statistical accumulators at random intervals or in
response to a system event; this is used to eliminate statistical bias during the warm-up
period.

210 How To
Find command

H
ow

 T
o

• The Utilities library contains two blocks that are useful for debugging discrete event models.
The Record Message block, when connected between two value connectors, shows all of the
messages, the values transferred, and whether the message came in the input or output con-
nector. The Item Messages block records the message communication between two item
connectors. See the Discrete Event Quick Start guide for a detailed discussion of the item-
based messaging system.

Find command
If a model is large, it might
be difficult to find all the
blocks by sight. For example,
you may see in the Trace file
that a particular block didn’t
get the expected input. The
Edit > Find command lets
you locate a block or other
object by its name, ObjectID,
or label.

This command opens a dif-
ferent window depending on
where the search is initiated: the worksheet, the block’s structure, or a database window. See
“Find...” on page 543 for more information about this command.

☞ You can also use the Find and Replace block, listed in the table of debugging blocks above, to
find blocks. It is even more useful for finding specific dialog items in the located blocks, so
you can replace their parameter values.

Item Contents of queues and activities
The Contents tab found in
queues, activities, and the
Resource Item blocks
allows you to record and
view either which items
currently reside in the
block or which items have
historically traveled through the block. The table is customizable—expand the table and use
the popups to select additional properties, such as cost or item quantity, that you want tracked.

While this feature can be quite useful, turning it on can slow model execution speeds and
unnecessarily grow the size of your models. So you wouldn’t want to leave it on all the time.

However, since this
feature will most often
be used for debugging
purposes, the Execu-
tive block has an
“Item Contents” tab where you can remotely control the Contents tabs in all the blocks in your
model from one location. This will make it easier for you to selectively turn contents tracking
on during the debugging phase of your model development and then turn it off once debugging
has been completed.

Debugging Tools 211
The Source Code Debugger

H
ow

 T
o

We also expect customers to find uses for contents tracking beyond debugging. For example,
linking a block's contents table to a database table would make that block's current item con-
tent easily accessible to other blocks in the model.

☞ See the Help for each block, including the Executive, to see what the dialog settings mean.

The Source Code Debugger
The ExtendSim Source Code Debugger is the ultimate model debugging tool. With the debug-
ger you can step through every statement, inspect the value of every variable, and view the
sequences of messages sent from one block to another. Using the debugger requires that you
understand the ModL language and how blocks interact with each other. For more information,
see the Technical Reference.

Debugging equations
The equation-based blocks allow you to enter equations that are simple logic statements (if x,
then y) or complex calculations that control the model using ModL functions. While in many
cases you won’t need to debug the equation, ExtendSim provides an equation debugger so you
can determine if equations are performing as expected. This works like the Source Code
Debugger that ExtendSim developers use, but it is specific to the equation-based blocks used
by many modelers.

The equation debugger allows you to:

• Set breakpoints for equations. A breakpoint is where the debugger initially stops execution
of the equation so you can step through the code.

• Set breakpoint conditions for equations. Setting a breakpoint condition causes the breakpoint
to stop execution only under certain circumstances.

• Step through lines of code and examine the variables. Step commands allow you to trace the
execution of the equation and examine the effects on the variables defined in the code.

Tutorial for the equation debugger
Open the Reservoir 3 model located at Documents/ExtendSim/Examples/Tutorials/Continu-

ous

So that you don’t overwrite the original model, save the model as Equation Debugging

In the model, open the dialog of the Equation block; it is labeled Calculate Overflow

☞ Although the following tutorial uses a continuous model, the equation debugger can be used
with any of the equation-based blocks. For a list of equation-based blocks, see “Equation-
based blocks” on page 189.

Setting breakpoints
To step through each line of code, it is first necessary to stop the code execution. In this exam-
ple, it requires placing a breakpoint before the “if” statement at the beginning of the equation:

In the dialog of the Equation block, check the Enable Debugger check box

Click the Set Breakpoints button

This recompiles the equation in debugging mode and opens two windows:

• The Set Breakpoints window is where you set the breakpoints

212 How To
Debugging equations

H
ow

 T
o

• The Breakpoints window lists the breakpoints that have been set. It is used later in this tuto-
rial, for “Setting a conditional breakpoint” on page 213.

☞ Code in the Set Breakpoints window cannot be edited.

The gray breakpoint lines in the left margin of the Set Breakpoints window indicate the only
places where breakpoints can be set.

In the left mar-
gin of the Set
Breakpoints
window, click
the breakpoint
line that is at the
left of the if
statement. This turns the gray dash into a red circle. If you click at the wrong line of code,
just click it again to remove the breakpoint.

Close the Set Breakpoints window.

Run the simulation. The simulation will run until the breakpoint is reached.

Stepping through the code
When the breakpoint is reached, the Debugger window opens.

• In the Source pane a green arrow
is placed at the left of the break-
point. This indicates that the code
before the green arrow has been executed.

☞ The green arrow indicates which line of code will be executed next, once the run is continued.

• The Variables pane at the top right shows
the variables used in the equation and the
value of each variable at the point before
the line of code at the breakpoint is exe-
cuted.

• Along the top of the window is a toolbar
with six buttons. These are used to continue the run, to step over, into, or out of functions,
and to stop the run with or without code editing. (The buttons are explained fully in the
Debugging chapter of the Technical Reference.)

• The Call Chain pane at the upper left tells where control is in the chain of command. It is not
used for debugging equations unless there are blocks in the model that have debugging code.

The “if” statement has not yet executed. To watch the statement execute:

Repeatedly click the Step Over button at the top of the Debugger window. Alternatively,
use the right arrow to step over the function.

The green arrow in the Source pane indicates the flow of the code; the Variables pane shows
the change in value for the variables.

☞ Hovering the cursor over a variable in the Source pane will also show its current value.

Debugging Tools 213
Debugging equations

H
ow

 T
o

Getting to the overflow calculation
The next step is to set a breakpoint to find out when the overflow value first gets calculated.

In the Debugger window:

Remove the first breakpoint by clicking its red circle

Add a new break-
point at the line
below it, the
“overflow = contents...” line

Do one of the following to continue the run:

• Click the Continue button at the top of the Debugger window

• Or, press F5

• Or, use Shift+right arrow

Although the breakpoint is set at the overflow calculation line, the green arrow indicates that
the calculation has not yet been performed. Thus the overflow value will not be current.

In order to see the current overflow value:

Click the Step Over button to execute that line of
code. The calculated overflow value is shown in the
Variables pane.

Setting a conditional breakpoint
Conditional breakpoints cause a
calculation to break only when
the overflow value is calculated
and within a specified range or
specific value.

The Breakpoints window is for setting breakpoint conditions. It allows you to:

• See which breakpoints have been set and where they have been set

• Add conditions to a breakpoint

• Click a breakpoint’s red circle to disable or enable any breakpoint, without deleting it. (In
place of the red circle, disabled breakpoints have an open circle.)

• Delete a breakpoint by selecting it’s name and clicking the Delete or Backspace key

To set a condition on the breakpoint so it will break only if the overflow is greater than 0.0:

In the Debugger window:

Remove the existing breakpoint by clicking its red circle in the Debugger window.

Add a new breakpoint to the Debugger window after the entire “if” and
“else” statement; in this case at the ending brace that is below the “over-
flow = 0.0” statement.

The next step is to write a comparison statement that will compare the overflow value to zero.

In the Breakpoints window:

214 How To
Dotted lines for unconnected connections

H
ow

 T
o

Double-click in the Condition column that is to the right of the Breakpoint column.
This opens the Breakpoint Conditions window, shown below.

In the Variable A column of the Breakpoint Conditions window, select the overflow
(double) variable; this will become A in the equation.

Since you want the condition to determine when the overflow is greater than zero,
choose A>B as the comparison in the middle column.

Below the Variable B column, check the
Use constant for B check box and enter
0.0 as the constant.

Click OK

Notice that the breakpoint’s red circle in the Debugger window has changed to a blue circle,
indicating there is a condition on the breakpoint.

Since you have set conditions, and you want to find the first time the condition is met, the cal-
culation must start again from the beginning. To start the run over:

• In the Debugger window, click the red Stop Debugging button This closes the window and
stops the model run.

• Run the simulation. The first overflow value greater
than 0 will be displayed in the Variables pane.

As an additional exercise, try using different values for the overflow condition, such as 2.0, to
see when that value first appears.

☞ Advanced modelers might benefit from reading about the Source Code Debugger in the Tech-
nical Reference.

Dotted lines for unconnected connections
If a block is not getting an input or is not generating an output when you think
it should, it may not be connected properly in the model. This can happen when
connections run underneath blocks when you thought that they were connected
to the blocks.

ExtendSim shows incomplete connections as a red dotted line. To fix these, delete the incom-
plete connections by double-clicking them and reattach them to where they are supposed to be.
Clicking one segment selects that segment; double-clicking a segment selects the entire con-
nection line.

Debugging Tools 215
Animation features for debugging

H
ow

 T
o

Animation features for debugging
Running the model with 2D animation on is useful for debugging. If the animation goes by too
quickly for debugging, slow down the process with the Slower Animation (turtle) button in the
toolbar. To resume speed, use the Faster Animation (rabbit) button.

To learn more about how models, blocks, and connection lines are animated see “Animation”
on page 110.

Animating the model
If you know how a block is animated (see the block’s Help), you can watch its icon to deter-
mine if something is not acting as expected. For example, if a block indicates the status of its
contents, you can use that information to debug the model.

Discrete event models have additional animation capabilities and can show the flow of items
along connection lines and between named connections. This gives a visual representation of
what is happening in the model. Many times these additional animations are specified in the
block’s dialog.

Animating item properties (discrete event models only)
Changing an item’s animation depending on a property (attribute, quantity, priority) is helpful
when debugging models. For example, in a block’s Item Animation tab you can visually differ-
entiate between types of items by setting separate animation objects for each attribute value.
Then observe the individual items as they flow through the model.

Notebook
Notebooks are a convenient way to see the final values for several dialog items in a model or to
compare inputs to outputs. This is useful in debugging because you can group the dialog items
by what their final values are expected to be.

For more information, see “Notebooks” on page 79.

Stepping through the simulation
The Model toolbar has buttons that help if you
are debugging a model. There are also Stop,
Pause, Resume, and Step commands in the
Run menu and Pause at Beginning, Step Each Block, and Step Entire Model commands in the
Run > Model Debugging menu.

See “Stepping through a model” on page 89 for methods to use.

Show Simulation Order command (continuous blocks only)
ExtendSim normally determines the order that blocks in a con-
tinuous model are executed by following the path of connec-
tions. If a continuous model is behaving in an unexpected
manner, you may want to see explicitly the order ExtendSim is
using to execute calculations in a model.

Selecting the Model > Show Simulation Order command puts a
small number on each block’s label indicating its order of exe-
cution.

☞ Although also accurate for groupings of continuous blocks in
non-continuous models, this display will be inaccurate for discrete event (Item library) and dis-

216 How To
Slow simulation speed

H
ow

 T
o

crete rate (Rate library) blocks in those models. This is because discrete blocks can generate
block-to-block messages and override the system’s simulation order.

Slow simulation speed
There are many reasons why a simulation would not run as quickly as you might expect. Some
common causes, and the methods to detect and avoid them, are discussed in “Speeding up a
simulation” on page 98.

Model reporting
The blocks in the Report library are useful for generating customized reports of data to help
debug models. However, model tracing (discussed in the next topic) can offer more detailed
information. So you will probably use that option more for debugging and the reports option
for analysis.

To learn more about how to generate reports in ExtendSim, see “Model reporting” on
page 184.

Model tracing
Model tracing is useful for finding anomalies that occur as the simulation runs, generating a
trace text file that shows the details of block values at every step or event in the simulation.

Because of the large amount of information generated by the model tracing commands, most
people don’t use model tracing often. However, tracing is a highly effective method for follow-
ing a single block or a few blocks to watch for values that do not match expectations.

The trace is saved as a text file and opens automatically at the end of the run. If the Runs field
in the Simulation Setup dialog is greater than 1, each consecutive trace is added to the end of
the file so that you can compare traces from earlier runs.

Generating traces
The tracing commands are located in the Run
> Model Debugging menu. To generate a trace:

Select the blocks you want included in the
trace:

To specify individual blocks for trac-
ing, select them and choose the Add
Selected Blocks To Trace command.

To get a trace on every block, choose
Add All To Trace.

Choose the Run > Model Debugging > Generate Trace command to create a trace the next
time you run the model.

Run the simulation to see the trace results. ExtendSim prompts you for a name and location
for the trace file. Trace reports are opened, closed, and edited just like any other text file in
ExtendSim.

To trace fewer blocks in the next simulation run, select the blocks you want out of the trace
report and select Remove Selected Blocks from Trace. To start over on the selection of
blocks, choose Remove All Blocks from Trace.

You can see which blocks are included in the trace by choosing Show Tracing Blocks; each
traced block in the model displays the word Trace on its icon.

Debugging Tools 217
Automated test environment (Windows only)

H
ow

 T
o

Tracing example
For the Math block from the Reservoir 1 model, the top of the tracing report is:

ExtendSim Trace - 9/16/2017 3:48:57 PM

Run #0

calculation at Math number 2. CurrentTime:0.

ValuesIn = 2.6

ResultOut = 3.1550072961999

---------------------- Step #1 -----------------------

calculation at Math number 2. CurrentTime:1.

ValuesIn = 4.4

ResultOut = 5.3917648062033

---------------------- Step #2 -----------------------

calculation at Math number 2. CurrentTime:2.

ValuesIn = 6.7

ResultOut = 7.1088551154443

---------------------- Step #3 -----------------------

calculation at Math number 2. CurrentTime:3.

ValuesIn = 3.4

ResultOut = 3.8298759283776

☞ If you build your own blocks and want to use the Trace features for debugging, add special
code to the blocks, as described in the Technical Reference.

Automated test environment (Windows only)
To assist you in your modeling efforts and to assist your company in the version accreditation
process, ExtendSim includes an automated test environment for model verification. This helps
identify any differences in two situations:

• Verifying that models will generate the same results when there is a new release of Extend-
Sim. The test environment simplifies the process of comparing simulation results between
two ExtendSim releases – looking for any differences between models that were saved in a
previous release and the same models run in the new release. See page 218 for how to do
this.

• Determining if changes made to a model affect the results. In the same manner as verifying
between releases, you can compare copies of the model saved before and after changes as
discussed in “To compare results for one model” on page 219.

 The test environment only runs on Windows. In addition, the first time you launch the Compare
Results application, you will need to run ExtendSim as Administrator. See Windows documen-
tation for how to run as Administrator.

Components
There are two components to the test environment:

1) The Compare Results executable

218 How To
Automated test environment (Windows only)

H
ow

 T
o

2) The Model Compare block, located in the Utilities library

As discussed below, you use these differently depending on whether you want to test several
models at a time or only one model.

To perform verification for several models:
Launch the mini-app named Compare Results:

Go to the Start Menu

In the list of Programs, select ExtendSim/Documents

Locate the Compare Results.exe application

Click “Compare Results” to launch that application. This also launches ExtendSim, if it
is not already open.

 It is important to note which ExtendSim release will be used for the test. If ExtendSim is not
open, the Compare Results tool will launch the default version, which may not be the most cur-
rent release. The safest method is to first open the ExtendSim release you want to evaluate.

In the Compare
Results window that
appears (shown at
right), use the Browse
buttons to select all
the models located in a particular folder or to load a text file of models to run.

☞ Note that when you select one folder, any subfolders will also be selected by default. To avoid
this, uncheck the Search subfolders checkbox or create a text file with the specific models you
want to run, as discussed below.

Click the Run Models button. This does the following:

• If no model is open, creates a new model with some text in it. (Do not close the new
model until the Compare Results process is finished.)

• Opens the selected models

• Temporarily turns off animation in those models

• Temporarily places the Model Compare block (Utilities library) in each model as it is
run

• Runs the models one at a time. Note that you may get a “Run as Administrator” mes-
sage when the first model is run. As noted in the alert above, you need to run Extend-
Sim as Administrator to use the Compare Results application.

• Reports the project’s progress in a green status bar below the list of models; the status
and results for each model are reported in the columns.

Any models without differences are automatically closed without saving, discarding the
Model Compare block.

Models with differences are left open in ExtendSim. (You can also choose that the Compare
Results window only display those models.)

If there are any model differences, go to ExtendSim and open the Model Compare block that
is in the upper left corner of the model. Each parameter that has a difference will be indi-
cated by an entry in the column labeled Different.

Debugging Tools 219
Automated test environment (Windows only)

H
ow

 T
o

When you close these models, the Model Compare block will be discarded and the model
will revert to its prior saved condition.

Creating a text file
You can use the application to create a text file or create one in Word or some other applica-
tion.

To use the Compare Results application to generate the list of models to run:

Browse to the folder that contains the models you want

Click the Save Model List button to save the generated list as a text file

Edit the text file so that it only contains the models you want to verify

In the Compare Results application, browse to the edited list of models

Alternately, you can directly create a text file using any appropriate application. Create the list
by entering the full path to each model in each row (for example: C:\Users\John\Docu-
ments\ExtendSim9.2\Examples\Continuous\Standard Block Models\Monte Carlo.mox)

To compare results for one model
While designed to assist in model verification between releases, this test environment can also
be used to run different versions of a model and compare the results. For example, you could
make a change to a saved model and run it before saving again to see if the results changed.

To do this:

Run and save the model

Then make your changes

Place the Model Compare block in the model, open its dialog, and click the Run and Com-
pare button

The results will be displayed in the Model Compare block’s dialog.

 To have your changes saved, you must first delete the Model Compare block, then Save the
model. Simply closing the model will discard your changes along with the Model Compare
block.

220 How To
Automated test environment (Windows only)

H
ow

 T
o

How To

Data Management and Exchange
Managing and transferring data within ExtendSim
and between ExtendSim and other applications

“It is a capital mistake to theorize before one has data.”
— Sir Arthur Conan Doyle

222 How To
Overview

H
ow

 T
o

Overview
ExtendSim provides a variety of standards-based options for managing and sharing data inter-
nally and with other applications. This chapter covers:

• User interfaces for exchanging data within ExtendSim and between ExtendSim and external
data structures

• Internal structures, such as ExtendSim databases and global arrays, for storing and managing
data

• Blocks for accessing and managing data

• How data source types are indexed and organized

• Transferring data between ExtendSim and devices

• Standard communication technologies, such as ADO and COM Automation

 This chapter is concerned with the communication of data. For information about working with
graphic objects or pictures, see “Graphic shapes, tools, and commands” on page 107 or “Copy/
Paste and Duplicate commands” on page 250.

User interfaces for data exchange
The table below summarizes the methods for exchanging data within ExtendSim and between
ExtendSim and external applications and devices. Some of these methods (such as Dynamic
Data Linking) are specific to ExtendSim and some (such as ADO) are industry standards for
inter-application communication.

As indicated in the table above, each method has its own specifications and properties:

• Data Direction. The flow of data can be one-directional or two-directional. With two-direc-
tional data flow, a change in data at the source affects data at the target and a change at the

User Interface Method Examples
Data
Direction

Dynamic
Live
Link

ExtendSim
or External
Application

See
Page

Copy/Paste Menu commands
Share data through
the clipboard

One way No Both 250

Import/Export
between
ExtendSim
and external
files

Data Import
Export block
(Value library)

Excel, ADO compli-
ant databases, XML
and text files, FTP

One way No Both 224

Read/Write
data, usually
within Extend-
Sim

Read, Write, and
Query Equation
blocks (Value and
Item libraries)

ExtendSim data-
bases and global
arrays, block data
tables, text files,
Excel, etc.

One way Possible Both 226

Directly link
dialog compo-
nents to
ExtendSim
database

Dynamic Data
Link (DDL) menu
commands and
dialog settings

ExtendSim data-
bases, global arrays,
and dynamic arrays

Two way Yes
ExtendSim
only

229

Data Management and Exchange 223
Copy/Paste

H
ow

 T
o

target affects data at the source. One-directional data changes at the target do not affect the
source.

• Dynamic Live Links. A communication method that has live links sends a data update mes-
sage along with the data. These link alerts mean that as soon as the data at the source
changes, the target is dynamically notified and can take the appropriate actions to react to the
new value. See “Link alerts” on page 247.

• ExtendSim or External Applications. Dynamic data linking is only used to access data in
internal ExtendSim data structures such as ExtendSim databases and global arrays. The
other user interface methods can be used either internally or externally (for instance, copy/
paste from one ExtendSim dialog to another or copy/paste from ExtendSim to Excel).

☞ Most of the above methods are supported by an underlying industry-standard technology, as
discussed in “IPC protocols and technologies for communication” on page 237.

Copy/Paste
See “Copy/Paste and Duplicate commands” on page 250.

Importing and exporting data
Simulation models require input data and generate output data. This data is usually derived
from one or more sources that reside in applications such as Excel, relational databases, SAP,
and from files residing on remote computers. The management of this data is an integral com-
ponent of the simulation modeling process.

As the complexity and fidelity levels of simulation models increase, the amount of data that
has to be managed increases as does the time devoted to model configuration and data manage-
ment. As the volume and complexity of data being managed increases, it becomes more desir-
able to automate as much of the data management process as possible.

Automation reduces data input errors, scenario setup time, and output data management time.
Consequently, it is highly desirable to automate the direct exchange of data between simulation
models and data management applications.

User interfaces
In addition to options that are available with programming, ExtendSim provides the following
UI methods to support the import or export of data:

1) The Data Import Export block (Value library) is the most common method for interfacing
between ExtendSim and other applications and files. It enables ExtendSim databases and
global arrays to directly exchange data with external files, typically at the beginning or end
of a simulation run. See “Data Import Export block” on page 224.

2) Read and Write blocks (Item and Value libraries) are most commonly used to exchange
data within ExtendSim and during a simulation run. The Read and Write blocks in the
Value library can be set to transfer data from text files, a local table, ExtendSim database
tables, global arrays, or Excel. See “Read, Write, and Query Equation blocks” on page 226.

3) Database menu commands that, among other things, allow you to export an entire Extend-
Sim database as a text file. And the ExtendSim DB Add-In for Excel, which can be used to
transfer data between an ExtendSim database and Microsoft Excel. The ExtendSim data-
base and the Add-In are discussed in the separate document ExtendSim Database Tutorial
and Reference.

224 How To
Importing and exporting data

H
ow

 T
o

In some cases the data is imported/exported directly within ExtendSim or directly between
ExtendSim and the other application. In other cases it is imported/exported in the form of text
or ASCII files, a standard communication technology discussed in “Text files” on page 240.

Data Import Export block
The Data Import Export block (Value library) provides modelers with a mechanism for con-
trolling the automated exchange of data between ExtendSim models and external data sources
and targets. It performs two primary functions:

1) Transfers data from specified data sources to specified data targets where either the source
or the target can be an external application or file

2) Controls the timing of when data exchanges occur—at the beginning, during, or after the
simulation run

☞ The main advantage of using the Data Import Export block is that information is exchanged as
one piece rather than step by step during the simulation run. Thus it is typically used to load the
model with data before the simulation run and export results at the end of the run.

Compared to copy/paste and read/write
Importing and exporting provides additional capabilities compared to copy/paste or read/write:

• Some types of importing/exporting can be automated; copy/paste always requires user inter-
action.

• As opposed to copy/paste, you can import/export while the simulation is running.

• Import/export might be faster than reading and writing data (discussed on page 226) because
the data gets copied as one piece (a local copy). Whether the exchange happens before,
during, or after a simulation run, all the data is made available to the target at the same time,
rather than being transferred piece by piece during the simulation run.

• The information can be accessed even if it originated on a different computer or an external
device.

For example, simulations often run faster because the data is exchanged as one piece—all the
data is made available to the target at the same time rather than transferring piece by piece
during the simulation run. This is true whether the data is imported/exported before, during, or
after a simulation run.

Modes and interfaces
The Data Import Export block can be configured to operate in either import or export mode
and interfaces between several internal and external data points. Importing/exporting is one-
directional—changing data at the target does not affect data at the source and vice versa. The
data can reside locally, be remotely accessed over a network, or accessed via the Internet using
FTP protocols.

Internal sources and targets
Internally, you can use the Data Import Export block to share data from:

• ExtendSim database tables

• ExtendSim global arrays

External sources and targets
The supported external interface types are:

Data Management and Exchange 225
Importing and exporting data

H
ow

 T
o

• A Microsoft Excel workbook (specified by rows and columns,
named ranges, or by workbook table)

• External databases that are ODBC or ADO compliant (Micro-
soft Access, Oracle, MySQL, SQLServer; Windows only).

☞ The Oracle and SQLServer databases are also useful as automated
bridges between ExtendSim databases and ERP programs such as
SAP.

 If you use the Data Import Export block to exchange data with an ODBC or ADO database
such as Access, the database and its drivers must be 64-bit compatible.

• An FTP (file transfer protocol) data source type, where the file resides on a remote machine
and access to it requires a user name and password.

• Text files such as those generated by Notepad or Excel or any other applications where the
modeler has read access to a file that resides on the local computer or a local area network
(LAN).

• An XML (extensible markup language) file, a flexible way to share structured data with
external databases, the World Wide Web, intranets, and elsewhere.

☞ The Data Import Export block allows you to export an ExtendSim database table or even the
entire database to an ADO-compliant database, such as Access.

Configuring the block for external applications and files
Each of the allowed applications and file types listed above have their own set of requirements
for a successful import or export and the Data Import Export block changes settings and fields
accordingly.

For example, when exporting from an ExtendSim database to an Access database file, the
block presents a field for the name of the Access file. However, depending on the external
application or file type selected, the fields for specifying it as a source or target will vary. In
addition, for server-based applications such as SQL Server and Oracle, you will need access to
the server and/or a user name and password.

☞ For ADO compliant databases, the path to the external source or target file varies depending on
which database is selected. For Access it is specified by a file name. For MySQL and SQL
Server the source/target is specified using a server name and a database name. For Oracle, a
user name and database name must be specified.

If information other than a file name and location is required, the block’s Options tab will be
enabled. The Options tab is helpful for configuring tables, entering a data source name (DSN)
data structure, and so forth. As is true when files are selected and configured on the Import
Export tab, the fields on the Options tab will vary depending on the external application or file.
If there is nothing additional to configure, the Options tab will be disabled.

☞ If the block will exchange data with an ExtendSim database’s child field. see the information
about string data types, PRI, and PRV in the ExtendSim Database Tutorial and Reference.

Left: import to an ExtendSim database. Right: export from an ExtendSim database

226 How To
Reading and writing data

H
ow

 T
o

Import and export timing
There are three options for when the external source or target exchanges data with the Extend-
Sim database or global array:

• Manually whenever the Import Now or Export Now button is clicked, even if the simulation
is not running.

• During the simulation run, when the block’s input connector gets a value greater than 0
(zero).

• During a specified phase of the simulation run:

If the Import at beginning of simulation checkbox is checked, data is automatically
imported at pre-CheckData. The Options tab offers alternative import points.

If the Export at end of simulation checkbox is selected, data is automatically exported
at EndSim.

For more information, see
• The ExtendSim Database Tutorial and Reference, which has a tutorial for the Data Import

Export block

• The Dynamic Resource Qualification model located at ExtendSim/Examples/Discrete
Event/Resources and Shifts/Advanced Resources

Reading and writing data
In contrast to the importing/exporting described on page 224, reading and writing is commonly
used to exchange data between ExtendSim model components and piece-by-piece as required
during the run. For instance, models may need to write and read data while the simulation is
running since it is common that the data that is written is in turn read and used in another part
of the model.

 A potential disadvantage is that reading and writing the data each time the block is calculated
can impact simulation speed. If the data to be read or written will not change over the course of
the simulation, you should import/export the data as a local copy in the block before or after
the run. If the data is not going to change at all, consider using another method, like a one-time
copy/paste or import/export.

Read, Write, and Query Equation blocks
The Read and Write blocks (Value library) shown at the top on the right,
and the Read(I) and Write(I) blocks (Item library) shown on the bottom,
make it easy to exchange data between ExtendSim model components.
The four blocks are discussed below.

The Query Equation and Query Equation(I) blocks can use an equation to
search an ExtendSim database table for the highest ranking record avail-
able during the run. Since they are only used with the ExtendSim database, and are only avail-
able in certain ExtendSim products, they are discussed in the ExtendSim Database Tutorial
and Reference.

Read and write interfaces
The blocks that read and write are typically set to transfer data during a simulation run.

☞ The Read and Write blocks in the Value library have multiple data sources and targets; the Item
library blocks only exchange data between the model and ExtendSim databases

Data Management and Exchange 227
Reading and writing data

H
ow

 T
o

Reading
The two Read blocks look up information found at a specified data source:

• For the Read block (Value library) the data source could be an ExtendSim database or global
array, an Excel workbook or local table, or a text file

• For the Read(I) block (Item library) the source is an ExtendSim database.

Once they’ve read in the data, the blocks report that information through their value output
connectors. The Read(I) block can also store the information as an attribute on items passing
through, so the information can be used by other blocks in the model.

Writing
The two Write blocks send information to a specified data target or destination:

• For the Write block (Value library) the data target could be an ExtendSim database or global
array, an Excel workbook or local table, or a text file

• For the Write(I) block (Item library) the data target is an ExtendSim database.

The information to be sent can come from their value input connectors. The Write(I) block can
also send the attribute information that has been found on items passing through.

Addressing the data structure
By definition Read and Write blocks (Value library) are required to be interfaced to some type
of data structure as their source or target, respectively. The pieces of information that are
required to fully and properly specify where the information is to be read from or written to
(the “address”) depends on the type of data structure chosen, as shown in the following table.

For instance, the fully specified address for accessing an Excel file would include the file
name, sheet, column, and row.

Interface methods
Once you have specified a data structure type to communicate with and determined what the
fully qualified address is, the next step is to determine where the data structure address is
entered:

• In the block’s dialog or through value input connector for the Read and Write blocks (Value
library)

• In the block’s dialog, through value input connector, or by using attributes on items that pass
through the Read(I) and Write(I) blocks (Item library)

ExtendSim Database Global Array Microsoft Excel Text File

File name X X

Database name X

Table, array, or sheet X X X

Field or column X X X X

Record or row X X X X

228 How To
Reading and writing data

H
ow

 T
o

Triggers
The following table indicates the mechanism that will trigger when the data is sent or received.

Link alerts
When read/write blocks are dynamically linked to an ExtendSim database or global array,
ExtendSim can send live update messages, called Link Alerts, between them. For example, if
you select the option, and write to a location in an ExtendSim database, ExtendSim will send
update messages to all the Read blocks in the model linked to that location. When the Read
block receives the alert message, it will act on the fact that the data value changed. For more
information, go to page 247.

Compared to dynamic data linking (DDL)
Dynamic data linking (DDL) is discussed in “Dynamic linking to internal data structures” on
page 229, and a tutorial is provided in the separate document titled ExtendSim Database Tuto-
rial and Reference. DDL consists of dynamically linking data from a block’s dialog parameter
or data table to a database cell or table.

The read/write blocks provide a lot more flexibility compared to DDL. For example:

• The read/write blocks allow more control over which database values get used, and where
and when they are used.

• Database usage is clarified visually. Instead of a blue outline around a parameter field inside
a block’s dialog, it is more obvious when a database value is coming from a Read block.

• Dynamic linking is limiting because it is fixed point-to-point. While you can change the
value at the data source, you can’t dynamically change which database cell is accessed
during a simulation run or in a series of runs.

• Rather than setting up a dynamic link for each parameter or data table, data can be more eas-
ily accessed at several places in the model.

• The Read and Write blocks support name tracking and model components are alerted if there
is a change to an ExtendSim database component. DDL does not support this feature.

• In some blocks there is no dialog parameter or data table you can directly link to.

• It is often easier to perform mathematical calculations on the database values.

• It is more convenient for hierarchical blocks, allowing access to a different record for each
instance of the hierarchical block in a model.

Where to get more information
• See the ExtendSim Database Tutorial and Reference

• See the Monte Carlo model located at ExtendSim/Examples/Continuous/Standard Block
Models

Read Write Read(I) Write(I)

Connector message X X

Beginning of run only X X

End of run only X X

Item arrival at block X X

Data Management and Exchange 229
Dynamic linking to internal data structures

H
ow

 T
o

• See the DB Job Shop model located at ExtendSim/Examples/Discrete Event/Routing. Note:
this model uses blocks from the Item library and cannot be opened using the ExtendSim CP
product.

Dynamic linking to internal data structures
ExtendSim supports a comprehensive, proprietary internal data linking method called dynamic
data linking (DDL). This application-level protocol tracks which dialog items (parameters and
data tables, including their clones) are linked to which internal data structures (ExtendSim
database tables, global arrays, and dynamic arrays).

 For a tutorial on how to use DDL, see the ExtendSim Database Tutorial and Reference.

Dynamic data links are extremely powerful because they are live and bidirectional. This means
that the value of a linked dialog item can change immediately when the value of the data
source changes, and vice versa.

 There is overhead associated with the process of accurately updating a linked dialog item with
a data structure. If you overload a model with links that frequently change, the model’s perfor-
mance can suffer. Consider the following suggestions: 1) Just link the data that is important to
a model and not link every piece of data to every possible source. 2) Import values into a Read
block (Value library) for use in the model, so they don’t have to be continuously updated. 3)
Send or receive link alert messages only at the start or end of the simulation as discussed in
“Link dialog checkboxes” on page 231.

Interfaces
DDL links parameters and data tables to an ExtendSim database table, global array, or dynamic
array.

• Parameters. Unless it is already linked for sensitivity analysis (see “Sensitivity analysis” on
page 138), a dialog parameter can be dynamically linked to a specific cell of an internal data
structure—ExtendSim database, global array, or dynamic array. For the database or global
array, the linking is done through the menu command Model > Create/Edit Dynamic Link or
through the right-click menu. For dynamic arrays, the linking is done through programming.

☞ Parameter fields that are dynamically linked to an internal data structure are outlined in light
blue. (Parameter fields are outlined in green for active sensitivity analysis and red for inactive
sensitivity analysis.)

• Data tables. Many ExtendSim data tables have a Link but-
ton in their lower left corner. If the Link button is not pres-
ent for a table, the table does not support dynamic linking.

Link From
To ExtendSim Database
(see page 232)

To Global Array
(see page 233)

To Dynamic Array
(see Technical Reference)

Parameter or its
clone

Use the Model > Create/Edit
Dynamic Link command

Use the Model > Create/Edit
Dynamic Link command

Requires programming

Data table or its
clone

Click the table’s Link button Click the table’s Link button
Requires programming

230 How To
Dynamic linking to internal data structures

H
ow

 T
o

• If a data table is already linked, its upper left corner will
be blue. If the linked source is a database (DB) or global
array (GA), those initials will be displayed in that cor-
ner. If the link is to a dynamic array there will be no initials.

• If a data table is linked to a database, double-clicking the DB initials in the upper left
corner will open the linked database table’s viewer. (Double-clicking the GA initials
does not open the global array, because global arrays don’t have a user interface.)

• Since DDL can be a two-way live link, changing the value of one or more cells in the
block’s data table would immediately change the values in the corresponding global
array or database table’s cell, and vice versa. If you do not want that behavior, select
the Read-Only option in the Link dialog.

☞ A data table linked to an internal data structure will have its upper left corner in light blue
rather than the gray of the table header.

 Because ExtendSim data tables and global arrays are zero-based, but databases are one-based,
a data table’s cell at row 0, column 0 (the top, leftmost cell) is linked to the database table cell
at field 1, record 1 (the top, leftmost cell) or the global array cell at row 0, column 0 (also the
top leftmost cell). For detailed information, see “Data source indexing and organization” on
page 247.

Link dialog
This dialog opens if you click a
data table’s Link button or (by
using the menu command or right-
click) select Create/Edit Dynamic
Link for a dialog parameter.

Use the Link dialog to create a
dynamic link between a block’s
parameter or data table and a data-
base or global array. It can also be
used to change link settings and
even change between data struc-
tures.

 A parameter or data table can only
link to one data structure. If you
change any of the components,
such as linking to a different data-
base table, the previous linkage
will be automatically deleted.

As shown here, the Link dialog
opens with two tabs: Database and
Global Array.

• If the data table or parameter is
already linked to a database or global array, the dialog will display information about the
existing link. For example: Link: DB Link - Reservoir DB:Stream Amount:Max Volume. You
can change or delete the link.

Data Management and Exchange 231
Dynamic linking to internal data structures

H
ow

 T
o

• If the data table or parameter is already linked to a dynamic array, the Link dialog will dis-
play Link: No user created link. (As discussed on page 236, a dynamic array is an internal
data structure only accessible through programming.) You can create a link to a database
table or global array.

• If the data table or dialog parameter is not linked to anything, the dialog will display Link:
No link. You can create a link to a database table or global array.

Link dialog checkboxes
Outside of a simulation run, blocks receive link alert messages whenever the dynamically
linked data changes at the source. To maximize simulation speed you may not want these
update messages sent during certain phases of a run.

When the Database Table or Global Array option is selected in the Link dialog, it displays four
checkboxes that allow you to control the link’s update behavior:

• Init messages

• Sim messages

• Final messages

• Read-Only link

The first three link options (Init messages, Sim messages, and Final messages) control whether
or not blocks receive link alert update messages when linked values change during specific
points in a simulation run. For example, the “Init messages” option determines whether a block
receives a message if a linked value changes during the InitSim message.

• These three options default to on. Turning an option off prevents ExtendSim from
sending data update messages to the linked blocks if the data source is updated during
that phase of the simulation. For example, if you know the dynamic link only updates
during the FinalCalc message, it will reduce the messaging and speed up the simulation
to uncheck the Init messages and Sim messages options.

• When the Init messages and Final messages options are checked, linked blocks will
receive an additional message during InitSim and/or FinalCalc, causing an update of
the linked dialog items during those phases.

The fourth checkbox is the Read-Only link option, which is off by default. If checked, the
linked data can only be changed from the internal data structure (database or global array). In
that case, you will not be allowed to edit the parameter or the data table in the block’s dialog
and the live link is only one-way (from the database or global array to the data table or param-
eter).

 Use these options carefully, since they can dramatically change linking behavior. You would
probably only want to uncheck a message option (Init messages, Sim messages, or Final mes-
sages) if you are sure that the source data won’t change during that message.

Delete Link button
The Link dialog is also used to delete a link.

Deleting a linked parameter
To delete a link between a dialog parameter and a database:

Right-click in the linked parameter field and select Create/Edit Dynamic Link. (Note:
don’t select or left-click the parameter field first.)

232 How To
Internal data storage and management methods

H
ow

 T
o

In the Link dialog that appears, click the Delete Link button.

Deleting a linked data table
To delete the link to a model’s data table:

Click the Link button at the bottom left of the data table

In the Link dialog that appears, click the Delete Link button.

☞ ExtendSim knows which link is being deleted, so you don’t need to select the table the param-
eter or data table is linked to before deleting the link.

Finding linked dialog items
The Model > Open Dynamic Linked Blocks command opens the Find Links dialog. This is
useful for examining and locating linked dialog items and the options in the dialog allow you
to selectively choose which types of links you want to open. The command is discussed fully at
“Open Dynamic Linked Blocks...” on page 555.

Internal data storage and management methods
ExtendSim provides several internal structures for storing data for use in a model.

ExtendSim databases for internal data storage
 For complete information, see the ExtendSim Database Tutorial and Reference, which is a sep-
arate document.

Structure Definition
Discussed
on

Access By

ExtendSim databases

Internal relational repositories for
model data. Uses to store, manage,
and report model data. Allows you to
separate the data from the model for
better project and experiment man-
agement.

See the
“Extend-
Sim Data-
base
Tutorial
and Refer-
ence”

Dynamic Data Linking
(DDL)—see page 229

Data accessing blocks such
as Data Import Export or a
read/write block—see
page 245

Global arrays

A two-dimensional (row and col-
umn) array of data. Used to store
information that can be accessed by a
row and column index, or to exchange
data with external sources. Less flexi-
ble than an ExtendSim database.

 Page 233

Dynamic Data Linking
(DDL)—see page 229

Data accessing blocks such
as Data Import Export or a
read/write block—see
page 245

Dynamic arrays
A multi-dimensional internal data
structure that is only accessible
through programming.

Page 236
Programming in ModL—see
the Technical Reference

Linked lists

Queue-like structures of multiple
types that maintain internal pointers
between different elements. This
allows the construction, manipula-
tion, and rapid sorting of complex
lists of data.

Page 236
Programming in ModL—see
the Technical Reference

Data Management and Exchange 233
Global arrays

H
ow

 T
o

Overview
A database is a centralized repository for data. Relational databases organize data into one or
more tables that have a logical connection, or relationship, to each other. Database tables hold
data in cells, each of which is the intersection of a field and a record.

The ExtendSim graphical simulation database (GSDB) feature allows you to create internal
relational databases for storing, managing, and reporting model data. ExtendSim databases
also provide a convenient interface between models and external applications, such as spread-
sheets and external databases.

Link alerts
Live update messages, called Link Alerts, can be automatically sent between ExtendSim blocks
and the ExtendSim databases or global arrays they are dynamically linked to. For example, if
you select the option, and write to a location in an ExtendSim database, ExtendSim will send
update messages to all the Read blocks in the model linked to that location. When the Read
block receives the alert message, it will act on the fact that the data value changed. For more
information about link alerts, go to page 247.

Excel Add-In for ExtendSim databases
 The DB Add-In for Excel is discussed fully in the ExtendSim Database Tutorial and Reference,
which is a separate document.

The ExtendSim DB Add-In is a tool for externalizing the modification and construction of
ExtendSim databases. Use the Add-In to:

• Import an ExtendSim database text file into Excel for editing, then export it back to Extend-
Sim.

• Create new, fully structured, ExtendSim database files within Excel, then export those files
for use within ExtendSim.

• Let Excel be the master for documenting the data and database structure. For instance, charts
and data tables can be added in Excel to help explain or analyze inputs to the database. (Any
tables that do not start on row 20 are not considered ExtendSim database tables and will be
discarded when the file is exported to ExtendSim.)

The data and structure of an ExtendSim database can thus be edited or created in Excel, sepa-
rate from, and even in the absence of, the ExtendSim application. For example, analysts can
structure or edit database files for use in models without knowing anything about ExtendSim.

Global arrays
A global array is a two-dimensional (row and column) array of data that is accessible by any
block in a model. Like ExtendSim databases, global arrays are user-accessible structures for
internally storing and managing data. Global arrays are used to share information between
blocks when a direct connection is either inconvenient or impossible or to store information
that can be accessed by a row and column index.

 In most situations it would be best to use an ExtendSim database rather than a global array.

Compared to ExtendSim databases
Global arrays provide some of the same modeling advantages that ExtendSim databases do,
but they differ from databases in some important aspects. Compared to databases, global arrays
have a simpler data structure and take less time to access data. However, global arrays aren’t as
flexible as ExtendSim databases, which allow mixed data types, randomness, and parent/child

234 How To
Global arrays

H
ow

 T
o

relationships. It is also easier to add or remove fields in a database than columns in a global
array, and creating a global array requires adding a block to the model.

While it is more common to use a database for managing and exchanging data, global arrays
are handy in situations where:

• You just want a simple array structure of a single data type. For instance, to create an integer
array with 10 columns and 20 rows of data for use in a model.

• You program blocks that can use a simpler data structure than a database requires, and you
don’t need or want the data storage to be visible to the block user.

☞ Unless you are using an equation-based block or custom blocks that create global arrays, a Data
Source Create block must be in the model to initially create the global array. Since the global
array is saved with the model, the block can be removed after the array has been created.

Creating a global array
There are three ways to create a global array:

1) Use the Data Source Create block (Value library) as illustrated later in this chapter.

2) Through global array functions in an equation-based block from the Value or Item library.
These blocks are discussed in “Equation-based blocks” on page 189.

3) Programing with ModL code. For more information, see the Technical Reference.

You can name a global array anything you want as long as the name is fewer than 32 characters
and it does not begin with the underscore character (_). Global array names are not case sensi-
tive; spaces between characters are allowed.

A global array can only be of one data type - either integer or real (if the data type is selected
through the user interface), or integer, real, string, or pointertype (if the data type is selected
through ModL code.) Each model can have one or more global arrays associated with it and
each global array can have multiple rows and columns. Global arrays are stored and saved with
the model, even if the Data Source Create block that created the array is deleted.

 Following the standard conventions, ExtendSim databases are organized by field and record
(similar to being organized by column and row.) However, arrays are organized by row and
column. This is important to consider when transferring data between databases and global
arrays. See “Communicating with external devices” on page 248 for more information.

How to create and use a global array
The example that follows uses the Data Source Create block to create a global array for the
Reservoir 1 model.

Using an example model
Open the model Reservoir 1 from the ExtendSim/Examples/Tutorials folder.

So that you don’t overwrite the original file, give the command File > Save Model As and
save the model as ReservoirGA.

Data Management and Exchange 235
Global arrays

H
ow

 T
o

Place a Data Source Create block
(Value library) at any convenient loca-
tion on the model worksheet.

Creating the global array
In the dialog of the Data Source Cre-

ate block:

Choose Type: Global array.

In the “Create a new array”
frame, click the Integer Array
button, indicating that you want the values to be integer.

In the three dialogs that appear, name the array My Array, give it 12 rows, and give it 2
columns. Click OK after each dialog entry.

Notice that Data Source Viewer for the selected array now
displays 12 rows and 2 columns. The table’s upper left corner
is light blue, indicating that it is a data source, and it has the
initials “GA”, indicating that the data source is a global array.

Populating the array with data
Global arrays can be used as inputs to a model or to store model
results.

• A common method of populating an array with data for use in
a model is to enter values or copy data directly into the Data
Source Create block’s Data Source Viewer table when the array is created. You can also use
the Data Import Export block (Value library) to import data to the array from a spreadsheet
or external database, the Internet, or a text file.

• To store model results, it is most common to use a Write block (Value library) to send data to
a global array.

☞ The Data Init block (Value library) can be used to initialize a global array table, column, row, or
cell; it is described on page 246. The Data Specs block (Value library) gathers information
about the global array and puts it into a report; it is discussed on page 246.

Exchanging data with a global array
ExtendSim provides the following methods for models to interact with global arrays:

1) Through the user interface, using dynamic linking to establish live links between dialog
items and global arrays. See “Interfaces” on page 229.

2) With data access blocks, such as the Read and Write blocks (Value library), to exchange
data between a model and a global array. Data access blocks are discussed on page 245.

3) Using global array functions in an equation-based block from the Value or Item library to
manage data. These blocks are discussed in “Equation-based blocks” on page 189.

4) Programming using ModL code. See the Technical Reference for more information.

236 How To
Dynamic arrays

H
ow

 T
o

Dynamic arrays
A dynamic array is multi-dimensional internal data structure that is only accessible through
programming. A model user can resize a data table that is linked to a dynamic array and can
link the data in the table to an ExtendSim database or global array. However, the dynamic array
itself cannot be accessed outside of ModL code.

A data table linked to an internal data source will have its upper left corner in light blue rather
than the gray of the table header. If the source is a database (DB) or global array (GA), those
initials will be displayed in the corner. If the source is a dynamic array, the upper left corner
will not have any initials.

Since dynamic arrays are created and managed through ModL code, see the Technical Refer-
ence for more information.

Linked lists
A linked list is an internal data structure that allows the construction and manipulation of com-
plex lists of data. It can be accessed only through programming. Linked lists are queue-like
structures of multiple types that maintain internal pointers between different elements. This
enhances the sorting for complex structures by speeding the movement of the elements within
the list.

ExtendSim implements linked lists:

• In the queue blocks (Item library)

• Extensively in the Rate library

• With the Linked List functions described in the Technical Reference.

Since this involves programming, linked lists are described in the Technical Reference.

Exchanging information with external applications (IPC)
Interprocess Communication (IPC) is the mechanism that facilitates communication and data
sharing between applications. It enables one application to control another and multiple appli-
cations to share the same data without interfering with one another. IPC utilizes a set of pro-
gramming interfaces, called communication protocols (see “IPC protocols and technologies for
communication”, below), that allows programmers to coordinate activities among different
applications.

The IPC communication methods allow ExtendSim to directly communicate with other appli-
cations and with ExtendSim models running on other computers, while the simulation is run-
ning. This allows ExtendSim to work on a wide variety of tasks jointly with external
applications and files, even when they are located on a server or on the Web.

Client and Server
An application that communicates with another application can be categorized as either the
Client or the Server. A Client application requests a service from some other application, con-
necting to and requesting data and services. The Server application responds to the Client’s
request, perhaps even allowing the Client to take control.

Like many applications, ExtendSim can act as a Client and a Server depending on the circum-
stances. When it acts as a Client, ExtendSim connects to and requests data and services from a
Server application. ExtendSim can also act as a Server application that is controlled by any
Windows application that can be configured as an Automation controller.

Data Management and Exchange 237
Exchanging information with external applications (IPC)

H
ow

 T
o

IPC protocols and technologies for communication
Many technologies have been developed as industry standards to allow applications to share
and access data both internally and with each other independent of programming language,
operating system, and file type. ExtendSim supports most of the standard types of communica-
tion technologies including:

Protocol Description Use

COM (Component Object
Model)

A set of object-oriented programming
technologies and tools for IPC.

Communicate with, exchange data
with, or control another application.
Link data that, when chosen, automat-
ically starts another application for
data editing.

ExtendSim COM Object
Model

The objects and methods that Extend-
Sim exports for Automation, includ-
ing Execute, Poke, and Request.

Primary method for ExtendSim to be
controlled and communicated with as
a COM Automation Server.

DLLs (Dynamic-Link
Libraries) on Windows

Libraries of routines or functions writ-
ten in an external language, such as
C++. These are the standard methods
for linking between the ExtendSim
internal programming language
(ModL) and other languages and
applications.

Call an external code segment from a
block's code and perform operations.
A block can pass data to the DLL,
cause the DLL to calculate using that
data, and get the results back from the
DLL. For example, in ExtendSim, the
Rate library blocks communicate with
the LPSolve DLL.

COM DLL A library developed in an external
language, such as C++, to create or
define Active X objects.

ExtendSim can load up and communi-
cate with a COM DLL or be con-
trolled by a COM DLL. For example,
see how ADO is implemented in
ExtendSim.

Automation A subset of COM (previously OLE
Automation). Enables applications to
expose their unique features (proper-
ties, methods, and events) to scripting
tools and other applications. The
exposed objects are called ActiveX
objects.

Access and manipulate (i.e. set prop-
erties of or call methods on) shared
automation objects that are exported
by other applications.

ADO (ActiveX Data
Objects)

An Automation protocol for exchang-
ing information with ADO-compliant
databases.

Send an entire table of information at
one time; high-speed data inter-
change. In ExtendSim ADO is imple-
mented as a COM DLL for
communication with ADO-compliant
databases such as Microsoft Access.

FTP (File Transfer Proto-
col)

Protocol for sending files or data to
and from Internet web pages.

Import from, or export to, files located
on a server or on the web.

238 How To
Exchanging information with external applications (IPC)

H
ow

 T
o

In addition to the uses listed above, these technologies are supported for block development.
This is described in the Technical Reference.

Communicating with external applications and files
The IPC technologies listed above allow applications to share and access data independent of
programming language, operating system, and file type. You can incorporate IPC into Extend-
Sim models by:

1) Using ExtendSim blocks, as discussed on page 245

2) Using the ExtendSim I/O functions—ExtendSim as IPC Client, as discussed in the Techni-
cal Reference

3) Using an external language to access ExtendSim Automation protocols—ExtendSim as
IPC Server, as discussed in the Technical Reference

Table of external communications
The table below shows how ExtendSim can communicate with other applications and with
ExtendSim models running on other computers, even while the simulation is running. This
allows ExtendSim to work on a wide variety of tasks jointly with external applications such as
spreadsheets, external databases, word processors, statistics packages, and so forth.

Mail Slots Functions for inter-computer com-
munication.

An easy way for ExtendSim to send
and receive short (<400 byte) mes-
sages. Also provides the ability to
broadcast messages across all com-
puters in a network domain.

ODBC (Open Database
Connectivity)

A standard programming language
middleware API for accessing data-
base management systems (DBMS).

This legacy technology has been
superseded by ADO.

ExtendSim
supports IPC
through:

Excel
ADO-
Compliant
Databases

Text Files Other Notes See

Read and Write
blocks
(Value and
Item libraries)

X X

Interfaces with
the ExtendSim
database and
global arrays

page 226

Data Import
Export block
(Value library)

X X X
XML files, FTP
files

Interfaces with
the ExtendSim
database and
global arrays

page 224

Command
block (Value
library)

X
Choose a com-
mand and when
to send it

Value library

Protocol Description Use

Data Management and Exchange 239
Exchanging information with external applications (IPC)

H
ow

 T
o

Spreadsheets
You may want to use spreadsheet data as the input for an ExtendSim model. Likewise, you
may want to send output data to a spreadsheet for further analysis or presentation. For instance,
if you have a spreadsheet that performs calculations on large amounts of data, you may want
that spreadsheet to respond dynamically as you model real world conditions in ExtendSim.

ExtendSim facilitates communication with spreadsheets by:

• The Command, Data Import Export, Read, and Write blocks (Value library). These blocks
can exchange data with spreadsheet applications, send one value to a specified cell in a
spreadsheet and request the recalculated value from another cell, or send commands or a
macro to a spreadsheet. See “Data Import Export block” on page 224, “Read, Write, and

ExtendSim
Database

X X
Integrated within
ExtendSim

“ExtendSim
Database
Tutorial and
Reference”.

ExtendSim DB
Add-In for
Excel

X

“ExtendSim
Database
Tutorial and
Reference”.

OLE Automa-
tion—Extend-
Sim as Server

External lan-
guages control
ExtendSim

page 242

IPC functions X Other applications
Technical
Reference

OLE/COM
functions

Other applica-
tions, COM DLLs

page 242

DLL and
Shared Librar-
ies functions

X X Other applications
DLLs on Win-
dows; Shared
Libraries on Mac

page 245

ADO (user-
defined func-
tions)

X page 243

Mail Slot func-
tions

Other computers page 245

Internet Access Web, Internet
XML and text
files, FTP

Technical
Reference

Serial I/O
functions

Equipment page 248

ODBC func-
tions

X X page 244

ExtendSim
supports IPC
through:

Excel
ADO-
Compliant
Databases

Text Files Other Notes See

240 How To
Exchanging information with external applications (IPC)

H
ow

 T
o

Query Equation blocks” on page 226, and the tutorials in the separate document ExtendSim
Database Tutorial and Reference.

• The ExtendSim DB Add-in, which allows an exported ExtendSim database text file to be
imported into Excel. The data can then be stored in Excel, edited and exported to an external
database, or edited and exported back to ExtendSim as a database text file. See the separate
document ExtendSim Database Tutorial and Reference.

• OLE and IPC functions to facilitate ActiveX/COM/OLE communication with spreadsheets.
For more information, see the Technical Reference.

External databases
In many situations, the historical data for a a model is stored in an external database. Extend-
Sim models can share information with external database applications:

• Use the Data Import Export block (Value library) to send data to or from ADO-compliant
database applications (Oracle, MySQL, SQLServer, and Access). This block can import data
to, or export data from, an ExtendSim database or global array. See “Data Import Export
block” on page 224.

• By using Excel as an intermediary application between an ExtendSim database and an exter-
nal database. In this case, the data is imported from the external database to Excel, where it
is manipulated. The data is then exported from Excel to ExtendSim as a database text file
using the ExtendSim DB Add-in. See the separate document ExtendSim Database Tutorial
and Reference.

• Using ADO functions to initiate an SQL query or perform other functions. For more infor-
mation, see the “ADO (Windows only)” on page 243 and the Technical Reference.

Text files
A text file (also known as an ASCII file) is a file of unformatted information. Text files contain
written text with the styles removed and/or numerical data separated by some delimiter or sep-
arator (such as tabs or spaces).

You can create text files in another application such as a spreadsheet, database, or word pro-
cessing program, then read those text files into ExtendSim. Or create text files in ExtendSim,
then read them into the other programs.

Text files contain text, data, or both data and text. There are many uses for text files. For exam-
ple:

• To supply internal data as the basis for analysis when using Sensitivity Analysis.

• To share data with an external database or spreadsheet program such as Microsoft Access or
Excel.

• To output model results to external applications, such as spreadsheets or word processing
programs, for presentation or analysis.

• Text files of information are generated for model Reports or Traces.

• Most files transmitted from minicomputers and mainframes are text files.

Data Management and Exchange 241
Exchanging information with external applications (IPC)

H
ow

 T
o

Text files can reside locally, be remotely accessed over a network, or accessed via the internet
using FTP.

Creating and opening text files
Some ExtendSim blocks automatically create text files. For example, selected blocks automat-
ically output information in the form of a text file when the Generate Trace command is chosen
for a run. If you program custom blocks, you can include ModL functions to have the blocks
create or read text files. In addition, there are two methods to directly open or create a text file
in ExtendSim:

1) Use the File menu commands to create or open text files. This allows you to look at report
files, modify data input files, and so on, without having to open another application.

2) Use the Create or Open button in the dialogs of the Read and Write blocks (Value library)
when Text File is selected as the data type. This is useful if you want to create a file of data
for use in a model. The Read and Write blocks are discussed on page 246

Working with text files
• The Read and Write blocks (Value library) provide an easy method for working with text

files in a model. With these blocks text files can reside locally in the model (a “local copy”)
or be remotely accessed over a network. These blocks also give added capability with text
files in that they allow you to select which column and row of data to access. They are dis-
cussed in “Read and Write blocks” on page 246.

• When building custom blocks, use the file I/O functions described in the Technical Refer-
ence to read and write text files.

How to create a text file
This example shows how to use menu commands to create a file with text and data:

Give the command File > New Text File.

In the Text File window, enter the information shown on the right
into two tab-delimited columns. For example,

Type January

Click the tab key

Type 2.6

Click the enter or return key to start a new row

Continue entering the information, clicking the tab key after
each month to separate the information into two columns and
clicking the enter key after each value to start a new row of
information.

Give the command File > Save Text Document As and name the text file My Text.

☞ Because it is unformatted, the information in the text file will not be lined up as shown in the
screen shot above. It is important that you do not try to line up the data by adding extra tabs as
that will affect how the data is interpreted. There must be one, and only one, tab character sep-
arating the columns.

242 How To
Exchanging information with external applications (IPC)

H
ow

 T
o

Delimiting text file data
Columns in text files can be separated by a tab, a space, or a comma. Carriage return characters
are always used to separate rows. When creating text files for use as inputs to ExtendSim
blocks or other applications, consider how the blocks or programs want the data presented. For
example, some ExtendSim blocks can take data columns separated a tab character, a space, or
with another character such as a comma. On the other hand, Sensitivity Analysis and many
external applications will only read files where the columns are delimited by tab characters. In
general, it is best to use tab characters.

Also, remember that programs expect only one delimiter (one tab, one space, or one comma)
between columns. For example, don’t put in extra tab characters in order to make columns line
up visually; if you do, the program is sure to get confused.

Changing text file font and size
To change the font or font size used when viewing text files, give the command Edit > Options
> Model tab and use the Text file font option.

ActiveX/COM/OLE (Windows only)
ActiveX is Microsoft’s set of object-oriented programming technologies and tools. There are
two main uses of the ActiveX technology in ExtendSim:

• ActiveX/OLE automation

• ActiveX/controls (COM)

☞ See examples at ExtendSim/Examples/Developer Tips/OLE Automation

ActiveX/OLE automation
ActiveX automation is the process of using the ExtendSim OLE functions, or the scripting
environment of another application, to communicate with, exchange data with, or control
another application. This is, for example, the technology used by the Read and Write blocks to
communicate with Excel.

When you use the OLE functions inside ExtendSim to communicate with another application,
ExtendSim is the Client in the automation communication and the other application is the
Server. When the other application is using its scripting environment to communicate with
ExtendSim, ExtendSim is the Server.

When you develop custom blocks, automation is probably the most powerful tool that you can
use for interapplication communication. It does, however, come with a cost. Developing code
to use automation to control another application requires expertise with OLE/COM as well as
knowledge of the object model of the target application.

An object model is essentially a list of the methods and objects that an application supports
with regard to ActiveX automation. ExtendSim has a simple yet powerful object model that is
described in some detail in the Technical Reference. Other applications have more or less com-
plex object models. Excel, one of the more common target applications, has a quite complex
object model; it is quite complex to deal with. The Object Mapper block (Custom Blocks
library) is a tool that can be useful in learning more about the object model of an application or
ActiveX control.

ActiveX controls
The main ActiveX technology is COM (Component Object Model). COM is the framework for
developing and supporting ActiveX controls and component objects.

Data Management and Exchange 243
Exchanging information with external applications (IPC)

H
ow

 T
o

☞ While the terms “component objects” and “ActiveX controls” are sometimes used interchange-
ably, an object is commonly considered to have a source application that it derives from and a
control is usually defined as a stand-alone object that doesn’t necessarily have an application
behind it. For purposes of this manual, the word “object” applies to either a component object
or an ActiveX control.

A component object is an identifiable part of a larger program that provides a particular func-
tion or group of related functions; it is roughly equivalent to a Java applet. ActiveX controls
can be created using one of several languages or development tools, or with scripting tools. In
implementation, an ActiveX control is a dynamic link library (DLL) module. It runs in what is
known as a container, an application program that uses COM program interfaces.

OLE (Object Linking and Embedding) is Microsoft’s framework for a compound document
technology for combining text, sound, animations, controls and so forth into a document. Each
object is an independent program component that can interact with the user and communicate
with other objects.

Whereas OLE provides services for the compound document that users see on their display;
COM provides the underlying services of interface negotiation, life cycle management (deter-
mining when an object can be removed from the system), licensing, and event services (putting
an object into service as the result of an event that has happened to another object.)

The Read and Write blocks (Value library) use OLE/COM to communicate with other applica-
tions. ExtendSim also has many OLE/COM functions to facilitate ActiveX controls and COM
objects.

☞ ExtendSim has ModL functions to support its use as either an OLE automation client or server.

ADO (Windows only)
ActiveX Data Objects (ADO) is a method for exchanging information with various databases
on Windows-based computers. ADO sends an entire table of information at one time, provid-
ing high-speed data interchange. The ExtendSim ADO interface allows you to communicate
with Access, SQL Server, Oracle, and MySQL.

The interface is implemented as a Component Object Mode (COM) DLL. A set of ModL func-
tions for accessing the DLL can be found in the ADO DBFunctions include file. These func-
tions bundle a set of COM calls that perform specific ADO actions such as creating a table or
transferring data. The Structured Query Language (SQL) is used to manipulate and select the
data in the ADO database. SQL commands can be sent to the external database through the
ADO interface.

244 How To
Exchanging information with external applications (IPC)

H
ow

 T
o

The easiest way to communicate using ADO is to use the Data Import Export block (Value
library) shown here. Otherwise, use the ADO functions from the ADO_DBFunctions include
file, as discussed in the Technical Reference.

☞ When using ADO, make sure that the ExtendSim table and external database table have com-
patible column formats and the same number of columns.

ODBC/SQL
Open Database Connectivity (ODBC) provides a standard application programming interface
(API) method for accessing database data independent of programming language, operating
system, and database system. The goal is to enable access to data from any application, regard-
less of which database management system (DBMS) is handling the data. It does this by insert-
ing a middle layer between an application and the DBMS that translates data queries into
commands understandable by the DBMS.

The ODBC API allows applications to access data in DBMS using SAG SQL (SAG = SQL
Access Group; SQL - Structured Query Language) as the standard for requesting information
from a database. SQL allows a single application to access different database management sys-
tems.

ODBC offers connectivity to a wide variety of data sources, including relational databases and
non-relational data sources such as spreadsheets and text files.

 Since Microsoft constantly updates and replaces these protocols, it is best practice to use the
ExtendSim blocks (page 245) for ODBC communication. Or better yet use ADO.

FTP
File Transfer Protocol (FTP) is used to connect two computers over the Internet or an intranet
for the purpose of transferring data and commands. In an FTP environment, one computer acts
as a server and the other acts as a client.

As a client, ExtendSim initiates a connection to the server. Once connected, ExtendSim
accesses a specified file on the server and either imports data from it or exports data to it.

ExtendSim implements FTP by:

• The Data Import Export block (Value library) can open a file on a remote computer and
access the data for use in an ExtendSim model.

• Internet Access functions provide more flexibility than using the Data Import Export block.
See the Technical Reference.

Options in Data Import Export block

Data Management and Exchange 245
Blocks for data management and exchange

H
ow

 T
o

DLLs and Shared Libraries
Dynamic-Link Libraries (DLLs on Windows) and Shared Libraries (Mac OS) are segments of
code written in a language other than ModL, the ExtendSim language. This standardized inter-
face provides a method for linking between ModL and other languages. When and if a DLL or
Shared Library file is needed, it is loaded into memory and run by ExtendSim.

DLLs and Shared Libraries can contain code, data, and resources. They are used to provide
access to functions that are already written in another language or to solve problems that might
be difficult or impossible to solve in ModL. Use a DLL or Shared Library to calculate some
function, perform a task, access application programming interface (API) calls, or even control
external hardware devices.

ExtendSim implements DLLs and Shared Libraries by:

• The Rate library uses the LPSolve DLL or Shared Library.

• ExtendSim functions allow you to call the external code segments from within a block's
ModL code and perform operations. For example, a block can pass data to the DLL or
Shared Library, cause the DLL or Shared Library to calculate using that data, and get the
results back from the DLL or Shared Library. For more information, see the Technical Refer-
ence.

☞ For examples, see the folder ExtendSim/Examples/Developer Tips/DLLs.

Mailslots (Windows only)
The mailslots feature allows communication between two ExtendSim applications running on
different computers on the same local area network (LAN). Since mail slots involve program-
ming, they are described in the Technical Reference.

☞ For Mailslot send and receive examples, see the folder ExtendSim/Examples/Developer Tips.

Blocks for data management and exchange
Several ExtendSim blocks facilitate data storage and management. Some are used to establish
and control dynamic links between ExtendSim and internal or external sources. Others are use-
ful for importing or exporting data between ExtendSim and external applications.

In general there are several uses for data management and access blocks:

• Sharing information between blocks when a direct connection between them is inconve-
nient.

• Storing information which can be accessed by a row and column index.

• Accessing existing spreadsheets imported as a file.

• Accessing existing databases using ADO or ODBC/SQL.

• Accessing Internet-based data.

Most of the following blocks allow block-level access to data structures without having to pro-
gram with the ModL functions. An additional group of blocks are designed to help block
developers, serving as templates for custom-built data management blocks.

246 How To
Blocks for data management and exchange

H
ow

 T
o

Data Import Export
The Data Import Export block (Value library) is used for the direct exchange of
data between internal ExtendSim files (ExtendSim databases or global arrays) and
external files (Excel, XML and text files, ADO and ODBC compatible databases,
and files from the Internet via FTP.) See “Data Import Export block” on page 224
for more information about this block.

Read and Write blocks
The read/write blocks in the Value and Item libraries
make it easy to get data into or send data out of
model components.

See “Read, Write, and Query Equation blocks” on
page 226 for more information about these blocks.

Query Equation and Query Equation(I) blocks
The Query Equation blocks are used to rank the records in an
ExtendSim database table and intelligently select one record,
based on a ranking rule. A user-defined equation in the
block’s dialog is calculated once for each record in the table;
the results are used to assign a ranking for each record. The
record with the best ranking is the one that gets selected.

☞ Since the Query Equation blocks are only used with the
ExtendSim database, they are discussed in the ExtendSim Database Tutorial and Reference.

Data Source Create
The Data Source Create block (Value library) provides an easy method to create or
modify global arrays or text files. You can also use this block to resize or delete a
global array. For an example of how this block is used, see “How to create and use
a global array” on page 234.

Data Init
The Data Init block (Value library) uses a data source to initialize a target with val-
ues. A popup menu in the block’s dialog allows you to choose as a target a data-
base’s table, field, record, or cell or a global array’s column, row, or cell. The data
source can be a value, a database’s table, field, record, or cell, or a global array’s
column, row, or cell. Each row of the block’ table defines one initialization record

for one target. Each initialization record can be set up to initialize the data it refers to at every
run, the first run only, or to not initialize. Each cell in a given row of the table contains inter-
face items that allow customization of that particular initialization record.

Data Specs
The Data Specs block (Value library) reports information about a selected Extend-
Sim database or global array. You can assign a name to the specification report,
select its components through popup menus, initialize the outputs, and display the
specification’s name and/or values on output connectors.

 Query Equation blocks

Data Management and Exchange 247
Link alerts

H
ow

 T
o

Command
When triggered by a value at its “send” input, the Command block (Value library)
sends a command, such as an Excel macro, to a spreadsheet. You can select a com-
mand to send and choose when the command is sent.

Blocks for developers
The Utilities and ModL Tips libraries contain several blocks to assist block developers, such as
the Object Mapper block in the Utilities library.

Link alerts
Live update messages, called Link Alerts, are sent between ExtendSim blocks and the Extend-
Sim databases or global arrays they are dynamically linked to. This means that as soon as the
data at the source changes, an alert will be dynamically sent to all the blocks linked to that
location, and those target blocks can take actions to react to the new value.

For example, if you write to a location in an ExtendSim database, ExtendSim will send update
messages to all the Read blocks in the model linked to that location. When the Read block
receives the alert message, it will act on the fact that the data value changed.

 Writing to a cell in an Excel spreadsheet or to a text file will not have the same live link effect.

Link alerts can significantly slow simulation speed if enabled during the simulation run. To
control when they are sent, see:

• “Link dialog” on page 230 for managing the alerts when block parameters and data tables
are linked to an ExtendSim database or global array

• The check box When receive database link alert msgs in the Equation block (Value library)

• The data source changes check box in the Options tab of the Read block (Value library)

For the most part, link alerts will just make the blocks that have implemented them work as
expected—when data changes, the blocks will respond appropriately. However, due to all the
opportunities for response, link alerts are an especially powerful tool for those who use equa-
tion-based blocks or who create custom blocks. If you are developing a block that needs to
respond to changes in data (ExtendSim database or global or dynamic arrays) or you are creat-
ing sophisticated equations that need this, or you need to use the Link Alert block, go to the
Technical Reference to understand more about how Link Alerts work.

Data source indexing and organization
Communicating between various types of data sources has been greatly assisted by standard-
ized technologies. However, each communication has its own conventions. If you program, it
is important to keep in mind the following information:

• ExtendSim data tables have zero-based indexes and are organized by row and column. This
is true whether the first row in the data table is labeled with a 0 or a 1.

• Spreadsheets are also organized by row and column, but they are one-based.

• Databases are one-based like spreadsheets, but are organized by fields and records (equiva-
lent to columns and rows) rather than being organized by the spreadsheet convention of rows
and columns.

For modelers, ExtendSim handles these differences internally. However, if you program you
should be aware of the differences when transferring data from one type of source to another.

248 How To
Communicating with external devices

H
ow

 T
o

☞ See the Technical Reference for more information about indexing.

Communicating with external devices
In some situations, you may want to obtain data for a model directly from an external piece of
equipment. For instance, when modeling a chemical process you might want to read the tem-
perature of the actual process and compare it to simulated results.

If you create your own blocks with ModL code, there are two methods you can use to commu-
nicate with external devices such as scientific equipment and other hardware:

• Dynamic Link Libraries (DLLs) on Windows or Shared Libraries for Mac OS. DLLs and
Shared Libraries are segments of code written in a language other than the ExtendSim ModL
language, such as Visual Basic or C++. Their standardized interface provides a method for
linking between other languages and ModL. They can also be used to perform complex cal-
culations utilizing specialized hardware. For more information, see “DLLs and Shared
Libraries” on page 245 and the Technical Reference.

• Serial port functions on Windows. To pass data through serial devices, use the serial port
functions. These functions can read and write any data (including real-time data) to and from
the computer’s serial ports. This is useful for transmitting and receiving data on a modem,
for example. For more information, see the Technical Reference.

How To

Miscellaneous
Other important features

that didn’t fit somewhere else

“All truths are easy to understand once they are discovered;
the point is to discover them.”

— Galileo Galilei

250 How To
Printing

H
ow

 T
o

This chapter covers some ExtendSim features and topics not covered in other chapters, includ-
ing printing, scripting, the automated testing environment, and model sharing.

Printing
The File menu has three commands related to printing: Show Page Breaks, Page Setup, and
Print.

Show Page Breaks
Causes ExtendSim to draw a set of page boundaries on the active window (worksheet, note-
book, etc.) and place page numbers in the upper left hand corner of each page. The page
boundaries show where page breaks will occur if you print the window. The command applies
to each active window separately and the location of the page breaks is dependent on choices
in the Page Setup command.

Page Setup
This command is for selecting the size and source of
paper, the orientation for printing, and the margins.

The selected parameters are saved with the model.

Print command
The Print command is for printing to paper, a file
(including PDF format), or a fax. The availability of
options depends on which drivers are installed on
your computer.

Clicking the Apply button in the Print dialog saves the settings you’ve selected without print-
ing.

What gets printed and why
In general, whichever window or dialog is active gets printed when the File > Print command
is given. However, that command doesn’t apply to library windows. To print a library window,
right-click the library window and choose Print Library Window.

The Model > Show Object IDs command causes unique identifying numbers to appear on all
the objects in the model. For blocks, these numbers appear on their icons and also in the title
bar of the block’s dialog. Choosing this command before you print the model worksheet and
dialog boxes will help to match dialogs of blocks with their icons in the model.

Copy/Paste and Duplicate commands
ExtendSim uses the Cut, Copy, Paste, and Duplicate commands in the Edit menu and toolbar
just like other programs. An internal clipboard is used to pass information (text or graphics)
within ExtendSim or between ExtendSim and other applications.

☞ Before you choose the Copy or Duplicate command, it is important to select the cursor that will
allow you to copy the desired items. For example, choosing the All Objects cursor and frame-
selecting a section of a model causes all items in the frame (blocks, drawing objects, clones,
etc.) to be selected and available for copying. However, if instead you use the Block/Text cur-
sor, only blocks and text will be selected.

Miscellaneous 251
Copy/Paste and Duplicate commands

H
ow

 T
o

Copying within ExtendSim

Blocks
If you copy and paste or duplicate blocks within ExtendSim, the clipboard also holds block
parameters and connections. This allows you to duplicate portions of models, including the
variables in the dialogs of the blocks, to another section of a model or to other ExtendSim
models.

Drawing objects and text
Copy or duplicate drawing objects and stylized text from one section of a model to another sec-
tion or from one model to another. To copy text, frame-select and copy the entire text box,
rather than selecting the text within the box.

Data
While the Edit menu’s Copy, Paste, and Duplicate commands work the same as in most appli-
cations, there are a few items you should note:

• When copying/pasting the data from data tables or database tables:

• To copy all the data in a specific column of a data table or database table, click in the
column’s header so that the entire column is selected. Then give the command Edit >
Copy.

• To copy all the data from all the columns in a data table or database table, click in the
upper left corner of the table so that the entire table is selected, then give the command
Edit > Copy.

• To paste data into a data table or database table, click in the upper left corner, in the
upper left cell, or in a desired starting cell and give the command Edit > Paste. The
table cells will be populated downward to the extent of the data in the clipboard or the
number of rows in the data table.

• When copying/pasting an entire database table, select the table in the Schema View and give
the Copy command.

• When copying/pasting an entire database, open
the Database List from the Window menu; the
list will attach to the library windows on the right
side of the worksheet. Then select the database in
the list, give the Copy command, and paste it
into that Database List or into a Database List for another model.

☞ When copying data tables within ExtendSim, do not select Edit > Copy With Headings. If it is
selected, the titles will be added to the data and will cause the original data to be displaced.

Copying from ExtendSim to other applications

Data
Data from parameter fields and data tables can be copied from ExtendSim and pasted into
other applications such as word processors and spreadsheets. When you copy data, ExtendSim
puts the data into the clipboard as unformatted text. See above for some additional information
when copying data from data tables or database tables.

252 How To
Copy/Paste and Duplicate commands

H
ow

 T
o

Pictures
Graphs, notebooks, parts of models, and dialogs are available as pictures to be copied from
ExtendSim into other programs:

• Copy an ExtendSim graph to other programs for use in reports or presentations. To do this,
simply click in the graph then choose Edit > Copy Graph Image.

• Notebooks and models contain various types of items such as drawing objects, cloned dialog
items, and so forth. Before choosing the Copy command, it is important to select the tool
from the toolbar that will allow you to copy the desired items. For instance, to copy an entire
notebook, choose the All Objects tool from the toolbar. Then frame-select the entire Note-
book (or choose Edit > Select All) and choose Copy.

• To copy all or parts of a block’s dialog, choose the Clone Selection tool from the toolbar and
select the dialog items you want to copy using any conventional method (frame-select, shift-
select, etc.). Then choose Edit > Copy to Picture.

☞ Copying an ExtendSim picture into the clipboard changes it into a drawing object. To paste the
contents of the clipboard into the receiving document, it is common to use that document’s
Edit > Paste Special command.

When it is not possible to copy parts of a model directly using the Copy command (such as for
the entire plotter window), do the following:

• Windows: Use the Ctrl + Prnt Scrn key combination to save the entire screen as a bitmap. Or
use a capture program to capture specific parts of the screen.

• Mac OS: Use the Command + Shift + 3 key combination to save the selection as a picture.
Or use a capture program to capture specific parts of the screen.

Copying from other applications to ExtendSim

Data
You can copy data from other applications into an ExtendSim parameter field, data table, text
file or database. However, if there is a lot of data it is usually better to import the data into a
data table or into an ExtendSim database. For more information, see “Exchanging information
with external applications (IPC)” on page 236.

Pictures and text
Pictures and text can be copied into ExtendSim in color or black-and-white to use on model
worksheets, notebooks, hierarchical windows, or in the icon pane of a block’s structure win-
dow. Create a picture with a painting or drawing program and copy the picture to the clipboard.
Then paste the copied picture into an ExtendSim window with the Edit > Paste command.

☞ It doesn’t matter what the original file format for the text or graphic was (JPEG, TIFF, GIF,
etc.) Once it has been copied into the clipboard, ExtendSim treats it as a drawing object.

In the model worksheet and notebook windows, ExtendSim will paste the text or graphic
object wherever you last clicked on the window. Pictures and text pasted from another program
into ExtendSim become a drawing object which can be resized and repositioned using the
Graphics cursor.

Pictures are treated like other drawing elements. For example, use the Graphics cursor to drag
a picture around the window and resize it however you want. Or use the Alignment tools to

Miscellaneous 253
Tooltips

H
ow

 T
o

rotate or flip the picture, To delete a picture, select it with the Graphics cursor and choose
Edit > Clear or press the Backspace or Delete key. Pictures that are copied, like objects created
with ExtendSim drawing tools, always go behind ExtendSim blocks and text.

☞ Pictures can be proportionately resized. To do this, hold down the Shift key as you reshape the
picture. It will resize with all dimensions proportional to the original.

Tooltips
For modelers, tooltips for block icons and connectors are turned on or off in the Edit > Options
> Model tab. They help to quickly identify block information without having to open the
block’s dialog.

• Resting the cursor above a block causes a small window to appear containing the block’s
name, its local and global numbers, and (if Include additional block information is selected)
the first sentence of the block’s online help.

• Placing the cursor over an input or output connector gives information about it, such as its
name and the number of items that have exited or the block’s constraining rate.

For block developers, tooltips also exist to identify the variable name for block dialog items.
These are turned on or off in the Edit > Options > Misc tab.

Scripting functions
ExtendSim scripting functions allow you to build, run, and control models indirectly, create
custom wizards to automate modeling tasks, and develop self-modifying models. For example,
the Smart Blocks, Auto Insert, and Bump Connect techniques, discussed in “Placing blocks on
the model worksheet” on page 59, were developed using scripting functions. For more infor-
mation, see the Technical Reference.

Referencing dialog variables
Sometimes a modeler must use a
source block’s dialog variable as a
parameter in a target block. For
instance, this is how to set model fac-
tors and get model responses with the
Scenario Manager block, discussed in
“How the Scenario Manager works” on page 143.

Blocks that use the interface
The following blocks reference dialog variables from other blocks:

• Find and Replace (Utilities)

• Optimizer (Value)

• Scenario Manager (Value library)

• Statistics (Report library)

• Custom built blocks, if they use specific functions

Supporting the interface
All of the Value, Item, and Rate blocks have code that supports these interfaces. The feature is
also available to block developers, as discussed in “Remote access to dialog variables” in the
Technical Reference.

Referencing a parameter from an Activity to the Optimizer

254 How To
Changing parameters dynamically

H
ow

 T
o

Methods for referencing dialog variables as factors
There are 3 ways to add a dialog variable to target blocks:

• Shift-click. Shift-click a parameter in the source block’s dialog. In the window that appears,
select which target block should get the parameter.

• Clone drop. Drag a clone of the source parameter from the source block’s dialog and drop it
onto the target block’s icon. This method is especially helpful when one or more of the
blocks is within a hierarchical block.

• Manual. Manually enter the dialog variable name into a field or table in the target block’s
dialog.

☞ These methods only work if one of the target blocks is in the model.

Changing parameters dynamically
Another name for the variable or constant number you input in a model‘s blocks is “parame-
ter.” Parameters that do not change during the entire simulation run are static. It is more likely
that you would want to have a model parameter change dynamically.

One of the most powerful features in ExtendSim is the ease with which you can dynamically
change the parameters of a block during the course of the simulation. This is usually done to
represent the value of the parameter as a function of something else in the simulation model.
You may also want to change a parameter to allow someone else to “game” (modify a value
manually) to see how a change impacts the simulation.

Methods
There are a number of means for changing parameters dynamically:

• The most common method is to use a block’s connector that corresponds to its dialog param-
eter field. Connect this to a block that calculates the desired value, such as a Random Num-
ber or Lookup Table block (Value library). This approach visually shows the connection
between the parameter value and where the value comes from. In general, this is also com-
putationally efficient since only the blocks connected to the parameter are recalculated.

• A second approach is to link the parameter field with a record in an ExtendSim database. To
do this, right-click the parameter and select create/edit dynamic link. (You can also create
this link programmatically by creating a custom block that links the parameters of other
blocks with an ExtendSim database or global array.) Whenever the linked value in the data-
base changes, the parameter will change as well. This method hides the relationship between
the parameter and where it is calculated, however it is very useful for centralizing the loca-
tion of certain parameters in the database or for broadcasting the same value at the same time
to a number of blocks throughout the model.

• In a discrete event model, some blocks (such as the Activity or Equation (I) block) allow you
to specify a property value for a parameter. Using an item’s property is an easy way to make
the parameter value a function of the item in the block.

• Sensitivity analysis allows you to change a parameter from one simulation run to the next.
Sensitized parameters change values at the start of each new run. They can change randomly,
based on a value in a file, or by a fixed increment. Changing parameters is useful for sensi-
tivity analysis and Monte Carlo simulation. To utilize sensitized parameters, the number of

Miscellaneous 255
Sharing model files

H
ow

 T
o

simulation runs must be greater than one. For a complete discussion, see “Sensitivity analy-
sis” on page 138.

• Some blocks allow you to specify that a parameter is random. While this is not directly
changing the parameter dynamically, this feature allows you to simulate a parameter that
changes randomly each time the block is recalculated.

• There are other methods, such as calling the SetDialogVariable function in an equation block
or custom block, but these are generally just used for specific situations.

Sharing model files
You may want to provide access to models you have built, without giving users the ability to
change the model structure. ExtendSim provides two methods for preventing changes:

• Locking a model to prevent anything other than parameter changes when the model is run in
the full version of ExtendSim.

• Using a RunTime version of ExtendSim to open and run models.

Protecting the model
Protecting a model is useful anytime you want to prevent changes to a model’s layout, such as
when giving the model to others who may accidentally move or delete blocks. The Model >
Protect Model command prevents any modification of a model other than changing dialog val-
ues. Since this command hides many of the tools in the toolbar, the user also cannot add or
change connection lines, graphics, and so forth.

This command does allow the user to save the model and any dialog value changes. However,
even if they give the command File > Save Model As, the new model will also be password
protected.

When this command is selected, a dialog opens for entering an optional password of 5 to 15
characters. To lock a model without using a password, leave the password fields blank and
click OK. To unlock a model, simply choose the Protect Model command again and enter the
password, if any.

☞ If a password is not used, any user can unlock the model by giving the Protect Model com-
mand.

The Protect Model dialog also has a Protect hierarchical blocks checkbox. Select this to pre-
vent a user from opening a hierarchical block to see the underlying submodel worksheet.

Once a model has been locked with a password, the ONLY way to unlock it is to use the pass-
word. So remember the password and only lock a copy of a model, not the original.

256 How To
Sharing model files

H
ow

 T
o

Discrete Event Modeling

Items, Properties, and Values
Generating and removing items, and using item properties

258 Discrete Event Modeling
Blocks of interest

D
is

cr
et

e
E

ve
nt

As discussed in the Discrete Event Quick Start guide, items are what flow through a discrete
event model, properties contain information about items, and values provide information about
model conditions. This chapter discusses items and their properties and how information about
them is reported as values. It will cover:

• Generating items randomly and by schedule

• The Create block’s Start connector

• Attributes, priorities, quantities, and other item properties

☞ Most of the models illustrated in this chapter are located in the folder \Examples\Discrete
Event\Items and Properties. For other models, location information is provided at the begin-
ning of their respective discussions.

Blocks of interest
The following blocks will be the main focus of this chapter. The block’s library and category
appear in parentheses after the block name.

Item generating and removing

Create (Item > Routing)
Creates items randomly, by schedule, or infinitely. Can also be used to create values
randomly or by schedule. Can initialize newly created items with properties, such as
attributes or priorities.

Exit (Item > Routing)
Passes items out of the simulation. Reports the total number exited and the number that
were taken from each input.

Item properties

Get (Item > Properties)
Displays the value of user-assigned and system level item properties: attributes, priori-
ties, quantity, and item index.

Set (Item > Properties)
Attaches user-assigned properties (attribute, priority, and quantity) to items passing
through.

Equation(I) (Item > Properties)
Can be used to set, modify, or check attributes on existing items. Calculates the equa-
tion when the item arrives.

Executive
Its Item Attributes tab is used for attribute management, such as renaming or deleting
attributes or locating where they are used in a model. It is also where string/value equiv-
alents are declared for string attributes.

Items, Properties, and Values 259
Item generation

D
iscrete E

vent
Property-aware blocks
Item properties include attributes, priorities, and quantities. In addition to the blocks listed
above, the following blocks in the Item library provide an interface for viewing, selecting, or
modifying existing item properties or for adding new ones:

Item generation
Items for a model are usually generated using the Create block. While it can also generate val-
ues, the Create block can create items:

• Randomly. A random distribution causes items to be generated with a random or constant
interarrival time. The distribution determines the time between item arrivals; a smaller inter-
arrival time indicates that items will arrive more frequently. See the examples below.

• By schedule. Creating items by schedule causes an item to be generated at a specific arrival
time. The schedule defines when the item will arrive and the time between arrivals is fixed.
See the examples in “Generating items according to a schedule” on page 262.

• Infinitely. This provides an infinite supply of items that are available on demand. For
instance, connecting a Create block with this behavior to a Gate block would provide an item
to the Gate block each time it opens.

 A Create block is set to Create items infinitely should never be connected to an infinite capacity
queue, since generating an infinite supply of items would overwhelm the system.

☞ In a model, each item can represent an individual entity or a collection of individual entities.
For instance, 50 items coming into a model could represent 50 people or it could represent 50
bus loads of people. How you characterize items is completely up to you.

Generating items at random intervals
The Create block can generate items that arrive to the model at random times. When set to
“Create items randomly”, the Create block outputs items at random intervals; the arguments of
the distribution define the interarrival time.

Example model
As you saw in the tutorial in the Discrete Event Quick Start guide, the Car Wash model is an
example of using the Create block to generate items at random intervals.

☞ The Car Wash model is located in the \Examples\Tutorial\Discrete Event folder.

Activity Queue Matching

Batch Read(I)

Cost By Item Resource Item

Equation(I) Select Item Out

History Shutdown

Information Throw

Query Equation(I) Unbatch

Queue Workstation

Queue Equation Write(I)

260 Discrete Event Modeling
Item generation

D
is

cr
et

e
E

ve
nt

Choosing a distribution in the Create block
The dialog of the Create block con-
tains several distribution choices in its
“Specify a distribution” popup menu,
as well as a table for entering data
when an empirical distribution is
selected. Each distribution is
described in the Create block’s Help;
they are also discussed briefly in
“Probability distributions” on
page 198.

Choosing a distribution in the dialog
of the Create block defines both the
interval between item arrivals (the
interarrival time) and the characteris-
tics of the rate of arrival.

In the Car Wash model, for example,
selecting an exponential distribution with a
mean of 4 will cause one car to arrive
approximately every 4 minutes for the
duration of the simulation. This results in
an interarrival time of 4. However, the
shape of the exponential distribution dic-
tates that it is more likely that the time
between arrivals will be between 0 and 4
than between 4 and 8.

Random intervals with dynamic
parameters
You may want the parameters in a random distribution to change as a function of time or model
status during the simulation run. The arguments for a given distribution can be controlled
dynamically through the Create block's value input connectors.

Random Intervals model
In the Random Intervals model, time dependent arrival rates are modeled by connecting the
Lookup Table block (Value library) to the Create block’s value input connectors. A table in the
Lookup Table block provides the mean values for an exponential distribution that has been set
in the Create block. This causes the timing of item arrivals to be based on the time of day.

Exponential distribution selected; mean is 4

Distribution of outputs when mean is 4

Random Intervals model

Items, Properties, and Values 261
Item generation

D
iscrete E

vent
Specifying the dynamic parameters
As seen in the dialog of the Create block, items arrive exponentially. Notice that the exponen-
tial distribution has a “Mean” parameter. Connecting the output of the Lookup Table block to
the Mean input connector of the Create block causes the mean of the distribution to come from
the Lookup Table during the simulation run, overriding any entry in the dialog. This dynami-
cally changes the average interarrival time.

☞ The distribution determines the interarrival time. A
smaller mean value indicates that there is less time
between arrivals and items arrive more frequently.

In the Lookup Table’s dialog, the mean is smallest
from hour 10 until hour 12, causing items to arrive
more frequently during that period.

Choosing time units for the columns
When the block is set to “Lookup the: time”, the
Lookup Table block looks at the current simulation
time and outputs a corresponding value. Its table is
used to determine the value that is output (by
default the Output column; in this model, the Mean
column) at a given simulation time (by default the
Time column; in this model the Hour column). Its
time units popup menu (in this model “hours”) rep-
resents the unit of time for the values in the Time/
Hour column. However, that does not control what
the output of the Output/Mean column represents.

☞ The time unit for the Lookup Table block’s output
column is determined by the block that receives its
output values.

When a value passed to a block’s input connector is
used to set a time parameter (as in this case), the value sent must be defined in the time unit
that the receiving block expects. In this model, the values from the Mean column are sent to the
Create block and are used to calculate the average time between arrivals. Since the Create
block is using minutes as its local time unit, the values in the Mean column of the Lookup
Table block also represent minutes. For instance, the value of 6 in the Mean column represents
an average of 6 minutes between arrivals, even though the event time in the Hour column is in
hours.

☞ Do not set the mean of a distribution to 0. The Create block will warn you if you make this
modeling error.

Making sure the arrival occurs when expected
To avoid unexpected results, it is important to understand what happens in the Create block
when you vary the mean of the arrival intervals over time. The block’s default behavior is to
generate an arrival time, called “nextTime”, for the next item based on the current input param-
eters. When simulation time reaches nextTime, the Create block releases an item and generates
a new nextTime based on the current values of the input parameters. For the period of time
between releasing items, the Create block will not react to changes in the input parameters. If

Scheduling interarrival time

262 Discrete Event Modeling
Item generation

D
is

cr
et

e
E

ve
nt

the inputs change drastically, this can cause unexpected results as discussed in “Cycle timing”
on page 412.

Generating items according to a schedule
Scheduling item arrivals can provide more flexibility and precision than having them gener-
ated randomly. Setting the behavior of the Create block to “Create items by schedule” allows
item arrivals to occur at fixed intervals that are specified in a table.

Scheduled Intervals model
Assume you want five items generated, one per minute, but that the simulation takes ten min-
utes to run. Setting the Create block to “Create items randomly” and selecting a Constant dis-
tribution would generate one item per minute, but there will be ten items. Generating items by
schedule allows you to customize when items will be created and how many items the model
will have.

In the example model, the dialog of the Create block is set to “Create items by schedule.” The
schedule of arrival times, which is cloned onto the model worksheet, indicates that one item
will be generated at Create Time 1, another item at Create Time 2, and so forth up to time 5.
With this schedule, the model has five arrival events.

The items proceed to a Queue to wait for processing by the Activity, which takes three minutes
to process each item. Since the simulation runs for ten minutes, only three items exit; one item
is left in the Queue and one item is still being processed in the Activity.

This method is especially useful when the time between item arrivals is known but not regular.
For instance, the first item could be generated at Create Time 1, the second item at Create Time
3, and the third item at Create Time 3.5.

Notice that the Item Quantity column has a default value of 1 for each item generated. This
means that each item generated represents 1 item. Item quantities are described fully in “Quan-
tities” on page 272.

☞ An alternative method would be to use a Create block set to Create items randomly, and select
a Constant distribution with a value of 1 in its dialog. Then in the block’s Options tab, select
Maximum items generated: 5. This method is less flexible than the earlier method, since each
item would have to have the same interval between arrivals.

The Start connector
When the Create block is set to Create items by schedule it has a start value input connector
that can be used to control when the schedule is executed. The timing in the Create block
depends on whether or not the start input is connected:

Scheduled Intervals model

Items, Properties, and Values 263
Item properties

D
iscrete E

vent
• If the start connector is not connected, the schedule's item creation times are synchronized
with the simulation run's absolute time. For example, if the schedule's first create time is at
time 2 and the simulation's start time begins at time 0, an item would be created when simu-
lation time reaches 2. However, if the starting time entered in the Simulation Setup dialog is
4, the item scheduled at time 2 is never created.

• If the start connector is connected, such as to a Decision block (Value library), the schedule's
item creation times are relative to when the connector is activated. For instance, assume sim-
ulation starting time is 0 and the first item is scheduled for creation at time 11. If the start
connector gets activated at simulation time 5, then the first item will be created at time 16 (5
plus 11).

☞ Starts are activated whenever the connector receives a message with a True value (defined as
greater than or equal to 0.5).

The Create block’s Options tab provides choices for how the start connector should behave, as
discussed below:

• Follows schedule. This is the default option and should be used for most situations. Once the
start connector is activated, the entire schedule will be executed. Any new activation signals
arriving before the current schedule has completed are ignored.

• Generates one item per message. This is an advanced choice for special situations. It is most
often used when a custom-created block is connected to the start connector and you want an
item to be instantaneously generated for every message. With this choice, the schedule is
restricted to one row. Each time the start connector is activated, the row is executed.

• Generates one item per event. This is an advanced option for special situations. With this
choice, the schedule is restricted to one row. Each time the start connector is activated, a
zero-time event is scheduled. Once the Create block gets the zero-time event message, it will
execute the schedule.

Item properties
A property is a quality or characteristic that stays with an item as it moves through the model.
Some properties can be assigned to items by the model builder; others are automatically
assigned by the system.

An item’s properties include:

• User-assigned attributes. These are discussed in the next section.

• Priority. See page 271.

• Quantity. See page 272.

• System-assigned attributes. See page 275.

Item attributes
Because they allow items to be distinguished from each other, item attributes play a very
important role in a discrete event simulation. They are especially useful for telling an activity-
type block how long the item should be processed, or for determining where the item should be
routed before or after processing. The following sections describe how to create, use, and man-
age attributes.

264 Discrete Event Modeling
Item properties

D
is

cr
et

e
E

ve
nt

 For examples of how to use attributes, see the Documents\ExtendSim\Examples\Discrete
Event\Items and Properties folder. A good starting point is the Attributes Final Car Wash
model.

☞ Flow attributes provide a similar functionality for Rate library blocks, which are used for dis-
crete rate simulations. For more information, see “Flow attributes” on page 431.

Attribute names and values
Each item attribute is composed of a name and a numeric value:

• An attribute’s name identifies some general characteristic of the item such as “size”, “route”,
“CarType” or “tank capacity”. Attribute names are limited to 15 characters.

• An attribute’s value indicates one dimension of the named characteristic. For instance, an
item’ s “size” attribute could have a value of “8” or a value of “12”, while an attribute named
“CarType” could have a value of “1” (for Ford), “2” (for Toyota), or “3” (for Volvo). An
attribute value is not just a number; it can also be the address of data in a database.

Attributes are meant to be unique; if you attempt to add a new attribute with exactly the same
name as an existing one, ExtendSim warns you that the name already exists. While attribute
names are not case sensitive (“Type” is equal to “type”), spaces are significant and should be
avoided.

Attribute names and values are stored in a pair of dynamic, global arrays, described in “Attri-
bute arrays” on page 270.

Number of item attributes in a model
In a model, each item can contain up to 500 attributes that uniquely describe the item. Every
item contains the full set of attributes that have been defined in the model. The Executive
block’s Item Attributes tab displays all of the model’s attributes.

Each attribute contains a value that can represent either:

• A number that can be used for routing, timing, and so forth.

• The address of data in a database or global array. The data pointed to can contain a single
number or an unlimited amount of additional data that describes the item, its route, its prop-
erties, and so forth.

☞ If you use attributes efficiently, there is almost no limit to what can be represented. If you do
approach the 500 attribute limit, consider using DB address attributes (discussed below) to ref-
erence information in the ExtendSim database.

Item attribute types
ExtendSim supports three types of attributes for items:

• A value attribute holds a real number as its attribute value.

• The value of a string attribute is still a number, but it is represented in the model by a string.
With string attributes you enter a descriptive text label (string) for each potential attribute
value in a lookup table in the Executive block’s Item Attributes tab. The string can then be
used in the model in place of the corresponding number. For example, a string attribute
named “CarType” might have three possible values: 1, 2, and 3. Once the lookup table for
this attribute has been properly configured, the blocks referencing the CarType attribute will
display the strings “Ford”, “Toyota”, or “Volvo” instead of the numbers 1, 2, and 3.

Items, Properties, and Values 265
Item properties

D
iscrete E

vent
• The value of a DB address attribute contains a single value that represents a location or
address in a database. This address is composed of four separate numbers, where each num-
ber is an index for an ExtendSim database, table, field, and record. Taken together, the num-
bers target a specific location in the database. (Incomplete DB addresses are allowed. For
example, an item may have a DB address attribute with only the database and table indexes
defined.)

In addition to item attributes, the Rate library blocks of ExtendSim Pro have two types of flow
attributes. These are discussed starting on page 431.

☞ The value of a DB address attribute cannot be used directly. It must be “decoded” using a Get.
Read(I), or Write(I) block or by accessing DB attribute functions in one of the equation-based
blocks.

Using item attributes
The following table lists some common attribute-based modeling activities and the blocks that
are usually used to facilitate them. All blocks are from the Item library.

To Do This: Use Block(s)

Set new attributes on items or modify values for
existing attributes

Set, Equation(I), Queue Equation

Initialize newly created items with attributes Create (when “Create items by schedule” is
the selected behavior)

Define default attributes for item resources Resource Item

Check attributes on existing items Any property-aware block; see the table on
page 259.

Route items based on attributes Select Item Out (when “Select output based
on attribute” is chosen)

Sort and release items from queues based on attri-
butes

Queue (when it sorts by attribute value),
Queue Matching

Sort items based on attribute values and condition-
ally release them based on an equation

Queue Equation

Pull in items and batch them based on attribute val-
ues

Batch (when “Match items into a single
item” is the selected behavior)

Use attribute values to specify a delay or processing
time

Activity (when “Delay is: an item’s attri-
bute value)

Define the value/string correspondence for item
string attributes

Executive (Item Attributes tab in “Declare
string attribute values” mode)

Find which block uses an attribute Executive (Item Attributes tab in “Manage
all attributes” mode)

Managing attributes and their names, such as renam-
ing or deleting an attribute

Executive (Item Attributes tab in “Manage
all attributes” mode)

266 Discrete Event Modeling
Item properties

D
is

cr
et

e
E

ve
nt

Adding item attributes to a model
The Item library blocks that deal with attributes are listed in “Property-aware blocks” on
page 259. These blocks provide a popup menu interface for selecting existing item properties
or for adding new ones.

☞ Depending on the block, the popup menu may offer different choices of attribute types to set.
For example, the Set block allows creating value, string, or DB address attributes.

Creating a new attribute causes it to appear in the list of properties in the block’s dialog and
makes the attribute accessible by every property-aware block in the model.

The following information describes how to create different types of attributes in the Property
Name column of the table in the Set block’s dialog:

• To create a new value item attribute, click the Property Name popup menu, choose New
Value Attribute, type the name of the new attribute in the dialog that appears, and click OK.
For example, a value attribute might be named “size”.

• To define a new string item attribute, select New String Attribute from the popup menu in
the Property Name column, enter a name, and click OK. This automatically opens the Exec-
utive block’s Item Attributes tab. The table in this tab is where the attribute values (and the
corresponding strings) for string attributes are declared. An example of this is shown in the
tutorial in the Discrete Event Quick Start guide. An example of a string attribute could be
“CarType” and the corresponding string/value combinations might be Ford/1, Toyota/2, and
Volvo/3.

• Creating a new DB address attribute requires an existing ExtendSim database. In the Set dia-
log, select an ExtendSim database from the popup list that appears. To create the DB address
attribute, click the popup menu in the Property Name column, choose New DB Address
Attribute, type the name of the new attribute in the dialog that appears, and click OK. For
example, a DB address attribute could be named “ProcessTime”.

Calculate an item’s cycle time Set an attribute to the current time in a Set
block or use the Timing attribute feature in
the Create block’s Options tab. Then use
the Timing attribute feature in the Informa-
tion block so that it calculates the differ-
ence from start to end time. See “Cycle
timing” on page 412.

To Do This: Use Block(s)

Items, Properties, and Values 267
Item properties

D
iscrete E

vent
With the three different types of attributes, the Set dialog could look like:

After attributes have been created, they must be attached to items in the model and they must
have unique values assigned to them.

Selecting attributes and attaching them to items
To allow an attribute to be used, define the attribute and assign a value to it. This is done using
one of the attribute-handling blocks, such as Set or Create.

The most common method for assigning attributes to an item is to select an attribute in the dia-
log of a Set block, then pass the items through the block. The value of the attribute can be
defined in the Set’s dialog or through its value input connectors.

Another commonly used block is the Create block when it is in “Create items by schedule”
mode. This is a convenient way to initialize new items with a set of attributes as they are intro-
duced into the model. In the Create’s schedule table, you can select an attribute from a popup
menu in one of the columns, then enter a value for that attribute for each Create Time row in
the table. An item generated at the specified times will have the attribute name and value indi-
cated in the table. Other blocks, like the Resource Item block, can also be used to attach attri-
butes to items.

☞ The information that follows assumes that you are using the Set block to assign an attribute to
an item and that you have already created the attribute using a method described on page 266.

Value attribute
To set a value item attribute, select an attribute in the Property
Name column’s popup menu. (Existing value attributes are
listed below the New Value Attribute divider.) Then enter a
number in the Value column. In the screenshot at right, the
Size attribute has been selected and 14 has been entered as the
value.

String attribute
To set a string item attribute, select an existing attribute
(listed below the New String Attribute divider) from
the popup menu in the Property Name column. Then
click the cell in the Value column to bring up a popup
menu containing all the string values that have been
defined for the attribute. In the example at right, the
selected string attribute is CarType and the Value popup menu contains the strings Ford, Toy-

268 Discrete Event Modeling
Item properties

D
is

cr
et

e
E

ve
nt

ota, and Volvo. If Toyota is selected, the corresponding value that gets stored on the item for
the CarType attribute will be the number 2.

Connecting a Random Number block (Value library) that uses an Empirical table to a Set block
that accesses a string attribute will cause the strings for that attribute to appear as a popup list
in the empirical table’s Value column. This is shown in the tutorial in the Discrete Event Quick
Start guide.

DB address attribute
Each Set block only points to one ExtendSim database, which becomes one element of the DB
address. To set a DB address attribute in a Set dialog:

Choose a database from the popup menu.

In the Property Name column of the Set block’s table, select a DB address attribute from the
popup menu or create a new one; existing attributes are listed below the New DB Address
Attribute divider.

Once the DB address attribute has been selected, the Set dialog’s table enlarges to display the
other elements of the address (Table, Field, and Record). The value for the DB address attri-
bute is defined by clicking the appropriate popup menus in the table, selecting whether that
element’s information should be selected from a list, entered as an index, or accessed from a
connector. The screenshot below is an example of the ProcessTime DB address attribute,
which gets its value from a record in the Times field of the Processing Time table in the Pro-
cess database.

☞ You don’t need to select every element for a DB address attribute. For example, you may only
want to specify the database, table and field indexes and ignore the record index.

For a DB address attribute, the Value column displays the database address, as determined by
the indexes of the settings in the Table, Field, and Record columns. In the screenshot above,
the Value notation is 2:1:1:2, where 2 is the index of the Process database, 1 is the table index
for Processing Time, 1 is the field index for Times, and 2 is the index for the selected record,
which has a value of 5.04.

Once the attribute has been set, the attribute information indicated in the Set block’s dialog will
be assigned to each item as it arrives to the block. Attribute values may also be defined dynam-
ically using the Set block’s value input connectors to override values set in the dialog.

Every model has an internal list of all the attribute names that have been created for use by
items in that model. However, not all items in the model will make use of every attribute name.
For an item to use an attribute name, the value of the attribute must be explicitly set using an
attribute modifying block (such as a Set block).

Getting attribute values and reporting changes
In order to manipulate an item based on the attribute, usually to route it or process it, you need
to get the item's attribute value. The most common method for getting attributes is to select the

Items, Properties, and Values 269
Item properties

D
iscrete E

vent
attribute by name from the list in the attribute popup menu in an attribute-reading block, such
as the Activity or Get block.

Activity or Workstation blocks
In the dialog of an Activity or Workstation block, you can specify that an item's attribute value
be used as its processing time, as shown below.

Get block
When items pass through the Get block, it accesses information about the attributes that have
been specified in the table in its dialog. It then reports the information in the table and on its
value output connectors. What the Get block reports and where, depends on the type of attri-
bute:

• Value attributes. The value for the attribute is posted in the Value column of the attribute
table and on the value output connector that corresponds to the attribute.

• String attributes. The string text is displayed in the Value column of the attribute table and
the number that corresponds to the string is posted on the appropriate value output connec-
tor.

☞ Connecting a Lookup Table block (Value library) that is set to Lookup the: input value to a Get
block that accesses a string attribute will cause the strings for that attribute to appear as a
popup list in the Lookup Table block’s left most column.

• DB Address attributes. You can get either an individual element of a database address or its
entire address. To do this, from the popup menu in the table’s “DB attrib reports” column,
select which of the 5 components will be retrieved (db index, table index, field index, record
index, or db address). The first 4 choices provide individual elements of the address; the “db
address” choice provides the entire address. The information will be reported in the Value
column and on the value output connector for that attribute.

☞ To access all five elements of a DB address attribute, add five rows to the table. Each row
should have the same DB address attribute listed in the Property Name column, but different
selections for the “DB attrib reports” column. This comes in handy when the Get block is
working in conjunction with the Read or Write blocks (Value library). It allows the read or
write location to vary based on what information is traveling on the item.

In addition to value outputs for reporting an attribute’s value, the Get block has a (delta) con-
nector for reporting when an attribute’s value changes. The connector outputs a 1 when an
item's attribute value (for the first attribute specified in the dialog) differs from the previous
item's attribute value. Otherwise it outputs 0. This is useful for determining when there is a
new type of item or when an attribute value used for processing time has changed. For exam-
ple, you can have an attribute called “Type” with values that specify the type of item. When the
value of Type changes, indicating a new type of item, the connector outputs 1. This is shown
in “Adding setup time” on page 324.

270 Discrete Event Modeling
Item properties

D
is

cr
et

e
E

ve
nt

Modifying attribute values
The most flexible way to modify the value of an item’s attribute or other property is with the
Equation(I) block (Item library). This block can look up property information and modify it by
applying some mathematical formula, then use the result as the new attribute value for the
item. For example, if an item arrives with a value of 5 for the attribute “nextRecord”, you
could add a 1 to the 5 and create a new attribute value of 6 for that item’s nextRecord attribute.
The Air Freight model discussed on page 368 is an example of this.

Another way to modify properties is to connect from a Get block’s value output to a Math or
Equation block (both from the Value library). Then have that block apply some mathematical
formula and output the results to a value input on a Set block. The property must be selected in
the dialogs of the Get and Set blocks, and the value connectors must be for that property.

Attribute arrays
Attribute names and values are stored in a pair of dynamic global arrays:

• The one-dimensional Names array stores the name of each attribute currently used in the
model. Attribute names can be up to 15 characters long. You will receive an error message if
you attempt to give an attribute a name greater than 15 characters. Attribute names are not
case-sensitive.

• The two-dimensional Values array stores the value of each attribute for each item in the
form of real numbers.

The following picture represents the attribute arrays:

As new attribute names are added to the model, new cells (array elements) are appended to the
Names array and new columns are appended to the Values arrays, up to a maximum of 500.

As new items are created during the simulation run, new rows are added to the Values array.
The number of rows in the Values array is unlimited and will be the same as the number of
items in the model. As shown in the above picture, item A has an attribute named “type” that
has an attribute value of 2 and item B has an attribute named “size” with a value of 6.01.

Note that each attribute named in the model causes a cell to be reserved in the Values array for
every item. However, not every item uses every attribute. To allow an item to use an attribute,
you must assign a value to the attribute using one of the attribute-handling blocks (such as the
Set block). If there is no value assigned, the attribute is not used by that item. This is shown in
the figure above, where item B has no assigned value for the attribute name “color” and item C
does not have a value for the attribute “size”.

Items, Properties, and Values 271
Item properties

D
iscrete E

vent
Priority
Like attributes, a priority is
a type of item property that
can be assigned to an item.
Priorities signify the impor-
tance of items. Using the
_Item priority property, you
can assign priorities to
items and manipulate them
based on their priorities.

Priorities are particularly
useful when you want to
examine a population of
waiting items and deter-
mine their processing order.
For example, you might
have a step in a manufac-
turing process where a worker examines the pending job orders and chooses the one that is the
most urgent.

☞ Items can only have one priority. If you need multiple levels of priorities, use attribute values
instead.

When a new priority is added to an item that already has a priority, the new priority prevails.
When items are batched, the highest priority of the items prevails in the resulting batched item.

☞ The lowest value (including negative values) represents the top priority.

Setting, getting, and using priorities
The following table lists some common priority-based modeling activities and the blocks that
are usually used to facilitate them. All blocks are from the Item library.

To Do This: Use Block(s)

Initialize newly created items with priorities Create (when “Create items by schedule” is
the selected behavior)

Define default priorities for resource items Resource Item

Set, modify, or check priorities on existing items Set, Get, Equation(I)

Select incoming items based on priorities Select Item In (when “Select input based
on item priority” is chosen)

Sort and release items based on priorities Queue (when it sorts by priority)

Sort items based on priority and conditionally
release them based on an equation

Queue Equation

View an item’s priority Get, History

Allocate resource pool units to the highest ranked
item first

Resource Pool

Setting an item’s priority

272 Discrete Event Modeling
Item properties

D
is

cr
et

e
E

ve
nt

☞ The Select Item Out block does not assign or use items’ priorities. Instead its output connectors
can be prioritized so that an item will be routed to the first available connector that has the
highest priority. As shown in “Explicit ordering” on page 305, the Select Item Out block prior-
itizes the path an item will take rather than the item itself.

Priorities model
In the example, a Random Number block (Value library) outputs values to a Set block, as fol-
lows:

• 10% of the time it outputs a 1

• 40% it outputs a 2

• For the remaining 50% it outputs a 3.

The table in the dialog of the Set block indicates it will assign priorities to incoming items.
Connecting from the Random Number block’s output to the Set block’s ItemPriority value
input connector causes the priorities to be set according to the values from the Random Num-
ber block. Since the lowest number is the highest priority, 10% of the time items will be
assigned the highest priority.

The Queue block is set to sort by priority. This means that the highest priority items held in the
block will be made available to the Activity block before other items. A History block, added
to the model by right-clicking on the Queue’s output connector, shows that only top priority
items are processed; the Activity cannot keep up with the demand.

The section “Interrupting processing” on page 329 shows how priority values are used to
determine if one item should preempt another.

☞ For an item to be ranked by priority, there must be other items in the group at the same time.
For example, items will only be sorted by priority in a Queue block if they have to wait there
with other items.

Quantities
Quantity is another type of property that can be assigned to items. Each item can be a single
entity or a group of duplicates. As is true for priority, an item can only have one quantity
assigned to it at a time; the default quantity is 1. If the quantity property for an item is 1, it rep-
resents one item. If the quantity is other than 1, it represents a group. Item quantities are typi-
cally set in the Create and Set blocks.

☞ An item’s quantity can be any number, including a negative number. An item with a quantity of
0 or less disappears when it reaches a queue.

Priorities model

Items, Properties, and Values 273
Item properties

D
iscrete E

vent
For most purposes you would not want to change the quantity of an item from its default value
of 1. However, to model a change of shift consisting of five workers going off duty at the same
time, to simulate the delivery of a box of 300 pieces of mail to a mail room, or for similar situ-
ations, set the quantity of the item to be other than 1.

How blocks treat items with quantities other than 1
Items with quantities other then 1 are treated differently depending on the nature of the block
processing them. They will travel together as a unit, being processed essentially as one item,
until they reach an Exit, a Queue, a Batch, or a Resource Item block, or are sent into a univer-
sal connector (such as Change, Demand, Select, or Start.)

• When an item with a quantity other then 1 reaches an Exit, Queue, Batch, or Resource Item
block, it is decomposed into separate identical items. For example, when it enters a Queue,
an item with a quantity of 10 will become 10 distinct items, each with a quantity of 1 and
each with the same properties (attributes, priority, and so on) of the original item. An item
with a quantity of 0 will disappear when it reaches a Queue.

• When items with quantities other than 1 are sent into a universal connector (such as demand
or select), they are treated as one item, but the quantity of the item may be used by the block
as control information. See below for more information on how universal connectors deal
with the incoming items that have quantities other than 1.

All the other blocks deal with items that have quantities other than 1 as a single item, ignoring
the quantity associated with it.

☞ The Activity block accepts an item with a quantity greater than 1 as a single item and process it
as one unit. To have the items be processed separately, precede the Activity block with a queue,
since queues decompose items with quantities greater than 1.

Setting an item’s quantity
A quantity can be assigned to an item in the Create, Set, or Equation(I) blocks.

Set block
In the table in the Set block’s dialog, select _Item quantity in the Property Name column and
enter the quantity in the Property Value column or input a value to the Block’s _Item Quantity
value input connector. Each item that passes through the Set block will be assigned that quan-
tity.

Create block
The default setting in the Create block is that one item is input to the model at each arrival
event; this is the most common case when building models. How you specify that a multiple
number of items be released at each event depends on which behavior is selected for the Create
block:

• Create block is set to “Create items randomly”. Change Item quantity (Q) in the Options to
an integer number other than 1. Or input a value to the Create block’s ItemQuantity (Q)
value input connector.

• Create block is set to “Create items by schedule”. Enter values in the table’s Item Quantity
column for each Create Time field that has arrival times.

For example, assume you want to show that one item arrives randomly approximately every 4
minutes. To do this, use the same settings as in the Car Wash model from the discrete event

274 Discrete Event Modeling
Item properties

D
is

cr
et

e
E

ve
nt

tutorial: in the Create block select the Exponential distribution and enter Mean: 4; in its
Options tab leave Item quantity (Q): 1. To show that 2 car/items arrive every 4 minutes, keep
the settings at Exponential with a mean of 4, but enter Item quantity (Q): 2. The block will now
output one item with a quantity of 2 approximately every 4 minutes.

As discussed in “How blocks treat items with quantities other than 1” on page 273, the blocks
that follow the Create block determine how an item with a quantity greater than 1 is treated.
For instance, if an item with a quantity of 2 goes directly into a Queue or Resource Item block,
it will be split into two items each with a quantity of 1. However, if the item goes directly into
an Activity block, it will be treated as a single item with a quantity of 2. In most cases, you will
want to follow the Create block with a Queue, which will decompose the item into two sepa-
rate items.

☞ In most cases, you probably will not want to generate more than one item at each event. For
example, rather than inputting 2 items every 4 minutes as discussed above, you would proba-
bly want to generate 1 item every 2 minutes. This is because, unless they are inside a container
of some sort, it is not common to see two items arrive at exactly the same time; items are more
likely to arrive at slightly different times.

Quantities model
For example, assume you will receive 500 items a week, but that almost all of them are
received on Wednesday. In this case, there are five arrival events (one event each on days 1
through 5), each with an item quantity of either 50 or 300.

This Quantities model is similar to the Scheduled Intervals model from page 262, except each
item the Create block generates has a quantity greater than 1 and the Activity processes 5 items
at a time.

The dialog of the Create block is set to Create items by schedule. The arrival times (Create
Time) and the number of items arriving at the scheduled time (Item Quantity) are entered in the
table, which has been cloned onto the model worksheet.

The table indicates that on the third day (Wednesday) 300 items arrive but that 50 items arrive
on each of the other days.

The Create block outputs an item with a quantity greater than 1 as if it were a group of items all
arriving at the same time. When the item goes to a Queue block, it becomes multiple copies of
itself. In this example, as each item is sent from the Create block to the Queue block, it will
become either 50 or 300 units, depending on its quantity.

Running the model shows that the Create block creates 5 items, but that 500 items have arrived
to the Queue.

Quantities model

Items, Properties, and Values 275
Item properties

D
iscrete E

vent
Other item properties
In addition to the item properties discussed above, such as the item quantity or user-defined
attributes, ExtendSim can assign properties to items. As shown in the property popup menu
below, these system properties are preceded by the “_” character and include:

• _Item index. This property is available in the Get, Equa-
tion(I), and History blocks and points to where the item is
located in the item arrays stored in the Executive block. It is
used by block developers for debugging.

• _AR Order ID. This property is only available if the model
contains a Resource Manager block (Item library). It refers
to the resource order an item is associated with. The value
of this property is the record index in the Resource Orders
table of the item's resource order. For more information, see
the separate document about Advanced Resource Manage-
ment.

• _3D object ID. When you select a 3D animation object to
represent an item, this property stores the index of the
object. Note: 3D is not available in ExtendSim 10.

• _Cost or _Rate. If there is an entry for cost somewhere in the model, ExtendSim will add the
_Cost and _Rate attributes to property popup menus. For more information, see “Working
with cost data” on page 387 and “Combining multiple cost accumulators” on page 392.

• _Resource Order ID. This item property is only available in the Queue and Queue Equation
blocks (Item library) if Store Resource Order ID in attribute is checked and the blocks are
part of the Advanced Resource Management (ARM) system. The property is the value of a
record index in the Resource Orders table of the Advanced Resources database. The record
represents the last requested requirement that was assigned to an advanced resource item.
For more information, see the separate document about Advanced Resource Management.

History block Properties menu

276 Discrete Event Modeling
Item properties

D
is

cr
et

e
E

ve
nt

Discrete Event Modeling

Queueing
Storing items in buffers or waiting lines

278 Queueing
Blocks of interest

D
is

cr
et

e
E

ve
nt

A queue provides a buffer or waiting line to store items awaiting further processing. Queues
can have simple behavior, such as holding items in first in. first out (FIFO) order, or more com-
plex behavior, such that items are held and released in groups based on their attributes. You can
also set an option in the Queue block’s dialog to specify how long an item will wait until it
reneges, or prematurely leaves.

This chapter covers:

• Queueing disciplines: LIFO, FIFO, Priority, Attribute, and User-Defined

• Queue/server systems

• Blocking, balking, and reneging

• Sorting items using the Queue Equation block

• Least dynamic slack, minimizing setup, and maximizing service levels

• Using the Queue Matching block to match items into groups based on their attributes

• Viewing and initializing queues with the Queue Tools block

• Displaying queue contents through animating

☞ This chapter’s examples are located in the folder Examples/Discrete Event/Queueing.

Blocks of interest
The following blocks are the main focus of this chapter. Each block’s library and category
appears in parentheses after its name.

Queue (Item > Queues)
Stores items until there is downstream capacity. As a sorted queue, holds items in FIFO
or LIFO order, or sorted by their priority or attribute value. As a resource pool queue,
holds items in FIFO order.

Queue Equation (Item > Queues)
Stores items. Calculates an equation when it receives an item or when it is triggered by
a value connection. When there is downstream capacity, releases items based on the
results of the equation.

Queue Matching (Item > Queues)
Has a specified number of internal queues for holding items in separate groups.
Releases a group when there is downstream capacity and the group requirements have
been met. This block is useful for matching one type of item with another.

Queue Tools (Utilities > Discrete Event Tools)
When connected to the L (length) output of a queue, views and initializes the queue’s
contents. Displays information about item properties in a table. Can add an initial num-
ber of items, with specified properties, to a queue.

☞ In this chapter the focus is on using a Queue block to represent a sorted queue. For information
about using the Queue block as a resource pool queue see “Resource pool blocks” on page 360.

Queueing disciplines
ExtendSim supports several scheduling algorithms, also known as queueing disciplines,
through the queue blocks.

Queueing 279
Queue/server systems

D
iscrete E

vent
• FIFO. When set to be a sorted queue, the Queue block can represent a first in, first out
(FIFO) queue, also known as a first come, first served queue. When set as a resource pool
queue, the Queue block represents a FIFO queue for resource pool units. The “MM1 model”
on page 280 is an example of a FIFO queue and most of the models in the Discrete Event
module use a Queue block in FIFO mode. For more information about resource pools and
how the Queue is used as a resource pool queue, see “Resource pool blocks” on page 360.

• LIFO. When set to be a sorted queue, the Queue block can represent a last in, first out
queue. As is true when the Queue is set to FIFO mode, the Queue block automatically takes
care of LIFO sorting.

• Priority. As a sorted queue, the Queue block can read priorities and pass items with the
highest priority (lowest number) out first. For this to happen, the arriving items must have a
priority. Items that have not been assigned a priority in the model have a default priority with
a Blank value; they get relegated to the end of the waiting line. To see a Queue sorting items
based on priorities, see “Priority queues” on page 280 or “Animating queue contents” on
page 291.

• Attribute. As a sorted queue, the Queue block can use attribute values to sort items in the
queue. In addition, the Queue Matching block allows you to define custom scheduling algo-
rithms based on item attributes. It groups items based on certain attributes and releases them
as a group once requirements are met. For this sorting rule, items must have attributes
assigned to them before entering the Queue. Items that have not been assigned an attribute in
the model have a default attribute with a Blank value; they get routed to the end of the wait-
ing line. The process for having a Queue sort items based on attributes is similar to the pro-
cess for sorting using priorities.

• User-Defined. The Queue Equation block allows a user-defined equation to decide the sort-
ing order for items it holds. This can be used to specify any user-defined criteria for sorting,
including Least Dynamic Slack, Minimize Setup, Maximize Service Level, and any other
combination of sorting rules. A discussion of these ranking rules and example models start
on page 283.

☞ It is important to remember that, except for a FIFO queue, there must be other items in a queue
at the same time to allow the queueing disciplines to work appropriately and affect the order of
the items. For example, if you set a Queue block to sort by priority, and there is never more
than one item in the block at a time, the effect of queueing based on priority is negated.

Queue/server systems
Queue/server systems involve the creation of items which then wait in a queue until they can
be processed by one or more servers. The following blocks in the Item library are used to rep-
resent queue/server systems:

• The Create block is used to provide items at exponential interarrival times (and many other
interarrival times as well).

• A Queue block, set to sort in FIFO, LIFO, or some other order, holds the items and releases
them in the designated order. It can have a maximum queue length specified in its dialog.

280 Queueing
Queue/server systems

D
is

cr
et

e
E

ve
nt

• The Activity block represents servers: you can specify an exponential or other distributional
service time within its dialog or by connecting a Random Number block (Value library) to its
D (delay) connector.

M/M/1 queues
A standard notation often seen in queueing theory is M/M/1. This is a basic construct, repre-
senting a single server queue. The notation translates to: exponential interarrival times/ expo-
nential service times/ single server. It is also common to see the designation M/M/1/×, where
the × translates to unlimited queue length, or the designation
M/M/1: ×/×/FIFO, which translates to exponential interarrival times/ exponential service
times/ single server: unlimited queue length/ infinite population/ first in, first out service.

MM1 model
A typical M/M/1 system expressed using ExtendSim blocks, with the addition of a plotter and
an Exit block, would look like the screenshot below.

Priority queues
As is true when any other sorting rule is used, a Queue block that sorts by priority will hold
items until there is downstream capacity. Once the downstream block can accept an item, the
Queue searches through the contents of the queue and releases the item with the highest prior-
ity. For the Queue to work properly in this mode, items that enter should already have their pri-
ority set; items without a priority are assigned a default Blank priority and get sent to the end
of the waiting line.

Priority model
In the Priority exam-
ple, items enter the
model and immedi-
ately have their prior-
ity set to 2. They then
enter a Queue block
set to Sort by: priority.
After the machining
processes, each item is
inspected for flaws. If
the item does not pass
inspection, its priority
is re-set to 1 and it is sent back to the Queue block where it waits to be re-machined. When the
machine can accept a new item, the Queue block will release the item with the highest priority.
In this case, any item waiting to be re-machined will be released first.

MM1 model

Priority model

Queueing 281
Queueing considerations

D
iscrete E

vent
Run the model with animation turned on to watch the items with a priority of 1 (red circles)
bypass items with a priority of 2 (green circles) while waiting in the Queue.

Queueing considerations
Once items are generated for the model, it is common that they will be held in a queue, typi-
cally a Queue block. In addition to the queueing disciplines discussed above, queues and the
items in them can exhibit other behaviors.

Blocking
Blocking occurs when an item is prevented from leaving a block because there is a downstream
capacity constraint. Blocking is common in serial operations where there are several activities
in a row without queues in between; each activity has the potential for blocking arriving items.
It also occurs when activities are preceded by queues with finite capacity, causing backups in
the preceding activity. Blocking increases the waiting time for items in queues and is added to
the calculation of their utilization.

The examples in the sections “Processing in series” on page 317, “Sequential ordering” on
page 304, and “Machines that can only process certain types of items” on page 312 illustrate
potential blocking situations.

Balking
Sometimes customers enter a facility, look at the long line, and immediately leave. This is an
example of balking. In the Balking model. balking is easily represented by setting a maximum
queue length and then using a Select Item Out block to prioritize sending items to that queue. If
the queue is full, the Select will send the items to another part of the model; in this case, an
Exit block..

Balking can also be represented by having a Decision block (Value library) look at a queue’s
length or wait time. If the line meets certain conditions (is too long, takes too long to move,
etc.), a Select Item Out block routes the item out of the model before it enters the queue.

Reneging
Reneging occurs when an item, having entered a queue, leaves before it reaches the output. An
example of this is telephone callers who, after being put on hold, will hang up without getting
help if they feel they have waited too long for assistance.

To simulate reneging, select an option in a Queue block’s Options tab. The choices are:

• Renege items after a specified number of time units. The number of time units can be set in
the block’s dialog or through its R (renege) connector.

Balking model using Select Item Out to prioritize the Queue

282 Queueing
Queueing considerations

D
is

cr
et

e
E

ve
nt

• Renege items immediately when the R (renege) connector gets a true value (0.5 or greater).

When either of these choices is checked, an alternate item output appears on the right of the
Queue block. Items that renege leave through that Renege output. They can be routed back to
the original line (as in the example below), routed elsewhere in the model, or they can exit the
model.

Reneging model
In the Reneging model, parts wait in the first buffering queue until they can be heated by a fur-
nace, then wait for processing in a second buffer. If too much time passes before a part is pro-
cessed (such that it cools down), the part is sent back to the first buffer to wait for reheating.

The Options tab of the Queue that represents Buffer 2 specifies that a part will wait 5 minutes
before it must be returned for reheating. The relevant information has been cloned onto the
model worksheet. As seen in its Results tab, the Queue block automatically counts and reports
how many items have reneged.

Jockeying
Jockeying is when items move from one waiting line to another in an attempt to gain some
advantage. To see a good example of jockeying, go to any supermarket and watch as people
leave the end of a slow moving cashier’s line to try and get onto a faster line.

The reneging feature on the Options tab of a Queue block is useful for building a model of this
type of behavior. Normally, items renege if they have spent too much time in a queue. But the
Queue block has a connector that can force reneging of the last item in the line. The
Jockey.mox model is a good example of this.

Reneging model

Queueing 283
Sorting items using the Queue Equation block

D
iscrete E

vent
Jockey model
In this model customers arrive from the Create block and are routed through the Select Item
Out block to the shortest of three possible queues.

As customers wait in the queues it is possible for the lines to move at different speeds. The last
customer in each queue has the option to move to another queue if a shorter line opens up.

Sorting items using the Queue Equation block
The Queue Equation block (Item library) is used to release items in an order that is based on a
ranking rule. Items enter the queue and are stored in the order of their arrival (FIFO). However,
instead of the items leaving in FIFO order, an equation in the block’s dialog determines which
item (if any) should leave the queue next. The equation is automatically calculated once for
each item in the queue and the results are used to assign a ranking for each item. The item with
the best ranking is the one that is allowed to leave next.

How the block works
Importantly, only the equation results from the winning item are used for that particular calcu-
lation cycle. For example, if the queue currently holds 10 items, the equation will be calculated
10 times and 10 individual sets of equation results will be collected. But only the equation
results from the item with the best ranking will be used; results from the other 9 items are dis-
carded.

So that the item leaving next will be properly chosen, by default a new calculation cycle is ini-
tiated every time an item enters or leaves the queue or when a value input connector receives a
message. To override the default behavior, the factors that initiate calculation cycles can be
controlled through check boxes in the block’s Option tab.

The tables below describe a number of equation input and output variables that are unique to
the Queue Equation block. Along with the common input and output variables described in
“Equation components” on page 190, these variables are designed to help users write equations
that will properly select the next leaving item. In particular, the QEQ item rank variable is used
to assign a ranking to each item in the queue.

☞ At least one QEQ item rank output variable must be defined for this block to function properly.

Jockey model

284 Queueing
Sorting items using the Queue Equation block

D
is

cr
et

e
E

ve
nt

Once each item has been assigned a ranking, the items are released from the queue according
to the ranking rule selected in the Options tab’s Release popup; the ranking rules are listed on
page 285. The block's internal data structure keeps track of the ranking assigned to each item.

☞ Giving an item a Blank ranking makes it an ineligible candidate for leaving the queue for that
particular query cycle

Variables
The Queue Equation block has several types of input and output variables. The tables below
(input variables and output variables) describe the common set of variables shared by all equa-
tion-based blocks. The following variables are unique to the Queue Equation block.

To modify the number of rows used in the variable tables:

• Change the number of rows in the table by clicking the green +/- resize button in the table’s
bottom right corner and entering the number of rows desired.

• Delete rows by first selecting the rows you wish to delete, clicking the green +/- resize but-
ton, and then selecting the option to "delete selected rows."

• Duplicate any rows by first selecting the row you wish to duplicate, clicking the green +/-
resize button, and then selecting the option to "copy selected row."

Input variables
.

☞ The AR variables are only shown in the Queue Equation block if Enable Advanced Resources
(AR) is checked in the block’s Options tab and the model contains a Resource Manager block
(Item library included with ExtendSim DE and ExtendSim Pro).

Input Variable Uses

QEQ arrival time The time the item arrived to the queue

QEQ FIFO position The item’s first-in, first-out (FIFO) position in the queue

QEQ current best item rank The best (highest or lowest) item rank result for the current
calculation cycle

QEQ attrib last item to exit Provides the chosen attribute value of the last item to exit the
block

QEQ num items in queue The number of items currently in the queue

QEQ static calc cycle init A static variable that gets initialized to its starting value at the
beginning of every calculation cycle. Changes to this variable
remain fixed (static) across equation calculations.

QEQ static item value A static variable used to temporarily store information on
items during their stay in the queue.

AR requirement is avail This boolean variable is True if an advanced resource (AR)
requirement is available for the current item. See note below.

AR num requirements avail Provides the number of advanced resource (AR) requirements
available for the current item. See note below.

Queueing 285
Sorting items using the Queue Equation block

D
iscrete E

vent
Output variables

As mentioned earlier, while you can specify other equation results, one of the output variables
has to be of the type QEQ item rank. Furthermore:

• Only the results for the item ranked best will be output.

• You can use more than one QEQ item rank variable; the secondary ranking variable will be
used to arbitrate in the case of tied ranking.

☞ These variables are only available for the item that is currently being released.

Ranking rules
The Release popup on the Options tab provides the following selections to determine which
item should be released first:

• Highest ranked item. Each item’s rank value is calculated by the equation and the item with
the highest ranking is allowed to exit.

• Lowest ranked item. Each item’s rank value is calculated by the equation and the item with
the lowest ranking is allowed to exit.

• The first True ranked item. The equation will be calculated once for each item until either an
item receives a True ranking or there are no items left to evaluate.

• All True ranked items. All items receiving a True ranking are moved to an internal depar-
tures list where they are immediately and permanently available to be moved downstream.

• The results are saved for each item in the departures list. These results are used (or
broadcast) at the time the item exits the queue.

• Items in the departures list are no longer evaluated by the equation. This can reduce the
number of times an item is evaluated, reducing run times.

• Items are released in FIFO order.

Least dynamic slack
Least dynamic slack is a ranking rule for queues that tends to reduce the “lateness” of a
sequence of orders. Slack is defined as the due date minus the remaining processing time. In
essence, it is the “float” that is available before the item is due to be completed. When using
slack to sort items, priority is given to those items that are closest to being late. In a model that
represents orders for services or goods, choosing the order with the least dynamic slack tends
to minimize the number of late orders.

Output Variable Uses

QEQ item rank Defines each item’s rank (position) in the queue. At least one
of the output variables must be of this type.

QEQ halt calculation cycle If set to True, this variable will prematurely halt the current
calculation cycle.

QEQ next item Controls which item in the calculation cycle is evaluated
next.

AR allocate requirement If set to True, the current item’s advanced resource (AR)
requirement will be allocated to it. See note above.

286 Queueing
Sorting items using the Queue Equation block

D
is

cr
et

e
E

ve
nt

Least Dynamic Slack model
The example model Least Dynamic Slack illustrates the improvement in on-time performance
that can be achieved by sequencing orders by least dynamic slack instead of first in, first out
ordering. The two models are identical, except the top model uses Queue Equation blocks with

least dynamic slack calculations and the bottom model uses Queue blocks and typical FIFO
ordering. In the model, the equations in the Queue Equation blocks calculate the dynamic slack
for each item. The item with the smallest dynamic slack (least amount of time before being
late) will be selected first. As seen on the plot which has been cloned onto the model work-
sheet, on-time performance is higher using least dynamic slack (top line) compared to FIFO
(bottom line).

Minimizing setup
In some systems, setup time (the changeover from one product to another) can add significant
delay to the processing of items. If this is the case, it may be useful to process the same item
type until there is no longer any of that item type in the queue. Only when a particular type of
item has been exhausted will another type of item be processed. Giving priority ranking in a
queue to the same type of product that has just exited the queue reduces the number of setups
or changeovers between products. Like least dynamic slack, minimizing setup time is another
type of queue ranking rule.

Minimize Setup model
The model Minimize Setup compares the Product attribute for each item in the Queue Equa-
tion block to the Product attribute on the last item to leave the queue. The first item with its
Product attribute value equal to the item that has just exited is released first. If no item in the
queue can be found with an attribute value that matches the last exited item, the first item in the
queue is selected. The plot shows the effects of this rule: the queue builds up initially until it
can combine enough batches together to gain an efficiency from minimizing the setup time.

Least Dynamic Slack model

Queueing 287
Sorting items using the Queue Equation block

D
iscrete E

vent
(The example includes a second model, with a FIFO queue instead of a Queue Equation block,
for comparison purposes.)

Maximizing service levels
In a service system, the service level can be defined as the number of customers served within
a certain time period. For instance, technicians might be rated on the percentage of customer
requests fulfilled within a certain time period. To maximize this, a queue that applies the maxi-
mize service level rule gives priority to those customers who waited less than the service level
time, leading to dramatic improvement in the service level. However, this type of system might
not be popular with real-life customers since some of them may have to wait a very long time
while other customers who arrived later would wait a much shorter time.

Maximize Service Level model
The top section of the Maximize Service Level model uses a Queue Equation block to sort the
queue into two priority levels:

• The service priority is the customer who has spent the longest time (but less than 10 min-
utes) in the queue

• Customers who have waited longer than 10 minutes are placed at the back of the line

The lower section of the model is exactly the same as the top, except it uses a Queue block in
FIFO sorted queue mode. As the model is run, two plotters show the effect on service level and
wait time. Comparing the service level of the upper model to the bottom model, it is obvious
that there is a dramatic improvement if the sorting rule is used. However, the second plotter

Minimize Setup model

288 Queueing
Matching items using the Queue Matching block

D
is

cr
et

e
E

ve
nt

makes it equally as obvious that some customers have a much longer wait when the service
level is maximized.

Combined rules
Because of its tie-breaking capabilities, the Queue Equation block can be used to model situa-
tions where two items are considered equal using the primary sorting rule but a secondary rule
is used to determine the item with the higher priority.

Combined Rule model
The Combined Rule model uses the least dynamic slack as the primary rule. However, if the
least dynamic slack is within 2 time units, the rank (order of the items in the queue) is used.

Matching items using the Queue Matching block
The Queue Matching block has a variable number of item connectors where each connector
represents a separate internal queue. Within each queue, the block sorts items into different
groups based on each item's match attribute value. Items are released from a group only when
the required number of items are present in each group in each queue.

Maximize Service Level model

Combined Rule model

Queueing 289
Advanced queue topics

D
iscrete E

vent
This block is especially useful for making sure that items have a particular characteristic at a
specific time. For instance, you would use this queue to reassemble parts in the correct order or
to insure that subassemblies are correctly matched with each other.

☞ For more detail, please see the Queue Matching online help by clicking the “Help” button in
the lower left of the block’s dialog.

Queue Matching model
In the following example, electronic systems arrive from the field, are separated into their indi-
vidual components for refurbishing, and are reassembled. In this operation, all of the compo-
nents but only 40% of the housings need to be reworked. In addition, it is important that the
housings for each system be reassembled with their original (refurbished) component set.

The Information block counts each electronic system as it arrives and outputs the total number
that have passed through the block. The Set block uses this value to set a Serial Number attri-
bute for each electronic system. After refurbishment, the system is reassembled using its origi-
nal parts.

Other models that use the Queue Matching block
The folder Examples\Discrete Event\Queue Matching contains additional models that use the
Queue Matching block. Those models explore more advanced topics such as modeling fixed
and variable requirements for specific items.

Advanced queue topics
This section discusses viewing, initializing, and animating the contents of a queue. These tech-
niques are useful in creating a more exact model as well as for debugging and/or validating a
model.

Viewing and manipulating queue contents
Although the Queue itself has a Contents tab that can show and report the items within the
Queue at any time (See “Item Contents of queues and activities” on page 210), a powerful
ExtendSim feature is the ability to also manipulate the contents of a queue. The Queue Tools
block (Utilities library) allows you to view items in a queue, manually manipulate the ordering
of those items, and initialize the queue’s contents. To use this block, connect from the L
(length) output of a Queue or Queue Equation block to the value input connector of a Queue
Tools block. The block has two tabs, View and Options, as discussed in the following sections.

Queue Matching model

290 Queueing
Advanced queue topics

D
is

cr
et

e
E

ve
nt

View tab of Queue Tools block
The Queue Tools block’s View tab is used to manipulate items in a Queue or Queue Equation
block and display information about the items. When the model is run, every item in the
attached queue will have an entry in the table.

Popup menus at the top of the columns
are for selecting which of the item’s prop-
erties (attribute, quantity, priority, and so
forth) to view. There are also buttons
(Up, Down, Destroy) on the View tab that
can change the rank of an item in the
queue or delete an item from the queue.
For instance, in the screenshot to the right
an item with a priority of 4 has been
moved in front of other items with priori-
ties of 1.

To manipulate the items in a queue, run the model, pause the simulation at the desired point,
select an item, and use the buttons in the dialog to move or destroy it. (To pause a simulation
run, click on any cell in the Queue Tools table or use the Pause button in the ExtendSim toolbar
or the Pause menu command.) Leaving this block open (or having a clone on the model work-
sheet) while the simulation is running will slow the model down; it is best to close it when not
needed.

The View tab of a Queue Tools block is cloned onto the worksheet of the Initializing and View-
ing model, discussed in the next topic.

Initializing a queue
Sometimes it is useful to introduce items into the model at the start of the simulation run. The
Options tab in a Queue Tools block (Utilities library) can be used to preload a queue with items
at start time. Situations where queues might be initialized with items include:

• Reducing start-up bias. By placing items in queues at the start of a simulation, the model
begins in a state that is closer to steady-state.

• Importing current system status in a scheduling model. When using simulation to model a
detailed schedule, it is necessary to start the simulated system with the same work-in-prog-
ress as the real system.

To use this block, connect from the L (length) output on a queue to the value input connector
on a Queue Tools block. The block’s Options tab has three choices:

• No queue initialization: Items are not added to the queue at the start of the simulation.

• Initialize queue: The queue is initialized with the number of items entered in the number
field and property values as specified in the Properties table.

• Initialize from global array: The number of items and property values are read in from a
specified global array. Because global arrays can themselves be initialized from a number of
sources including Excel, a database, or the Internet, this is a very useful way to import the
contents of a queue from an external source.

Manipulating a queue

Queueing 291
Animating queue contents

D
iscrete E

vent
Initializing and Viewing model
The Initializing and Viewing example uses the Options tab of a Queue Tools block to introduce
items into a Queue block at the start of the simulation. A clone of the block’s View tab has
been placed on the model worksheet.

In this model, ten items are added to the queue at time 0. As seen in the Properties table in the
Queue Tools’s Options tab, these initial items have their item priority set to 1, their item quan-
tity set to 1, their Type attribute set to 1, and their Arrival attribute set to 0. The tab also indi-
cates that those items are represented by a cyan circle for animation. After the initial 10 items,
items from the four processes are animated as circles with the same color as the arrows.

Animating queue contents
By default, the number of items in a Queue block are displayed on its icon. However, a more
detailed animation showing an animation picture for each item can be obtained by putting the
Queue inside a hierarchical block and animating the hierarchical block's icon. To add this type
of animation to a model:

Encapsulate a Queue inside a hierarchical block (right-click the Queue block and select
Make Hierarchical.)

Open the hierarchical block's structure (right-click the hierarchical block and select Open
Structure) and add a number of identically sized animation objects from the icon tools in the
toolbar.

On the Item Animation tab of the Queue block, enter the first and last animation object
numbers in the Animate H-block objects fields.

Initializing and Viewing model

292 Queueing
Animating queue contents

D
is

cr
et

e
E

ve
nt

Animating Queue Contents model
This example model animates a priority queue. There are four possible priorities, as indicated
by the colored arrows on the left. Green circles represent items with a priority of 1, yellow cir-
cles indicate an item has a priority of 2, and so forth.

Items with a lower number for their priority (a higher priority) will move to the front of the
queue. The animation shows this happening as new items with lower priorities will pass other
items.

In this model, there are four rows and six animation objects per row on the icon of the hierar-
chical block to the right of the arrows. The Item Animation tab of the Queue block inside that
hierarchical block is set to Animate H-block objects: 1 to 24. This causes all 24 objects on the
hierarchical block’s icon to be animated, based on what is happening in the Queue.

For more detailed information about animating hierarchical blocks, see “Animating a hierar-
chical block’s icon without programming” on page 113.

Animating Queue Contents model

Discrete Event Modeling

Routing
Handling items from several sources;
sending items to multiple destinations

294 Routing
Commonly used blocks

D
is

cr
et

e
E

ve
nt

When building models, you will frequently encounter situations where you want to manipulate
items coming from several sources or send items to several possible destinations. Depending
on the purpose, there are several methods for accomplishing this. This chapter will cover:

• Items arriving from multiple sources

• Merging items from several streams into one stream

• Balancing waiting line lengths

• Using the Throw Item and Catch Item blocks

• Items going to several destinations

• Simple routing to one of several streams

• Scrap generation

• Successive, explicit, and conditional ordering of routes

• Routing based on item properties

☞ The models illustrated in this chapter are located in the folder \Examples\Discrete Event\Rout-
ing.

Commonly used blocks
The following blocks will be the main focus of this chapter. The block’s library and category
appear in parentheses after the block name.

Blocks that route items

Catch Item (Item > Routing)
Receives items sent remotely by a Throw Item block.

Select Item In (Item > Routing)
Selects an input and outputs its item.

Select Item Out (Item > Routing)
Sends each item it gets to a selected output.

Throw Item (Item > Routing)
Sends items remotely to a Catch Item block

Blocks that affect the flow of items

Decision (Value > Math)
Can be used with Item library blocks to control the flow of items in a portion of the
model.

Gate (Item > Routing)
Controls the flow of items in a portion of the model (area gating) or based on model
conditions (conditional gating).

Routing 295
Items from several sources

D
iscrete E

vent
Math (Value > Math)
Performs a mathematical operation, such as addition or subtraction, that can be used
with Item library blocks to control the flow of items in a portion of the model.

Max & Min (Value > Math)
Outputs the minimum or maximum value found among its input connectors. Can be
used with Item library blocks to control the flow of items in a portion of the model.

Items from several sources
Depending on your modeling needs, you may want to merge different streams of items into one
stream of individual items, select one item from several for routing or processing, or join sepa-
rate items into a single item.

• To merge streams of items from several sources into one stream, where each item remains
separate and retains its unique identity, use the Select Item In or Throw Item and Catch Item
blocks. You then typically direct the single stream into a queue. For example, you can use
this to represent traffic merging into one lane or people accessing one hallway from several
offices. A Select Item In block is used to:

• Merge streams of items in the “Merging Inputs model” on page 297.

• Direct items requiring more processing in “Cumulative processing time: time sharing”
on page 323.

• Reroute preempted items in “Preemption” on page 330.

Those models use the Select Item In block to route items. The section “Throw Item and
Catch Item blocks for merging item streams” on page 298 illustrates using a Catch Item
block to merge multiple streams of parts into one stream.

• To select an item for processing from several sources based on some decision, use the Select
Item In block. The decision can be a logical decision (choose every other item to route to the
top waiting line) or it can be based on some characteristic of the item (get the item with the
highest priority). The specifications for the decision are determined by the entries you make
in the dialog of the Select Item In block and are modified by blocks connected to its “select”
input connectors. Using the Select Item In block to choose specific items is shown in “Bal-
ancing multiple input lines” on page 297.

• To join items from various sources and process them as one unit, use a Batch block, as
described in “Batching” on page 346. This is most common when modeling manufacturing
processes or packaging operations where subassemblies are joined together. It is also used
when two or more items need to be temporarily associated with each other for processing or
routing, such as a clerk processing an order. Note that batching differs from using the Select
Item In and Select Value In blocks, which only merge streams of items so that items remain
separate and are processed separately.

☞ To merge streams of items from one hierarchical layer into one stream at a different hierarchi-
cal layer, you can add connectors to the hierarchical block or use the Throw Item and Catch
Item blocks, at shown on page 298.

296 Routing
Items from several sources

D
is

cr
et

e
E

ve
nt

Select Item In dialog
The Select Item In block chooses an item from one of its input connectors and sends that item
to its output connector. The selection is based on settings and options in the block’s dialog.

Selection options
The Select Item In block has several rules for selecting an item from its input connectors:

• Item priority. Selects the input connector that has an available item with the highest priority
(the lowest numerical value for its priority.) For example, you could use this option to select
from a group of queues to a single activity. The queue with the item that has the highest pri-
ority will be selected. This option always starts and restarts its selection search at the top
input.

• Random. The inputs are selected randomly based on probabilities entered in the block’s
selection table. Enter probabilities in decimal format. For example, enter 0.75 for 75%. If the
entered numbers do not equal 1.00, the actual sum will appear in red in the bar below the
Probability column. If Select from: all inputs is chosen, an input will be randomly selected
whether or not an item is available at that input. This situation can potentially cause starving,
as discussed below. If Select from: only inputs with available items is chosen, the block
will only select from inputs with available items.

• Select connector. The value received at the select connector determines which input is
chosen. The block’s dialog has an option for setting which value chooses the top input; the
default is 0. The lower connectors will be numbered sequentially after the top connector.
That is, if the top input is chosen by a select value of 1, the second input will be numbered 2,
the next lower input would be numbered 3, and so forth. In that case, a value of 3 at select
would cause the item from the third connector from the top to be selected. Note that, even if
items are available at the other inputs, the block will wait for an item at input 3, potentially
causing starving as discussed below.

☞ See “Item library blocks” on page 413 for some precautions when using this option with a Get
block.

• Sequential. Selects the inputs in strict sequential order starting at the top; this is also known
as a “round robin” selection. This option could cause starving (discussed below), since the
block will wait for an item to become available at each selected input.

• Merge. Items are taken as they become available through any input. Generally, this option is
used to combine the flows of items where there is no blocking of items arriving at the Select
Item In block. Inputs are selected in a “round robin” fashion starting from the top; once a
selection has been made the selection search will resume at the next lower input.

☞ Residence blocks such as the Activity have variable item input connectors. This works the
same as using the Select Item In block in Merge mode to merge multiple item streams.

Starving conditions
If an item is not available from the selected input of a Select Item In block, the following
options will cause a starving condition:

• Random (if Select from: all inputs is chosen)

• Select

• Sequential

Routing 297
Items from several sources

D
iscrete E

vent
Merging several item flows into one stream
The Select Item In block can combine the inputs from any number of sources into one stream
of output items.

☞ An alternative is to use the variable item input connectors on an Activity or other residence
block.

Merging Inputs model
In the Merging Inputs example model, the Select Item In block will accept items from any of
the three inputs. Its dialog is set to Select input based on: merge. If the Select Item In’s out-
put is blocked, the block will force items to wait in the Queues (labeled Buffers 1-3). When the
Select Item In becomes unblocked, it will check each input in turn to try to pull an item
through for processing by the Activity. As you can see in the table that has been cloned from
the Select Item In block, when it is ready to process items, the Activity gets whichever item is
available. This can cause some queues to have longer waiting lines than others, as you can tell
from their Results tabs.

Balancing multiple input lines
To even out the queue lengths of multiple input lines, use a Select Item In block controlled by
a Max & Min block (Value library), which checks the length of each queue. An example of this
would be three loading docks that fill up as trucks unload, and you want items to come first
from the dock that is most full.

Merging Inputs model

298 Routing
Items from several sources

D
is

cr
et

e
E

ve
nt

Input Line Balancing model
The Input Line Balancing model is the same as the Merging Inputs model, except a Max &
Min block looks at the length for each of the queues and sends that information to the Select
Item In block.

On the Max & Min block, the con output connector tells which of the inputs has the largest
value, in this case it indicates the longest queue. This tells the Select Item In block which
queue to retrieve the next item from. In the dialog of the Select Item In block, Select input
based on: select connector and Top input is chosen by Select value: 1 have been
selected. As you can see from the cloned Throughput table, items are drawn in a balanced man-
ner from each line, and the queue lengths are almost equal, as opposed to what happened in the
Merging Inputs model, earlier.

Throw Item and Catch Item blocks for merging item streams
The previous examples discussed routing items using connections to blocks that are nearby and
at the same level of hierarchy. Sometimes, especially in large models, it is necessary to send an
item to a different hierarchical layer. The Throw Item and Catch Item blocks are especially
useful when there are items from various locations in a model (even from various hierarchical
levels) that need to be sent to one place. Note that these blocks are used as an adjunct to rout-
ing, not a replacement for the methods described previously.

Throw Item and Catch Item blocks pass items without connections and can even be used deep
within nested hierarchical blocks to send items to other hierarchical blocks. For that reason,
they are sometimes used instead of the Select Item In and Select Item Out blocks.

☞ Throw and Catch blocks should only be used when named connections will not be sufficient.
For instance, to pass items through different levels of hierarchy or to use the routing features
on the Throw and Catch blocks.

Throw & Catch model
The Throw Item and Catch Item blocks can also be used to merge several item flows into one
stream. In the following example, three Throw Item blocks route items to Shipping, which is a

Input Line Balancing model

Routing 299
Items going to several paths

D
iscrete E

vent
hierarchical block containing two blocks, a Catch Item and an Exit. The Catch Item block is
labeled To Shipping and is designated as belonging to Catch group 1.

A popup menu in the Throw Item
block’s dialog displays the labels of
the possible Catch Item blocks.
You have the option of routing all
items to the Catch Item block spec-
ified in the popup menu (as shown to the right) or routing items to different Catch Item blocks
depending on the value of a specified attribute or priority (see “Throw and Catch Attributes
model” on page 307).

☞ You must enter text in the label field at the lower left corner of each Catch Item block’s dialog.
Only labeled Catch Item blocks will appear in a Throw Item block’s popup menu.

Catch Item groups
If you are working with a large num-
ber of Catch Item blocks, you may
want to organize them into groups. To
do this, select or create a group name
using the Catch Item group popup
menu in the Catch Item block, shown at right. Then use the Catch Item group popup menu in
a Throw Item block to select the desired group. Once a group is selected in the Throw Item
block, the block’s Specify Catch Item by: Label popup menu will only contain the labels for
the Catch Item blocks in the selected group.

☞ Groups can only be defined in a Catch Item block.

Items going to several paths
In many cases, you will need to route items from one stream to one of many different streams:

• Taking a stream of items and routing them to different activities or operations is called par-
allel processing. In parallel processing, each item is handed off to one of several activities,
such as an Activity block. The logic that determines which operation the item is routed to
can be simple (the part is machined at the first available station) or it can be complex (bottle

Throw & Catch model

Selecting Catch Item block labeled “To Shipping”

Catch Item group popup menu

300 Routing
Items going to several paths

D
is

cr
et

e
E

ve
nt

type A is filled at Machine 3). Different methods of routing items to parallel processes are
described in detail throughout this chapter. See also “Processing in parallel” on page 318.

• For situations where one item is unbatched or separated into its component items, use the
Unbatch blocks. For example, you might receive a shipment of furniture consisting of 8
desks, 20 chairs, and 7 typewriter returns, or a mail cart with 1000 pieces of mail. You use an
Unbatch block to disassemble that item into its individual components, then route the items
to appropriate destinations, as described in “Unbatching” on page 353.

• To select the path an item should go on, use the Select Item Out or Throw Item blocks. The
Select Item Out block is useful for routing a stream of items to several paths based on some
decision. For instance, you can send all the parts that need rework to a rework station, and
ship the remaining parts. Or direct patients requiring immunizations to the Injection Clinic.
The use of these blocks is described in “Sequential ordering” on page 304, “Explicit order-
ing” on page 305, “Routing decisions based on Item properties” on page 306, and “Select
Item Out dialog” below.

Select Item Out dialog
The Select Item Out block is appropriate for routing items onto one path or another. Its dialog
contains several options for determining which route an item should take.

Selection options
The logic in the dialog of the Select Item Out block chooses which output connector an input
item should be routed to. The selection options are:

• Property. The appropriate output is determined using the item’s property–its attribute or pri-
ority. Values to represent the outputs are entered in the table’s Select Output column; the
default is that 0 selects the top output. For each item, the block finds the value of the speci-
fied property in the table’s second column (which is named for that property), and deter-
mines the corresponding output connector for that value in the Select Output column. Since
the block will hold the item until there is downstream capacity, this option can cause block-
ing.

• Connector priority. An attempt is made to send the item out each connector, in the order of
the connector’s priority, until the item is accepted by a connected block. The priority for
each connector is entered in a table in the block’s dialog. The top priority is the lowest num-
ber, such that an output with a priority value of 1 has a higher priority than an output with a
priority value of 3.

☞ Note that this is different from assigning a priority to an item and selecting the output based on
the item’s priority, as can be done with the block’s Property option. With the Connector pri-
ority option, the Select Item Out block essentially prioritizes the output path, not the item.

• Random. Outputs are selected randomly based on settings in the block’s probability table.
Enter probabilities in decimal format. For example, enter 0.75 for 75%. If the entered num-
bers do not equal 1.00, the actual sum will appear in red in the bar below the Probability col-
umn. When the option If output is blocked: item will try unblocked outputs is chosen,
the block will randomly try to find an output that can accept the item. When If output is
blocked: item will wait for blocked output is used, the block will select an output and the
item will wait until that output is able to accept the item; this can cause blocking.

Routing 301
Items going to several paths

D
iscrete E

vent
• Select connector. The value received at the select connector determines which output is
chosen. The block’s dialog has an option for setting which value chooses the top output; the
default is 0. The lower connectors will be numbered sequentially after the top connector.
That is, if the top output is chosen by a select value of 1, the second output will be numbered
2, the next lower one would be numbered 3, and so forth. In that case, a value of 3 at select
would cause the item to go to the third connector from the top. Since the block will hold the
item until there is capacity downstream from connector 3, this option can cause blocking.

☞ See “Item library blocks” on page 413 for some precautions when using this option with a Get
block.

• Sequential. Outputs are selected one after the other in sequential order starting from the top;
this is also known as a “round robin” selection. When the option If output is blocked: item
will try unblocked outputs is chosen, the block will try the next connectors sequentially.
When If output is blocked: item will wait for blocked output is used, the block will
select an output and the item will wait until that output is able to accept the item; this can
cause blocking.

☞ The Select Item Out block expects integer values for comparison and will truncate non-integer
values. For example, if select connector is chosen as the selection condition, the numbers
0.001 and 0.999 received at the SelectIn input would both be truncated to a 0.

Blocking conditions
The Select Item Out block is a decision-type of block; its default is to pull in the item and then
determine the path that the item will take. In some situations, the selected output path may be
blocked and the selected item will have to wait to leave. Some selection conditions can cause
the items behind a selected item to be blocked:

• Property

• Random (when If output is blocked: item will wait for unblocked output is chosen)

• Select

• Sequential (when If output is blocked: item will wait for unblocked output is chosen)

For the random and sequential selection conditions, the ability to choose what happens if the
output is blocked is useful for certain modeling problems. For instance, in the Simple Routing
model shown below, if the top Queue block is designated to get the item, but it is blocked, the
Select Item Out block will route the item to an unblocked Queue.

Predicting the path of the item before it enters the block
As mentioned above, an item can be pulled into a Select Item Out block but not be able to pro-
ceed because the downstream path is blocked. An alternative to this situation is to cause the
item to wait in an upstream queue, rather than in the Select Item Out block. This is accom-
plished by checking Predict the path of the item before it enters this block. When this is
enabled, the Select Item Out block will query upstream to determine the properties of the next
item to arrive. It then checks to see if the appropriate downstream path is clear. Only if the item
can be sent out the desired output will the item be pulled in. This guarantees that the item will
not get “stuck” in the Select Item Out block.

☞ This setting requires that any properties used to make the selection have to be set before the
item begins to move into the Select Item Out block. For example, a Queue is necessary
between a Set block and a Select Item Out block.

302 Routing
Items going to several paths

D
is

cr
et

e
E

ve
nt

Implicit routing
The simplest, but not necessarily the best, way to route items is by creating connections
between the output of the collection point and the inputs of each activity-type block. This
causes ExtendSim to pass items to the first available activity.

However, if more than one activity-type block is free when an item is ready, it is not obvious
which block will get the item. For instance, a Queue that holds items for three Activity blocks
would look like the model below.

If two or more machines are free when an item comes out of the queue, the machine that was
first connected will get the item. With these types of simple parallel connections, even just
disconnecting and then reconnecting a connection line could change the order of activities get-
ting items. This implied routing may not be reflective of the actual system and is usually not
want you would want.

 Unless it is completely unimportant in the model, you should always use the Select Item In and
Select Item Out blocks to explicitly state how items should be routed.Otherwise, the order in
which their connections were made will dictate the routing.

Simple routing
It is most common to route a random number of items to one section of the model, while the
rest are routed to another. An example of this is an intersection where a number of cars will
turn to the left, some will go straight, and some will turn right.

Simple Routing model
In this model, items are routed randomly to one of three machines, as indicated by the setting
Select output based on: random. The probability table in the dialog of the Select Item Out

Simple Connections model

Routing 303
Items going to several paths

D
iscrete E

vent
block indicates that 0.50 (50%) of the items will go to the top Queue while the remainder will
be distributed equally between the remaining two Queues.

Notice that there are queues in front of the machines. If you omitted the queues, there is a pos-
sibility that items arriving from the Create block could be blocked. For example, if the second
item were destined for the top machine, but that machine was still processing the first item, the
other machines would have to wait for items until the top machine finished processing and
pulled in its item.

☞ The previous model routed items based on probabilities. To distribute an input item to any
available output, in the Select Item Out dialog choose Select output based on: sequential
and If output is blocked: item will try unblocked outputs.

Simple Routing One Queue model
A model similar to Simple Routing would be if there were only one queue and it was placed
before the Select Item Out block. As mentioned above, however, if two sequential items are
destined for the same activity they will block items that arrive behind them. The option If out-
put is blocked: item will try unblocked outputs allows the Select Item Out block to try
other outputs if the first choice is unable to accept the item.

As seen in the model, even though 50% of the items should be going to the top machine, item
distribution is almost even. Because all the machines process items for the same amount of
time, the top machine is often busy and, rather than cause the system to be blocked, its
intended item is routed to a different machine.

Simple Routing model

Simple Routing One Queue model

304 Routing
Items going to several paths

D
is

cr
et

e
E

ve
nt

Scrap generation
An important aspect of some systems is modeling the generation of scrap or simulating a yield
rate. For instance, many manufacturing processes create an expected but irregular quantity of
waste or bad items. This can be accomplished in ExtendSim by randomly routing some items
out of the normal processing stream.

Scrap Generation model
This example is similar to the model that is described in “Simple unbatching” on page 355,
except it has a Select Item Out block that determines whether items coming from the Unbatch
block should continue for processing or be discarded, and the Activity block processes two
items at a time. The Select Item Out block is set to Select output based on: random. By set-
ting a probability that 0.90 of the items will exit through the top connector and 0.10 through
the bottom (scrap) connector, the Select Item Out block causes one out of every ten items to
become scrap.

As an alternative, you can also set and check attributes to represent items that need to be
scrapped. This will be shown later in this chapter.

Sequential ordering
To hand items to operations in successive order regardless of whether another operation is free,
use the Select Item Out block set to Select output based on: sequential.

Scrap Generation model

Routing 305
Items going to several paths

D
iscrete E

vent
Sequential Ordering model
With the sequential setting, the Select Item Out block will choose outputs in successive order
starting from the top output. The block’s dialog is set to If output is blocked: item will wait
for blocked output.

The first two activities are set to process for 1 time unit while the third activity takes only 0.5
time units. For this model, even if the third activity is the first one ready to accept an item, it
will only get an item after the first and second activities have pulled in an item. Also note that
an item is only pulled from the Queue block when an activity has finished processing, poten-
tially causing blocking in the system. The example “Balancing multiple output lines” on
page 309 shows a solution for this.

☞ To distribute an input item to any available output, choose Select output based on: sequen-
tial and set the block to If output is blocked: item will try unblocked outputs.

Explicit ordering
If there are several operations, and you prefer certain ones to be active more than others, you
can explicitly state which operations have a higher priority for items. This is common when
you want to avoid using an operation because it is not as efficient (such as an older piece of
equipment) or because it is an uneconomical use of a resource (having a supervisor wait on
customers.)

Choosing the selection condition connector priority in its dialog allows the Select Item Out
block to be used to specify the priority of each output.

☞ Note that this is different from assigning a priority to an item, since the Select Item Out block
essentially prioritizes the output path, not the item.

Sequential Ordering model

306 Routing
Items going to several paths

D
is

cr
et

e
E

ve
nt

Explicit Ordering model
For example, assume you want Machines 1 and 3 to get most of the items for processing, and
Machine 2 to only get items if Machine 1 and 3 are busy. The model is:

The dialog of the Select Item Out block is set to Select output based on: connector priority.
In the table, the highest priorities (which are the lowest numbers) are assigned to the top and
bottom outputs, and the next lowest priority is assigned to the middle output. In this case,
Activity 1 has first priority on items. If Activity 1 is busy, Activity 3 will get the item. Only if
Activity 1 and 3 are busy will Activity 2 get the item.

☞ As seen in this model, multiple outputs can have the same priority. However, the item will go to
the topmost output that has the highest priority and is free. If that output is not free, the next
lower output with the same priority will be checked to see if it is free, and so forth. If this is not
what you want, set the priority values explicitly. For instance, you could set the output priori-
ties to 1, 2, and 3 rather than to 1, 2, and 1 as was done in the example model.

Routing decisions based on Item properties
You may want to route items based on some characteristic of the item, such as its priority, size,
quality, age, or state. To do this, assign an attribute or priority to the item and read that property
value to route the item.

Explicit Ordering model

Routing 307
Items going to several paths

D
iscrete E

vent
Attributes for Routing model
To specify whether or not an item must have a process performed on it, set an item’s attribute
to a yes-or-no value using the Random Number block (Value library) as shown in the Attri-
butes for Routing model, below:

The Empirical distribution in the Random Number block specifies that 75% of the items do not
require checking (0 value for the CheckItem attribute) and 25% do (1 for attribute value). The
Select Item Out block, set to Select output based on: property, reads the attribute value to
determine which of two routes the item will take, one through the checking line (value = 1) and
the other around it (value = 0). The Select Item In block is used to combine both lines into one
stream, exiting the simulation.

This method is especially useful if the checking process takes more than one step. For instance,
you may need to transport the item to the checking station using transportation blocks, but only
if checking is needed. All those steps would be between the Select Item Out block and the
Select Item In block.

With this model, an item that needs to be checked can be pulled into the Select Item Out block
but not be able to advance because there is already an item in the Activity. To prevent this, you
can cause the block to predict the path of an item before it enters, as discussed page 301.

☞ An item that requires checking that is blocked in the Select Item Out block will also block other
items that arrive after it, even if they do not need to be checked. If this is not how your process
works, insert a Queue before the Activity to hold items that need checking.

The example “Machines that can only process certain types of items” on page 312 is another
instance of using attributes to route items. For a very different approach, the DB Job Shop
model located in the folder Examples\Discrete Event\Routing uses information from the
ExtendSim database to route items.

Throw and Catch Attributes model
As described in “Throw Item and Catch Item blocks for merging item streams” on page 298,
the Throw Item block can be used to route items to a specific Catch Item block that is identi-
fied by its label. Throw Item blocks can also be used to route items to different Catch Item
blocks depending on the value of an item’s attribute or priority. A modification of the Attri-

Attributes for Routing model

308 Routing
Items going to several paths

D
is

cr
et

e
E

ve
nt

butes for Routing example, built using Throw Item and Catch Item blocks rather than the
Select Item Out block, is shown below.

In this example, The Throw Item block is set to Specify Catch block by: Property:
Machine Type, where Machine Type is a value attribute. The Throw Item block reads the
Machine Type attribute and routes the items to the appropriate Catch Item block according to
the table in the throwing block’s dialog, which is cloned onto the model worksheet.

To cause an attribute or priority value to be associated with a specific Catch Item block, type
the value into the “Property Value” column and select the appropriate Catch Item block using
the popup menu in the “[Catch Block]” column.

State Action model
Another routing example is the State Action model where items are routed to operations
depending on their state. For complete information, see “State/Action models” on page 16.

Conditional routing
Sometimes you will want to route items based on the current conditions of the model. For
example, monitoring queue lengths to determine whether or not an activity will be brought on-
line or balancing the use of parallel waiting lines.

Bringing a system on-line
Most of the examples in this manual show items being passed to operations where all the oper-
ations are on-line and running. In many situations, particular operations are only started when
they are needed. You can bring another system on-line based on the time of day (such as in
“Scheduling activities” on page 325) or based on some other factor such as the backlog of
work.

Throw & Catch Attributes model

Routing 309
Items going to several paths

D
iscrete E

vent
Conditional Routing model
For example, you might have a
factory where most of the pro-
cessing is done by two
machines but excess work is
handled by a third machine.
ExtendSim can simulate this
easily using the Decision block
(Value library) and the Activity
block (Item library).

The L output of a queue that is
feeding one or more machines
outputs the number of items
waiting to be processed. If this
value is greater than a certain
threshold, you can route some of the items to another machine or activate another process.

In the model, the dialog of the Decision block specifies that the Y connector outputs a true
value (1) when the value at the A input is greater than 5. This activates the Gate block’s
demand connector so that it lets items through to the third machine (until then, it will not
accept items). When the Queue holds 5 or fewer items, the Gate closes.

You can also model this situation in the opposite manner, by having all the operation blocks
process items and then shut one or more of them down under certain conditions. If you do this,
items may be trapped in the shutdown operation until processing resumes.

When you bring a system on line, it may cycle on and off too frequently. See “Bringing an
activity on-line” on page 325 for some methods for avoiding this.

Balancing multiple output lines
Operations are often preceded by queues before each operation, such as a staging area for each
machine (as compared to the single staging area for all machines as in the “Explicit Ordering
model” on page 306.) The location and ordering of placement of queues in a model can affect
how the model performs.

Conditional Routing model

310 Routing
Items going to several paths

D
is

cr
et

e
E

ve
nt

Buffering Operations model
A model with queues before each operation could look like:

In the model, the queues have a maximum queue length of 30 each. The first queue that was
connected will receive all the items until that queue reaches its maximum, then the next queue
will start to fill (unless the first machine kept up with the flow of items, in which case the next
queue will never receive any items). In the Buffering Operations model, for example, most of
the items go to the top queue and get processed by Machine 1 and none of the items go to the
bottom queue to be processed by Machine 3. This is rarely what you want.

To even out the use of the machines, use a Select Item Out block set to select machines sequen-
tially, as shown in the “Sequential Ordering model” on page 305, and place a queue before
each machine. Note however, that if the machines work at different speeds, this will cause the
queue of the slowest machine to fill more rapidly than the other queues.

☞ A green bar across its top indicates that a Queue is set to something other than infinite capacity.
For instance, the Queues in this model are set to hold a maximum of 30 items and therefore
have green bars across their tops.

Output Line Balancing model
A better method than the Buffering Operations example would be to check the length of the
waiting line in each queue and give the next item to the queue that is shortest, causing the

Buffering Operations model: Parallel processing with buffering

Routing 311
Items going to several paths

D
iscrete E

vent
queue lines to be balanced. The Max & Min block (Value library) connected to a Select Item
Out block is excellent for this.

In the model, the Max & Min block tells the Select Item Out block which queue line is shortest
and thus which queue to hand the next item to. The Min & Max block is set to Output the:
minimum value and Top input connector # is: 1. With these settings the block’s top input
(L1) is number 1 and the con output reports which of the inputs (L1, L2, or L3) has the lowest
value, indicating the shortest queue. The dialog of the Select Item Out block is set to Select
output based on: select connector and Top output is selected by select value: 1.

Compared to the Buffering Operations model shown earlier, in this model the number of items
in the queues tend to be more balanced. However, the system is not as efficient as it could be
since an item often goes to the queue for Machine 1 even though Machine 3 is idle. This hap-
pens because if all the queue lengths are equal, the Max & Min block will report the first con-
nector as having the shortest queue length. In this case, Queue 1 has first priority for items and
the Max & Min block is just looking at the queue lengths and is not considering whether or not
the Activity is occupied.

Line Balance with Activities model
The previous model showed how to balance the queues. A more useful model would be to
include information about the items being processed when selecting the shortest queue. You
can do this by adding the value of an Activity’s F (full) connector to the queue length. The full
connector is 1 when the activity is at capacity and 0 otherwise. The resulting model, Line Bal-

Output Line Balancing model: Choosing the shortest queue

312 Routing
Items going to several paths

D
is

cr
et

e
E

ve
nt

ance with Activities, prevents items from going to a queue followed by an occupied activity
when other activities are idle.

As in the previous model, the queue lines tend to be more balanced than the Buffering Opera-
tions model; but this method makes more efficient use of the Machines.

☞ Yet another option would be to use a Workstation block to replace the Queue and Activity
blocks. The Workstation can report all of the items in its internal queue and activity through its
Length connector.

Machines that can only process certain types of items
A typical assembly line can handle more than one type of item at a time. For example, you may
have three stereo models being assembled on a single line. Most of the assembly is identical,
but a few different parts are used at different points. Unfortunately, some machines in such a
heterogeneous assembly line cannot work on particular models being assembled. The method
for accomplishing this is a combination of splitting items into different paths to establish the
different “types” of items, then recombining the paths appropriately for the different machines.
The Select Item Out block and the Select Item In block are handy in such situations.

Processing by Type model
Assume there is an assembly line where each item has an attribute called Type that is either 1,
2, or 3, depending on the type of item it will be. At one step of the assembly process, there are
four machines. Two of the machines can work on all three types, but one of the machines is old

Line Balance with Activities model

Routing 313
Items going to several paths

D
iscrete E

vent
and can only work on types 1 and 2, and the other machine can only work on type 3. The
model is shown below:

A Set block assigns a Type attribute to each item. The empirical table in the Random Number
block (Value library) indicates that there is a 50% probability that the item will be Type 2, and
25% probability that it will be either Type 1 or 3.

The Select Item Out block is set to
Select output based on: property. It
looks up the value of the Type attribute
(1, 2, or 3) and selects the appropriate
output (1, 2, or 3) based on entries in the
block’s options table, shown at right.

Notice the use of the queues as buffers in the above model. They are used to store the items by
type, with the top queue for Type 1, etc. Without the queues, the whole line could be blocked,
depending on the order in which items arrive. For example, if the first three machines are all
processing a Type 1 item, and a Type 1 item is the next to exit the Select Item Out block, block-
ing occurs until one of the machines is finished with its item. The fourth machine will not be
able to pull in an item until one of the other machines finishes processing and pulls in the new
Type 1 item. Even then, it will have to wait until a Type 3 item is output before it can process
anything.

☞ Named connections are used to simplify the look of this model. Without these, there would be
a spaghetti of connection lines connecting the Queue blocks to the Select Item In blocks.
Another option for organizing the model would be to use Throw Item and Catch Item blocks to
route the items to the appropriate machines.

Processing by Type model

Options table in Select Item Out block

314 Routing
Items going to several paths

D
is

cr
et

e
E

ve
nt

Discrete Event Modeling

Processing
Using activity-type blocks to cause and control processing

316 Processing
Commonly used blocks

D
is

cr
et

e
E

ve
nt

This chapter will discuss different ways to use activity-type blocks and how to control process-
ing time and the availability of items and resources. It will cover:

• Processing in series and in parallel

• Setting the processing time

• Bringing an activity on-line

• Interrupting processes: preemption and shutdowns

• Multitasking

• Kanban systems

• Material handling and transportation blocks

☞ The models discussed in this chapter can be found in the folder Examples\ Discrete Event\Pro-
cessing. That folder also contains some subfolders, as indicated in the relevant sections of this
chapter.

Commonly used blocks
The following blocks will be the main focus of this chapter. The block’s library and category
appear in parentheses after the block name.

Activity (Item > Activities)
Processes one or more items simultaneously; outputs each item as soon as it is finished.
Can also be used for multitasking.

Convey Item (Item > Activities)
Moves items on a conveyor from one block to another. Has dialog settings to define
whether the conveyor is accumulating or not, what the length of the item is, and how far
and how fast the item moves.

Create (Item > Routing)
Creates items or values randomly or by scheduled. Can be used to control shutdowns
for the Activity block.

Shutdown (Item > Resources)
Used to control shutdowns for an Activity (Item library) or Valve (Rate library). Useful
for setting random or constant time-between-failures (TBF) and/or time-to-repair
(TTR).

Transport (Item > Activities)
Moves items from one block to another. Has dialog settings for defining how fast and
how far the item moves.

Workstation (Item > Activities)
Acts as a FIFO queue combined with an Activity block, holding and processing items.
Takes in one or more items at a time, holds them in FIFO order, processes them simulta-
neously, then outputs each item as soon as it is finished.

Systems and processes
Systems encompass one or more processes, which are a series of activities that achieve an out-
come based on the inputs. Some examples of processes, the events that might drive them, and
the items that flow through or are consumed by the process are:

Processing 317
Processing in series

D
iscrete E

vent
☞ The following discussions most often refer to the Activity block for processing. However, the
Workstation block can often be used instead of a Queue and an Activity, and the Convey Item
and Transport blocks are also useful for simulating processing.

Processing in series
Serial processing occurs when items flow from one activity to another, where each activity per-
forms one required task on the item, out of a series of required tasks. This is most common in
manufacturing activities, order entry, or service-intensive situations. A simple example of

Process Event Item(s) Activity

Planning strategic
directions

Plan implementation Decisions Planning meetings

Developing a new
product

Employee has a new
product idea

A prototype Document the specifi-
cations

Manufacturing a prod-
uct

Receipt of raw materi-
als

Parts, labor Assemble the parts

Sales fulfillment Customer orders goods An order, or the goods
themselves

Process the order, ship
the goods

Call center support Customer calls on tele-
phone

Telephone call Route call to technical
support

Processing an insur-
ance claim

Claim is received (or
accident occurs)

Claim Review the claim

Emergency room
admitting

Accident Patients, medical per-
sonnel

Assess incoming
patients (triage)

Regulating traffic Traffic light changes Cars, pedestrians Cross the street

Computer network Packet is transmitted Packet of data Communication

Material handling Arrival of AGV Parts, AGVs Load part onto AGV

Hiring employees Company wins con-
tract

Employees Interview potential
candidates

Completing an
expense report

Employee finishes trip Report Prepare and file report

Writing a contract pro-
posal

Request for proposal is
issued

Proposal Research the require-
ments

Approving a loan Customer submits
application

Application Review credit history

318 Processing
Processing in parallel

D
is

cr
et

e
E

ve
nt

serial processing is an assembly line, where several processes are performed on one part prior
to shipment.

Since there are many machines in series without buffering queues between them, it is possible
that items will be not be able to leave one machine because the next machine will still be busy;
this is known as blocking (as discussed in “Blocking” on page 281. Serial processes can cause
the entire operation to be slowed to the speed of the slowest activity. This will cause utilization
to increase by the amount of time that the item is blocked. If this doesn’t accurately represent
your process, put a queue in front of each machine to represent a holding area, as shown in
“Select Item Out dialog” on page 300.

Processing in parallel
It is common in industrial and commercial systems for there to be multiple activities working
in parallel, each representing the same task being performed. For example, you might have five
machines that can each process parts arriving from the stockroom. Or three bank tellers who
are available to wait on customers. With the blocks in the Item library, there are many ways to
route items to parallel activities.

Remember that, unless items are purposefully duplicated in the model, they can only follow
one path at a time.

Parallel processing using one block
When you do not need to show each activity as a separate block, you can choose that the Activ-
ity block represent several operations that occur in parallel. This is accomplished by entering a
number greater than one for the Maximum items in activity field in the block’s Process tab.

The Activity block can take in items (up to the specified maximum) and process them for a
specified time starting from when they arrive. The item with the shortest time in the block
(based on the item’s arrival time and how long it takes to process) is passed out first. For exam-
ple, you could use the Activity block to represent a supermarket where customers arrive at dif-
ferent times and take varying amounts of time to shop. Customers who arrive early or who
only shop a little will leave first; customers who arrive later or shop a long time will leave later.

Simple parallel connections
You can also use multiple Activity blocks in a model, each of which represents a process that
can accept items in parallel with the other Activity blocks. The simplest way to hand out items
to separate parallel activities is by creating connections between the output of the collection
point and the inputs of each Activity. This causes ExtendSim to pass items to the first available
Activity block. However, if more than one block is free when an item is ready, it is not obvious

Serial Processing model

Processing 319
Setting the processing time

D
iscrete E

vent
which block will get the item. For instance, a Queue that holds items for three Activity blocks
would look like the model below.

☞ If two machines are free when an item comes out of the queue, the machine that was first con-
nected will get the item. With simple parallel connections, even just disconnecting and then
reconnecting a connection could change the order of activities getting items.

 Unless it is completely unimportant in the model, you should always explicitly state the order-
ing for parallel activities using the Select Item In and Select Item Out blocks. See “Items going
to several paths” on page 299 for examples of how to control the flow of items to parallel pro-
cesses.

Setting the processing time
Activities involve a processing time or delay that is the amount of time it takes to perform a
task. Processing time can be static or can vary dynamically depending on model conditions. It
can be random, scheduled based on the time of day, customized depending on the item that is
being processed, or any combination of these.

You model the processing or delay time explicitly using the Activity or Workstation blocks or
implicitly by specifying the length and speed in the Transport or Convey Item blocks. The
Activity block is most frequently used to represent a process or operation, and is illustrated in
most of the examples for this module

☞ The models discussed in this section can be found in the Examples\Discrete Event\Process-
ing\Time folder.

Processing time for an Activity
In the Process tab of the Activity block you can select that the delay is:

• A constant. This uses whichever number is entered in the Delay (D) field. See also the dis-
cussion of “Fixed processing time” on page 320.

• From the D connector. The processing time is the value at the D input, overriding any value
initially entered in the Delay (D) field. For example, see “Fixed processing time” on
page 320 and “Scheduled processing time” on page 320.

• An item’s attribute value. With this option, you can select an attribute to control the process-
ing time. This is illustrated in “Custom processing time” on page 322.

Simple Connections model

320 Processing
Setting the processing time

D
is

cr
et

e
E

ve
nt

• Specified by a distribution. This choice provides a random processing time, based on the dis-
tribution and its arguments selected in the dialog. An example of this is shown in “Random
processing time” on page 321.

• From a lookup table. This choice allows you to use an attribute value to specify the parame-
ters of a random distribution. With this option, two popup menus and a table appear. The first
popup is for choosing a distribution; the second is for selecting an attribute. The table is
where the processing time for each type of item is characterized. with each row containing a
different set of arguments for the selected distribution. As each item enters the block, its
attribute value identifies which row in the table the item is associated with, and thus what its
processing time is based on. This option is illustrated in the “Simulate Multitasking Activity
model” on page 337.

Processing time for other activity blocks
The Workstation block works much like a Queue combined with an Activity block. It has most
of the same options (shown above) for setting the processing time as the Activity. (Because of
its internal queue, the Workstation does not have a D input connector.) The Convey Item and
Transport blocks calculate an implicit processing time based on the settings for speed and
length entered in their dialogs. They are discussed in “Transportation and material handling”
on page 338.

Fixed processing time
Set the delay in the Activity dialog if the delay doesn’t change and you know how long it is.
For example, if Machine A always takes 5 minutes to process parts, enter the value 5 as the
processing time in the Activity’s dialog. This is most common in the early stages of model
building when you use constant parameters to get repeatable results.

Another method for having a fixed or constant processing time is to
connect to the D input of the Activity block. For instance, you can
connect from a Constant block (Value library) or a Slider control, as
shown at right. If you use the Slider, you can manipulate it with each
simulation run, or within a simulation run, to see the effect of various
processing times.

Connecting to the Activity’s D connector overrides any manual entry
in the Delay (D) field.

Scheduled processing time
If a process takes a specific amount of time under most conditions, but
takes another amount of time if the conditions are different, you can schedule the processing
time. This is common when simulating worker performance, where output could be a factor of
time.

Slider control used to
set Activity’s processing
time

Processing 321
Setting the processing time

D
iscrete E

vent
Scheduled Time model
For example, assume that a worker normally takes 5 minutes to perform a task, but takes 5.25
minutes to do the task after doing it for 6 hours. To do this, connect a Lookup Table block
(Value library) to the D input of the Activity block as shown in the following model.

The Lookup Table block is set to Lookup the: time. Data that represents the worker’s day is
entered in the Hours column; the time to perform the task is entered in the Task Time column.
As indicated in the Lookup Table’s dialog, a portion of which is cloned onto the model work-
sheet, the time to perform the task changes at hour 6.

Lookup Table block’s time units
Notice that the time unit for the Hours column in the Lookup Table’s dialog is hours and that
the time the worker takes to perform the task (Task Time column) is in minutes. The time units
for the model are hours, so the first column must be in hours. However, since the output of the
Lookup Table block is connected to the D connector of the Activity block, the Task Time col-
umn should be defined in the same time units (minutes) that are used for the Activity’s Delay
parameter. For this model, at a particular hour of the day (Hour column) an activity will take a
specified number of minutes to perform the task (Task Time column). Time unit consistency is
discussed in “Choosing time units for the columns” on page 261.

Random processing time
A common requirement for activities is to set a random processing or delay time. This is easily
accomplished by selecting a distribution in an Activity block.

Random Activity model
In the dialog of the Activity block, select the appropriate distribution, for example Normal, and
specify the value of the parameters, such as a mean of 2 and a standard deviation of 0.2. The

Scheduled Time model

322 Processing
Setting the processing time

D
is

cr
et

e
E

ve
nt

processing time will then be normally distributed and the Activity block will process each item
for approximately 2 time units.

For more information, see “Constants and randomness” on page 7, “Random numbers” on
page 197, and “Probability distributions” on page 198.

Custom processing time
Attributes can be used to specify how long a specific item will be processed. This is a very
powerful feature since the Activity block can recognize each item’s processing time and
behave accordingly.

Custom Time model
In the simplest case, set an item’s attribute value to the desired amount of processing time, then
use the Activity block to read the attribute value and process the item for that period of time.

The Custom Time model uses the Set block to set
the value of an attribute called CheckTime to the
amount of time it takes to check the item. Items
that need a final check have a CheckTime attri-
bute value of 5, for instance, and items that ship
unchecked have an attribute value of 0. That
value (0 or 5) is provided by the Random Number
block (Value library) using an Empirical distribu-
tion where 25% of the items have a value of 0 and
75% have a value of 5.

All items then go through the checking step, easily represented by an Activity block. In its dia-
log, this block indicates that the Delay is: an item’s attribute value and the attribute is Check-
Time.

Random Activity model

Custom Time model

Custom processing time

Processing 323
Setting the processing time

D
iscrete E

vent
☞ Although items with a CheckTime value of 0 will not be processed by the Activity block, they
may be delayed in the Queue (which is set to FIFO order) while a preceding item undergoes
checking.

Implied processing time
Some ExtendSim blocks allow you to specify distance, speed, or other factors that indirectly
result in a processing time. For example, the Convey Item block allows you to enter an item
length and the length (in feet or meters) and speed (in feet or meters per time unit) for an accu-
mulating or non-accumulating conveyor.

These settings in Convey Item and Transport blocks result in delay times for items. For exam-
ple, if you set the Transport to be 10 feet long with a speed of 1 foot per time unit, it will take
10 time units for an item to travel to the next block.

For more information about using the Convey Item and Transport blocks, see “Transportation
and material handling” on page 338.

☞ If the Metric distance units preference is selected in the Edit > Options dialog, length units in
these blocks are set by default to meters. Otherwise, their length units are in feet.

Cumulative processing time: time sharing
The prior section discussed setting an item’s attribute to the time required by a specific activity.
You can also set its attribute value to the total processing time required, then route the item to a
series of activities, each of which performs one part of the processing, until the attribute value
is reduced to zero and the item is fully processed. This is common when there are several sta-
tions with different processing times, any of which can process the item. Or when there is one
machine that processes each item for a specified time, then passes the item to another section
for further processing, and the item must be returned to the original machine for finishing.

You can do this using an activity block, building the model such that the attribute value is
decreased by the amount of processing time. In this situation, each activity subtracts its pro-
cessing time from the attribute value, so that the value represents the remaining processing
time. Use a Get block after each activity to determine if the item was fully processed or not,
and therefore whether it should proceed to the next activity or be routed out of the line.

Time sharing occurs when an activity processes an item, sends it back to a queue for a short
period, then processes it again until the required processing time is completed. This is common
for computer networks and telephone communication systems. In these systems, time is speci-
fied in small fractions of a second, there are a lot of jobs that must be processed at the same
time, and there are only a limited number of processors to do the work. In time sharing, instead
of each job being processed sequentially, all jobs are processed at what appears to be the same
time. However, each job is processed a small bit at a time, and a given job may have periods in
between where nothing is happening to it. Since the time units are so small, the periods when
there is no processing of a specific job are typically not noticed, and each job appears to be
processed continuously.

324 Processing
Setting the processing time

D
is

cr
et

e
E

ve
nt

Cumulative Time model
A simple time-sharing model has one activity that processes each job for a short period of time,
then sends the job back to the queue so it can be processed again, until the total required pro-
cessing time for that job has elapsed.

In the model, items (jobs) are generated randomly and the Set block attaches a RemainingTime
attribute to each job generated. The Random Number block determines the initial value of that
attribute, 1, 2 or 3 milliseconds, which represents the total processing time required for each
job. The Activity block processes the job for a fixed time (1 millisecond). An Equation(I)
block then subtracts the amount of time spent processing (Process Time, or PT) from the
RemainingTime attribute.

Once the remaining processing time has been
calculated, the decision to route the item back
to the Queue or to the Exit is made in the
Select Item Out block. Jobs with a Remaining-
Time of 0 are routed through the top output
and exit the simulation; items that have 1 or
more millisecond of processing time left are routed back to the Queue for further processing.
Notice that the table in the Select Item Out block (shown above) only indicates explicitly what
happens if the remaining time is 0 or 1. However, the block’s dialog is set to Invalid Select
value: chooses bottom output. With these settings, an item with a RemainingTime value of 0
will exit the top output. If the value is 1 the item will exit the bottom output. And any value
other than 0 or 1 will also exit from the bottom output.

☞ The time units for this model are integers representing milliseconds, because the Select blocks
expect integer values for comparison and will truncate non-integer values. (For example, the
value 0.003 would be truncated to a zero.) When using non-integer values for the processing
time, convert the attribute values to integers before they go to the Select Item Out block. You
can do this with a Lookup Table block (Value library).

Adding setup time
Every process is not 100% efficient. For instance, it is common in manufacturing for a
machine to be reconfigured when the type of item it is processing changes. This reconfigura-
tion usually takes additional time beyond the normal processing time. In the example below,
the processing time (and the part type) is determined by the attribute values, similar to what
was shown in “Custom processing time” on page 322. However, this model requires an addi-
tional setup time whenever the type of item changes.

☞ Setup time can add significant delay to the processing of items. For an example showing how
to minimize setup time, see “Minimizing setup” on page 286.

Cumulative Time model

Table in Select Item Out block

Processing 325
Bringing an activity on-line

D
iscrete E

vent
Setup Time 1 model
In the Setup Time 1 model, a Process attribute is assigned to each item. The attribute value rep-
resents how long items should be processed for – either 1, 3, or 5 minutes, depending on prob-
abilities entered in the Random Number block (Value library). The delta) output connector
on the right of the Get block signals when the value of the Process attribute has changed, indi-
cating that the current item is of a different type than the previous item. This information is
used to add a setup time to that item’s processing time, resulting in a longer total delay time for
the first item of a new type, each time the type changes.

The delta) connector outputs 0 (for False) as long as the value of the Process attribute stays
the same and outputs 1 (for True) when the attribute value changes, indicating the arrival of a
new type of item. The Constant block (Value library) specifies a setup time of 3 minutes. As
long as the attribute value does not change, the Constant block is multiplied by 0, adding noth-
ing to the normal processing time. When the attribute value changes, the Constant value is
multiplied by 1, and the 3 minute setup time is added to the value of the Process attribute to
determine the processing time for that new item. You can see this if you run the simulation –
the processing time is cloned onto the worksheet and will be 1, 3, or 5 minutes for most items
but 4, 6, or 8 minutes for the first item that is of a new type.

Notice that each item still has its original attribute value. You do not change the attribute value
in this model, it is only used to determine whether the item type has changed and thus whether
the item requires a setup time. The processing time (whether equal to the attribute value or
equal to the attribute value plus the setup time) is input at the D connector. The Activity block
processes based on the value at the D connector, not directly based on the attribute value.

☞ While the model above shows the mathematics explicitly, the Equation block (Value library)
can also be used to specify the setup time. This is illustrated in the model Setup Time 2.

Bringing an activity on-line
As discussed in the following sections, many systems, activities, or operations can be brought
on and off-line based on a schedule or on the current conditions of the system.

☞ The models discussed in this section can be found in the Examples\Discrete Event\Process-
ing\Bring On-Line folder. The Shift block is discussed starting on page 372 and models using
the Shift block are located in the folder Examples\Discrete Event\Resources.

Scheduling activities
Activities don’t always occur randomly; they can be scheduled. This is common when you
bring an activity on-line based on the time of day. This could be represented by a schedule in

Setup Time 1 model

326 Processing
Bringing an activity on-line

D
is

cr
et

e
E

ve
nt

the Create (Item library) or Lookup Table (Value library) block connected to and controlling a
Gate block (Item library), by using a Create block to schedule the capacity of an Activity, or by
using a Shift block to control an Activity. As seen below, the Scheduling Activities 1 model
uses a Gate block and the Scheduling Activities 2 model schedules an Activity’s capacity. Shift
blocks are discussed in “The Shift block” on page 372.

☞ So that you can compare both the Scheduling Activities 1 and Scheduling Activities 2 models,
they have the same random seed, as seen in their Run > Simulation Setup > Random Number
tabs.

Scheduling Activities 1 model
The following example shows how to schedule the availability of a portion of an operation
using a Gate block. The Scheduling Activities 1 model represents a diner that opens at 10 AM
and closes eight hours later. Customers arrive exponentially throughout the day, with most cus-
tomers arriving during the lunch period, which is from 11 AM until 2 PM (from hour 1 to hour
4). There is 1 dining section that can service 5 people at a time throughout the day. A second
dining section that can also service 5 people at a time is available only for the lunch shift.

The scheduling of random customer arrivals is accomplished
by entering values in a Lookup Table block (Value library),
set to Lookup the: time. The output of the Lookup Table block
is connected to the mean input of a Create block, which gen-
erates customers exponentially. As seen in the table to the
right, the Lookup Table outputs a smaller value from time 1
to time 4. The output represents the average time between
arrivals, so arrivals will occur more frequently from time 1 to
time 4.

Opening the second dining section is accomplished by connecting a Create block to a Gate
block, allowing customers access only during certain hours.

The Gate block is set to set to Mode: conditional gating with values, so that it only allows
items through when its demand connector is activated by a value. This is accomplished by con-
necting a value connector, such as the one on the Create block when it is in Create values by
schedule mode, to the demand connector. As long as the value connector is true (outputs 1), the
Gate stays open; when the value is 0, for false, it closes. Running the model with animation on
shows that, even though the queue length is increasing, the Gate shuts down after three hours.

Scheduling Activities 1 model

Customer arrivals

Processing 327
Controlling the flow of items to an activity

D
iscrete E

vent
Scheduling Activities 2 model
As an alternative to the preceding example, you could have used the C connector on the Activ-
ity block to control its capacity, simulating the opening of the second dining section.

Each dining section has the capacity to serve five customers at once. By doubling the capacity
of one Activity block during the period between 11 AM and 2 PM you can model both dining
sections being open. This is accomplished by connecting the value output of a Create block, set
to Create values by schedule, to the C input on the Activity. In the model, the portion of the
Create block that controls the capacity of the Activity is cloned onto the model worksheet.

Shift block used to schedule
Yet another approach to scheduling an Activity would be to use a Shift block to control it. For
instance, the Shift block could contain the same information as the Create block that is con-
nected to the C input on the Activity in the Scheduling Activities 2 model, above.

For more information, see the section titled “The Shift block” on page 372.

Controlling the flow of items to an activity
As discussed in “Scheduling activities” on page 325 you can have an activity start based on the
time of day. Some methods of adding an additional activity to a model can cause the new activ-
ity to cycle on and off frequently. You may not want this to occur, as it can result in higher start
up costs, increased machine wear and scrap production, and excess energy consumption.
Instead, you can add some hysteresis and have the activity stay on to process a number of
items, or stay on for a period of time.

When bringing a system on-line, there are two main ways to control the flow of items to an
activity:

• Specify the number of items that will be processed

• Specify the amount of time the activity will be on-line

☞ You can view and report the item contents of Activity blocks at any time. Please see “Item
Contents of queues and activities” on page 210.

Fixed number of items
Instead of having a system cycle on and off, you may want to keep the optional activity run-
ning. For instance, you can keep a machine on to process a particular number of items, even if
the waiting line for the other machines is below the threshold that originally activated it. This
reduces the number of times the machine turns on and off.

Scheduling Activities 2 model

328 Processing
Controlling the flow of items to an activity

D
is

cr
et

e
E

ve
nt

Fixed Items model
To keep an activity running until it has processed a fixed number of items, add a Create block
between the Decision and Gate blocks to the model discussed in “Conditional routing” on
page 308. (The Conditional Routing model is located in the Examples\Discrete Event\Routing
folder.) The resulting model is named Fixed Items, and is shown here.

In this model, the optional machine will be brought
online if/when the queue exceeds five items. The Y
output of the Decision block (Value library) is con-
nected to the start connector of a Create block, which
is set to Create items by schedule; the schedule is
shown at right. The Decision block outputs a true
value (1) at Y if the queue length is 5. When that
happens, the Create block (Control the Gate) starts
its schedule and puts out a single item with a quan-
tity of 10 to the demand input on the Gate block.
This causes the Gate to stay open until 10 items pass
through the block.

There are two items of special note in this model:
how the start and demand connectors are activated.

• Since the Create block’s start connector is connected, and since the block is in Create items
by schedule mode, the block’s schedule runs in relative simulation time (begins its schedule
relative to when start is activated), as explained in the section “The Start connector” on
page 262. Once start is activated (gets an value 0.5) it causes the entire schedule to happen;
messages from the Decision block to the start connector are ignored until the schedule is
complete. The second line of the schedule means that the Create block will also ignore any
start messages for 5 time units after the schedule has been completed. This provides hystere-
sis and allows the machine to process items (and hopefully reduce the buffer length) before
the sequence is activated again. If the schedule did not include this pause, the Activity block
could be activated constantly.

• The demand connector is activated when it gets an item, causing the Gate to open and allow
items through. The number of items allowed through before the Gate closes is determined by

Fixed Items model

Activating “demand” with an item

Processing 329
Interrupting processing

D
iscrete E

vent
the quantity of the item at demand. For instance, each item with a quantity of 10 creates a
demand for 10 items before the Gate will close.

Fixed period of time
You may want to keep the optional machine on for a particular length of time instead of for a
certain number of items.

Fixed Time model
To do this, use the Create block, set to Create values by schedule, to output values to the
demand connector on the Gate block.

In the table in the Create block’s dialog, the first line
has 0 for the output time and a value of 1. The sec-
ond line has the time you want to turn off the
optional machine, and a 0 for the value. For example,
to keep the optional machine on for five minutes,
you enter the values as shown at right.

Once start is activated, the demand connector will
receive a value of 1 (True). After 5 time units have
passed, the value at demand will change to 0 (False).
Because you are connecting a value output to
demand, the Gate block will stay activated as long as
the value the demand connector receives is greater
than or equal to 0.5, which in this example is for 5
time units.

Interrupting processing
In discrete processes, it is common for interruptions to occur. This could happen for any num-
ber of reasons, such as the arrival of an item that has a higher priority for processing, random
machine failures, planned shutdowns, the occurrence of a higher priority event, and so forth.
Interruptions are of two kinds, preemption and shutdown.

• Preemption occurs when an Activity block is told to prematurely end one or more items’
processing. When this occurs, the Activity immediately sends the preempted items out of the
block through an alternate item output connector.

Fixed Time model

Activating “demand” with a value

330 Processing
Interrupting processing

D
is

cr
et

e
E

ve
nt

• Shutdown occurs when processing is suspended for one or more items currently in an Activ-
ity block. Items that have been shut down may or may not have their processing completed
when the shutdown ends. In any case, they are either discarded or leave through the normal
item output connector.

The Activity block has a Preempt tab for specifying what to do when there is preemption and a
Shutdown tab for controlling what happens when the block gets a message to shutdown. The
Convey Item block can be shutdown by reducing its speed to zero. The Shutdown block is
most commonly used for shutting down an activity.

☞ Preemption and shutdown are discussed in the following two sections. The models for those
sections are located in Examples\Discrete Event\Processing\Preemption and Shutdown folder.

Preemption
Preemption occurs when a signal is received at an Activity block's PE (preempt) input, prema-
turely ending an item's processing by forcing it to leave through an alternate output.

In the Preempt tab you can specify that preemption occurs only if the block is already process-
ing its maximum number of items and that the preempted item's remaining processing time be
stored as an attribute for subsequent processing. Once preempted, the item’s processing can be
finished by another Activity, finished later by the original block, or never finished at all,
depending on how the item is routed in the model.

PE input connector
Once preemption is enabled in the Preempt tab, the PE (preempt) universal input connector
and an alternate item output connector appear on the Activity’s icon. The connection to the PE
connector can either be a value input or an item input, depending on what is selected in the Pre-
empt tab. The type of connection to the PE input determines how preemption is controlled:

• Value connection. Based on which of the first four preemption options (discussed below) is
chosen, the selected item or items will be preempted whenever a true (0.5 or greater) value is
received at the PE input.

• Item connection. When a “preemption item” arrives at the PE connector, the Activity looks
up the specified attribute value on the preemption item. The Activity then searches all items
currently in processing, and any of those items with an attribute value equal to the one on the
preemption item will be required to leave the block. In addition, the Activity block has an
option to transfer attributes from the preemption item to the preempted items.

Preemption options
As discussed above, preemption occurs when a signal is received at an Activity block’s PE
(preempt) input. Settings in the block’s Preempt tab determine which item or items must leave.
Depending on whether the preempt signal is sent by a value or an item connector, the preemp-
tion options are:

• The item that is closest to finishing

• The item that is furthest from finishing

• The item with the lowest priority

• All items currently being processed

• Only items with a particular attribute value

Processing 331
Interrupting processing

D
iscrete E

vent
The first four options are only available when a value connection is made to PE; the last option
is only available, and is the only choice, if an item output is connected to PE.

Preempting model
For instance, an Activity and Queue (set to Sort by: priority) can be used in conjunction with a
Decision block (Value library) in such a way that lower priority items being processed may be
preempted to make room for higher priority items as they arrive at the Queue. Note that it is
not guaranteed that a lower priority item will be preempted. If “Preempt only if block is full” is
checked, items will be preempted only if the Activity block is full.

In the Preempting model, the Queue reports the priority of the item that is about to leave and
the Activity reports its lowest priority item; this information is sent to the Decision block. If it
is determined that there is a higher priority item in the Queue than is being processed by the
Activity, a True signal (a value greater than 0.5) is sent to the Activity’s PE input. Notice that
the Activity’s dialog is set to When signal is received at PE input, preempt... the item with the
lowest priority and to Preempt only if block is full.

Unless they are preempted, items arriving to the Activity block are processed for the time indi-
cated in the block’s dialog. In block’s Preempt tab, Store remaining time in attribute: remain-
ingTime is selected. If an item is preempted, the Activity attaches the remaining processing
time to the item as an attribute named remainingTime. Since the Activity also has Use this
attribute as delay checked, when the preempted item returns to the Activity block it will pro-
cess only for the time indicated by the remainingTime attribute.

Shutting down
Employee breaks, equipment maintenance, inventory-taking closings, and tool failures all
involve interruptions in activities for a period of time called downtime. If interruptions are sig-
nificant, models should include provisions for shutting down activities to avoid overly optimis-
tic predictions.

Shutdowns involve a temporary or permanent halting to the processing of items currently in
the Activity block. The block’s Shutdown tab has settings to determine which items should
have their processing shut down, how long to interrupt the processing, and what to do with the
items in an Activity when the shutdown occurs.

You can shut down activities at a scheduled time, such as for vacations or machine mainte-
nance, or it can be a random occurrence, such as for equipment failures or emergency leaves.
Activities can also be shut down based on some factor in the model, for instance when a down-
stream Queue is full. Like shutdown occurrences, the duration of the downtime can be a con-

Preempting model

332 Processing
Interrupting processing

D
is

cr
et

e
E

ve
nt

stant value or a random number. A shutdown can also be used to block the entry of additional
items while the shutdown is in effect.

SD input connector
Once shutdown is enabled in the Shutdown tab, the SD universal input connector appears on
the Activity’s icon. It is common to connect from a Create or Shutdown block to the SD input
but connections can be made from other blocks as well. The input to the SD connector can
either be a value connection or an item connection, depending on what is selected in the Shut-
down tab. The type of connection to the SD input determines both which items are shut down
and for how long:

• Value connection. This acts like an on/off signal. The entire block will be shutdown when-
ever a true (0.5 or greater) value is received at the SD input. This suspends the processing of
all items in the block and stops new items from entering it. The Activity will stay shut down
until the SD input gets a false (less than 0.5) value.

• Item connection. When a “shutdown item” arrives at the SD connector, the Activity will shut
down the item or items currently being processed, as specified by the shutdown options dis-
cussed below. The duration of the shutdown is determined by an item’s attribute or quantity
as specified in the Shutdown tab; the value of that property on the shutdown item determines
how long the shutdown will be in effect.

The Create block is used to schedule the shutdown for the “Scheduled Shutdown model” on
page 333; the Shutdown block provides random shutdowns for random durations for the “Ran-
dom Shutdown model” on page 335.

Shutdown options
As discussed above, shutdown occurs when a signal is received at an Activity block’s SD
(shutdown) input. Settings in the block’s Shutdown tab determine which items currently in
processing will be shut down. Depending on whether the shutdown signal is sent by a value or
an item connector, the shutdown options are:

• All items currently in processing

• A randomly chosen item

• Items whose attribute matches the attribute at SD

• Entire block

The first three choices are only available if an item connector is connected to SD; “Entire
block” is only available, and is the only option, if a value output is connected to SD. If “Items
whose attribute matches the attribute at SD” is selected, the Activity looks up the specified
attribute value on the shutdown item. The Activity then searches all items currently in process-
ing, and any of those items with an attribute value equal to the one on the shutdown item will
be shutdown.

Item options
Once a shutdown is in affect, the shutdown items are handled in one of four ways, as specified
in the Shutdown tab of the Activity’s dialog:

• The item can be discarded, such as when food is spoiled by the machine going down.

• The Activity can resume processing the item after the shutdown ends.

• An Activity can restart processing the item after the shutdown ends.

Processing 333
Interrupting processing

D
iscrete E

vent
• The Activity can finish processing the item prior to shutting down, such as when the shut-
down is part of scheduled maintenance and can wait until the item is finished.

Items that are not discarded leave through the Activity’s normal item output.

SD output connector
The Activity block’s variable output connection contains an SD connector that can be used to
relay shutdown status. Depending on how the Activity has been configured, this connector
either outputs a 1 (one) while the Activity is down and a 0 (zero) when it is up, or it outputs the
number of items that are currently shutdown. If a value connection has been made to the SD
input, the SD output connector is set to 1 or 0; if an item connection has been made to the SD
input, the SD output connector reports the number of items currently shutdown.

Scheduled Shutdown model
The Create block is often used to schedule an Activity to shut down. For example, the Sched-
uled Shutdown model schedules downtime for a machine by connecting a Create block’s item
output to the SD input on an Activity.

The “Shutdown Schedule” from the
Create block’s Shutdown tab is cloned
onto the model worksheet and shown at
right. It indicates that two items will be
created, one at time 2 and one at time 7.
Each item has a downTime attribute as
seen at the top of the fourth column; the attribute’s value is 2.5 for the first item and 1 for the
second item. In the Create block’s dialog, this maintenance schedule has been set to repeat
every 10 time units.

The Activity block is set to
process one item at a time.
Its Shutdown tab, shown at
right, indicates that all items
currently in processing will
be shutdown when a “shut-
down item” is received at
SD, downTime is the name
of the attribute that deter-
mines the duration of the

Scheduled Shutdown model

Schedule in Create block

Settings in Activity block

334 Processing
Interrupting processing

D
is

cr
et

e
E

ve
nt

shutdown event, and the block will keep items, resume process after shutdown.

☞ With this information and the settings in the Activity’s Shutdown tab, processing will shut
down for any item that is already in the Activity at time 2 and that item will not resume pro-
cessing until time 4.5. Likewise, any item in the Activity at time 7 will be shut down and not
resume processing until time 8, and so forth.

 When shutdown is triggered by an item connection to SD, the selected items being processed
by the Activity block will be shut down at the time and for the duration specified. However,
because the block supports parallel processing, if items arrive to the block after the shutdown
has been triggered, those items will be processed normally. For complete shutdown of the
block, use a value connection instead of an item connection.

When the model is run, the plotter will show both the number of items processed (obtained
from the Exit block) and the timing and duration of the shutdowns (obtained from the SD out-
put on the Activity.) The SD output gives a value of 1 while an item is shutdown and a value of
0 while it is not.

The Shutdown block
The Shutdown block provides for dependent or independent failure policies and can be used to
model the failure or scheduled downtime for a single or multiple components.

A shutdown event can either be random (e.g. a failure) or intentional (e.g. scheduled mainte-
nance). The Shutdown block manages both types of events and broadcasts the overall down
status as either a value or item signal. Typically these signals are used to directly control either
the Activity (Item library) or the Valve (Rate library).

• Random failures are modeled on the Shutdown block’s first tab where distributions can be
selected for the Time-Between-Failure (TBF) and Time-To-Repair (TTR).

• Scheduled shutdowns are modeled either by connecting to the Shutdown’s “sched” input or
by going to the block’s Options tab and linking the Shutdown block to a Shift block. Note
that there are policy options allowing the modeler to specify the impact an intentional down
event will have on random downs. For example, when a maintenance event is scheduled,
should progress towards the next failure event be reset?

Whether random or scheduled, there are two types of down signals:

• Value down signals by default are “1” for down and “0” for up. However, on the Shutdown’s
first tab you can control what the up and down values should be. For example, if the Shut-
down block is connected to the “R” connector on the Valve block, it would make more sense
to have the down = 0 in order to close the Valve during a down state.

• An item down signal is generated by the Shutdown block once for every shutdown event.
Each item has two attributes that indicate to the Activity which items to shut down and for
how long. Typically, this option is used when you want to target specific items to shut down
inside the Activity.

When a database table is used to specify TBF and TTR distributions, one Shutdown block can
be used to model any number of component failures. The components (and their respective fail
behaviors) that are modeled in one particular Shutdown block are typically related in some
way. For example, you would want to use one Shutdown block to model the failure of a bicy-
cle’s tires, chain and brakes because all three components are only wearing out while the bike
is being ridden, and if one component fails, the wearing on the other two stops. It would be

Processing 335
Interrupting processing

D
iscrete E

vent
unnecessarily difficult to model the correct reliability behavior of this bicycle with three sepa-
rate Shutdown blocks.

☞ For more detail, click the “Help” button in the lower left of the Shutdown block’s dialog.

Random Shutdown model
While the Scheduled Shutdown model on page 333 used a Create block to schedule when an
Activity would be down, the Random Shutdown model uses the Shutdown block to halt pro-
cessing on a random basis for a random amount of time. It does this by connecting the Shut-
down block to an Activity block’s SD input.

In this model the dialog of the Shutdown block is set to:

• Send a value to signal shutdown

• Output a Down value: 1 and an Up value: 0

• Use an Exponential distribution with a Mean: 9 for the Set time between failures (TBF)
parameter

• Use a Triangular distribution with the settings Minimum: 1, Maximum: 3, and Mostly likely:
2 for the Set time to repair (TTR) parameter.

With these settings both the TBF and TTR are random. A true signal (a value of 1) from the
Shutdown block will cause the Activity block to shut down the entire block, halting all items
currently in processing and blocking any new items from entering. It is only when the signal
switches from true to false (a value of 0) that the block will resume processing. In this case, the
Activity will remain down for approximately 2 hours before coming back online.

Model-related shutdown
The Scheduled Shutdown and Random Shutdown examples presented earlier showed how to
shut down a process in isolation from other events in the model. You can also shut down activ-
ities based on model factors such as the length of a waiting line or whether another activity is
in process.

Random Shutdown model

336 Processing
Multitasking

D
is

cr
et

e
E

ve
nt

Explicit Shutdown model
The Explicit Shutdown model represents a buffer downstream from a machine that reaches a
limit. So that the queue length will control shutdown events, the F connector from the Queue
block is connected to the SD input connector on the Activity block.

For this model the Queue’s limit is specified in its dialog; whenever the Queue is full, the F
connector outputs 1. The Activity’s Shutdown tab indicates that the SD (shutdown) is: value
input connection and that therefore the Activity stays down until SD value < 0.5. This causes
the Activity to stay shut down for as long as the Queue is full.

This is an example of how to have downstream factors affect upstream activities. If you exam-
ine the model closely, you see that the last machine is processing so slowly that Queue 3
quickly reaches its limit of 5 items. Since a Queue cannot take in any more items while it is
full, the middle Activity is blocked (cannot process a new item until an item is removed from
Queue 3). However, the first Activity continues to process items, filling Queue 2. By explicitly
shutting down the first Activity, you affect where items are stockpiled and which Activities are
shut down when one of them is blocked.

☞ Please also see “The Shift block” on page 372 for examples of activity and resource allocation
that are tied together and scheduled as “Shifts.”

Multitasking
The Activity block has a checkbox in its Process tab
that allows the block to simulate multitasking. Choos-
ing this option means that the block’s available time
to process items (its Delay time) must be divided
between each of the items in the block. This causes
each item to take longer to finish processing and
leave. Examples of multitasking include computer
processors or a person who is working on multiple tasks at the same time.

With multitasking, if only one item is in the block the actual processing time will be exactly the
same as the original delay time specified by the block. If two items are in the block, each item
will take twice as long as the original specified processing time. If three items are in the block,
their processing times will be multiplied by three, and so forth. This is equivalent to situations
where a single server or operator has to divide their available time between multiple customers
or tasks.

The changes to the processing time occur dynamically as items enter and leave the block.
When new items enter the Activity, the remaining delay times for all of the items in the block
will become progressively longer. As processed items leave the block, the delays for the
remaining items will become shorter.

Explicit Shutdown model

Choosing multitasking in an Activity

Processing 337
Kanban system

D
iscrete E

vent
Simulate Multitasking Activity model
In this example model, there are three kinds of jobs that are being processed on a computer.
The computer must share its time between all the jobs it is simultaneously working on.

The Simulating Multitasking Activity creates a random number of each type of job (small
medium and large), as determined by probabilities entered in the Random Number block
(Value library). Each job has a Job Size attribute with the string value small, medium, or large.
The job’s processing time is defined by a distribution and entries in a table in the dialog of the
Activity block, which is set to Delay is: from a lookup table. (For a description of this setting,
see “Processing time for an Activity” on page 319.)

Running the model shows that the moving average processing time increases as the number of
items in the Activity increases.

☞ Changing the capacity of the Activity changes the number of items allowed in the block, but it
does not change the calculation for the delay time. Thus, if “Simulate multitasking activity” is
enabled, increasing the capacity will not necessarily increase the throughput rate of the Activ-
ity block.

Kanban system
A kanban just-in-time (JIT) inventory system limits the amount of inventory between process-
ing stations with a controlling “kanban” card. In this type of system, a station is only autho-
rized for processing if a kanban for that part is available. When processing is complete, the
kanban moves with the part to the next station. As the next station consumes parts, it returns
the kanbans to the previous station to authorize additional processing.

Simulate Multitasking Activity model

338 Processing
Transportation and material handling

D
is

cr
et

e
E

ve
nt

Kanban model
A Kanban system is modeled in ExtendSim by monitoring the queues between machines and
having that information regulate processing. To do this, set the Queue block capacity to the
number of kanbans and connect the F (full) output from the block back to the preceding Activ-
ity’s SD (shutdown) output connector. When the queue has remaining capacity, its F connector
will output 0 (zero) and the preceding Activity block will be authorized to produce parts. If the
Queue block is full, its F connector will output 1 and the preceding machine will be shut down
until the queue length is reduced.

If you run this model with animation on, the Activity blocks will be struck through in red while
they are shut down.

Transportation and material handling
The following Item library blocks are used to represent transportation and material handling:

• Transport

• Convey Item

• Resource Item

The Convey Item and Transport blocks represent ovens, conveyors, and so forth to provide
fixed-path routes with a specified travel time for items. The Resource Item and Transport
blocks are used with the Batch and Unbatch blocks to simulate AGVs and other independently
moving vehicles.

☞ The models discussed in this section can be found in the Examples\Discrete Event\Process-
ing\Material Handling and Transportation folder.

Travel time
In a discrete event model, items move from block to block as dictated by the connections.
These connections indicate the direction of movement, but they don’t provide any delay for the
items. If travel time is significant, it is common to either:

• Increase the delay time of destination blocks to compensate for the travel time.

• Specify a minimum wait time in a Queue block’s Options tab to simulate travel time.

• Set an explicit travel time in a Convey Item or Transport block, as shown below.

Kanban model

Processing 339
Transportation and material handling

D
iscrete E

vent
Transport blocks
Transport blocks (Item library) move items from
the start of a path to the end based on distance and
speed information. When the model is animated,
these blocks can display multiple items travelling
a certain distance simultaneously. There is also an
option to specify that items cannot pass each other.

☞ While you can choose either feet or meters as the
distance unit in the block’s dialog, the default is
feet. If Metric distance units has been selected in the Edit > Options command, the default
will be meters.

Travel time options
The block’s Behavior tab has options that specify how to calculate travel time – the time it will
take an item to travel from the starting point to the ending point. Travel time can be based on:

• Move time. Each item will take the amount of simulation time that is entered in the Move
time field or received at the D input connector. This acts just like a delay in an Activity
block; length and speed are ignored.

• Speed and distance. How fast the item is traveling, and how far the item must travel to reach
its destination, are entered in the fields in the Behavior tab or received at input connectors.
The calculated move time is displayed in the dialog. This option is most often used if the
transportation pathway is centered around the block.

• Speed and calculated distance. The item’s speed is entered in the Item speed field or received
at an input connector. The distance is determined from information entered in the frame
labeled “Select From and To locations for calculated distance”, as discussed below.

☞ If Speed and calculated distance is selected, the starting and ending locations (which deter-
mine the distance) must be defined in the tab.

Calculated distance
If Speed and calculated
distance has been
selected as the travel
time, a frame appears at
the bottom of the dialog
for entering the distance
information. If the from
and/or to locations are
set to anything other than
Entered X and Y loca-
tion, the relative posi-
tions of the blocks in the
model, and their connections, determine the distance.

The factors considered in the calculation are: the “from” location, the “to” location, how the
distance is calculated, and the distance ratio.

From location options
• Previous non-passing block (the default)

Transport block: Behavior tab

Frame for entering information to be used to determine the distance

340 Processing
Transportation and material handling

D
is

cr
et

e
E

ve
nt

• Entered X and Y location

• Block location

• Enclosing hierarchical block

• Previous block

(See explanations following the To location options.)

To location options
• Next non-passing block (the default)

• Entered X and Y location

• Block location

• Enclosing hierarchical block for next block

• Next block

Note: In the Item library non-passing blocks are either residence or decision types of blocks.
If Entered X and Y location is selected, the numbers can either be entered in the dialog or
defined by the location of block in the model. The block location option means the current
block; this choice is especially helpful when the from location is a previous block (non-pass-
ing or not).

☞ If the selected from and/or to locations are blocks, the distance starts at the from block’s out-
put connector and ends at the to block’s input connector.

Calculate distance options
The popup menu provides two methods for calculating the distance from the
start to the end of the path:

• Along the connections between the from and the to locations

• In a straight line between the from and the to locations

Notice that the shape of the conveyor will not visually change with these choices, but the infor-
mation is included in the calculation of the conveyor’s length. For instance, if there is a series
of right-angle connections between the from and the to locations, the conveyor’s length will be
longer than if the straight line option had been selected.

Distance ratio option
This popup menu is for specifying the ratio between pixels in the 2D model. It will control how
the distances defined in the Behavior tab affect 2D animation. The choices are:

• Use speed and distance directly. Specifies a ratio of 1 pixel to 1 meter.

• Use 3D distance ratio. Note: 3D animation not available in ExtendSim 10.

• Use distance ratio of: This is for entering the ratio directly. A value of “x” means a ratio of
“x” pixels to “x” meters or feet.

☞ These options are explained more in the comprehensive example discussed in “How the length
is calculated” on page 341.

Processing 341
Transportation and material handling

D
iscrete E

vent
Convey Item blocks
The Convey Item block (Item
library) moves items along a
conveyor, oven, cooling unit,
moving walkway, or any other
type of moving path. The items
travel along the length of the
conveyor, from its start to its
end. The Behavior tab is simi-
lar to that for a Transport
block, discussed above. The
differences are:

• The Convey Item block can
be:

• Accumulating. If the block’s ability to pass items through exceeds downstream
demand, any items delayed from exiting will begin piling up at the outflow end of the
block, up to the Capacity setting.

• Non-accumulating. If downstream demand exceeds the block’s ability to pass items
through, the conveyor will stop until the item at the end moves into the next block.

• Instead of the Transport block’s reference to the distance from one point to another, the Con-
vey Item block is concerned with its length.

• If Travel time: move time is selected, a length entry is also required. In combination with the
item length (discussed below), the conveyor’s length determines how quickly items can
move onto the conveyor.

• The length of the items that pass through this block must be defined. They can be defined as:

• A constant

• From an attribute

• Based on length and capacity. (For instance, if the conveyor’s capacity is 1,000 units
and its length is 50 units, the length of each item will be 50/1000, or 0.05 units.)

Item length does not visually change the item picture or object but it is included in calcula-
tions for accumulation, capacity, and the timing of when items are pulled onto and released
from the block.

How the length is calculated
When Travel time: speed and calculated length is selected in a Convey Item block, the relative
positions of blocks in the model, and their connections, determine the path’s length. The fol-
lowing example explains how the length is determined.

Convey Item block: Behavior tab

342 Processing
Transportation and material handling

D
is

cr
et

e
E

ve
nt

The bottom potion of the
Behavior tab for a Convey
Item block is seen at right. In
this frame:

• The 2D From x location is
211 pixels (the position of
the previous non-passing
block) and the To x loca-
tion is 344 pixels (the posi-
tion of the next non-
passing block).

• By default, the length is calculated in a straight line between the from location and the to
location. (The alternative is to calculate the distance along the connections.) The shape of the
block’s object will not visually change with either choice, but the choice affects the determi-
nation of the path’s distance. For instance, if there were a series of right-angle connections
between the from and the to locations, and along connections was selected, the distance
would be longer than if the straight line option had been selected.

How the settings affect the length
The distance between the previous non-passing block (the from location) and the next non-
passing block (the to location) is calculated in a straight line between the output connector of
the from block and the input connector of the to block. This is 133 pixels (344 pixels - 211 pix-
els).

The distance ratio of 20 pixels per meter is used to convert the 133 pixels into meters. The
result is the length of the conveyor: 6.65 meters. as can be seen in the block’s Behavior tab.

☞ If the from and/or to locations are blocks, the determination of the length starts at one block’s
output connector and ends at the other block’s input connector.

Moving this Convey Item block along the connection line between the from and the to blocks
will not have any affect on the conveyor length. This is because the distance between the from
and to locations stays the same. However, moving the from block away from the Convey Item
will change the length of the conveyor. This is because the Next non-passing block is now fur-
ther away from the Previous non-passing block.

Transportation models
The following models use Convey Item, Resource Item, and Transport blocks to simulate item
movement along fixed paths and material handling using AGVs.

Transportation 1 model
To model vehicles such as AGVs in ExtendSim, use a Resource Item block to provide items
that represent the vehicles, a Batch block to attach the vehicle with whatever it is transporting,

Length calculations for Convey Item block

Processing 343
Transportation and material handling

D
iscrete E

vent
one or more Transport blocks to provide the transportation delay, and an Unbatch block to sep-
arate the vehicle from its load at the end of the route.

The Transportation 1 model shows how two parts are assembled, inserted into a computer, then
moved to a loading dock. Part A is moved by a Convey Item block to the assembly machine
while Part B is moved there by a Transport block. The two parts are joined by a Batch block for
processing. After assembly, they move by a Transport block to the machine that will put them
into the computer. Since the computer is heavy, it is moved to the final assembly machine by a
Transport block that represents a small crane.

To simulate movement, AGVs from a Resource Item block are batched to the parts/items and
then moved via the Transport block. If the AGV is released at the end of each route, as it is in
the model above, the part is left behind where it can then be processed before moving on to
another section of the model. To model a situation where the Resource Item transports the item
to an activity, then waits there to continue transporting the item again, don’t release the
Resource Item until the last stop in the route.

Transportation 2 model
In the Transportation 1 model there is no time asso-
ciated with the return of the AGVs to the Resource
Item block. To model how long the return path takes,
insert Transport blocks after the Unbatch blocks and
enter a distance and speed for the AGV return trip.
This is shown in the model segment shown at right.

Transportation 1 model

Adding time for AGVs to return

344 Processing
Transportation and material handling

D
is

cr
et

e
E

ve
nt

Discrete Event Modeling

Batching and Unbatching
Joining items or separating them

346 Batching and Unbatching
Blocks of interest

D
is

cr
et

e
E

ve
nt

In a discrete event model, items pass through the system and something is done to or with
them. The process often involves temporarily or permanently joining, or batching, resources or
other items with the original item. For instance, in a manufacturing plant, precursors of the
final products come into the process as raw materials, subassemblies, and packaging that are
joined in various combinations. During the manufacturing process they are often batched with
other precursors and require additional resources such as pallets and workers for processing.
These batched items move through the process together.

These same concepts apply to other discrete processes. For example, in an emergency room
model, doctors are temporarily batched with their patients during medical diagnosis. In the
same model, a technician, a diagnostic machine, and a patient would be batched for the dura-
tion of x-ray treatment. In a communication system, multiple packets might be batched
together to create a single message. For a retail store model, customers could be shown arriv-
ing and selecting merchandise, then be temporarily batched with a sales person to make the
purchase.

This chapter discusses:

• Blocks for batching and unbatching

• How to batch and unbatch items

• Dealing with item properties when items are batched or unbatched

• Delaying the batching of items until all requirements are present

• Preserving unique item properties as items are batched and unbatched

☞ The models discussed in this chapter can be found in the folder \Examples\Discrete
Event\Batching.

Blocks of interest
The following blocks will be the main focus of this chapter. The block’s library and category
appear in parentheses after the block name.

Batch (Item > Batching)
Joins multiple items into a single item for use in the model. This causes the original
input items to be destroyed and replaced by one output item. A batched item may be
unbatched at a later point in the model, but that is not required.

Unbatch (Item > Batching)
Outputs multiple items for each input item. Depending on selections in the dialog, this
block can separate items that were previously batched or make duplicates of items that
were never batched.

Batching
Batching allows multiple items from different sources to be joined as one new item for simula-
tion purposes (processing, routing, and so on). The Batch block accumulates items from each
source up to a specified count, then releases a single item that represents the batch. In this pro-
cess, the original input items are destroyed and replaced by one new output item.

☞ Items may have properties, such as attributes, before they are batched. To specify what will
happen to the properties of items that have been replaced by a new batch item, see “Properties
when items are unbatched” on page 356.

Batching and Unbatching 347
Batching

D
iscrete E

vent
The number of items required for a batch is called the batch size. In some situations you know
in advance how many of each item is required to make one item; in other situations the number
of items batched depends on model factors and changes dynamically.

Items can be permanently batched together as one new item that flows through and exits the
model, or they can be temporarily joined for some specific purpose and unbatched at a later
point in the process. For example, two manuals could be batched with three promotional pieces
and one CD to make a software package that is shipped as one product. Or a ship attempting to
dock might be temporarily batched with two tugboats resources to guide it through the docking
process, after which the tugboats and the ship are sent on separate paths.

Batch dialog
The Batch block has three tabs for determining
when items should be batched, how many
items to include in a batch, and what to do with
the properties of items that are batched. The
Batch and Options tabs are discussed below;
options in the Properties tab are described on
page 351.

Batch tab
The top of the Batch block’s Batch tab has a
popup menu with two options that determine
how the block behaves. These are summarized
below and illustrated in models later in this
chapter.

• Batch items into a single item creates a batch
using items on a first-in, first-used basis as
they arrive at the item input connectors. The quantity of items required from each input is
entered in a table or (if this choice is selected on the Options tab) determined by the value at
a BatchQuantityIn connector.

• Match items into a single item creates a batch of items that have a common attribute value.
For instance this could represent a process where items were combined together based on a
serial or order number. For this choice, it doesn’t matter which input connector the items
arrive from.

The table in the Batch dialog is for entering the number of items from each input that are
required to make a batched item; the size of the batch can also be set using value input connec-
tors as discussed later in this chapter. The first column shows the block label or name the input
is connected to. The Quantity column is for specifying the number of items required from the
input and the next column reports the number of items available. Checking the fourth column
determines if Delay Kit is activated; as discussed on “Delaying kits” on page 353, this causes
the specified item or items to not be pulled into the block until certain conditions are met.

Options tab
Among other choices, this tab has options for setting the size of a batch through value input
connectors and determining when to start a batch.

Batch tab in Batch block

348 Batching and Unbatching
Batching

D
is

cr
et

e
E

ve
nt

BatchQuantityIn connectors
Checking Use quantity input connectors on the Batch block’s Options tab enables the Batch-
QuantityIn variable connector. Each BatchQuantityIn value input connector corresponds to an
item input connector and controls the batch size for that item connector. If a value input con-
nector has been connected, it will set the number of items required at its adjacent item input
connector. If a value input connector is not connected, the number of items for the adjacent
item connector will be set by the value in the Batch dialog.

When Use quantity input connectors is checked, there are two options that affect the batch
size. With either option, the initial size of the batch is the value at the BatchQuantityIn connec-
tor when the first item on its corresponding item input connector arrives to the Batch block.
The options determine what happens if the input value changes:

• Dynamically as batch is created. If the value at a BatchQuantityIn connector changes before
that item connector’s batch is released, the number of items required for that batch will
change as well. This enables the size of a batch to be changed dynamically.

☞ The number of items to be batched from each input connector can never be less than the num-
ber of items that have already arrived to the block from that input. That is, if 10 items have
already been pulled in through an item input connector, and the BatchQuantityIn connector
changes to 8, the batch size for that item input connector will be set to 10, not 8.

• By first item at each connector. The size of the batch does not change after the first item for
the batch has arrived, even if the value of the BatchQuantityIn connector changes. Once that
batch is released, a new batch size can be set.

The demand connector
To enable the demand connector, check the Show demand connector box in the Batch block’s
Options tab. Then choose one of the following options:

• Start batch when value at demand 0.5. No items are brought into the Batch block until the
value of the demand connector equals or exceeds 0.5. For instance, while the Batch block
sees a 0 at demand, no items will enter for batching. When it sees a 1 at demand, the required
items currently available will enter the Batch block to be joined together. Depending on how
the model is constructed, selecting this behavior can cause blocking of upstream items.

• Create batch when value at demand 0.5. Items are allowed into the Batch block as they are
available, up to the required number. However, the batched item will not leave the block as
long as the demand connector has a value < 0.5. When the demand connector becomes 0.5,
the batched item leaves the block. With this option, a batch can consist of fewer items than
the number in the Quantity Needed column, because the batched item will have been created
by joining whichever items were available when the demand connector got a value 0.5.

A value output connected to the Batch block’s demand input is used as a true/false indicator,
triggering batching. The actual value from the value connector is ignored; what is considered is
whether or not it equals or exceeds 0.5.

Simple batching
The simplest batching method is to cause multiple items to be joined as one new item, replac-
ing the original items in the model. The batched item may or may not be unbatched at a later
point, depending on model requirements.

Batching and Unbatching 349
Batching

D
iscrete E

vent
Simple Batching model
The model shown at right joins one
“Open Box” with three “Bottles”;
they then travel as one item to be
shipped. For this model, the Batch
block’s behavior is set to Batch
items into a single item. The items
are joined by the Batch block
according to settings in the table in
its dialog. The Batch block will not
release the batched item until it has
received one item (a box) from the
top input and three items (bottles)
from the bottom input.

Batching by matching items
Selecting the Match items into a single item option in the Batch dialog allows you to specify an
attribute the items must match and a different attribute that determines the batch size. With this
option, each batch will be composed of items whose matching attribute value is the same; the
batch size attribute of the first item in the batch determines how many items are in the batch.
With this option, it does not matter which input connector the items arrive at. As items arrive to
the Batch block they are segregated based on their matching attribute value until the total num-
ber of items in that group equals the batch size attribute. When this occurs a batch is created
and the item representing the batch leaves the block.

Matching Items model
The Matching Items model shown below simulates a refurbishment process for police cars. As
the cars arrive, they are assigned a consecutive “serial number” by the Information and Set
blocks. The Information block counts each car in order and outputs that number to the Set
block, which assigns the count number as the value of the Serial Number attribute. For
instance, this causes the Serial Number attribute for the second car to be assigned a value of 2.

The engine is then separated from the car by an
Unbatch block. (When items are unbatched, you can
specify what the block should do with their properties.
This is accomplished by selecting an Action for item
properties in the Unbatch block’s Properties tab, as
shown at right. Actions are discussed in “Properties
when items are unbatched” on page 356.)

These two components (the engine and the car) are
refurbished individually. When both components are finished being refurbished, the engine is
reassembled into its original car by matching them together in a Batch block set to Match items

Simple Batching model

Properties tab of Unbatch block

350 Batching and Unbatching
Batching

D
is

cr
et

e
E

ve
nt

into a single item, Match on attribute: Serial Number, and Get batch size from attribute: Com-
ponents.

For a similar model that uses the Queue Matching block to match items based on an attribute
value, see “Matching items using the Queue Matching block” on page 288.

Batching a variable number of items
Sometimes the number of items required to create a batch changes during the course of the
simulation. For instance, outside factors could determine how many items go into each batch,
or you may want batches to be made in a time-dependent fashion. As shown in the following
two models, the Batch block’s Options tab allows you to manipulate the size of batches
through quantity input connectors or through a demand connector.

☞ For additional examples of dynamically setting batch size, see also the “Batch and Unbatch
Variable model” on page 356 and the advanced batching models “Equation(I) Controls Batch”
and “Queue Eqn Controls Batch” that are located in the folder \Examples\Discrete
Event\Batching.

Batching Variable model
This example model uses a Batch block’s quantity input connector to determine the size of a
batch. A Random Number block (Value library) sets random batch sizes of two to five items. In
the Batch block’s Options tab, Use quantity input connectors is checked to enable the Batch-
QuantityIn connector and Set batch size: dynamically as batch is created is selected. The out-
put of the Random Number block is connected to the BatchQuantityIn connector on the Batch
block. These settings cause batches to be created that require a variable number of items. The
information about the size of the batch can be saved on an attribute specified in the block’s
Options tab.

Matching Items model

Batching Variable model

Batching and Unbatching 351
Batching

D
iscrete E

vent
☞ The BatchQuantityIn connectors will not be visible on the Batch block’s icon unless Use
quantity input connectors has been checked in the block’s Options tab.

Batch on Demand model
You may want batches to be made in a time-dependent fashion, such as based on the time of
day or on a periodic basis. The Batch block’s demand connector can be used to control when
items are pulled into or sent out of the block. For example, if the model represents filling a
truck with boxes, you can signal the demand connector to stop the batching at the end of the
day or when another truck arrives at the loading dock. The batched item (the truckload of
boxes) is then created and released. In this example model:

• The top Create block sends a value that triggers the Batch block’s demand connector at
scheduled times, every 5 seconds.

• The Options tab of the Batch block is set to Use quantity input connectors. Set batch size: by
first item at each connector and Start batch when value at demand 0.5.

• The Batch block’s quantity input (BatchQuantityIn), is connected to the L (length) output on
the Queue block.

With these settings and connections, the Batch block will create a batch every 5 seconds, the
size of the batch is dependent on how many items are available to the Batch block when it cre-
ates the batch, and items will be allowed into the block only when demand is triggered.

The information about when items arrive and the size of the batch is recorded by the History
block and displayed in its cloned table.

☞ By default the History block clears its information each time the model is saved. A choice on
the block’s dialog allows you to Save item history with model, but that option can cause the
model to become quite large.

Properties when items are batched
As described in “Item properties” on page 258, items can have properties such as attributes and
priorities. When items are combined into a batch, their properties need to be combined as well.

Batch on Demand model

352 Batching and Unbatching
Batching

D
is

cr
et

e
E

ve
nt

Property options
A table in the Batch block’s Properties tab
allows you to define what happens to item attri-
butes and priorities. The table’s first column
lists every property for the items in the model.
The second column, Action, gives potential
options that can be taken for that property’s
values. This allows you to select how proper-
ties get transferred from the original items to
the batched item.

The Properties tab for the Batch block in the
Matching Items model looks like the screen-
shot at right. It shows two user-defined attri-
butes (Components and Serial Number) and the
item properties _Animation and _Item Priority.

Attributes and priorities
The options that can appear in the Action column for attributes and priorities are:

• Maximum. Sets the value of the property to the largest number found on any of the items
that formed the batch.

• Minimum. Sets the value of the property to the smallest number found on any of the items
that formed the batch.

• Average. Sets the value of the property to the average value of that property for all of the
items that are part of this batch.

• Sum. Sets the value of the property to the sum of that property’s values for all of the items
that are in this batch.

• First at con X (the default). Sets the value of the property to the value of that property of the
first item that entered on connector X. Con 1 is the topmost item connector.

• Last at con X. Sets the value of the property to the value of that property of the last item that
entered on connector X. Con 1 is the topmost item connector.

• Count at con X. Sets the value of the property to the number of items that entered on connec-
tor X. Con 1 is the topmost item connector.

Other item properties
An Item's quantity property (_Item quantity) determines its count toward the batch size. For
example, if an item arrives with a quantity of 2 and two items are required at that input, then
that input is full and no further items are required for that batch from that input. In most cases,
the item quantity of the items going into the batch will be 1.

Some models have an animation attribute (_Animation) that stores the indexes of the animation
pictures for the items moving through the model. Note that the animation attribute can only be
set to First at con X or Last at con X.

Batch size attribute
By creating a new attribute or selecting an existing attribute for Store number of items in batch
in attribute: in the Batch block’s Properties tab, an attribute can be set to the total number of
items in the batch as it is released.

Action options for properties

Batching and Unbatching 353
Unbatching

D
iscrete E

vent
Delaying kits
You might not want to begin forming a batch until some or all of the items required for each
part of the batch are available. This is most common when you do not want a resource item
from the Resource Item block to flow into the Batch block until all the items requiring that
resource are available. A good example is a manager who does not want to wait for everyone
else to arrive at a meeting.

The Batch block’s Delay Kit feature restricts specified items from entering the block until all of
the other input connectors have the items they need. Delay Kit is enabled through checkboxes
in the fourth column of the table in the Batch dialog. Each item input for which Delay Kit is
checked will have its items wait outside until all required items for the unselected inputs are in
the block.

☞ Delay Kit is only available when the Batch block’s behavior is set to “Batch items into a single
item.”

When the kitting starts
If the number of items required at a Delay Kit input is one, and all the other required items
have been pulled into the block from their input connectors, the batched item will be created as
soon as the Delay Kit item is available. If the number of items required at a Delay Kit input is
greater than one, the block will start a kit as soon as all the other required items are available
and there is at least one of the Delay Kit items available. This causes items with Delay Kit to
be pulled into the block as they become available; the batched item will not be created until all
the items with Delay Kit are available.

Unbatching
Unbatching can be used to separate items
that were previously batched or to duplicate
items that have not been batched. Some
examples of when you would use unbatch-
ing are:

• Returning an item resource to the
Resource Item block

• Ungrouping items that had been tempo-
rarily grouped so that they could be pro-
cessed at the same time

• Creating items based on a single “seed”
item

• Creating a logical item to trigger some
action in the model while allowing an
item that represents the physical part to
continue processing

If items were previously batched with Preserve uniqueness enabled in the Batch block’s
Options tab, the Unbatch block can be used to restore the items that formed the batch with their
original properties. This is accomplished if Preserve uniqueness is also checked in the Unbatch
block’s dialog. For information about this feature, see “Preserving the items used to create a
batch” on page 357.

Unbatch dialog

354 Batching and Unbatching
Unbatching

D
is

cr
et

e
E

ve
nt

 Be careful when using any property-setting blocks in the path between a Batch and an Unbatch
block. Those property modifications could be lost, depending on selections in the Unbatch
block’s Properties tab, as discussed on page 356.

The top section of the Unbatch tab in the Unbatch block has two options that determine how
the block behaves when costing is involved. Each option causes the block to output a number
of items, specified in the dialog, for each item that is input. The options are:

• Create multiple items. This is the default choice. If the model has costing, costing attribute
values are distributed to the output items as specified by settings in the table in the Unbatch
block’s Properties tab. The section “Simple unbatching” on page 355 shows how to use the
block to separate batched items.

• Release cost resources. Resources can have a cost associated with them. If an item is batched
with a resource, cost information is maintained with it. If the model has costing and the
Release cost resources option is selected, the block releases the resources out of the same
connector that they were originally batched and updates costing information for the items
accordingly. For more information, see“Combining resources with cost accumulators” on
page 390.

☞ The Unbatch block will not behave differently when either of these two options are selected
unless the model calculates costs.

The Unbatch tab also has a table for specifying the number of items that will be sent through
each output connector. The first column displays which blocks the Batch’s output connectors
are connected to. The Quantity column is for entering the number of items that will be output
for each input item the Batch block gets, while the next column displays the number of items
present.

 When preserving items that have been batched or when releasing cost resources, it is important
to physically match where items enter a Batch block with where they leave an Unbatch block.
For instance, items that arrived to the Batch block on the top input should be released from the
top output of an Unbatch block.

Batching and Unbatching 355
Unbatching

D
iscrete E

vent
Simple unbatching
The Batching and Unbatching model is an extension of the example “Simple batching” on
page 348, with the addition of laborers and unbatching. Since there is no costing in this model,
the Unbatch dialog is set to Create multiple items (the default option).

In this model, the packaging process must be performed by a laborer. There are 10 laborers
available and each is represented by an item in the Resource Item block. Each worker item is
temporarily batched with the bottles and cartons to represent the requirements of the packaging
process.

The dialog of the Batch block (shown at
right) indicates that one laborer is
needed for each package assembly.
Since Delay Kit is checked for that row,
the labor resource will not be drawn into
the Batch block until the other items
required for the batch (1 box and 3 bot-
tles) have arrived.

The worker is returned to the pool when the task is finished,
while the boxed bottles exit the simulation. This is modeled
by the Unbatch block, which takes a single item (the output
from the Activity) and creates two items, as shown on the
right. One item represents the worker who is sent back to
the Resource Item block through the top output and the
other represents the assembled package that is shipped.

Variable batching and unbatching
The previous model showed how to batch and unbatch a fixed number of items from each
input. This example shows how to batch a variable number of items and unbatch that same
number of items.

To keep track of the number of items a batch is composed of, select an attribute in the Batch
block’s Properties tab to store the number of items in the batch. When the batch is created this
attribute's value will be the number of items that arrived to create the batch.

Batching and Unbatching model

Binding a worker

Unbatching 1 worker and 1 package

356 Batching and Unbatching
Unbatching

D
is

cr
et

e
E

ve
nt

☞ As discussed later in this chapter, if both the Batch and Unbatch blocks are set to preserve the
uniqueness of items, batch size does not need to be saved in an attribute. Instead, just check
Use preserved items to determine unbatch quantities in the Unbatch block’s dialog.

Batch and Unbatch Variable model
An example of batching a variable number of items and unbatching that same number, is
shown in the model below.

In this model, the Batch block’s Options tab indicates that the size of each batch is stored on an
attribute named batchsize, which is accessed by a Get block. Attaching the Get block’s value
output to the Unbatch block’s UnbatchQuantityIn connector sends information about the size
of the batch to the Unbatch block, causing each batch to separate into its original number of
items.

☞ Since the Batch block is set to Set batch size by first item at each connector:, the size of
the batch is locked when the first item for that batch arrives in the Batch block.

Properties when items are unbatched
As happens when items are batched, when items are unbatched you can specify what the block
should do with their properties. This is accomplished by selecting an Action for item properties
in the Unbatch block’s Properties tab.

For example, assume a Batch block combines
six bottles that have a Weight attribute, and that
the bottles are then filled with liquid such that
the batch weighs 12 pounds. When these bottles
are subsequently unbatched, you can select one
of the following actions for the Weight attri-
bute:

• Preserved value. This option causes the bottles to retrieve their preserved value, if preserve
uniqueness is turned on. (See the following topic for more information about preserving
uniqueness.) In this case the weight of each bottle will be what it was before batching and
the 12 pounds of weight acquired after batching is discarded.

• Batched value. With this choice, the 12 pounds of weight will be copied to each of the result-
ing bottles.

• Distribute. The 12 pounds of weight will be divided among each item equally, 2 pounds to
each bottle.

Batch and Unbatch Variable model

Unbatch block property actions

Batching and Unbatching 357
Preserving the items used to create a batch

D
iscrete E

vent
• Automatic. Behaves as Preserved value if “Preserve uniqueness” is checked; otherwise
behaves as Batched value.

Preserving the items used to create a batch
Before items are batched they may have properties such as attributes attached to them. By
default, a reduced set of those properties is transferred to the new batched item, according to
actions selected in the Properties tab of the Batch block. (For more information, see “Property
options” on page 352.)

If it is important in your models to retain the attributes and priorities of the items that were
batched, select Preserve uniqueness in the Batch block and in the Unbatch block. This marks
the items in the batch as unique so that an Unbatch block can restore all of the items’ proper-
ties.

☞ For those properties that you want to retain, select the Preserved Value action in the Properties
tab of the Unbatch block, as discussed in “Properties when items are unbatched” on page 356.

 Do not select Preserve uniqueness unless the items have unique information attached to
them, the items are not just temporarily batched, and you need to restore the items and their
properties at a later point. Preserving uniqueness requires a lot more memory and slows pro-
cessing time.

Both blocks choose to preserve uniqueness
The consequences of selecting, or not selecting, Preserve uniqueness in both the Batch and
Unbatch blocks are:

• If the Preserve uniqueness option is checked, the batch is temporary. The original members
of the batch are stored when the batch is created and they can be restored when the item rep-
resenting the batch is unbatched. Examples include batching a group of parts together to pro-
cess them as a group and later unbatching them to continue processing individually, or
batching an item with a resource and later returning the resource item with an Unbatch
block.

• If the Preserve uniqueness option is not checked, the items used to make up the batch are
destroyed when the batch is created. The batch, represented by a new item, is permanent and
the original items cannot be restored. Examples include batching items together into a box
for final shipping, or batching an order with the required inventory.

☞ If a Batch block is set to preserve uniqueness, the unique identity of the items will only be
restored upon unbatching. While batched, the attributes of the unique items will be combined
into one set of attributes, as specified by settings in the Batch block’s Properties dialog.

Either block chooses to preserve uniqueness
To restore the items with their properties intact, the option to “Preserve uniqueness” must be
selected in both the Batch and Unbatch blocks. There are special outcomes if “Preserve
uniqueness” is selected in either the Batch or the Unbatch block, but not in both blocks:

• If Preserve uniqueness is selected in the Batch block but not in the Unbatch block, the
behavior of the Unbatch blockdepends on whether or not “Duplicate preserved items” is
selected. If “Duplicate preserved items” is not selected, the preserved items travel with the
first item that leaves the Unbatch block’s top output connector. All the other items leaving
the Unbatch block will be identical and not contain any information about the preserved

358 Batching and Unbatching
Additional models

D
is

cr
et

e
E

ve
nt

items. If “Duplicate preserved items” is selected, each item leaving the Unbatch block will
have a duplicate copy of the preserved items. In this case, the Unbatch block copies the set
of preserved items and attaches them to each unbatched item.

• If Preserve uniqueness is not selected in the Batch block but is selected in the Unbatch block,
it is the same as if preserve uniqueness is not checked at all. Because the original informa-
tion about the batched items was lost when they were batched, the Unbatch block will
unbatch identical copies of the items that arrive to it.

Neither of these conditions is typically desirable.

Additional models
The folder located at \Examples\Discrete Event\Batching contains additional batching models
not discussed in this chapter:

• Equation(I) Controls Batch

• Queue Eqn Controls Batch

Both models show advanced concepts for dynamically changing the size of batches.

Discrete Event Modeling

Resources and Shifts
Modeling resources and controlling them with shifts

360 Resources and Shifts
Blocks of interest

D
is

cr
et

e
E

ve
nt

Items will sometimes require resources before they can proceed to the next step in a process.
For example, a car might need an attendant to drive it through the car wash, a vendor’s invoice
could require a receiving report before payment is made, or a piece of equipment might need to
be assembled by a worker. Resources provide a service to the items in a model; their lack of
availability can cause constraints on the flow of items.

One of the main reasons to model a process is to analyze resource availability and utilization
and to determine the impact of resource constraints on the system’s capacity. This tells how
efficiently current resources are being used and what happens if they will not be available or
when there is a wait for them to become available. Often the objective is to try to improve
resource utilization without causing overly long waiting lines or to determine how to reduce
waiting lines without adding more resources.

This chapter discusses:

• Modeling resources with the Resource Pool block

• Modeling resources using the Resource Item block

• Other methods for modeling resources

• Closed and open systems

• Ways in which resources can be scheduled

• Controlling resources and activities with the Shift block

• Advanced Resource Management and setting up resource requirements

☞ The models illustrated in this chapter are located in the folder ExtendSim/Examples/Discrete
Event/Resources and Shifts.

Blocks of interest
The following blocks are the main focus of this chapter. Each block’s library and category
appears in parentheses after its name.

Resource pool blocks

Resource Manager (Item > Resources)
Manages and controls the behavior and utilization of advanced resources. Use this
block to create, modify, view and delete Advanced Resources. This block creates inter-
nal databases where it stores all of the information needed to manage and control
Advanced Resources. See “Advanced Resource Management” on page 378.

☞ The Resource Manager block is an advanced tool that is only available with some ExtendSim
products.

Resource Pool (Item > Resources)
Stores a count of resources for the model. The resources are taken by the Queue block
(in “resource pool queue” mode) and released by the Resource Pool Release block at
some later point in the model.

Queue (Item > Queues)
When the Queue type is set to “resource pool queue”, items wait here for required
resource pool units from the Resource Pool block. Once the needed resource units are
available, the block checks for downstream capacity before releasing items.

Resources and Shifts 361
Modeling resources

D
iscrete E

vent
Resource Pool Release (Item > Resources)
Releases the specified number of resource pool units, making them available for re-use
and causing the count in the Resource Pool block to increase.

Other resource blocks

Resource Item (Item > Resources)
Unlike the resource pool method, this block stores resources as items for use in the
model. Resource items are usually batched with items that require them; they may or
may not be unbatched at some later point in the process.

Shift (Item > Resources)
Generates a shift schedule that can be used to change the capacity or stop the activity of
other blocks in the model.

Modeling resources
Resources are the means by which process activities and operations are performed. Different
parts of a model can share the same resource, just not at the same time. While a particular
resource is being used in one place in a model, it is not available for any other part of the
model. Thus the availability or lack of availability of resources causes constraints in a model.

Many approaches to modeling resources
As seen in the following sections, there are many ways to simulate resources when building
models in ExtendSim– some are explicit and some are implicit or conceptual.

• Resources can be explicitly modeled using specialized resource management blocks; this has
the advantage of direct access to features like automatic costing and utilization calculations.

• In some situations, however, it could be simpler or provide more control to model resources
just as any other item in the model (conceptual) or by limiting block capacity (implicit).

☞ Explicit methods should only be used in a model if the presence of those resource-type blocks
is required for the system. Otherwise, use an implicit method.

Explicit methods
The ExtendSim discrete event architecture supports three explicit methods for modeling
resources:

• Resource Pool method

• Resource Item method

• Advanced Resource Management (ARM) method

☞ These methods are compared and contrasted in the table on page 362.

Implicit methods
A resource can be implied in a model by restricting or scheduling the capacity of residence
type blocks like the Activity and Queue. These blocks are useful for implicitly modeling
resources.

For instance, the “Simple Resource Pool model” on page 366 illustrates how to model
resources using the resource pool blocks. A simpler method would be to use the Activity block

362 Resources and Shifts
Modeling resources

D
is

cr
et

e
E

ve
nt

to represent a limited resource, without using explicit resource blocks. In this case, you would
remove the Resource Pool and Resource Pool Release blocks from the model, set the Queue as
a FIFO sorted queue, and set the maximum items in the Activity block to three. The Activity’s
capacity limitation would have the same constraining effect as the Resource Pool block in the
original Simple Resource Pool model.

Another advantage of modeling resources implicitly is that the Activity block can be shutdown
and brought back online using the Shutdown block, as shown in “Shutting down” on page 331.
This is common when modeling random failures.

Conceptual resources
The concept of what is a resource is not limited to the explicit (resource pool and resource
item) or implicit (capacity-constrained) methods of representing resources. Theoretically, a
resource is anything where its availability can restrict items flowing from point A to point B.
Some examples are:

• Any item can conceptually represent a resource. For example, batching a “bus” item with
“people” items, where the bus is required before the batched bus/people item can be released
from a Queue (see “Delaying kits” on page 353). Note that the bus is created as any other
item, not as a resource item from the Resource Item block.

• Using the ExtendSim database or global arrays to track resource availability, limiting the
flow of items in a model. For example, item availability would be regulated by how data in
the database changes during the course of a run.

• Using block combinations to control item movement as model status changes over time,
such as a Queue followed by a Gate that is connected to a Read block.

Your cleverness and expertise with ExtendSim can probably lead to even more ideas.

Comparison of the three explicit methods

Technique Resource Item Method Resource Pool Method Advanced Resource
Management (ARM)

Description Models resources as
resource items that are
available to another item.
This involves batching
resource items from the
Resource Item block with
the items that require
them and, typically,
unbatching the resource
when it is no longer
needed.

Models resources as a
count of the resources that
are available in a pool. By
keeping track of the avail-
able resource pool units,
this method controls the
flow of items that require
those resources.

Models resources as
records in a table in an
ExtendSim database.
Each record represents a
resource with individual
properties and statistics.
The Resource Manager
block provides the inter-
face for creating manag-
ing advanced resources.

See “Resource Item method”
on page 368

“Resource Pool method”
on page 365

See page 364 and the doc-
ument “Advanced
Resource Management
Tutorial and Reference”

Resources and Shifts 363
Modeling resources

D
iscrete E

vent
Main Model
Components

Resource Item, Batch,
and Unbatch blocks

Resource Pool, Queue (in
resource pool queue
mode), and Resource
Pool Release blocks

Resource Manager block,
Queue and Resource Pool
Release blocks (in
advanced resource
mode), and the Extend-
Sim database

Resource
Representa-
tion

Resources are represented
by items that are created
and reside in Resource
Item blocks. Each
Resource Item block
maintains statistics. Attri-
butes can be used to store
properties and statistics
for individual resources.

Resources are represented
as a quantity in a pool in
the Resource Pool block.
Individual resources can-
not have properties and
are thus indistinguishable
within a pool. Each
Resource Pool block
maintains statistics.

Each resource is repre-
sented as a record in a
table in an internal data-
base. The fields in the
table are used to store
property values and statis-
tics for individual
resources.

Requirements
Specification

There is no dedicated user
interface for specifying
resource item require-
ments. Typically, Queue
Equation or Queue
Matching blocks are used
to hold items until the
required resource items
are available. Then,
released items are batched
with resource items.

Requirements are speci-
fied using a data table in
the Queue. The table
specifies the required
quantities from one or
more pools. The required
pools are selected using
the settings in the dialog.
The required counts can
be specified using attri-
bute values or connectors.

Requirements are speci-
fied using logical expres-
sions created in the dialog
of the Resource Manager
block or alternately in an
Excel worksheet. These
expressions consist of
components that specify
required quantities and
filtering conditions that
limit the set of resources
to those wanted.

Technique Resource Item Method Resource Pool Method Advanced Resource
Management (ARM)

364 Resources and Shifts
Modeling resources

D
is

cr
et

e
E

ve
nt

Advanced Resource Management
Advanced Resource Management (ARM) is an integrated ExtendSim system for organizing
resources, distinguishing between them, and allocating them as required throughout a model.
ARM provides a convenient and straightforward method for defining complex resource
requirements for items as well as a flexible set of rules for how resources get allocated to them.

Advantages 1. Because resources are
items, they can have
properties that allow them
to be distinguished indi-
vidually.

2. Modelers have full
control over the logic
governing how resources
are utilized.

1. Does not require con-
nections to blocks.

2. Does not need complex
routing logic to control
the allocation and release
of resources.

3. Resources automati-
cally know which items
are waiting for them.

4. Provides the capability
to globally prioritize the
allocation of resources to
the highest ranked items.

1. Does not require con-
nections to blocks nor
complex routing logic.

2. Resources automati-
cally know which items
are waiting for them.

3. The allocation of
resources to the highest
ranked items is globally
prioritized; multi-tiered
ranking is supported.

4. Resources have proper-
ties that allow them to be
distinguished individu-
ally.

5. Allows for very com-
plex resource require-
ments and provides a
flexible mechanism for
creating resource release
rules.

6. All information about
resources is globally
available to the model;
details can be logged in
the database.

Disadvan-
tages

1. The Resource Item
block must be connected
in the model such that the
resources it outputs can
be batched with the items
that require them.

2. A resource item cannot
“see” the items waiting
for it. Routing blocks
must be used to direct the
resource item to the cor-
rect Batch or Unbatch
block.

1. Does not allow the use
of attributes or other
properties to track infor-
mation about individual
resources.

2. It is more difficult to
control the complex
scheduling of competing
resources across a number
of different queues using
resource pools.

1. The complexity of this
method requires more
learning time compared to
the other methods.

2. Advanced Resource
Management is only
available with certain
ExtendSim packages.

Technique Resource Item Method Resource Pool Method Advanced Resource
Management (ARM)

Resources and Shifts 365
Modeling resources

D
iscrete E

vent
And it provides automated methods for quickly changing resource information and generating
statistical reports.

☞ This sophisticated and powerful feature is only available in some ExtendSim products; it is dis-
cussed fully in the separate document Advanced Resource Management Tutorial and Refer-
ence.

Resource Pool method
The resource pool blocks in the Item library (Resource Pool, Queue, and Resource Pool
Release) cause restraints to be placed on the flow of items in the model based on the availabil-
ity or lack of resources. The Resource Pool block maintains a count of the number of resources
that are currently available for use. When an item enters a Queue block that is in resource pool
queue mode, the Queue will query the resource pools to determine if the required number of
specified resources are available. If so, the number of resources currently available will be dec-
remented in the appropriate Resource Pool block, and the item that requires the resource will
be released from the Queue. If the required number of resources are not available, the item will
wait in the Queue until resources become available.

In a closed system, the resources are returned to the Resource Pool block by passing the
“resourced” item through a Resource Pool Release block. In an open system, such as for a con-
sumed resource, the resource is not returned to the pool but is removed from the system when
the item exits. Closed and open systems are discussed on page 370.

☞ Since, in an open system, resources are not returned to the originating block, statistical calcula-
tions such as utilization cannot be accurately determined.

Advantages and disadvantages of using resource pools

Advantages
• The Resource Pool block does not require any connections to other blocks in a model.

Because of this, using resource pools to model resources (as opposed to using the resource
item/batching method that will be described later) is more flexible when the same resource
can be used in many different places or when an item can use any one of a group of
resources.

• The resource pool method does not require complex routing of resource items because the
resources are not actual items but merely constraints on the flow of items through the model.

• When items wait for resource pool units, they can be ranked by priority or FIFO order. The
Resource Pool block is able to globally allocate the resource pool unit to the highest ranked
item.

Disadvantages
• The resource pool method does not allow the use of attributes to track information about the

individual resources. To use attributes, you must use resource items; this is shown in
“Resource Item method” on page 368.

• It is more difficult to control the complex scheduling of competing resources across a num-
ber of different queues using resource pools.

☞ After learning about resource pools, see “Advanced Resource Management” on page 223 for a
more rigorous method of creating resource requirements, scheduling, and tracking resources.

366 Resources and Shifts
Modeling resources

D
is

cr
et

e
E

ve
nt

Simple Resource Pool model
This example shows how to use and release resources from resource pools:

The Simple Resource Pool model represents a flow of
material where each piece requires one laborer for pro-
cessing. In the dialog of the Resource Pool block
(labeled Labor Pool), the pool of resources is called
Labor and the initial number of Labor units is 3, as
shown at the right. One piece of material is generated
by the Create block about every two minutes. Since
this model uses resource pool units, the Queue block’s
type is set to resource pool queue. This causes gener-
ated material to wait in the Queue until the required
Labor is available.

In the Activity block, processing takes 5 minutes and
the capacity is infinite, so any number of pieces can be
worked on at a time. Within the Queue and Resource
Pool Release blocks, the quantity of resources required/released is 1 and the name of the
resource pool (Labor) is listed.

Running the model shows that the amount of processing that can occur is constrained by the
number of laborers available. Although the Activity has an infinite capacity, the cloned plotter
graph shows that there are not enough workers available for much of the simulation.

☞ So that the focus is on the constraining effect of labor resources, the Activity block is set to
infinite capacity. This causes the availability of labor, but not the processing of material, to
affect the flow of items in the model.

Resources required from different pools
In the Multiple Pools example, there are three Resource Pool blocks, each with their own labor
resource. Items require either Labor 1, Labor 2, or Labor 3.

Simple Resource Pool model

Resource Pool dialog

Multiple Pools model: One laborer per piece required from
any of the three pools

Resources and Shifts 367
Modeling resources

D
iscrete E

vent
Because it will hold items that require resource
pool units, the Queue’s type is set to resource
pool queue. As shown in the Queue’s dialog,
the three resource pools have been selected
from popup menus in the table and the block is
instructed to take the resource from any one of
those pools. When an item enters the Queue, it
will query each of the resource pools in the
order that they are listed in the table (from top
to bottom). In other words, if no resources are
available in Pool 1, the Queue block will try
Pool 2, and then Pool 3. If a resource is still not
found, the material will be held in the Queue
until the resource requirement is met by which-
ever pool first has an available resource.

Note that the Queue block (Options tab) stores
the information about which pool the resource came from, and how many resources were used,
in an attribute that attaches to the items processed. In this model, the information is stored in
the attribute “Resource Name.” This attribute is used by the Resource Pool Release block to
inform the appropriate pool when a resource is no longer in use.

The Multiple Pools model is similar to the Simple Resource Pool model in that each piece of
material requires 1 laborer. However, in this model the laborer can come from one of three
pools rather than from a pool of three laborers. As in the earlier example, modeling this process
using the resource item/batching method would require complex logic to correctly route the
resources.

Same resource used in multiple places
The Multiple Uses model has two parallel processes, each requiring laborers. Items waiting in
both Queues (set to resource pool queue) require a labor resource from the same Resource Pool
block, which has 3 laborers initially available. When an item enters one of the queues, a
request is sent to the Resource Pool block for a labor resource. The requests are satisfied in the
order in which they were received (or in order of the requesting item’s ranking as specified in
the Resource Pool dialog).

Queue block dialog

Multiple Uses model

368 Resources and Shifts
Modeling resources

D
is

cr
et

e
E

ve
nt

Resource Item method
Another method for explicitly modeling resources is by using the Resource Item block. With
this method, each resource is represented by an item whose purpose is to provide a service for
other items in the model. The number of resources that are initially available are entered in the
dialog of a Resource Item block. For an item in the model to use this type of resource, the item
must be batched with the resource (see also “Batching and Unbatching” on page 345.) While
the resource is batched with an item, it cannot be used elsewhere in the model. If a resource is
not available, the batch will not be able to be completed, and the item will have to wait until a
resource becomes available. As with the resource pool method, the movement of items in the
model is restrained based on the availability or lack of resources.

If you are modeling a closed system, the resource must be unbatched from the item when it is
no longer being used. Once it is unbatched, it should be routed back to the resource-type block
so that it may used again. In an open system, for example where the resource is a consumable
product, the resource can stay batched with the item. Closed and open systems are discussed on
page 370.

Advantages and disadvantages of using resource items
A resource item can have properties such as attributes, a priority, and a quantity like any other
item. For this reason, this method of modeling resources is preferred if you need to track infor-
mation about resources.

☞ See “Items, Properties, and Values” on page 257 for a complete explanation of attributes and
other item properties.

Some limitations of using resource items are:

• The Resource Item block must be connected in the model and the connection must be such
that the resources it outputs can be batched with the items that require them.

• The resource item cannot “see” the items waiting for it. You must use routing blocks to
direct the resource item to the correct Batch or Unbatch block.

☞ After learning about resources, see “Advanced Resource Management” on page 223 for a more
rigorous method of creating resource requirements, scheduling, and tracking resources.

Air Freight model
An example of using the attributes of resource items to track information is shown in the fol-
lowing model of an air freight company. An airplane receives orders for flights, but regulations
require that airplanes must undergo maintenance after every 50 hours of flight time. Thus the
model needs to track the airplane’s accumulated flight time (hours). Once an airplane accumu-

Resources and Shifts 369
Modeling resources

D
iscrete E

vent
lates 50 hours of flight time, it is sent for maintenance and the accumulated hours are reset to 0.
The model looks like:

The Create block generates orders which are batched with an airplane from a Resource Item
block. While the airplane is batched with a flight order, it is not available for other flight
orders; the order will wait in the Queue (set to type: sorted queue, and Sort by: first in, first
out) until the plane becomes available.

The Resource Item block attaches an Hours attribute to the air-
plane. Settings in the Batch block’s Properties tab, shown at
right, cause the airplane’s Hours attribute (the first attribute
from the item arriving at the second connector) to be attached
to the batched item.

☞ For more information about item attributes, see “Item attri-
butes” on page 263.

An Activity block (labelled Flight) uses a random distribution to determine how long each
flight will take, then outputs the flight time to its Process Time (PT) connector. The Equation
block gets the airplane’s flight time and adds it to the plane’s Hours attribute.

After the flight, the airplane is unbatched from the order; the airplane returns to the Resource
Item block for reuse and the order exits the simulation. The Get block reads the value of the
airplane’s Hours attribute and the Decision block determines if the accumulated flight time is
greater than 50 hours. If it is, the airplane will be routed to the maintenance group for process-
ing. After maintenance the Set block re-initializes the Hours attribute to zero. If accumulated
time is not greater than 50, the airplane is returned to the Resource Item block where it will
wait for another flight order.

When the simulation is run, a clone of the output from the Equation block’s dialog shows the
value of the airplane’s Hours attribute. With animation on, it is easy to see that once the air-
plane has an Hours value greater than 50, it routed to the maintenance group.

For this model it is essential to be able to track information about the airplane’s flight time.
Therefore the ability to assign attributes to the airplane resource is critical.

Stripping attributes from resource items
As described in “Properties when items are unbatched” on page 356, an item returning to a
Resource Item block after batching may have many attributes that are irrelevant to the return-
ing item. The Resource Item block provides the option of stripping attributes or keeping them

Air Freight model

Batch block properties

370 Resources and Shifts
Closed and open systems

D
is

cr
et

e
E

ve
nt

with resources that are recycled; the default is to strip them. When tracking resource informa-
tion using attributes (as in the above model), you will not want to strip the attributes, so the
block is unchecked. However, in cases where you are not concerned with attribute values after
the item has been recycled, you may want to strip the attributes so that the item will be “clean”
when it comes out of the Resource Item block again.

☞ The Queue Matching block (Item library) holds different types of items until the requirements
for each type have been met. This can be useful when modeling the release of resources and
items into a Batch block. For more information, see “Matching items using the Queue Match-
ing block” on page 288.

Closed and open systems
As discussed in the Discrete Event Quick Start guide, blocks that provide a finite number of
resources can be part of closed or open systems. In a closed system, resources are recycled
back to the originating block. In an open system, resources are not recycled but instead exit the
system. Systems can also be partially closed, for example when some of the resources are recy-
cled back and others are not.

The following model uses three Resource Item blocks to illustrate a closed system (Techni-
cians), an open system (Stock), and a partially closed system (Fixtures).

The model assumes that about one third of the fixtures are consumed in the process; they are
restocked at periodic intervals by the Create block.

Scheduling resources
To accurately characterize the impact of resources in a simulation model it is common to
model resource scheduling logic, both in terms of where and when a resource should be
assigned. For example, if one resource item is required in multiple places, such as an item that
could be routed to two or more Batch blocks, then scheduling logic needs to be added to the
model.

There are several ways resources can be scheduled. Some methods apply to using either
resource pools or resource items and some apply only to scheduling resource items.

Scheduling resource pools and resource items
As discussed in the following sections, there are two systems available to schedule resource
pools and resource items:

Closed and Open Systems model

Resources and Shifts 371
Scheduling resources

D
iscrete E

vent
• Use the TR (total resources) connector on individual resource blocks, as described in the fol-
lowing section.

• Use Shift blocks to control aspects of one or more resource blocks. This is discussed in
“Resources model” on page 375.

Using the TR (Total resources) connectors
Blocks that provide resources (whether as items or as resource pool constraints on items) have
value connectors labeled TR (total resources). You use the TR input connector to change the
total number of resources available. This change can be scheduled, such as when workers take
breaks, or unscheduled, such as an equipment failure.

The value at the TR connector determines how many resources the block has and can result in
an increase or a decrease in resource availability. For example, if the initial number in a
Resource Item block is 10, and the block gets a value of 3 at its TR input connector, the block
will eliminate 7 resources from its availability list. If the block doesn't have enough resources
to dispose at the time of the change, it will dispose of them as they return.

Scheduling Resources model
It is common to schedule the avail-
ability of resources based on some
factor in the model, typically time.
For example, in the model dis-
cussed in “Scheduling activities” on
page 325, you could have scheduled
workers in the diner depending on
the time of day using the Resource
Item and Create blocks.

The new model is shown at right. It
assumes there are three workers ini-
tially available when the coffee
shop opens at 6am. Two additional
workers arrive after 5 hours and
remain just for the lunch period,
from 11am to 2pm (1400 hours).
The coffee shop closes after 10
hours.

Scheduling Resources model

372 Resources and Shifts
The Shift block

D
is

cr
et

e
E

ve
nt

The schedule for workers is entered in
the dialog of the Create block, as
shown at right. The block is set to Cre-
ate values by schedule, and its value
output is attached to the TR (Total
resources) input of a Resource Item
block.

☞ This model is set to use Calendar dates.
The Simulation Setup dialog and block
options (such as selecting calendar for-
mat when a Create block is set to
schedule its outputs) facilitate the dis-
play of times and dates in Calendar for-
mat. For more information, see
“Calendar dates” on page 95.

In this model the workers are part of a
partially closed system. Some are recy-
cled back to the Resource Item block
through its item input connector, while
other workers are added to or removed from the block through its TR connector.

Scheduling resource items
There are at least four additional ways to schedule resource items in ExtendSim:

1) A Resource Item block followed by a Gate can control when resource items are released.

2) A Resource Item followed by a Select Item Out block controls where resource items are
routed.

3) A combination of the Gate and Select Item Out blocks can be used to control both where
and when items are scheduled.

4) The Queue Equation block is useful for controlling both where and when items are sched-
uled for use when the scheduling logic is more complex. With this block, ModL logic state-
ments can intelligently control the scheduling of items based on their properties,
information in the ExtendSim database, or even the status of other sections of the model.
For more information, see “Sorting items using the Queue Equation block” on page 283.

The Shift block
The Shift block (Item library) is used to schedule both the magnitude and availability of capac-
ity in other blocks in a model. This is useful for simulating situations where a system’s
resources follow a pattern of coming on and off line over time. For example, the Shift block
could be used to model workers in a factory following a repeated daily pattern of reporting to
work in the morning, taking a break for lunch and going home at some point in the evening.

Each Shift block represents a named shift and its schedule that can be referenced by other Item
library blocks. The Shift controls the capacity of the blocks that reference it, based on the
schedule that is defined in its dialog table. If a shift schedule is changed, all blocks using that
named shift will receive the same modified shift pattern. In addition, shifts may be repeated at
regular intervals if the Repeat schedule every checkbox is selected. This is useful for modeling

Arrival times for workers

Resources and Shifts 373
The Shift block

D
iscrete E

vent
repeated shift patterns, e.g., an eight-hour workday each day of the week or breaks that occur
every four hours.

☞ It would be quite easy to define a complex shift schedule that includes all breaks, holidays,
weekends, and so forth. However, before adding such complexity to a model, carefully con-
sider whether such detail adds to the validity of the model. If, for example, nothing at all hap-
pens during the weekend, a better solution would be to simply assume one week is 5 days long
(or specify that in the Simulation Setup dialog) rather than adding a Shift block to model the
weekends. Shifts should only be used when they will make a significant difference in the
results of the simulation.

Shift types and what they control
A Shift can schedule capacity in a number of Item and Rate library blocks. For example, it can
turn an Activity on or off, or specify a maximum number of items the block can process at a
time. The schedule depends on whether the selected Shift type is On/Off or Number.

• An On/Off type of shift acts like a binary switch that turns associated blocks on or off at spe-
cific points in time. For example, an On/Off shift might be used to shut down an Activity
block during lunch and evening hours, to open or close a Gate block, or to turn a Valve (Rate
library) on and off according to a schedule.

• The Number shift type explicitly defines the size of a block’s capacity over time. For
instance, it might set the size of a Resource Pool to 3 for the morning shift, 0 over lunch, 5
for the afternoon shift, and 0 overnight.

The following table shows which Item library blocks can be controlled by a Shift block, which
types of shifts those blocks support, and what aspect of a block, if any, the Number type of
shift controls:

In the Rate library, the Convey Flow, Interchange, Tanker, and Valve blocks can use a Shift set
to On/Off type. See the Rate module for more information about using the Rate library.

Item Blocks That Can
Use Shifts

Shift Type: On/
Off or Number

Number Type Setting on Shift Controls This
Aspect of Item Library Block

Activity Both Maximum number of items in the Activity at a
time.

Convey Items Both N/A

Create On/Off N/A

Gate Both In “area gating” mode, the number of items
allowed in the gated area at a time. In “schedule
gating with Shift”, the Gate is always open when
the Shift value is >0.

Resource Item Both Total number of resources available, per the TR
(Total resources) connector.

Resource Pool Both The total count of resources available, per the
TR (Total resources) connector.

Transport Both Block capacity.

Workstation Both Maximum number of items in process.

374 Resources and Shifts
The Shift block

D
is

cr
et

e
E

ve
nt

☞ If a Shift block is used in a model, statistics in the Queue blocks will probably not accurately
reflect utilization, etc.

Status connectors
The Shift block’s value input connector (StatusIn) can be used to override the shift schedule. If
the input connector is less than 0.5, the Shift is considered off shift; this will override any value
found in the Shift block’s dialog table. If the input connector is greater than 0.5, the shift
schedule from the dialog table is used.

The Shift’s value output connector (StatusOut) reports the current shift status (ON = 1 or OFF
= 0 for On/Off type Shifts, or the number for Number type Shifts).

Shift models
The following models show how to use the Shift block in typical modeling situations. They
also illustrate how the two types of Shift, On/Off and Number, are used in simulations.

☞ The models are located in the \Examples\Discrete Event\Resources and Shifts folder.

On/Off type example
In the “Shift On and Off” model at
right, an On/Off type of shift turns
the Activity block on for 4 hours in
the morning, off for 1 hour at
lunch, back on for 4 hours in the
afternoon, and off again in the eve-
ning until the next morning. The
schedule, named “Day Shift”, is
set in the Shift block; the dialog of
the Activity block is set to Use
Shift: Day Shift, which causes the
Activity to go on or off according
to that schedule.

The model contains a cloned graph
from the plotter. On the graph the
upper (blue) line reflects this 24-
hour shift cycle for seven days, a
total of 168 hours. Observe how
the lower (red) line, which is plotted against the Y2 axis, reflects the queue length’s dynamics
during the various on and off shift periods.

Shift On and Off model

Resources and Shifts 375
The Shift block

D
iscrete E

vent
Number type examples

Shift Capacity Change model
In the model “Day Shift
Capacity Change”, shown at
right, a Number type of shift
is used to control the maxi-
mum number of items in the
Activity block. As deter-
mined by the Shift block, the
Activity is limited to 2 items
during the morning shift, 0
during lunch, 3 items during
the afternoon shift, and 0
overnight. The schedule,
named “Day Shift”, is set in
the Shift block; the dialog of
the Activity block is set to
Use Shift: Day Shift. Since
this model uses a number
type shift, the Shift block’s
table controls the maximum number that can be allowed in the Activity at one time. When the
model is run, the cloned Activity dialog item “Maximum items in activity” reflects the Shift
table’s schedule of allowed items. Shift behavior over the course of seven days (168 hours) is
reflected in the plotted upper line of the graph. The lower graph line reflects the queue length’s
growth when activities are limited.

Resources model
The next example also
uses a Number type of
shift. It illustrates a Shift
block controlling
Resource Pool availabil-
ity so that workers start
their shift, work 4 hours,
take a lunch break, work
4 more hours, and then
leave for the day.

When workers are not
available, the backlog
starts building up in the
Queue.

Complex patterns
Shift blocks may be con-
figured serially, con-
trolled by other blocks,
or used in other patterns to create more complex shift patterns.

Shift Capacity Change model

Resources model

376 Resources and Shifts
The Shift block

D
is

cr
et

e
E

ve
nt

Weekly and Daily Shifts model
In the “Weekly and Daily
Shifts” model, shown at
right, a 40-hour work week
with two days off during
weekends is modeled by
feeding a Week Shift (set to
On/Off) into a Day Shift (set
to Number).

The Week Shift is On for the
five weekdays and Off
during weekends. Conse-
quently, during weekdays,
the Week Shift block sends a
value of 1 to the StatusIn
connector of the Day Shift
block, allowing it to observe
its own daily schedule.
However, during weekends,
the Week Shift block over-
rides the Day Shift schedule by sending it a value of 0. The plotted line in the cloned graph
shows two work weeks (336 hours); the first and second weeks are separated by a weekend.

The cloned dialog item shows the same daily schedule as in the preceding model, with activity
halted during lunch and at night.

Controlling Shifts model
Another example of a
more complex shift struc-
ture is the Controlling
Shifts model where a Math
block (Value library) mon-
itors the processing at the
Activity 1 block. While
Activity 1 is processing,
the shift is turned off, stop-
ping any processing in
Activity 2. An example of
this would be if a worker is
required to monitor two
processes, but can only
monitor one process at a
time and must stop the sec-
ond process while the first
process is active.

Weekly and Daily Shifts model

Controlling Shifts model

Resources and Shifts 377
The Shift block

D
iscrete E

vent
Arrivals and Activity model
The Arrivals and
Activity model illus-
trates how Shift
blocks can shut down
portions of a model
without connections.
This example shows
the day shift dynami-
cally setting the max-
imum capacity of an
Activity to either 1 or
5 items and the
Arrival shift turning
the topmost Create
block on and off at
specified times.

Arrivals and Activity model

378 Resources and Shifts
Advanced Resource Management

D
is

cr
et

e
E

ve
nt

Advanced Resource Management
Advanced Resource Management (ARM) is an integrated ExtendSim system for organizing
resources, distinguishing between them, and allocating them as required throughout a model.
ARM provides a convenient and straightforward method for defining complex resource
requirements for items as well as a flexible set of rules for how resources get allocated to them.
And it provides automated methods for quickly changing resource information and generating
statistical reports.

 The ARM system is an advanced tool that is only available in certain ExtendSim packages. The
manual titled ARM Tutorial and Reference explains how, why, and when to use Advanced
Resources.

Discrete Event Modeling

Activity-Based Costing
Identifying and tracking fixed and variable costs

to determine operating costs

“The cost of a thing is often more
than the sum of the cost of its parts.”

— The Rev. P.N. Wallis

380 Activity-Based Costing
Blocks of interest

D
is

cr
et

e
E

ve
nt

Activity-based costing (ABC) is a method of identifying and tracking the operating costs
directly associated with processing items. It is the practice of focusing on some unit of output,
such as a purchase order or an assembled automobile, and attempting to determine as precisely
as possible its total cost based on the fixed and variable costs of the inputs. ABC helps identify,
quantify, and analyze the various cost drivers (such as labor, materials, administrative over-
head, rework, etc.) and determine which ones are candidates for reduction.

Once a model has been built, the dis-
crete outputs of the system, as well as
the processes and resources that are
involved in creating those outputs,
have already been identified. To add
ABC to models, you enter costing
information into dialogs of blocks in
the model. Blocks that generate items
or provide resources, and blocks that
process items, have fields and Cost
tabs for specifying costing data. Enter
variable cost rates per time unit and
fixed costs per item or use. After the
cost information has been defined, costs will automatically be tracked as the items in the model
change state.

This chapter covers:

• Identifying cost accumulators and resources

• Defining fixed and variable costs

• How ExtendSim tracks costs

☞ The models illustrated in this chapter are located in the folder \Examples\Discrete Event\ABC.

Blocks of interest
The following blocks are the main focus of this chapter. Each block’s library appears in paren-
theses after its name.

Cost by Item (Item)
Calculates the cost of every item in the model, as well as the average and total cost of
the process.

Cost Stats (Report)
Records the input costs and total cost generated in each costing-based block. Deter-
mines total model cost based on a specified confidence interval.

In addition to the two Cost blocks, many of the Item library blocks have cost fields or a
Cost tab for entering and reporting cost information, or have cost-handling capabilities, as
shown in the table below:

Blocks with Cost tabs or fields Blocks with cost-handling capability

Activity Batch

Convey Item Get

Cost tab of Activity block

Activity-Based Costing 381
Modeling with activity-based costing

D
iscrete E

vent
The Interchange block (Rate library) can also define costing information for items in discrete
rate models.

Modeling with activity-based costing
To include activity-based costing in models, you need to know how to define cost rates, how to
properly combine cost resources with items, and how to gather and work with cost informa-
tion. Although an understanding of ABC is important, most of the work will be done by the
ExtendSim architecture.

Item types
For purposes of costing, every item in a model can be categorized as either a cost accumulator
or a resource. Understanding the difference between cost accumulators and resources is
important, because ExtendSim treats them differently, as you will see in “Combining multiple
cost accumulators” on page 392.

☞ As is true of items that are resources, non-item resources from the Resource Pool block do not
accumulate their own costs.

Cost accumulators
You perform ABC to determine the costs associated with storing or processing an item. The
item being stored or processed is called the cost accumulator and will accumulate costs as it
waits, gets processed, or uses resources. Cost accumulating items can be introduced into a
model using the Create and Resource Item blocks, as you will see in “Costs for cost accumula-
tors” on page 383. The following example shows how costs are assigned to cost accumulating
items.

Create Equation(I)

Queue Set

Resource Item Unbatch

Resource Pool

Transport

Workstation

Blocks with Cost tabs or fields Blocks with cost-handling capability

382 Activity-Based Costing
Modeling with activity-based costing

D
is

cr
et

e
E

ve
nt

Receive Inventory model

Assume you want to determine the cost associated with receiving crated inventory at a ware-
house. There is a one-time docking fee of $3.00 for every shipment that is received, and it costs
$0.15 an hour any time the crate waits for processing (such as in the receiving area.)

As each shipment arrives, a labor resource takes an average of 30 minutes to unpack the crate
and stock the contents on the appropriate shelves. In this case, the crate is being processed and
is therefore the cost accumulator. The half-hour processing time and the hourly wage of the
laborer is used to automatically calculate the cost of unpacking and shelving. That cost is then
added to the accumulated cost being tracked with the crate. As the crate progresses through the
steps of being received and unpacked, ExtendSim will add the cost incurred at each step to the
accumulated cost.

Resources
As discussed in “Modeling resources” on page 361, resources can be modeled using resource
pool blocks or by batching resources from a Resource Item block with other items. In the
resource pool method, resource units act as constraints on the flow of items throughout the
model. In the batching method, resource items are required to be batched with other items
before the items can proceed to the next process.

Whether resource pool units or resource items, resources provide a service for the items in a
model; they do not accumulate their own costs. Whenever a cost accumulator uses a resource,
the resource’s cost rates are used to calculate costs which are then added to the total cost of the
cost accumulator. (Cost rates are discussed on page 384.) For instance, in the Receive Inven-
tory model described above, the laborer is a resource item that is batched with the crate. Since
the laborer is a resource, it will not accumulate its own cost. Rather, the cost rate of the laborer
(the hourly wage), and the time it takes the laborer to unload the crate, is used to automatically
calculate the cost of unpacking the crate.

☞ The default is that the Resource Item block outputs resource items. However, you can select in
the block’s Cost tab to output items as cost accumulators. This is discussed at “Resource Item
block” on page 384.

Defining costs and cost rates
To include ABC in a model, simply enter information in the costing section of the dialogs of
cost-aware blocks. There are two types of cost information:

Receive Inventory model

Activity-Based Costing 383
Modeling with activity-based costing

D
iscrete E

vent
• A direct or fixed cost, which is entered as the Cost per item or Cost per use in block dia-
logs.

• The variable cost rate, entered in block dialogs as the waiting cost/time unit or processing
cost/time unit.

You do not need to define all cost information in order to perform ABC. However, if even one
cost field is defined as a positive, non-zero number, ExtendSim will automatically track costs
when the simulation is run.

Cost accumulating items have their own fixed costs and variable cost rates. As they use
resources, wait for processing, and are processed, they acquire additional costs from resources,
queues, and activities.

The following information describes how and where to define costs.

Costs for cost accumulators
You specify costing information for a cost accumulator in the cost section or tab of the block
that originates the item. Each cost accumulator can have a fixed cost per item, such as its direct
materials cost, and a variable waiting or processing cost rate, which causes it to accumulate
costs as it is stored or waits for processing.

Cost accumulators are usually generated by the Create block. They can also be provided by a
Resource Item block, depending on a setting in its Cost tab.

Create block
Costing information is entered differently in the Create block depending on whether the block
is set to Create items randomly or to Create items by schedule.

• In the Receive Inventory
model described on
page 382 the Create
block generates crates
randomly. The Waiting
cost/hour and the Cost
per item for each crate
are defined in the cost
section of the block’s
Options tab, as shown above.

• When the Create block generates items by schedule, you must explicitly set _cost and _rate
system attributes (discussed in “Working with cost data” on page 387) for each cost accumu-
lating item. The value of the _cost attribute should be set to the cost accumulator's fixed cost.

Cost section of Options tab; block set to “Create items randomly”

384 Activity-Based Costing
Modeling with activity-based costing

D
is

cr
et

e
E

ve
nt

The value of the _rate attribute should be set to the cost accumulator's variable cost rate
(waiting cost per time unit), as shown below.

☞ The _rate attribute must be defined using the same time unit as the model’s default global time
unit. In the example, the time unit is hours, so the _rate attribute is the hourly rate.

Resource Item block
Cost accumulators can
also be provided for a
model using the
Resource Item block.
To do this, you must
choose that the block
Provide items that
calculate costing as:
cost accumulators in
the block’s Cost tab, a
portion of which is shown at right.

Costs of resources
The costs that will be assigned to items that require resources are defined in the Resource Pool
and Resource Item blocks. The Cost tab in those blocks has fields for entering the following
information:

• The cost per time unit rate, used to calculate and assign a time-based cost to the cost accu-
mulator while it uses the resource.

• The cost per use is a one-time cost assigned to the cost accumulator for the use of that
resource, such as a fixed service charge.

Create tab; block set to “Create items by schedule”

 Cost tab of Resource Item block, providing cost accumulators

Activity-Based Costing 385
Modeling with activity-based costing

D
iscrete E

vent
In the Receive Inven-
tory model described
earlier, cost rates for
the laborer are defined
in the Resource Item’s
Cost tab. The block’s
dialog indicates that
items stored in the
block are resources, as
seen at right.

☞ For the Resource Item block to provide resources, the Cost tab must be set to Items are:
resources, the default choice. Otherwise the items will be cost accumulators, as discussed ear-
lier.

Activities
You can also define cost information in activity-type blocks; those costs are accumulated by
each item the block processes. The activity-type blocks are the Activity, Convey Item, Trans-
port, and Workstation. Within the Cost tab of these blocks, enter a cost per time unit and a cost
per item:

• The processing cost per time unit is used to calculate the time-based processing cost of each
item that passes through the block.

• The cost per item is a fixed cost added to every item that passes through the block.

☞ The Activity block has a PC (Processing Cost) input for targeting different processing costs on
different items as well as a CPI (Cost per Item) input to attach a unique CPI to each item.

Combining resources with cost accumulators
As discussed in “Modeling resources” on page 361, there are two ways that items can use
resources. One method is to batch a resource item with another item. While batched, the
resource item is in use and cannot be used by another item until it is unbatched and returned to
the Resource Item block. The second method is to use the resource pool blocks, which act as a
constraint on the flow of items throughout the model. This section discusses how to properly
use these two methods when performing ABC.

Batching and unbatching resources with cost accumulators
The Resource Item block holds resources for use in the model. When batching a resource item
with a cost accumulator, the resource’s cost rates are automatically stored with the cost accu-
mulator and used in any subsequent cost calculations.

☞ A maximum of two separate types of resource items can be combined with a cost accumulator
at a time. For instance, one or more worker resources from a Resource Item block and one or
more cart resources from a different Resource Item block.

To unbatch a resource and remove its cost rate information from the cost accumulator, you
must select Release cost resources as the Unbatch block’s behavior. This choice tells the
block to modify the information stored with the cost accumulator to indicate that the resource
has been released.

☞ If the Unbatch block’s behavior is set to Create multiple items, the items released by the
block will be identical to the item which entered the block. In other words, there would be mul-
tiple copies of the cost accumulator, and each copy would still be joined with the resource.

 Cost tab of Resource Item block, providing resources

386 Activity-Based Costing
Modeling with activity-based costing

D
is

cr
et

e
E

ve
nt

Multiple Resources model

In the example model, the cost accumulator is initially batched with 2 of Resource A and 2 of
Resource C. When multiple resources are batched with a cost accumulator, they may be
released all at once (as with Resource A), released incrementally (as with Resource C), or
remain with the cost accumulator. Whenever a resource is batched or released, the cost array of
the cost accumulator is updated to reflect the current number of resources in use. (The cost
array is described in “Combining resources with cost accumulators” on page 390.)

There are three things to remember when batching resource items with cost accumulators:

1) A resource will be released from the output connector that corresponds to the input connec-
tor originally used to batch it to the cost accumulator. For example, if the resource entered
the Batch block through the “ItemsIn(2)” connector, it will be released through the Unbatch
block’s “ItemsOut(2)” connector.

☞ As in the Multiple Resources model, this could mean that one or more of the Unbatch block’s
outputs will be unconnected and you will need to define that there will be zero items output
through that connector.

2) If an item is simultaneously batched with different types of resources, you must use differ-
ent connectors for each resource type when creating the batch. In the Multiple Resources
model above, Resource A uses connector “ItemsIn” and Resource C uses connector “Item-
sIn(2)”.

3) When performing ABC, you are limited to two different types of resource items batched
with a cost accumulator item at one time. This limitation is not true, however, when model-
ing resources using the resource pool blocks, as you will see below.

Cost accumulators and the resource pool blocks
As described in “Resource Pool method” on page 365, as cost accumulating items pass through
a Queue block in Resource Pool mode, resources are allocated to the items. When this hap-
pens, the cost rate of the resource pool unit is automatically stored with the cost accumulator
and used in any subsequent cost calculations.

Multiple Resources model

Activity-Based Costing 387
Modeling with activity-based costing

D
iscrete E

vent
When a resource pool unit is released using the Resource Pool Release block, the information
stored with the cost accumulator is modified to indicate that the resource has been released.

Unlike what happens where resource items are batched with other items, there is no limit to the
number of different types of resources a cost accumulator can use when using the resource
pool blocks. Furthermore, the two methods of modeling resources (batching resource items
and resource pools) may be used in conjunction with each other.

Combining cost accumulators
The Batch block can be used to combine cost accumulators arriving from one or more paths.
This may be used in conjunction with an Unbatch block, for instance to combine cost accumu-
lators for processing and separate them after processing has been completed. In the Properties
tab of both the Batch and Unbatch blocks you can specify what the block should do with the
cost values. This is accomplished by selecting an Action for the _cost and _rate attributes.

Costing attributes when items are unbatched
For example, assume a Batch block combines three cost accumulators together and that while
batched, these items accumulate an additional $9.00 due to processing. When these cost accu-
mulators are unbatched, you can select one of the following actions for the _cost and _rate
attributes in the Properties tab of the Unbatch block:

• Preserved value. This option causes the cost accumulators to retrieve their preserved value,
if “preserve uniqueness” is turned on. In this case, the $9.00 is discarded.

• Batched value. With this choice, the $9.00 will be cop-
ied to each of the resulting cost accumulators.

• Distribute. The value will be divided among each item
equally. In this case, $3.00 to each.

☞ For more information, see “Preserving the items used to
create a batch” on page 357 and “Properties when items are
batched” on page 351.

Working with cost data
To provide access to cost information, ExtendSim creates two attributes (_cost and _rate) for
every item in models that have costing. Since these are automatically created, they are consid-
ered system attributes. If a cost is defined somewhere in the model, these attributes will appear
in attribute popup menus, shown below:

Attribute popup menu

388 Activity-Based Costing
Modeling with activity-based costing

D
is

cr
et

e
E

ve
nt

The information that is stored in these attributes depends on whether the item is a cost accumu-
lator or a resource, as described in the following table:

The attribute handling blocks in the Item library (Get, Set, and Equation(I)) can be used to
read, set, or manipulate these attributes. In addition, two statistics blocks in the Item library
(Cost By Item and Costs Stats) can be used to gather cost data.

Viewing Cost Data
You can use a Get block to read the _cost and _rate attributes of any item, then plot the data or
use the attribute value to perform additional calculations. For example, you can use a Get block
to read the _cost attribute of cost accumulators and connect the Get block’s _cost output con-
nector to a Plotter Discrete Event to plot the accumulated cost of each item that passes through.
This is shown in the model discussed in the following section.

Changing Cost Data
In most cases, it is sufficient to define the cost rates of the various cost drivers in a model and
allow ExtendSim to automatically calculate and track costs. However, there may be times
when you need to manipulate the cost values generated. The attribute handling blocks in the
Item library (Get, Set, and Equation(I)) can be used to accomplish this.

Change Rate model
For example, suppose the cost rates of a resource vary throughout the day. During peak times
the demand for the resource is high and the cost per time unit increases. This can be modeled
using the Set block (Item library) and the Lookup Table block (Value library) to explicitly set

Item type _cost attribute _rate attribute

Cost accumulator The accumulated cost of the item The item’s waiting or storage cost
(cost per time unit defined using the
model’s global time unit)

Resource The cost per use of the resource The resource’s cost per time unit
(defined using the model’s global
time unit)

Activity-Based Costing 389
Modeling with activity-based costing

D
iscrete E

vent
the _rate attribute of the resource as it exits a Resource Item block, as shown in the model
below:

The table in the Lookup Table block has a different rates for the period between hour 4 and
hour 6.

☞ A change in the rate will only affect resources as they exit the Resource Item block. Resources
currently in use will not be affected until they are recycled back through the Resource Item and
Set blocks.

In the above model, a Get block reads the _cost attribute before the items exit the model. The
accumulated cost of each cost accumulator is then plotted. The plot (cloned onto the work-
sheet), shows that the cost of the items increases during the period of time that the resources’
cost rates are higher.

Gathering and Analyzing Cost Data
The Create, Resource Item, and Resource Pool blocks, as well as queue and activity-type
blocks, are capable of generating costs that get tracked with cost accumulating items. Addi-
tionally, each cost-generating block displays the total cost it generated in its Total Cost dialog
item.

You can also use the Cost By Item (Value library) and Cost Stats (Report library) blocks to
gather summarized cost information. The Cost By Item block reads and stores the _cost and
_rate attributes of all the cost accumulating items that pass through it. The Cost Stats block col-
lects and displays the total cost for each cost-generating block in a model.

Cost By Item block
Depending on selections in its dialog, the Cost By Item block lists the accumulated cost of
each item that passes through it, the time the item passed through the block, and the total and
average cost of all the items that have passed through. This block can also be used to list the
cost of the items sorted by type.

In the Sort By Type model (shown below) three different item types are generated by randomly
assigning a Type attribute of 1, 2, or 3. It costs $5.00 per hour to run the machine. The
machine’s processing time for, and therefore the cost of, each item varies by type. The Cost By

Change Rate model

390 Activity-Based Costing
How ExtendSim tracks costs

D
is

cr
et

e
E

ve
nt

Item block lists the costs of the items sorted by the Type attribute. As an item passes through
the block, the row corresponding to the value of the Type attribute (1, 2, or 3) is updated.

Cost Stats block
The Cost Stats block is useful to determine which blocks are contributing the most to the total
cost of the items being processed. See the help text of the block for a detailed description of
how to use the Cost Stats block.

How ExtendSim tracks costs
☞ The previous sections discussed how to perform ABC in ExtendSim. This section provides a

more detailed look at how ExtendSim tracks costs and is included mainly for informational
purposes.

Setting the _cost and _rate attributes
When you define the cost or cost rate for a cost accumulator or resource (as discussed in
“Defining costs and cost rates” on page 382), ExtendSim will assign the value to the appropri-
ate costing system variable for that item. The fixed cost of the item is assigned to the _cost
attribute and the variable cost rate is assigned to the _rate attribute.

Combining resources with cost accumulators
Whether you use the resource item and batching method or the resource pools method to model
resources, two things happen when a resource is attached to a cost accumulator:

1) The value of the resource’s fixed cost is automatically added to the cost accumulator’s
_cost attribute.

If using the batching method, the resource’s fixed cost comes from the resource’s _cost attri-
bute. If using resource pools, the resource’s fixed cost comes from the Cost per use dialog
item of the corresponding Resource Pool block.

2) The resource’s variable cost rate and the number of resources used are stored in an internal
program structure called the cost array.

The cost array stores costing information for each cost accumulator in the model. ExtendSim
uses the data in the cost array to calculate the time-based cost contributed by any resources that
are combined with the cost accumulator. If using the batching method, the resource’s variable
cost rate comes from the resources _rate attribute. If using resource pools, the resource’s vari-

Sort by Type model

Activity-Based Costing 391
How ExtendSim tracks costs

D
iscrete E

vent
able cost rate comes from the Cost per time unit dialog item of the corresponding Resource
Pool block.

When a resource is released by an Unbatch or Resource Pool Release block, the information
stored in the cost array is updated to indicate that the resource is no longer combined with the
cost accumulator.

Calculating costs
As previously mentioned, the Create block and activity, queue, and resource-type blocks are all
capable of generating costs. As these blocks process cost accumulators, they will automatically
calculate the cost and add it to the item’s _cost attribute. In addition, each cost-generating
block will update its Total Cost information. This dialog item displays the total cost contrib-
uted by that particular block only. The following sections briefly discuss how these calcula-
tions are performed.

In the Create block
When a cost accumulator is generated, ExtendSim will add the fixed cost (Cost per use) of the
Create block to the cost accumulator’s _cost attribute.

For each cost accumulator generated, ExtendSim also will add the fixed cost of the Create
block to its Total cost dialog item.

In activity-type blocks
When a cost accumulator enters an activity-type block, ExtendSim will add the activity’s fixed
cost (cost per item) to the cost accumulator’s _cost attribute. In addition, it will calculate the
variable time-based cost (the processing or transportation cost of the activity and the wait-
ing cost of any resources currently combined with the cost accumulator), and add it to the _cost
attribute of the cost accumulator.

For each cost accumulator that passes through the block, ExtendSim also will add the fixed and
variable cost contributed by that activity-type block (not including costs contributed by any
resources combined with the cost accumulator) to that block’s Total cost dialog.

In queue-type blocks
Queue-type blocks have a checkbox labelled “Calculate waiting costs”. If that checkbox is
selected when a cost accumulator enters a queue-type block, ExtendSim will calculate the
time-based cost. This is composed of the waiting or storage cost of the cost accumulator as cal-
culated from the cost accumulator’s _rate attribute and the variable cost of any resources cur-
rently combined with cost accumulator. The time-based cost is added to the _cost attribute of
the cost accumulator.

For each cost accumulator that passes through a queue-type block, ExtendSim also will add the
waiting cost calculated from the cost accumulator’s _rate attribute (not including costs contrib-
uted by any resources combined with the cost accumulator) to that block’s Total cost dialog
item.

392 Activity-Based Costing
How ExtendSim tracks costs

D
is

cr
et

e
E

ve
nt

In resource-type blocks
The Resource Item block is capable of pro-
viding items that are either cost accumulators
or resources, depending on selections in its
Cost tab, as shown at right.

If the block is providing cost accumulators, it
will generate costs similar to a queue-type
block.

If the block is providing resources, the total
cost of using the resources is calculated and displayed in the block’s Total cost dialog item. The
calculations are based on the resource’s utilization rate and cost rates defined in the block’s
Cost tab.

Combining multiple cost accumulators
In manufacturing processes, different parts of the product may be worked on in parallel, then
combined later to form the final product. In these cases, multiple cost accumulators will con-
tribute to the cost of the final product.

Multiple Cost Accumulators model
For example, when a computer manufacturer prepares a system for an end user, the CPU and
the monitor must each be assembled then combined into one shipment. The CPU and monitor
may be worked on in parallel, then combined using a Batch block, as shown in the model
below:

When the two cost accumulators, the CPU and the monitor, are batched together, two things
will happen:

• The _cost and _rate attributes of the input items are added together. The resulting cost accu-
mulator will have an accumulated cost equal to the combined accumulated cost of the input
items and a waiting cost rate equal to the combined waiting cost rates of the input items.

• Any resources, whether from batching or from a resource pool, that are combined with the
input cost accumulators will be combined with the cost accumulator that is output from the
batching block. Note that any rules or limitations associated with batching resources with

Cost options in Resource Item block

Multiple Cost Accumulators model

Activity-Based Costing 393
How ExtendSim tracks costs

D
iscrete E

vent
items will apply to the resulting cost accumulator (see “Batching and unbatching resources
with cost accumulators” on page 385).

394 Activity-Based Costing
How ExtendSim tracks costs

D
is

cr
et

e
E

ve
nt

Discrete Event Modeling

Statistics and Model Metrics
Statistically analyzing discrete event models

396 Statistics and Model Metrics
Commonly used blocks

D
is

cr
et

e
E

ve
nt

Remember that, by itself, simulation does not provide exact answers or optimize a system.
Instead, a well-built model will capture important data and report statistical results. These met-
rics should provide the information needed for the analysis and decision-making process.

This chapter discusses specific methods for statistically analyzing discrete event models, such
as:

• Gathering statistics for specific types of blocks

• Clearing statistical accumulators after a warm-up period

• Using the History block to get item information

• Tracking change-of-state information about items

• Using attributes to accumulate information about items

• Determining cycle time by timing the flow of items

• When to use time weighted statistics

For a more generalized discussions of statistical analysis, see also the following chapters:

• “Math and Statistical Distributions” starting on page 187

• “Analysis” starting on page 133

☞ The models illustrated in this chapter are located in the folder \Examples\Discrete Event\Statis-
tics.

Commonly used blocks
The following blocks will be the main focus of this chapter. The block’s library and category
appear in parentheses after the block name.

Clear Statistics (Value > Statistics)
Clears statistics in other blocks, eliminating the statistical bias of the warm-up period.

Display Value (Value > Outputs)
Displays and outputs the value that is input.

History (Item > Information)
Records information about items and their properties, such as the value of an attribute,
the item’s arrival time, its priority, and so forth.

Information (Item > Information)
Reports item statistics such as a count of the number of items, the throughput rate, cycle
time, and the time between item arrivals.

Item Log Manager (Report > Information)
Creates a log of item information from data found in History blocks and other blocks
with Contents tabs.

Mean & Variance (Value > Statistics)
Calculates a mean, variance, standard deviation, and confidence interval.

Statistics and Model Metrics 397
Gathering statistics

D
iscrete E

vent
Statistics (Report > Statistics)
Summarizes statistics for a particular type of block, such as activities or queues.
Reports results in a table. Information is calculated using a specified statistical method,
which can be customized.

Gathering statistics
The Statistics block (Report library) accumulates data and calculates statistics for a particular
type of block using a specified statistical method. In addition to the block number, block name,
and the time the information was observed, this block displays metrics that are specific to the
block type, such as utilization or average wait time for activity-type blocks or the mean, vari-
ance, and standard deviation of all the Mean & Variance blocks in the model.

The Queue Statistics model, located in the folder \Examples\Discrete Event\Statistics, uses the
Statistics block to gather information about queues.

Since the Statistics block is used to gather information in continuous, discrete event, and dis-
crete rate models, it is discussed fully in “Statistics” on page 134.

Clearing statistics
At the start of a simulation run the queues are often empty and operations have nothing to pro-
cess. After the model has been running for a while, it gets to the point where it is functioning
more like the real system at normal operating levels. The interval from when the model starts
to when it is functioning in a steady or normal state is called the warm-up period.

The Clear Statistics block (Value library) is used to reset statistical accumulators for the blocks
specified in its dialog, eliminating the statistical bias of the warm-up period. For more informa-
tion about this block, see “Clear Statistics” on page 136.

Clearing Statistics model

In the Clearing Statistics model, statistics are cleared after 40 seconds, removing the warm-up
period for the model. This is seen by the utilization of 1 for Activity B when the model is run.
Unchecking the Clear activity statistics checkbox on the model worksheet causes the utiliza-
tion of Activity B to approach, but never actually reach, 1. This is due to the effect of the initial
idleness of the Activity B block at the start of the simulation run.

Clearing Statistics model

398 Statistics and Model Metrics
Using the History block to get item information

D
is

cr
et

e
E

ve
nt

Using the History block to get item information
When building a model, it is important to start small, verify that the section you have built is
working as expected, then enhance that model section. The History block is particularly useful
for verifying model data because it provides important information about each item as the sim-
ulation runs.

There are two ways to add a History block to a model:

• Connect it in series by dragging a History block from the Item library and connecting it
between other blocks so that items pass through it.

• Connect it in parallel by right-clicking an item output connector and selecting Add History
block. This automatically connects a History block to the original block’s item output con-
nector. If a History block is added in this manner, only its input connector is used. (Caution:
Be sure there is an Item library block connected to the original block’s item output connec-
tor, otherwise its item will have no place to go.)

Each item that passes through the block (if it is connected in series) or is viewed by the block
(if it is connected in parallel) is allocated a row in the History block’s table. The table’s first
column displays the item’s arrival time. Popup menus at the top of the other columns are for
selecting additional information to display, such as the value of an attribute, an item’s property,
and so forth. You can choose to save item history with the model, show string attributes, and
display Calendar dates.

☞ History blocks can use a lot of memory. To temporarily disable the recording of messages
during a run, check the Disable Recording box in the Options tab. For blocks that have been
added to the model by right-clicking, right-click to disable message recording or to delete the
blocks.

History model
The History model shows two
History blocks: one has been
physically placed in series
between a Queue and an Activity
and one has been auto-created
and placed in parallel to the
Queue block.

Both blocks report the same
information (the item’s arrival
time and the value of an attribute
called Item arrival), as shown in
the cloned table in the model
window.

☞ If a History block has been auto-created and placed in parallel to another block, there must be
subsequent blocks that can pull the items in. This is discussed at “Pulling and viewing” on
page 405.

History model

Statistics and Model Metrics 399
Using the Item Log Manager to get item information

D
iscrete E

vent
Verifying Information model
The example shown at the right
illustrates the use of the History
block to verify that batches are
created at the correct time with the
correct number of items.

The topmost Create block (labeled
Schedule Batches) schedules
when the batch is created and the
Queue’s length (L) output deter-
mines the batch size. This causes
all items within the Queue to be
batched.

Using the Item Log Manager to get item information
The Item Log Manager (ILM) block (Report library) collects customized information about
how item states change over time, then packages this information into a customizable database
report. The block allows you to customize which blocks will contribute to the report, what
information will be included in your log, and in what order the information will appear. For
example, you may only want blocks with the label “Process 52” to collect data for attributes
“SKU” and “waitTime”. You can place as many different Item Log Manager (ILM) blocks in
your model as you want.

The ILM tracks how items change states during a run by doing two things:

1) During the simulation run, it directs other blocks in the model to collect data on items as
they pass through. These “remote” data collecting blocks include History, Activity, Queue,
Queue Equation, and Resource Item. Each of these blocks can be remotely instructed to
collect specific item property information for the ILM through its “Data Collection” tab.

2) Once the remote blocks have collected the data, the ILM grabs a subset of the collected
data and packages it into a report. You can control which types of data are included in the
report and the order in which the data appears. This is done on the ILM block's “Configure
Log” tab.

Once the run is complete, any number of differently configured log reports can be generated
from the data that has been collected in the remote blocks. This allows you to do all kinds of
analysis on the data collected from just one run. These reports can be generated after each run
either automatically or manually. You can have one or more ILM blocks in a model with each
one responsible for generating its own report. The ILM also supports generating reports across
multiple runs.

See the “Air Freight with Item Log” model (Examples/Discrete Event/Resources and Shifts)
for an example of using item logging. Also see the help of the Item Log Manager block for a
detailed example showing how it works.

Accumulating data
There are various methods you can use to accumulate data. Attributes can be used to hold
cumulative values, such as the total weight of an assembly or the number of parts in a box. And
the Holding Tank block (Value library) can accumulate total processing time to determine
equipment refurbishment schedules. Data can be accumulated at any step in the model, even
when the item is not being processed.

Verifying Information model

400 Statistics and Model Metrics
Time weighted versus observed statistics

D
is

cr
et

e
E

ve
nt

 It is important to not make the error of assuming that you can combine attribute values and then
accumulate them.

Non-Processing model
In the Non-Processing model, one part from Stock and another from Manufacturing are com-
bined into an assembly. The stock part weighs 10 pounds and the manufactured part weighs
between 1 and 3 pounds. The model uses an attribute called Weight to track the weights of the
separate parts.

The Properties tab of the Batch block is set to sum the values of the Weight attribute for the
completed assembly. After the parts are batched, an Equation(I) block increments the Weight
attribute by 0.5 pounds. At the loading dock, the weight of the current item is displayed as it
leaves.

Processing model
If the data to be accumulated is dependent on processing, you can accumulate values using a
Holding Tank block (Value library) connected to the PT (process time) connector on an Activ-
ity block. For example, to accumulate the total amount of processing time parts required, as an
indication of when the processing equipment needs to be refurbished.

In this model, each time an item leaves the Activity, its processing time will be added to the
value in the Holding Tank.

Time weighted versus observed statistics
The Mean & Variance block (Value library) can calculate either a time weighted or observed
statistic:

Non-Processing Model

Processing model

Statistics and Model Metrics 401
Timing the flow of items in a portion of the model

D
iscrete E

vent
• If Use time weighted statistics is checked in the Mean & Variance block, the mean, variance,
and standard deviation are calculated by weighting the input value based on the simulation
time. This is derived by dividing the input value by the duration of that input value and then
summing these over the course of the simulation.

• If Use time weighted statistics is not checked, the sum of the input values will be divided by
the total number of input values received, resulting in an observed statistic.

When using the Mean & Variance block, carefully consider the type of statistics that you want
to calculate. Some guidelines for whether or not to select the time weighted statistics option
are:

• If the value that you are collecting statistics on has a value at every point in the simulation,
enable time weighed statistics. A good example of this is the number of items in a block
(reported by the L connector). At any point in the simulation, there are a certain number of
items in a block. To determine the average value, weight it over time.

• If the value that you are collecting statistics on only has a value at specific events, do not use
time weighted statistics. An example of this is the W or wait time connector. This connector
only has a value when an item leaves the block, which is a specific event. In that case, time
weighted statistics should not be used.

Time Weighted Statistics model
The Time Weighted Statistics example shows the difference between the two methods of cal-
culating statistics and how they are calculated.

Comparing the weighted and un-weighted approaches to the average queue length reported in
the Queue block’s Results tab, it is clear that not using time weighted statistics would give an
incorrect answer for this model.

Timing the flow of items in a portion of the model
In addition to performance information that is directly available in a model, you may want to
determine cycle time – how long it takes an item to go from one part of the model to another.
For example, you may want to know how long a customer waits in line to place an order, or
how long it takes that customer to get served once the order is placed.

Time Weighted Statistics model

402 Statistics and Model Metrics
Timing the flow of items in a portion of the model

D
is

cr
et

e
E

ve
nt

To see how to determine cycle time in a model, see “Cycle timing” on page 412.

Discrete Event Modeling

Tips and Techniques
Helpful information for when you build discrete event models

404 Tips and Techniques
Moving items through the simulation

D
is

cr
et

e
E

ve
nt

This chapter provides some tips, techniques, and information you may find helpful when build-
ing discrete event models. The chapter covers:

• Moving items through a simulation

• How items move: holding and pushing. viewing and pulling

• Implications of connecting to multiple item inputs

• An item’s travel time

• Using scaling for a large number of items

• Preprocessing

• Restricting items in a system

• Connecting to the select connector

• Issues for continuous blocks in discrete event models

• Setting time-based parameters using a Random Number or Lookup Table block

• Varying a distribution’s arguments for the Create block

• Accumulating values using a Holding Tank block

• Cycle timing

• Item library blocks

• The Executive

• Types of blocks: residence, passing, decision, and non-item

• Common connectors on Item library blocks

• Templates for common situations

• Event scheduling

• Messaging in discrete event models

☞ The models for this chapter are located in the folder \Examples\Discrete Event\Tips.

Moving items through the simulation
In general, item input connectors on discrete event blocks will pull an item in, do something
with it, wait for the block connected to the item output connector to pull the item out, then pull
in another item. For example, the Activity block will pull items from preceding blocks, process
those items, and hold them to be picked up by another block.

It is important that you understand the ExtendSim discrete event behavior so you can avoid
making modeling errors.

How items move through the simulation
It is important to understand how items move through specific blocks so that you can avoid
two rare but possible pitfalls: losing items from the simulation and having items stop moving
in the simulation.

To avoid the problems discussed below, you should probably connect Create blocks to queues
so that items do not get lost and connect the History block in parallel with other blocks that
will actually pull in the items.

Tips and Techniques 405
Moving items through the simulation

D
iscrete E

vent
Holding and pushing
Item library blocks treat their output items in one of two ways:

• Most blocks hold the item and it leaves only when another block pulls it in.

• When set to create items randomly, by schedule, or infinitely, the Create block pushes the
item from the block when it is generated, regardless of whether it will be picked up by
another block. The Create block has to push items out, because those items are created
within the block and are arrival time related.

Avoid this pitfall
When a Create block pushes an item
and it is not picked up, the item disap-
pears from the simulation. Generally
this would only be used in certain very
specific types of models. In most situa-
tions where the Create block is set to
create items randomly, by schedule, or
infinitely, follow the block with a queue
to collect the items and hold them, so
that all the items generated are available
for the rest of the model.

Of course, if the Activity has an infinite capacity, it is not necessary to place a queue after the
Create block.

 A Create block set to Create items infinitely should never be connected to an infinite capac-
ity queue, since generating an infinite supply of items would overwhelm the system.

Pulling and viewing
There are two ways a block’s item input connector can have access to an item: it can pull an
item from the preceding block (as most connectors do), or it can simply view an item that is
waiting at the item output of the preceding block. If an item input connector pulls an item in, it
has access to the item for processing. However, if an item input connector only views items, it
does not have direct access to them, it can only sense their presence at the preceding output
connector.

The particular connectors that only view items (not pull them) are:

• The Gate block’s sensor connector when it is set to Type: area gating or its demand con-
nector when the block is set to Type: conditional gating with items.

• The item input connector on the History block, if the block has been added in parallel to
another block. This is shown below and described in “Using the History block to get item
information” on page 398.

Unwise:

Wise:

406 Tips and Techniques
Moving items through the simulation

D
is

cr
et

e
E

ve
nt

Avoid this pitfall
When one block holds an item and
that item is only viewed by another
block, the item does not move
through the simulation and is blocked.
This is never desired.

For example, both screenshots to the
right show a History block that has
been auto-created and is viewing
items in an Activity block. In the top
(error) screenshot, after the Activity
block has finished processing its first
item, the item will have nowhere to
go since it is blocked.

Connections to multiple item input connectors
You can connect from one item output connector to as many item input connectors as you
want. However, since items can only be in one place at a time, the first connector to pull in the
passed item gets it and the other connectors do not.

Furthermore:

• If more than one input on a single block is free, the item will arbitrarily go to any available
input. (Note that the selection is arbitrary – not random.)

• If more than one block is free to accept the item, the item will go to the block that was first
connected in the model. This is shown in “Implicit routing” on page 302 and “Simple paral-
lel connections” on page 318.

It is more typical that you would want to specify which input connector, or which block, would
get an item. For more information, see “Items going to several paths” on page 299.

 Unless it is completely unimportant in the model, you should always use the Select Item In and
Select Item Out blocks to explicitly state how items should be routed. Otherwise, the order in
which their connections were made will dictate the routing.

An item’s travel time
In a discrete event model items travel from block to block as dictated by the connection lines.
The lines between blocks indicate the path of the movement, but they don’t provide any delay
to the items.

In most cases, travel time is insignificant and can be safely ignored. Where an item’s travel
time is significant to the model, you can:

• Increase the delay time of destination blocks to compensate for the travel time

• Specify a minimum wait time in a Queue block’s Options tab

• Explicitly set a travel time in a Transport or Convey Item block, as discussed in “Transporta-
tion and material handling” on page 338. (You can easily add a Transport block between two
blocks by right-clicking the leftmost block’s output connector and selecting “Add transport
block”.)

Error:

OK:

Tips and Techniques 407
Moving items through the simulation

D
iscrete E

vent
Using scaling for large numbers of items
In discrete event modeling problems, the number of items that need to be processed through
the simulation may be quite large. This will slow down the execution of the model and increase
the amount of memory required. It is often possible (and non-destructive to the validity of your
results) to scale down the number of items passing through the model. For example, if there is
one item representing a single log in a simulation of a lumber mill, the same model could quite
possibly run faster, and equally well, with one item representing ten logs.

When you make scaling changes to a model of this nature, it is very important to reflect the
changes everywhere in the model. Thus, if an activity that represented a saw in the lumber mill
was set to take one time unit to process an item (one log) before, it must now take ten time
units to process the same item (ten logs) after the scaling.

☞ While scaling can sometimes be a useful approach, the Rate library is specifically designed to
model high volume and/or high speed systems. In most cases, using the Rate library is superior
to item scaling. The Rate library is available with the ExtendSim Pro product.

Preprocessing
You sometimes want to have all the items available at the beginning of a simulation instead of
generating them as the simulation proceeds. For instance, if you need some random orders pre-
sented to the model in sorted order, you might want to sort them before the simulation starts.
This is difficult under normal circumstances since the first order would begin traveling through
the simulation as the second one was being created. There is an easy method that will cause
ExtendSim to create lots of items, store them in a queue, and release them.

Set the initial value in a Resource Item block to the num-
ber of items you want to generate. Connect the Resource
Item block to a Set block where you attach item properties
(priority, attribute, etc.). Then connect to a Queue that
sorts based on the desired item property.

When the model is run, all the items will travel from the
Resource Item block to the Queue on step zero. This
makes the items, with all their properties, available to the
rest of the model at the start of the simulation.

☞ If there are many items in the Resource Item block, the status bar may show the phrase Initial-
izing Data. As soon as the preprocessing is done, the timer will settle into a more useful num-
ber.

Restricting items in a system
As part of a model you may want to have a section composed of a group of blocks in which
only one item (or a limited number of items) can be anywhere in the section at a time. For
example, assume you are modeling a manufacturing process with a paint room. There are
many blocks that represent the steps in the paint room but only two items are allowed in the
entire paint room at a time. New items must be restricted from entering the room until one or
more items leave.

When set to Type: area gating, the Gate block is perfect for this because its sensor connector
tells it each time an item has reached the end of a system. The number of items allowed are set
in the Gate block’s dialog; in this case, two. Put the Gate block at the beginning of a system; at
the end of the system, run a parallel connection from the output of the last block to the Gate
block’s sensor connector.

Preprocessing

408 Tips and Techniques
Continuous blocks in discrete event models

D
is

cr
et

e
E

ve
nt

In this example, the paint
room is represented by two
Activity blocks. The Gate
block will pass the first two
items it receives into the paint
room, then only let a new item
pass when it sees the first item
at its sensor connector. As
each item leaves the paint
room, a new item can enter. Note that the sensor connector doesn’t accept any items; it only
views them as an indicator of their position in the model.

☞ Another, more flexible, approach is to use a Resource Pool block to restrict items in a section
of the model. This is useful when you need to track statistics on utilization, or if you have mul-
tiple flows of items accessing the same physical space.

Connecting to the select connector
The select connector is used to
control the behavior of the Select
Item In and Select Item Out
blocks. If the select connector
gets its value from a Get block,
you should avoid putting Set
blocks, activities, and queues
between the Get block and the
Select block. These blocks can alter the value sent to the select connector or delay the item so
that the Select block routes the wrong item.

For instance, the model segment shown at the left of the above screenshot will work properly.
The one shown to its right may not work correctly, because the item to be routed may still be in
the Activity block.

Continuous blocks in discrete event models
Value library blocks can be considered passive blocks in discrete event models. In most cases,
blocks from the Value library will not recalculate unless told to do so by an Item library block.
This has important ramifications for the behavior of Value library and other continuous blocks
in discrete event models.

When an Item library block needs a new value at one of its value input connectors, it will send
a message out that connector to the connected Value library block, requesting a new value.
Likewise, when an Item library block has calculated a new value at one of its value output con-
nectors, it will send a message to the connected Value library block notifying it of the change.
Typically these messages will cause the Value library blocks to recalculate. The messages are
then propagated to all other connected Value library blocks.

In discrete event models, most blocks from the Value library typically neither post events to the
Executive nor receive event messages from the Executive. Furthermore, Value library blocks
do not recalculate on each time step in discrete event models as they do in continuous models.
Rather, they are only alerted to recalculate if they receive a message from an Item library
block. And most Item library blocks are triggered to action only by the arrival of an item. Com-
plications can arise if a Value library block does not get a message from an Item library block
when you expect or want it to recalculate.

Restricting items

Safe and unsafe connections to the select connector

Tips and Techniques 409
Continuous blocks in discrete event models

D
iscrete E

vent
☞ Some Value library blocks, such as the Clear Statistics and the Lookup Table, do generate
events in a discrete event model because they need to perform a specific action at a scheduled
time.

To prevent modeling errors, it is helpful to understand this relationship between Item and
Value library blocks. Common situations where this is important include:

1) Setting time-based parameters using connections from a Random Number or Lookup table
block. This is described on page 409.

2) Varying an argument for a Create block’s distribution with a Lookup Table where there is
the possibility of a message being ignored. This can cause a lot fewer items to be created
than expected.

3) Using a Holding Tank block to accumulate the result of a calculation performed on two or
more values coming from Item library blocks. If not modeled properly, the Holding Tank
can get duplicate messages and will have incorrect results.

☞ For a detailed discussion about messaging between discrete event and continuous blocks, see
“Value input and output connector messages” on page 419.

Setting time-based parameters using connectors
Some time-based parameters can be set using a connector value. In these situations, the value
sent to the input connector must be defined in the time unit specified in the receiving block.
The following examples illustrate issues you should be aware of.

Random Number block
Assume you want the delay for an Activity block to be approximately 30 minutes and you con-
nect a Random Number block to the Activity’s D input connector. If the local unit of time for
the Activity is minutes, you would set the Random Number block to generate numbers with a
mean of 30. However, if the Activity block used hours as its local time unit, the Random Num-
ber block should be set to generate numbers with a mean of 0.5.

☞ It is a modeling error to expect the Random Number block to create random values at each
event in a discrete event model. The only time this Value library block will be activated to out-
put a new value is when it receives a message on one of its connectors. In the above example,
the Random Number block will get a message each time an item arrives to the Activity block,
so each item will get a random delay time. For more information, see “Value input and output
connector messages” on page 419.

Lookup Table block
It is possible that the numbers in one column of a block are based on the time unit for that
block, and the numbers in another of its columns are based on the time unit for a second block.
An example of this is described in “Choosing time units for the columns” on page 261.

Varying a distribution’s arguments
It is common to use another block to specify the arrival intervals by varying the argument
(such as the mean) of a distribution in the Create block. To avoid unexpected results, it is
important to understand what happens in the Create block when you do this. The Create
block’s default behavior is to send a message to the Executive block giving an arrival time,
called “nextTime”, for the next item based on the current input parameters. When simulation
time reaches nextTime, the Executive block sends a message to the Create block. The Create
then releases the item and generates a new nextTime based on the current values of the input

410 Tips and Techniques
Continuous blocks in discrete event models

D
is

cr
et

e
E

ve
nt

parameters. For the period of time between releasing items, the Create block will not react to
changes in the input parameters. If the inputs change drastically, this can cause unexpected
results as shown in the following example.

Lookup Table example
Assume you connect a Lookup Table block to the
mean input connector of a Create bock, varying the
interarrival mean according to the schedule in the table
at right.

For this example, both the Time and Output 1 columns
of the Lookup Table block are defined using hours as
the time unit. The mean for the interarrival time is 12
hours except for the period between hours 6 and 14
where the mean is 0.5 hours. Because the mean is only an average, it is possible for the Create
block to generate an item at time 0 with an arrival time of 14 or more. If that happens, the Cre-
ate block will get the message that the mean should have changed to 0.5 between hours 6 and
14, but it will ignore it. In this case, the number of arrivals will be much less than expected.

The Options tab of the Create block has a check box labeled Interarrival time changes
occur immediately. When checked, it will cause the Create block to immediately respond to
changes to any input parameter. In the case of the above example, the Create block would rec-
ognize that the mean had changed from 12 to 0.5 at time 6. It would then generate a new ran-
dom number for the arrival time using the new input values.

Using the Holding Tank block to accumulate values
When accumulating data in a model, it is important to not make the error of assuming that you
can add attribute values and then accumulate them.

Incorrect approaches
Assume you want to accumulate the sum of two attri-
bute values. Your first intuition might be to add the
two attribute values together and send the result to a
Holding Tank block (Value library).

Two incorrect approaches to do this are shown at right.
In the first case the attribute values are obtained from
two Get blocks; in the second case the attribute values
are captured from one Get block. In both cases the
Holding Tank will give incorrect results.

Each time an item passes through a Get block, a message is
sent out each value output connector. The way this been con-
structed, the passing of one item will result in two additions
being contributed to the Holding Tank block.

Attributes Error model
The Attributes Error model illustrates the modeling problem
and some potential solutions. The problem with this model is
clear if you look at the numbers, 11 and 42 respectively, displayed by the Exit and Display
Value blocks. Since the values of attribute A and attribute B are both 1, the accumulated total

Lookup Table’s table

Incorrect approach #1

Incorrect approach #2

Tips and Techniques 411
Continuous blocks in discrete event models

D
iscrete E

vent
displayed on the Display Value block should only be twice the value displayed in the Exit
block; clearly this is not the case in this model.

The reason for the modeling problem shown above involves the message passing system in
discrete event models. Individual items travel through the Get blocks sequentially. As an item
passes through the first Get block, the block sends a message and the value of the attribute to
the Math block (Value library). The Math block then recalculates and sends a message and the
value to the Holding Tank block (Value library). When the item moves to the second Get block,
it will send a message to the Math block again. This causes the Holding Tank block to get two
messages and two values for each item that passes through the system. This kind of problem
will occur in any discrete event system where there are multiple connections to a Holding Tank
block (either directly, or indirectly as shown above) or if one Get block was used with two out-
puts.

The Attributes Error model includes four examples: the problem and the three solutions dis-
cussed below.

Solution #1: two Holding Tank blocks
One way to solve this problem is to accumulate the
attributes’ values separately using two Holding
Tank blocks. The contents of the Holding Tanks are
then added together. This prevents the “double
counting” of the previous example, because each
Holding Tank block receives only one message and
value per item that passes through the Get block it
is attached to.

Solution #2: the Equation(I) block
Another solutions is to perform the calculation in the Equation(I)
block (Item library). The Equation(I) sums up and accumulates the
attributes in one step, so it avoids the double messaging problem
altogether. The equation entered is:

Accumulate = Accumulate + a + b;
Result = Accumulate;

where accumulate is a static variable and a and b are the two attribute values from the item
entering the Equation(I) block. The equation adds the two attribute values to the accumulated
value, then sets the output to the accumulated value.

As an alternative, instead of both summing the attributes and accumulating, the Equation(I)
could just sum the attributes and output that value to a connected Holding Tank.

Attributes Error model: Problem

412 Tips and Techniques
Cycle timing

D
is

cr
et

e
E

ve
nt

Solution #3: the Stop Message block
You can also use the Stop Message block (Utilities
library) to prevent the Math and Holding Tank
blocks from receiving two messages for every one
item. This block stops messages from being passed
through a value connection; it is designed to solve
problems of this nature.

The Stop Message block is connected between the
value output of Get 1 and the value input on the
Math block. This will prevent the first message from reaching the Math block but will allow
the value to be passed.

Cycle timing
The amount of time one block takes to process an item is known as the delay or processing
time. Cycle time is the time an item takes to travel through a group of blocks. If there is no
blocking in a model (that is, if all items leave their blocks exactly at the end of their delay
time), the cycle time is the sum of the delay times for the section being measured. In most situ-
ations, this would rarely occur, and cycle time is usually more than the sum of the processing
times. For instance, it is common that an item cannot leave a block because the next block is
still processing its item.

To track an item’s cycle time, use either the Timing attribute feature (if the item is being
tracked from its origin) or a Set or Equation(I) block with an Information block (if the item is
being tracked from some place other than its origin).

These methods are discussed below. In each
case, the Information block reads the attribute
and calculates the difference between when the
item started the cycle and when it ended. The
dialog of the Information block displays the
current, average, minimum, and maximum
cycle time for all items with the specified attri-
bute. Its output connectors report the count of
items, the time between items, their cycle time, and the throughput rate.

Using the Timing attribute feature
If you are tracking the item from its origin, use the Timing attribute feature in the Create
block’s Options tab to create a new value attribute and assign it to all items that are generated
by the Create block. Then place the Information block at the end of the section you want to
observe and select the name of the attribute as the Timing attribute in its dialog.

In the example shown at
right, a value attribute
named CycleTime has
been created in the Cre-
ate block, and the
block’s Options tab is
set to Timing: Cycle-
Time. The Information
block is placed after the Primer activity and is set to Calculate TBI and Cycle Time statistics,
and its Timing attribute: is also set to CycleTime. For this model, the Information block

Cycle time portion of Information dialog

Cycle Time 1

Tips and Techniques 413
Item library blocks

D
iscrete E

vent
calculates the time from when items were first created to when they finish being primed. This
includes the time items wait in the Queue.

Using a Set or Equation(I) and Information blocks
If you are tracking the item from some place other than its creation point, put a Set or Equa-
tion(I) block at the beginning of the section you want to observe, create a new value attribute in
that block, and set the attribute to the current time. Then place an Information block at the end
of the section and enter the name of that attribute as the Timing attribute in its dialog.

In the example at right, an
attribute named CycleTime2
has been created in the Set
block. The Simulation Vari-
able block (Value library)
outputs current time and is
attached to the Set block’s
value input connector. For
this model, the Information
block calculates just the
time that the items take to
go through the priming and
drying processes.

Item library blocks

Executive block
The Executive block controls and performs event scheduling for discrete event and discrete
rate models. An Executive block must be placed to the left of all other blocks in a discrete
event or discrete rate model. Using it in a model changes the timing from continuous to dis-
crete, and simulation time advances when events occur, rather than periodically.

This block can be used to:

• Manually control when the simulation stops. The default is that a simulation stops at the end
time set in the Run > Simulation Setup dialog. You can also choose to stop the simulation
when the number at the Executive’s count input reaches a specified value.

• Allocate item availability. To conserve memory, this number should be something close to
and less than the maximum number of items that you expect to see in the simulation. The
default is that 10,000 items are initially available and additional items are made available in
batches of 10,000.

• Declare and manage string attributes for items in Item library blocks.

• A table in the Item Attributes tab is used to enter a descriptive text label (string) for
each potential attribute value for a selected string attribute. For a tutorial on how this is
done, see the Discrete Event Quick Start guide and “Item attribute types” on page 264.

• Other tables in the Item Attributes tab allow you to select an attribute for renaming or
deleting, and display blocks that use the selected attribute.

• Declare and manage string attributes for flow in Rate library blocks

Cycle Time 2

414 Tips and Techniques
Item library blocks

D
is

cr
et

e
E

ve
nt

• A table in the Flow Attributes tab is used to enter a descriptive text label (string) for
each potential attribute value for a selected string layer attribute. For more information,
see “Flow attributes” on page 431.

• Other tables in the Flow Attributes tab allow you to select a flow layer attribute for
renaming or deleting, and display blocks that use the selected attribute.

• Manage flow units and select global and advanced options for discrete rate models. For more
information, see “Global and advanced options in the Executive” on page 514.

• Set information for the LP solver used in discrete rate models. For more information, see
“LP technology” on page 526.

☞ Unless you use string attributes, it is rare that you would need to make any changes in the
Executive’s dialog. Most of its options are for advanced users.

Templates
The Item Templates library contains templatessubmodels within hierarchical blocks for
common modeling situations such as emptying a queue at intervals or selecting the shortest
queue.

Block types
As discussed on “Item connector messages” on page 421, Item library blocks pass messages
through item connectors. There are three types of item-based blocks that determine how the
item connector messages are handled:

• Residence-type blocks are able to contain or hold items for some duration of simulation
time. Some residence blocks post events and some do not.

• Passing-type blocks pass item through without holding them for any length of simulation
time. These blocks implement modeling operations that are not time-based; they usually do
not post future events.

• Decision-type blocks route the items through the model. These blocks choose a route based
on an item property, a random value, a sequence, or an input from a connector. Depending on
what options are selected in the block, a decision-type block may or may not be able to hold
onto items.

Why block types matter
Knowing these categories of blocks and how they relate to the processing of items will help
you to build better models. For example an item will not enter a passing block before it has
been determined that there is space in the next downstream residence block. And when you
debug models it is useful to understand where the items can reside for any amount of time, as
well as the time required for an item to move from one residence block in the model to another.
In addition, some of the options in the blocks refer to specific block types. An example of this
is the Transport block where you can specify that the distance to the next block is from the
Transport block to the next non-passing (residence or decision) type block.

Tips and Techniques 415
Item library blocks

D
iscrete E

vent
Table of block types
Not all of the blocks in the Item library fit neatly into these categories, but it is helpful to use
the categories as a framework for thinking about the messaging architecture. Following is a
table of the blocks in the Item library and their associated type.

* If an item is allowed into the Select Item Out block before the decision is made (see the dia-
log check box), then it is a residence-type block. If the decision is made before the item enters
the block, then it is a decision-type block.

Common connectors on discrete event blocks
Many blocks use abbreviations or acronyms to indicate a connector’s purpose. Some of these
represent more than one purpose and are context sensitive. The following connector labels
appear on many Item library blocks:

Block Type Block Type

Activity Residence Queue Matching Residence

Batch Residence Read(I) Passing

Catch Item Passing Resource Item Residence

Convey Item Residence Resource Pool N/A

Cost By Item Passing Resource Pool Release Passing

Cost Stats N/A Select Item In Decision

Create Residence Select Item Out Decision/Residence*

Equation(I) Passing Set Passing

Executive N/A Shift N/A

Exit Residence Shutdown Residence

Gate Decision Throw Item Passing

Get Passing Transport Residence

History Passing Unbatch Residence

Information Passing Workstation Residence

Queue Residence Write(I) Passing

Queue Equation Residence

Connector Meaning

 Delta

Count

A Average cost (Cost By Item)

AD Accumulated demand (Gate)

AS Activity status

BT Blocked time

416 Tips and Techniques
Event scheduling

D
is

cr
et

e
E

ve
nt

Event scheduling
ExtendSim moves items in a discrete event model only when an event happens. Events are
controlled by the Executive block and only occur when particular blocks specify that they
should. Blocks that depend on time cause events to happen at the appropriate time. For

C Capacity (Activity, Workstation)
Current cost (Cost By Item)

CI Confidence interval

CT Cycle time

D Delay (Activity)

DB ExtendSim database

DT Down time (Activity)

DV Down value (Shutdown)

F Full (Activity, Queue)
Field of a database table (Read Item, Write Item)

I Interval between items

L Length of waiting line (Queue, Activity, Workstation)
Length of line (Information - will be 0 or 1)

LO Length out (Queue Matching)

MG Match group (Queue Matching)

NB Number blocked

P Priority

PE Preempt

PT Process time

Q Quantity

R Renege time (Queue)
Row (Cost By Item)
Record (Read Item, Write Item when ExtendSim database is selected)

RS Reset

SD Shut down

T Total cost (Cost By Item)

TBF Time between failures (Shutdown)

TP Throughput rate (Information)

TTR Time to repair (Shutdown)

U Utilization

UV Up value (Shutdown)

W Wait time for items leaving the queue

Connector Meaning

Tips and Techniques 417
Event scheduling

D
iscrete E

vent
instance, an Activity block holding an item until a particular time will cause an event to be
posted to the ExtendSim internal event calendar. When the time is reached, the event occurs
and the model recalculates its data.

Blocks that do not generate events allow the blocks after them to pull items during a single
event. Thus a single event can cause an item to pass through many blocks if those blocks do
not stop them. For instance, a Set block could set the item’s attribute and pass the item to the
next block in the same event.

Discrete event and discrete rate simulations use the same method for updating the simulation
clock. Simulation models of this type are driven forward by event and the state of the model
changes only at event times.

At each event, blocks that have posted an event to the event calendar for the current time
receive a message notifying them that the time has arrived. Once all of the blocks have
received their messages, the time for the next event is determined. Through this event schedul-
ing mechanism the simulation clock jumps from one event to the next.

Event calendars
ExtendSim utilizes a two-stage event calendaring method – the Executive block maintains a
list of all events for the model and time-delay blocks maintain their own event calendars.

☞ This two-stage event calendar is very efficient and flexible. Unlike single stage event calen-
dars, relatively little time is spent by the Executive in maintaining and searching the event list.

The Executive
The Executive block maintains a list of all event times for the model in its event calendar. At
the beginning of each simulation event, the Executive locates the next future event and sends a
message to each of the blocks in sequence that posted an event for that time. Once a block has
completed processing its event, it will post its next event time to the Executive. If the block
does not have a future event time, it will post a very large value as its next event time, effec-
tively removing it from the list of pending events.

Blocks may have two or more entries on the Executive’s event calendar. This is because they
have different types of events that need to be processed. For example the Convey Item block
has an event that occurs when an item is able to enter the block and an event for when the item
leaves the block.

For more information about the Executive block, see page 413.

Internal event calendars
Each block that has a time delay associated with it (for example the Create, Activity, Pulse, and
Shutdown blocks in the Item library) maintains its own, independent next event time.

Blocks such as the Activity, Convey, or Shutdown block can have multiple future events (one
event for each item in the block) ongoing simultaneously. In this case, the blocks maintain their
own internal event calendar, posting only the earliest of these events to the Executive's event
calendar.

Zero time events
As the simulation progresses, there are many times when it is useful to generate a zero time
event. This is done to allow an item to complete the process of moving into a block before the
block attempts to perform additional actions on the item. For this purpose, the Executive main-

418 Tips and Techniques
Event scheduling

D
is

cr
et

e
E

ve
nt

tains a current events list. This is a short list of the blocks in the model that need to receive a
message before the simulation clock advances.

A prime example of this is the Queue block. When an item arrives to a Queue, a zero time
event is posted so that the Queue can return control to the upstream block that sent the item.
The Queue receives another message before the clock advances so that an attempt can be made
to send the item to the next downstream block. This feature enhances the efficiency and pre-
dictability of discrete event models.

Event Scheduling model
A discrete event model is helpful in
understanding how event scheduling
works. For this example: items arrive,
wait at the first queue, are processed at
the first activity, wait at the second
queue, are processed at the second
activity, and leave through an exit.

In this model, there are three blocks that post events:

• The Create block posts an event for the creation of each item. The time between item arrivals
is 0.6.

• The Activity 1 block posts an event for the earliest completion time of an item in the block.
The duration of this activity is 1.0.

• The Activity 2 block posts an event for the earliest completion time of an item in the block.
The duration of this activity is 0.5

As the simulation progresses through time, the event calendar in the Executive might look like
this:

Notice how the next event time is always the lowest of all of the event times for all the blocks;
this is how a discrete event simulation works. Also, the table illustrates the concept of event

Time
Create posts next
event time

Activity 1 posts
next event time

Activity 2 posts
next event time

Events

0.0 0.0 Infinity Infinity Item #1 is created

0.0 0.6 1.0 Infinity Item #1 begins service at Activity 1

0.6 1.2 1.0 Infinity Item #2 is created

1.0 1.2 2.0 1.5 Item #1 completes service at Activity 1
Item #1 begins service at Activity 2
Item #2 begins service at Activity 1

1.2 1.8 2.0 1.5 Item #3 is created

1.5 1.8 2.0 Infinity Item #1 completes service at Activity 2

1.8 2.4 2.0 Infinity Item #4 is created

2.0 2.4 3.0 2.5 Item #2 completes service at Activity 1
Item #2 begins service at Activity 2
Item #3 begins service at Activity 1

2.4 3.0 3.0 2.5 Item #5 is created

Event Scheduling model

Tips and Techniques 419
Messaging in discrete event models

D
iscrete E

vent
scheduling but does not show all of the detail of what is happening as the items move through
the blocks. For example, the Queue schedules a zero time current event as it moves the item
through, but this is not shown in the table.

Messaging in discrete event models
As discussed in “How ExtendSim passes messages in models” on page 101, the ExtendSim
architecture allows application messages to be sent from ExtendSim to a model’s blocks and
block messages to be passed between blocks.

Discrete event models use the same application messages as do continuous and discrete rate
models. The block messages sent between Item library blocks are discussed below.

Block messages
Discrete event blocks have a sophisticated messaging structure for communicating with each
other and with blocks in the Value and Rate libraries. These messages can be categorized as:

• Event
• Value connector
• Item connector
• Block-to-block

Event messages
Event messages communicate between the Executive block and Item library blocks in a model.
In a discrete event model the simulation clock advances from one event to another. Each time
the clock advances, the Executive block sends event messages to the Item library blocks that
have associated themselves with that event. There are two types of events: future and current.

• A future event message occurs when the simulation clock reaches a time posted by a block.
For example, when an item enters an activity, the activity will post a future event to the
Executive corresponding to the item’s “finished time”. Once the simulation clock has
advanced to this future event, the Executive sends an event message to the activity, alerting it
that the item has finished processing.

• A current event message occurs when a block wants to be activated before the simulation
clock advances, but after it has completed its response to another message. For example, a
queue will post a current event message to the Executive as it is pulling in items. After all the
items have arrived to the queue, the Executive sends a current event message to the queue.
This signals the queue to try and push all the items out of the block.

☞ The only blocks in the Value library that post future events are the ones that provide values or
perform actions at specific times. Examples are the Clear Statistics block that resets the simu-
lation statistics at a scheduled time and the Lookup Table block that provides values at sched-
uled times. Other Value library blocks lie dormant during a discrete event simulation unless
they receive an activating message (either directly or indirectly through another block) from an
Item library block.

Value input and output connector messages
Blocks in a discrete event model send value connector messages either because a new number
is needed by an input connector or because the value of an output connector has changed.
These messages either request updated information for the input connectors or notify con-
nected blocks that the output value has changed.

420 Tips and Techniques
Messaging in discrete event models

D
is

cr
et

e
E

ve
nt

• When a message is sent from an input value connector, the sending block requests an
updated connector value from the receiving blocks. Messages sent out the input connectors
go only to the outputs of the directly connected blocks.

• Whenever an output connector changes, messages are sent to all of the inputs of the directly
connected blocks. In this case, the sending block alerts the receiving blocks of a connector
value change. Blocks that receive messages at their input connectors may, if appropriate,
propagate messages:

• Out other input connectors to make sure that all input values are current

• To their output connectors to notify other blocks of the change in value

Through this mechanism, a single value change may cause any number of connected blocks to
recalculate, ensuring that any system dependencies are automatically evaluated. For example,
if the value of an input connector on an equation-type block changes, messages are first sent
out the other input value connectors if they are connected (ensuring the equation will have up-
to-date inputs prior to calculation.) Then, with updated inputs, the block recalculates its equa-
tion and posts the new results on its output value connectors. Once the new results have been
posted, messages are sent out the output connectors, alerting any connected blocks that the
results have changed.

Example of value connector messaging
The sample model shown below illustrates how value connector messages work. In this exam-
ple, items arrive, an attribute is set to a random number, and the items are then processed at two
work areas (Queue and Activity blocks) in series. Three Value library blocks (Random Num-
ber, Math, and Display Value) provide a random number for the attribute value, add the two
queue lengths, and display the sum of the lengths, respectively.

When an item arrives to the Set block a message is sent out its value input
connector. The Random Number block responds by providing a new ran-
dom number each time it receives a message. This simple messaging exam-
ple is shown at the right.

 In a discrete event or discrete rate model, the only time most Value library
blocks (such as the Random Number block) are alerted to do something is
when they receive a message on one of their value connectors. For
instance, do not expect the Random Number block to continuously output a
stream of random numbers in discrete event or discrete rate models.

Example of value connector messages

One message sent

Tips and Techniques 421
Messaging in discrete event models

D
iscrete E

vent
In the more complex messaging case
that is shown to the right, when an item
arrives at the first queue its length will
increase by 1. Since this changes the
block’s L (length) output connector,
Queue 1 sends a message to all inputs
connected to L (in this case the Math
block). When the Math block receives
this message, it sends a message to the
L connector at Queue 2, ensuring that
both inputs are up-to-date before any calculation is made. The values of the two length connec-
tors are then added together and a third message is sent to the Display Value block, which then
updates its animation and dialog.

Item connector messages
Item connector messages (primarily wants, needs, and rejects) propel items through the
model. These messages use a conversation of messages to move items from one block to
another. This mechanism allows for items to be both pushed and pulled from one block to the
next. How these messages are handled depends on whether the block is a passing, residence, or
decision block (see “Cycle timing” on page 412.)

Pushing items
In the case of pushing, the upstream block first sends a wants message.

• If the downstream block is a passing block, it forwards the message to the next downstream
block through its output connector.

• If the downstream block is a residence block, it responds with either a needs message (if it
can accept an item) or a rejects message (if it is unable to accept an item based on its status).

• If the downstream block is a decision block, it determines the status of the decision and any
downstream blocks. It often does this by sending additional item or value messages and then
responding with a needs or rejects.

Three messages sent

Create sends
“wants” to

downstream block
Passing Block

Send wants to
next downstream

block

No

Yes

Do I need an
item?

Reject Item

Need Item

Flowchart for how items are pushed

422 Tips and Techniques
Messaging in discrete event models

D
is

cr
et

e
E

ve
nt

Pulling items
To pull an item, a residence block sends the wants message upstream. This wants message is
passed through the passing and decision blocks until it reaches a residence block. If the resi-
dence block has an item that is ready to leave, then a needs message is returned. If no item is
available, then the residence block rejects the wants message.

Following is an example of pulling an item from an upstream block to a downstream block:

This is only the first step in the process of moving an item. A number of messages follow that
propel the item through the network of blocks. More details about those messages can be found
in the Technical Reference.

Block-to-block messages
Block-to-block messages update the status of other blocks in the model. Sometimes a block
needs to communicate with another block in the model, but there is no direct connection
between them. For example, if a change in the shift status occurs, a Shift block needs to notify
all of the blocks that reference that shift. These messages are sent ‘through the air’ to the
blocks. In most cases, you will not even be aware that these messages are being passed back
and forth. The actual operation and context of the message depends on the blocks involved in
the conversation.

Activity completes
processing and
sends a “wants”

upstream

Passing or
decision block

Send wants to
next upstream

block

No

Yes

Do I have an
item?

No item,
“ reject” wants

Item “needs” to
be taken

Flowchart for how items are pulled

Discrete Rate Modeling

Introduction
Expanding on the Quick Start Guide

424 Introduction

D
is

cr
et

e
R

at
e

The following section of the User Reference is specific for those doing discrete rate simula-
tions. It shows how to:

• Simulate rate-based flows of product

• Add properties (attributes) to the flow

• Work with flow rates and constraints

• Represent the storage of flow

• Delay and route the flow

• Integrate discrete rate models with discrete event models

 Since the following chapters assume a certain level of knowledge, it is very important that you
have read the Discrete Rate Simulation Quick Start Guide before these chapters.

Discrete Rate Modeling

Creating Flow
Creating flow and giving it properties

426 Creating Flow
Blocks of interest

D
is

cr
et

e
R

at
e

This chapter discusses creating and characterizing flow in a discrete rate model. It will cover:

• Creating flow in the model

• Using indicators to monitor the level of flow

• Working with flow attributes

Blocks of interest
The following blocks from the Rate library will be the main focus of this chapter.

Residence blocks for creating flow

Convey Flow
Delays the movement of flow from one point to another. Can have multiple segments,
each with an initial contents of flow.

Interchange
Represents a Tank that can interact with discrete event items. The block can have an
initial contents of flow and can receive more flow while the simulation runs.

Tank
Acts as a source, intermediate storage, or final storage (sink). The block has a capac-
ity and can provide an initial quantity of flow for the simulation.

Blocks for managing flow attributes

Get(R)
Displays the value of flow attributes. Allows you to select the type of information
reported and which attribute you want displayed.

Set(R)
Allows you to assign attributes to the flow.

Diverge
When flow is diverged, this block provides options for how the flow attributes are han-
dled.

Merge
When flow is merged, this block provides options for how the flow attributes are han-
dled.

Creating flow
Flow is what is stored in and moves through a discrete rate system. It can be almost anything:
oils and chemicals, manufactured product, transactions, electricity, and so forth.

Creating Flow 427
Creating flow

D
iscrete R

ate
The Convey Flow, Interchange, and Tank blocks are residence-type blocks; they hold flow and
can serve as sources of flow for the model. There are two ways flow can be introduced into a
discrete rate model:

1) By setting an initial contents for a Convey Flow, Interchange, or Tank block. These three
residence blocks can be preloaded with initial amounts of flow, either a finite amount or, in
the case of the Tank and Interchange blocks, an infinite amount. Depending on the block
and options that are selected, the initial amount is:

• Created by entering a constant number, or selecting “infinite”, in the block’s dialog

• Entered in a table for each segment (Convey Flow block)

• The attribute values for any number of initial layers (Tank block)

• The value of an item attribute (Interchange block)

• Getting the value from a ICO valueIn connector (Interchange block)

2) Once an initial contents has been set, under certain conditions the contents of the Tank or
Interchange block can be changed during the simulation run. An example is the Inter-
change block when it is set to Tank only exists while item is in it. In this case, you can
choose to have each arriving item reestablish the initial contents.

Empty and not-empty
If a Tank or Interchange block’s initial contents is finite, its status can alternate between the
empty and not-empty states. This change of state has an impact on the effective rate calcula-
tions:

• If the Tank or Interchange block is not empty, its flow level can fall. Consequently, the effec-
tive outflow rate could be higher than the effective inflow rate.

• If the block is empty, it cannot provide more flow than what it concurrently receives. In this
case, the effective outflow rate has to be less than or equal to the effective inflow rate.

When a Tank or Interchange block changes state between empty and not empty, ExtendSim
will calculate a new set of effective rates. For more information about rates, see “Rates, rate
sections, and the LP area” on page 449.

☞ The Convey Flow block has a different mechanism for calculating a change of state between
empty and not-empty. For more information, see the “Delaying Flow” chapter.

Tank initialization
A Tank’s initial contents can be:

• Entered in the dialog as:

• 0 (the default)

• A number

• Infinite

• Specified by flow attribute values and be either finite or infinite. (Flow attributes are dis-
cussed starting on page 431.)

To simply cause the Tank to have an infinite amount of initial contents, select the Initial con-
tents option, then check the (infinite) check box. For example, in the Yogurt Production
model from the Discrete Rate Tutorial, the Tank blocks that represented Liquid Supply and

Options for initial contents

428 Creating Flow
Creating flow

D
is

cr
et

e
R

at
e

Fruit Supply had infinite initial contents, while the Tank that stored the Yogurt product had no
initial contents.

If the option for Finite initial contents with flow attribute values is selected, a check box causes
the initialization to be repeated whenever the Tank becomes empty.

☞ If a Tank has no inflow connections, by definition it is being used as a source. If at some point
the source reaches the empty state, the effective outflow rate will remain at zero for the
remainder of the simulation run.

Interchange block modes
The Interchange block represents a tank, or holding area, where flow can interact with items
generated by discrete event blocks. Flow can enter the Interchange block not only through its
inflow connector but also through the arrival of an item. Conversely, flow can exit the block
through its outflow connector or through the exiting of an item.

The Interchange block has two options that affect how the block’s initial contents and maxi-
mum capacity are set:

• Tank only exists while item is in it. This behavior is analogous to a truck (an item) that
arrives at a loading dock (a tank) where the loading or unloading of product can take place at
a certain rate. The truck arrives with a capacity and perhaps some quantity of product
already in it. As long as the truck is in the dock, loading or unloading is possible and occurs
at the specified rate. When the truck leaves, the dock’s ability to load and unload product
disappears (the inflow and outflow effective rates are set to zero).

• Tank is separate from item. This behavior is similar to a truck (an item) that brings product to
a holding area (a tank) that may nor may not contain product. The truck empties its load and
perhaps takes some of the holding area’s product with it when it leaves. This process occurs
instantaneously. Whether the truck is at the holding area or not, both the truck and the hold-
ing area can have product. The holding area can receive or deliver flow to the system even if
there is no truck (the inflow and outflow effective rates can be greater than zero).

☞ For more details about these two modes, see “Interchange modes” on page 504.

Depending on the option selected, the Interchange has different choices for setting an initial
contents.

Initialization of contents when “Tank only exists while item is in it”
This choice allows the block
to have an initial contents
only when an item arrives. To
set an initial contents for this
block, choose one of the
options from the dialog’s
popup menu, shown here:

• A constant. Enter a number in the field; the default is 0. To cause the initial contents to be
infinite, check the field’s (infinite) check box or set the field to blank.

• Value at ICO. The value at this connector will control the initial contents.

• Value of item attribute. Select an item’s attribute in the dialog. When an item arrives, the ini-
tial contents will equal that attribute’s value.

Interchange initial contents, default behavior

Creating Flow 429
Indicators

D
iscrete R

ate
In the Yogurt Production model from the Discrete Rate tutorial, the Interchange blocks were
set to Tank only exists when item is in it and Initial contents (on item arrival): 0.

Initialization of contents when “Tank is separate from item”
To set the initial contents for the Interchange
block when this behavior has been selected,
leave the Initial contents field set to the
default infinite amount or enter a number.

With this behavior, arriving and departing items can cause contents to be contributed to or
removed from the tank, depending on choices set in the block’s dialog.

Convey Flow initialization
The initial contents for the
Convey Flow block are set
in its Initialize tab. The
table allows you to custom-
ize a number of segments
for the conveyor, each with
its own initial contents. Each row in the table represents an individual segment of the conveyor
possessing a uniform density that differs from the adjacent segments.

The Initialize tab has a Show Example button that places example settings in the table. These
are helpful for understanding how to make the entries you want; they can also be used as a
starting point for entries. Shown above is the example setting for a 100 foot long accumulat-
ing-density conveyor that transports containers. The table indicates that the block would have
an initial density of 10 containers per foot for the segment from 75 to 100 feet (a total of 250
containers) and 5 containers per foot for the segment from 25 to 50 feet (a total of 125 contain-
ers).

☞ In this example, the sections between 0 and 25 feet and between 50 and 75 feet do not hold any
product.

Indicators
As the simulation runs, the level of flow in the residence blocks (Convey Flow, Interchange,
and Tank) will vary over time.

You might want to establish a set point or indication to report when a block’s flow level is
within a certain range of values. This is common when monitoring a block to determine if its
contents are approaching or have reached one or more important benchmarks. For instance,
some emergency procedures might need to take place if a Tank’s level reaches the “high”
range; they can be discontinued when the contents return to a “normal” range.

For residence blocks, indicators are a method of reporting what category or range the current
level of flow falls into. With this feature, each range is assigned a name, a lower limit, and an
upper limit. When the level of flow reaches a value that falls within a different range, the block
reports the change on its I (indicator) value output connector and alerts any connected blocks
to the change in status.

☞ While the Tank and Interchange blocks report information about the current level of flow from
their I (indicator) connectors, the Convey Flow block reports how far (the accumulation
length) the accumulation point is from the end of the conveyor. (When the amount of product
ready to leave exceeds the amount that can be received downstream, flow begins to accumulate

Interchange initial contents, alternate behavior

Example initial contents for Convey Flow block

430 Creating Flow
Indicators

D
is

cr
et

e
R

at
e

from the end of the conveyor. For more information, see “Distribution of flow” on page 494.

Setting indicators
The Indicators tabs on all
three residence blocks
have similar interfaces.
Each Indicators tab has a
table (shown on the right
with example settings) for
specifying an indicator
name for each range of
values, entering the low
limits, and defining values (an ID number for each indicator) to output when the block's flow
level falls within a particular range.

To create indicators, enter your own information or click the Show Example button to populate
the table with some example indicator names and settings. In either case, ExtendSim will cal-
culate the High Limit values based on the Low Limit entries.

☞ The top row has to have the highest range; the bottom row must have the lowest range.

☞ To add or delete table rows, use the +/- button in the table's lower right corner. For instance, to
delete the example settings, change the number of rows to 0.

The screen shot above shows a Tank’s names, limits, and ID values to output after the Show
Example button has been clicked. Each indicator name corresponds to a range of flow contents
defined by the Low and High Limits for that row. (The High Limit column is presented for
clarity only, since those numbers are calculated using the values entered for the Low Limits.)

Unless the block has infinite capacity, the indicator limits can be expressed in absolute num-
bers (shown above) or as percentages.

See “Bucket Elevator 2 model” on page 507 for an example of how indicators are used in an
Interchange block to control a Valve’s effective rate.

☞ If the block has infinite capacity, the limits must be expressed as absolute numbers. If the
block's initial contents are set to infinity, the indicators are disabled.

Getting information about levels
There are two types of
events that will cause a
new indicator to be
reported:

• When the level is
increasing and the
block’s contents reach
the next indicator’s Low Limit.

• When the level is decreasing and the block’s contents reach the next indicator’s High Limit.

In each case, the new output ID is used to update the I value output connector, and any con-
nected blocks are alerted to the change.

Using the above table as an example, if the level in the Tank increases from 120,000 to
175,000 containers, the block will compare that level to the Low Limit and send the value 3 to

Example indicators in Tank block

Example indicators in a Tank

Creating Flow 431
Flow attributes

D
iscrete R

ate
its I (indicator) output connector. However, if the level of the Tank instead decreases from
230,000 to 175,000 containers, the block will compare that value to its High Limit and output
the value 2.

☞ The value that is output at the I (indicator) connector depends on whether the level of flow is
increasing or decreasing, and where in the range the new indicator level falls. The Tank block
has a S (status direction) output connector that reports if the level is going up or down when
the event occurs.

Tank Flow Units model
The Yogurt tank in the Tank Flow Units model (Examples\Discrete Rate\Sources and Storage)
outputs values that indicate the level of flow in the Tank; those values are displayed on the
third line on the plotter.

☞ For more information about the Convey Flow block, including the use of sensors, see the dis-
crete rate chapter on “Delaying Flow”.

Flow attributes
A flow attribute is a characteristic or quality applied to a specific volume or quantity of flow.
Flow attributes stay with the flow as it moves through the model, provide information about
the flow, and allow you to organize quantities or volumes of flow into layers. For example, a
flow attribute could be Flavor, Thick, Product, or any other quality or characteristic of some
portion of the flow.

The entire set of attribute values assigned to a particular layer is what distinguishes it from
other layers. In other words, all the units of flow in a layer possess the same set of flow attri-
bute values.

While not all Rate models require the use of flow attributes, some uses for flow attributes
include:

1) The flow held in a Tank can be organized into individual, distinct layers. This allows you to
control where incoming flow is deposited and which type of outgoing flow next exits.

2) Flow rates through the Valve block can be calculated based on flow attribute values.

3) Flow can be routed through the Merge and Diverge blocks based on flow attribute values.

Attributes are assigned to the flow by the model builder. They become linked to sections of
flow that pass through the blocks, according to settings in the blocks’ dialogs.

Names and values of flow attributes
As with item attributes (discussed on page 263), each flow attribute is composed of a name
and a value.

• A flow attribute's name identifies some general characteristic of the flow such as “Product”,
“Flavor”, or “Color”. Attribute names are limited to 15 characters.

• A flow attribute's value indicates one dimension of the named characteristic. For instance, a
flow attribute named Product could have a value of 1 (for Television) or a value of 5 (for Ste-
reo), while a flow attribute named Flavor could have a value of 1 (for Vanilla), 2 (for Ber-
ries), or 3 (for Caramel).

Attributes are meant to be unique;. If you attempt to add a new flow attribute with exactly the
same name as an existing one, ExtendSim warns you that the name already exists. While attri-

432 Creating Flow
Flow attributes

D
is

cr
et

e
R

at
e

bute names are not case sensitive (Type is equal to type), spaces are significant and should be
avoided.

Discrete rate models can have many flow attributes and each attribute can have multiple val-
ues.

Types of flow attributes
ExtendSim supports two types of flow attributes for Rate library blocks:

• A layer attribute holds a real number as its attribute value.

• The value of a string layer attribute is still a number, but it is represented in the model by a
string.

With string attributes you choose a descriptive text label (string) for each potential value of the
flow attribute; the information is entered in a lookup table in the Executive block's Flow Attri-
butes tab. The string can then be used in the model in place of the corresponding number. For
example, a string layer attribute named Flavor might have three possible values: 1, 2, and 3.
Once the lookup table for this attribute has been properly configured, the blocks referencing
the Flavor attribute will display the strings Vanilla, Berries, or Caramel instead of the numbers
1, 2, and 3. For instance, see the string layer attribute Flavor in the Executive, below.

Creating and assigning a flow attribute
There are several methods for creating a new flow attribute:

• Use the Tank and set the initial contents (either
finite or infinite) to use flow attribute values, as
shown to the right

• Use the Set(R) block, as discussed below

• Use the Merge and Diverge and customize how
attributes behave at their inflows or outflows

• The Interchange block has a mapping capability
such that item attributes can be mapped to flow
attributes, and vice versa.

Creating Flow 433
Flow attributes

D
iscrete R

ate
To create a new flow attribute in the Set(R) block, use the green +/- resize button to add any
needed rows to the table in its dialog. Then use the pop-ups at the top of the columns to add a
new layer or new string layer attribute, give it a name, and (in the case of a layer attribute)
assign an initial attribute value. Selecting a string layer attribute type causes the Executive to
open to the Flow Attributes tab shown on page 434; this is where strings that correspond to the
attribute’s values are entered. Values for flow attributes can also be set dynamically through
value input connectors on the Set(R) block.

How flow attributes are propagated in the model
Flow attributes attach to sections of flow and are present throughout the model. Furthermore, a
discrete rate model can have many flow attributes where each flow attribute can have multiple
values. However, the values of flow attributes are location specific. This means that the value
of a flow attribute is unique at any time in each section of the model. (For information on sec-
tions. see “Rates, rate sections, and the LP area” on page 449.)

Flow layers in residence blocks
As mentioned earlier, flow attributes are used to organize quantities or volumes of flow into
layers, where each layer represents an amount of flow that has specific and unique characteris-
tics. By definition, the attribute values for every unit of flow in a particular layer must be the
same.

Flow layers are stored, tracked, and distributed by the Tank, Interchange, and Convey Flow
blocks in the following ways:

• Tank. The Tank has the ability to
store incoming layers of flow by
placing them on top or on bottom, or
by adding the incoming flow to a
pre-existing matching layer. Outgo-
ing flow can be taken from the top,
the bottom or from anywhere in
between, as shown on the right. This
flexibility allows the Tank to mimic
LIFO, FIFO, and priority behavior.

• Interchange. The Interchange block can use layers to manage the filling and releasing of
items. For example, there’s an option to release an item as soon as an attribute on incoming
flow changes to a different value. This allows you to fill items with flow that contains a uni-
form attribute value.

• Convey Flow. The Convey flow will always receive and distribute flow layers in a FIFO
fashion.

For example, a layer in a Tank could be a quantity of yogurt with the Flavor attribute value
“Vanilla” and the Nuts attribute value “No Nuts”. Vanilla yogurt with nuts would be in a differ-
ent layer, as would Berry yogurt without nuts.

ExtendSim handles the organization of layers within the residence blocks according to options
set in the blocks’ dialogs.

434 Creating Flow
Flow attributes

D
is

cr
et

e
R

at
e

Propagation of attribute values outside of residence blocks
All Rate blocks get attribute values from inflow connectors and set attribute values on outflow
connectors. For instance, a Merge block will receive attribute values from each of its upstream
branches and, depending on these values and the rules set in the block, it will set the attribute
values for the downstream flow.

If the upstream flow has the potential to satisfy downstream demand, the connectors in
between will reflect the attribute values of the upstream flow even if the effective rate is zero.
On the other hand, if there is no upstream flow available to potentially satisfy downstream
demand, the attribute values on the connectors in between will be a Blank.For example, if the
demand is for Vanilla yogurt and the Tank has Vanilla yogurt but the effective rate is currently
zero, the attribute value will be “Vanilla”. However, if the effective rate is zero and the demand
is for Berry yogurt, which isn’t currently present in the Tank, the flow attribute value will be a
Blank.

Managing and displaying flow attributes
The Flow Attributes tab of the Executive block (shown below) is for managing flow attributes
– deleting, renaming, and changing their initial values. It is also where the strings for string
layer attributes are defined and where you can search for blocks that use a specific flow attri-
bute.

Unlike an item attribute, which is assigned to individual items, flow attributes are assigned to
the flow in a section of a model. Flow attribute values can thus be read at any time and from
any model location. Each Rate block that holds or provides flow has a Contents tab showing
the attribute values of its flow by volume. The Get(R) block can be used to retrieve the values
of flow attributes elsewhere in the model.

Creating Flow 435
Flow attributes

D
iscrete R

ate
In order to manipulate flow based on
the attribute, usually to route it or pro-
cess it, you need to get the flow’s
attribute value. The most common
method for getting attributes is to
select the attribute by name from the
list in the attribute popup menu in the
Get(R) block, as shown on right.
When flow passes through the Get(R)
block, the block accesses information
about the attributes that have been
specified in the table in its dialog. It
then reports the information in the
table and on its value output connec-
tors. What the Get(R) block reports
and where, depends on the type of attribute:

• Layer attributes. The value for the attribute is posted in the Value column of the attribute
table and on the value output connector that corresponds to the attribute.

• String layer attributes. The string text is displayed in the Value column of the attribute table
and the number that corresponds to the string is posted on the appropriate value output con-
nector.

In addition to the Time Changed column in its dialog, the Get(R) block has a (delta) connec-
tor for reporting when a flow attribute’s value changes. The connector outputs a 1 when the
value of the first flow attribute specified in the dialog changes. Otherwise it outputs 0.

Flow attributes and item attributes
It is common for systems to exhibit mixed-mode behaviors, where items from the discrete
event arena intermingle with discrete rate processes. The Interchange block provides a matrix
for converting item attributes into flow attributes and vice versa. See its Flow Attributes tab.

Example models

Two models that use flow attributes are located in the ExtendSim\Examples\Tutorial\Discrete
Rate folder:

• Yogurt Production with Flavors

• Yogurt Production with Flavors Plus

Both models are a continuation of the Yogurt Production model discussed in the tutorial in the
Rate Module Quick Start guide. They use attributes to simulate the production of five different
flavors of yogurt. The model named Yogurt Production with Flavors Plus uses the item/flow
attribute mapping capability of the Interchange block to preempt items, avoiding mixed pallets
of flavored yogurt.

436 Creating Flow
Flow attributes

D
is

cr
et

e
R

at
e

Discrete Rate Modeling

Storage and Units
Storing flow and the use of flow units

438 Storage and Units
Blocks of interest

D
is

cr
et

e
R

at
e

As discussed in the Rate Module Quick Start guide, quantities of flow are located in one or
more parts of a discrete rate model. During the simulation run, the flow moves from one loca-
tion to another at the effective rate. In order for the flow to move, one or more of the model’s
blocks need to have the capacity to hold flow as time advances.

The Convey Flow, Interchange, and Tank blocks are residence type blocks – they have capac-
ity and can hold defined amounts of flow.

Flow units describe what is flowing from one Rate library block to another. Blocks that are
connected together through flow connections and share the same flow unit are part of the same
unit group. The Change Units block is used to create a new unit group. This causes the blocks
downstream of the Change Units block to be in a unit group different from its upstream blocks.

This chapter discusses providing and storing flow and the use of flow units in a discrete rate
model. It will cover:

• Defining a block’s flow capacity

• Indicators that provide information about a block’s level of flow

• Defining and selecting time, flow, and length units

• Using the Change Units blocks to create a different flow unit group

This chapter focuses on setting capacity for the Convey Flow, Interchange, and Tank blocks.
Other aspects of those blocks are covered in different chapters:

• The Convey Flow block is most often used for delaying flow and will be discussed more
fully on page page 491.

• The Interchange block is mainly used for interacting with items from discrete event portions
of the model and will be discussed more completely starting on page 502.

• Setting maximum inflow and outflow rates for the Tank and Interchange blocks is described
in page 456.

☞ The Tank Flow Unit model is located in the folder \Examples\Discrete Rate\Sources and Stor-
age. The Yogurt Production model is located at \Examples\Tutorials\Discrete Rate.

Blocks of interest
The following blocks from the Rate library will be the main focus of this chapter.

Residence blocks for holding flow

Convey Flow
Delays the movement of flow from one point to another. Can accumulate flow to a
maximum density, accumulate flow to fill empty sections, or act as a non-accumulat-
ing conveyor.

Interchange
Represents a Tank that can interact with discrete event items. The block has two
behaviors: the Tank only exists while an item is in it; the Tank is separate from the
item.

Storage and Units 439
Capacity

D
iscrete R

ate
Tank
Acts as a source, intermediate storage, or final storage (sink). The block has a capac-
ity and can have an initial quantity of flow for the simulation.

Changing the flow unit group

Change Units
Changes the flow unit from one unit to another, resulting in a new flow unit group.
The dialog has a field for entering the conversion factor and a popup menu for indicat-
ing the direction of the change.

Capacity
The Tank, Interchange, and Convey Flow blocks are considered residence blocks. This means
that they have capacity and can hold defined amounts of flow as time advances.

A residence block's maximum capacity can be a specific number or, in the case of the Tank or
Interchange blocks, it can be set to infinite.

Full and not-full
When a residence block’s capacity is finite, its status can alternate between the full and not-full
states. This change of state has an impact on the model's set of effective rates:

• If a residence block with finite capacity is not full, there is room for the flow level to rise.
Consequently, the effective inflow rate can be greater than the effective outflow rate.

• If a residence block with finite capacity is full, the flow level is not permitted to rise; the
effective inflow rate will be less than or equal to the effective outflow rate.

Any time a residence block with a finite capacity changes state between full and not-full,
ExtendSim will calculate a new set of effective rates.

☞ A residence block with infinite capacity can never be full during the simulation run. In this sit-
uation, it is similar to a residence block with finite capacity that is not full; its effective inflow
rate can be greater than its effective outflow rate.

Tank block’s capacity
A Tank can be a source of flow, an interme-
diate storage for flow, or a final storage for
flow (sink). A Tank’s capacity can be
infinite, a finite but non-zero number, or
zero.

• By default, the Tank has an infinite capacity to hold flow, as indicated by the Maximum
capacity: infinite setting in its dialog. In this state it will never be full.

☞ A blank is the same as checking the infinite setting.

• A Tank’s maximum capacity can be changed in the block’s dialog by entering an amount in
the Maximum capacity field (which unselects the checkbox). It can also be changed
dynamically through the block’s C (capacity) value input connector. If the C connector is
used, it overrides any entries made in the dialog. With a non-zero finite capacity, the Tank
can be in either the full or not-full state at any point in time.

Default setting for Tank’s capacity

440 Storage and Units
Capacity

D
is

cr
et

e
R

at
e

• If a Tank's capacity is set to zero, flow can still move through the block but the flow will not
stay in the block for any length of time. In this case, the Tank is neither full nor not-full, and
the effective inflow rate will equal the effective outflow rate.

☞ If a Tank has no outflow connection, by definition it is being used as a sink. If at some point the
sink reaches the full state, its effective inflow rate will be set to zero for the remainder of the
simulation run.

Interchange block’s capacity
The Interchange block has two options that affect how the block’s initial contents and maxi-
mum capacity are set. These options are discussed in “Interchange block modes” on page 428.

Capacity when “Tank only exists while item is in it”
This is the default behavior. With this setting the Interchange block has a capacity to hold flow
only while an item resides in the block. With an item present, the block acts like a tank and
therefore has a definable capacity, either finite or infinite. If the capacity is finite, as along as
an item is present in the block, the block can alternate between the full and not-full states.

The block’s capacity is fixed at the moment the item enters the block; it remains fixed until the
item leaves. When the item leaves, the Interchange's capacity automatically goes back to zero.
Therefore, at the time of item departure any flow currently in the block is loaded onto the item.
The timing of when the item leaves the Interchange depends on logic set in the Interchange
block. For more information, see “Item release conditions” on page 503.

To define the capacity for an
Interchange block when it is
set to this behavior, choose
one of the options from the
dialog’s popup menu, shown
at right.

• A constant. Enter a number in the field; the default is infinite.

• Value at IC. The value at this input connector will control the block’s capacity.

• Value of attribute. Select an attribute in the dialog. When an item arrives, the tank’s capacity
will equal the item’s attribute value.

In the Yogurt Production model of the Discrete Rate Tutorial, the Interchange blocks are set to
Tank only exists when item is in it and their capacity is set to the constant value 24.

Capacity when “Tank is separate from item”
With this option, the Interchange block’s behavior is similar to a Tank block – it receives flow
from its inflow connector, it holds flow, and it releases flow from its outflow connector. The
difference is that an item’s arrival can contribute flow to the existing contents and an item’s
departure can remove flow from the existing contents. The item’s impact on the block’s con-
tents is entered in the Define Item behavior section of the block’s Item/Flow tab.

To set the capacity for the block when this
behavior has been selected, enter a number in
the Maximum capacity field or leave it set to
the default value of infinite.

Convey Flow block’s capacity
The maximum capacity for a Convey Flow block is a combination of two factors:

Maximum capacity; default behavior

Maximum capacity; alternate behavior

Storage and Units 441
Units and unit groups

D
iscrete R

ate
1) The block’s length and maximum density deter-
mine the maximized capacity. By default,
ExtendSim calculates a maximized capacity for
the Convey Flow block by multiplying its
length by its maximum density. This is indi-
cated in the Capacity field by the “maximized”
capacity checkbox shown above. In this case, the block’s maximum capacity will equal its
maximized capacity.

2) A number in the Capacity field in the Options tab can reduce the capacity below the maxi-
mized amount. In some cases, it may be necessary to define a capacity smaller than the
maximized capacity determined by the length*density calculation. For instance, the Con-
vey Flow block could have structural properties limiting how much weight it can safely
support. To do this, uncheck the checkbox in the Capacity field of the Options tab and enter
the desired number. In this case, the block’s maximum capacity will be less than or equal to
its maximized capacity.

☞ A Convey Flow block’s maximum capacity can never exceed its maximized capacity, no mat-
ter what number is entered in the Capacity field.

For example, if the Convey Flow block’s length is 100 and maximum density is 10, the block’s
maximized capacity will be 1,000. To reduce the capacity to something less than 1,000, enter a
number (for instance 300), in the Capacity field. The block will then only be able to contain
300 units of flow, even though its calculated maximized capacity was 1,000.

Units and unit groups
This section focuses on defining, selecting, and changing flow units, discusses the effect of
changing time units, and shows how to use the Change Units block to change the unit group.

Definitions
The following sections discuss flow, block, time, and length units. A unit group is two or more
blocks connected together through flow connections and sharing one flow unit.

Units and unit groups were introduced in the Rate Module Quick Start guide; they are
described fully below.

Flow units
The flow unit indicates what is flow-
ing from one Rate library block to
another. As is true for ExtendSim
time units, flow units can be unspeci-
fied generic units (in which case the
block dialog will just display the
word “units”) or they can be specifi-
cally defined in the model. For instance, a defined flow unit could be a packet, gallon, transac-
tion, box, liter, and so forth. Existing flow units can be selected, and new units can be defined,
in the Options tabs of Rate library blocks. In addition, the Discrete Rate tab of an Executive
block (Item library) has a section for managing flow units. This provides a central location
where units can be added, deleted, or renamed.

☞ This chapter will be mostly concerned with flow units.

Maximized capacity

Generic flow and time units in a Valve

442 Storage and Units
Units and unit groups

D
is

cr
et

e
R

at
e

Block units
The Tank and Inter-
change blocks can have
an internal block unit
that is different than the
flow unit. This is an
internal representation
of volume that is spe-
cific to the Tank or
Interchange block, and
does not affect the flow
unit for the unit group. If you select a block unit that differs from the flow units that come into
and out of a block, you must enter a conversion factor. The conversion factor represents the
ratio of the block unit to the flow unit. Block units are discussed fully in “Defining block units”
on page 443.

☞ Using block units is optional; the default block unit is the flow unit.

Time units
Time units can be generic, in which case the block will just say “time” or
can be specific. Each model can define specific time units, which become
the default for the model. You can change a discrete rate block’s time unit
from the model default time unit to any local time unit using a popup menu
in the block’s Options tab.

If a local time unit is selected in a discrete rate block, that local time applies to the entire block
but only to that block. Changing to a local time unit does not change the global time unit for
the flow group or for any blocks in the rest of the model. For complete information, see “Time
units” on page 93.

 Calendar dates are not available if months or years have been selected as the specific global
time unit for a discrete rate model. Furthermore, if Calendar dates has been selected, Rate
library blocks will not be able to select Months or Years as their local time unit.

Length units
For convenience, the Convey Flow block allows you to name a length unit. This is used inter-
nally by the block with other settings to determine the block’s speed. You can use the default
generic unit “length unit” or declare a specific unit of length such as feet or meters.

Unit groups
A unit group is two or more blocks connected together through flow connections and sharing
one flow unit. Connecting the first block’s outflow connector to the second block’s inflow con-
nector creates a unit group. Unless the unit group is explicitly changed, all the blocks that are
connected through flow connectors use the same flow unit and are in the same unit group. If a
flow unit is changed in one of the blocks in a unit group, the unit group does not change but all
the other blocks in that group are updated automatically to the new flow unit.

To see the unit group, click the grey square to the right of
a block’s flow units popup menu, shown above. All the
blocks in that block’s unit group will be highlighted on
the model worksheet.

Flow and block units in the Tank

Default time unit

Unit group selector to right of popup

Storage and Units 443
Units and unit groups

D
iscrete R

ate
You can define multiple unit groups, which use different flow units, in portions of a discrete
rate model. For instance, one part of the model could be expressed in bottles and another could
represent boxes of bottles. The Change Units block can create a different unit group.

Declaring and selecting flow units
As mentioned above, flow units indicate what is moving from one flow connector to another,
and a unit group is a collection of connected blocks that share the same flow unit. This section
focuses on defining, selecting, and changing flow units.

 To convert from one unit group to another in a model, use the Change Units block discussed on
page 444.

Where to declare a flow unit
Each block in the Rate library has the ability to select an existing flow unit or create a new one.
This is done in the block’s Options tab, which has a popup menu for either selecting an existing
flow unit or creating a new one. Specifying a flow unit in one block causes that unit to be used
by every block within the same unit group, and automatically sets that flow unit for any blocks
that are subsequently added to that unit group.

To see the unit group, click the unit
group selector button to the right of a
block's flow units popup menu. All the
blocks in that block's unit group will be
highlighted on the model worksheet.

Declaring a flow unit
To declare a flow unit, select an existing unit or create a new unit from the popup menu in the
Options tab. The selected flow unit applies not only to the block but also to the entire flow unit
group and it will automatically be set in new blocks that are connected within the unit group.
For instance, the tutorial in the Rate Module Quick Start guide showed how to create a new
flow unit named “gallons”. When the fruit processing section was added, the popup menu for
the Fruit Supply Tank already included gallons selected as its flow unit.

Managing flow units in the Executive block
The Executive block’s Discrete Rate tab has a sec-
tion for managing flow units in a model. The table
displays all the units for a given model and pro-
vides buttons for adding, deleting, and renaming
the units.

To use this feature, select the flow unit you want
to change in the table, then click the appropriate
button. ExtendSim will warn you and give options
if the unit is being used in the model.

Defining block units
As mentioned earlier, the Tank and Interchange blocks allow you to define a block unit that is
different from flow units. This is an internal representation of volume only and is specific to
the Tank or Interchange block. It does not change the flow units or the unit group for the flow
that has entered or exited the block. If a block unit has been specified, a factor to convert the
block unit into flow units must also be entered.

Unit group selector to the right of the popup menu

Flow units for Yogurt Production model

444 Storage and Units
Changing the unit group

D
is

cr
et

e
R

at
e

To define a block unit, in the Options tab of the Tank or Interchange block, select Define a flow
unit for the group and a block unit for the block. In addition to providing fields for declaring a
flow unit, this option displays a field for entering an internal block unit. It also has a field for
entering the factor to convert between the flow unit and the block unit.

Tank Flow Units model
The Tank Flow Units
model is the same as
the model described in
the Rate Module Quick
Start guide. However,
the newer model has
pints, rather than gal-
lons, as the block units
in the Yogurt Tank,
causing the process’s
output to be displayed in the plotter as pints. Clicking the unit group selector button in its
Options tab shows that this Tank is still part of the unit group that uses the flow unit “gallons”.

Time units
A popup menu in the Options tab allows a block’s time unit to be changed from the model
default time unit to any local time unit.

If a local time unit is selected in a discrete rate block, that local time applies to the entire block
but only to that block. Changing to a local time unit affects every parameter in the block, but it
does not change the model’s global time unit or the time units used in any other block in the
model. For more information, see “Time units” on page 93.

Changing the unit group
By default all the blocks connected to the same flow stream belong in the same unit group.
However, the Change Units block has the ability to create a new unit group, causing connected
blocks in a portion of the model to have a different flow unit.

Change Units block
To change the flow units from
one part of a model to another,
use the Change Units block.
While changing a flow unit in
most blocks will change the
flow unit for the entire group,
adding a Change Units block to
the model causes a new unit
group to be created – the Change Units block’s inflow connector will be part of one unit group
comprised of those blocks upstream of the Change Units block; its outflow connector will be
part of another unit group comprised of those blocks downstream of the Change Units block.

The Change units from: popup menu defines the flow unit that is entering the block; the to:
popup menu is for selecting or creating the new flow unit. The block has a field for entering the
factor that converts the incoming flow unit into the outgoing unit, and a popup menu to select
the direction the conversion should take. You can also change the time units for this block in its
dialog.

Defining a block unit in the Tank

Dialog of Change Units block

Storage and Units 445
Changing the unit group

D
iscrete R

ate
Yogurt Production model
An example of changing flow units is shown in the tutorial in the Rate Module Quick Start
guide, where gallons of liquids were converted into containers of yogurt.

446 Storage and Units
Changing the unit group

D
is

cr
et

e
R

at
e

Discrete Rate Modeling

Rates, Constraints, and Movement
Limiting the movement of flow through rates and constraints

448 Rates, Constraints, and Movement
Blocks of interest

D
is

cr
et

e
R

at
e

As discussed in the Introduction to this module, the movement of flow in a discrete rate model
must take some time. It is a modeling error if the flow moves instantaneously throughout a
model.

ExtendSim's discrete rate system attempts to move flow through the model as fast as possible.
In the absence of any constraints, the effective rate of flow would approach infinity and the
flow would move instantaneously throughout the model; this is never correct. For this reason,
flow movement must be constrained by rates and conditions that are built into the model, and a
lack of appropriate constraints is a modeling error that will stop the simulation run

In order to restrict flow rates:

• Discrete rate blocks are required to define their own sets of constraining flow rules

• Each area of a model must have one or more critical constraint mechanisms

Critical constraint flow rules, such as a block’s maximum rate, place an upper bound on the
rate of flow, limiting it to a number less than infinite. The blocks’ aggregated set of flow rules
ultimately defines how fast flow is permitted to move over time throughout the model.

This chapter discusses rates, the blocks that constrain flow, and how model conditions impact
the rate of flow. It will cover:

• Rates, rate sections, and the LP area

• Flow rules for defining how a block permits flow to move through it

• The blocks that specify critical constraints

• How to meet the constraint requirement

• A comprehensive example of constraints and rate sections

☞ Most of the models illustrated in this chapter are located in the folder \Examples\Discrete
Rate\Rates and Constraints. The tutorial models mentioned are located at \Examples\Tutori-
als\Discrete Rate.

Blocks of interest
The following blocks from the Rate library will be the main focus of this chapter.

Convey Flow
Delays the movement of flow from one point to another. Can accumulate flow to a
maximum density, accumulate flow to fill empty sections, or act as a non-accumulat-
ing conveyor.

Interchange
Used to mix flow with items, this block can also limit its maximum rate of inflow
and outflow.

Tank
The block most frequently used to store flow can also limit its maximum rate of
inflow and outflow.

Rates, Constraints, and Movement 449
Rates, rate sections, and the LP area

D
iscrete R

ate
Valve
Controls and monitors the flow, limiting the rate of flow passing through. This block
can also be used to set a goal for the duration or quantity of flow.

Rates, rate sections, and the LP area
One of the most important aspects of a discrete rate model is the rate of flow – the speed of
flow movement. The flow rate is represented as the ratio of flow units to the model’s time
units. This is displayed in block dialogs as units/time, gallons/minute, transactions/second,
boxes/hour, and so forth.

Discrete rate models can be thought of as being divided into rate sections and LP areas. The
flow connectors within each rate section have the same effective rate, which is the speed at
which flow moves through those blocks. The LP area is composed of one or more rate sections
whose effective rates might change during the simulation.

The types of rates considered during the model building process, rate sections, and the LP area,
are discussed below.

Types of rates
The following rates are taken into consideration by ExtendSim and by a block’s flow rules.
(Flow rules will be discussed on page 452.)

Maximum rate
ExtendSim's discrete rate architecture
attempts to move flow through the model
as fast as possible. In the absence of any
constraints, the flow rate would theoreti-
cally approach infinity and flow would move from one part of a model to another instanta-
neously; this would be a modeling error.

The maximum rate puts an upper limit on the movement of flow through a block. Six Rate
library blocks have the ability to set a maximum rate. You can set an explicit maximum rate in
the Interchange, Tank, and Valve blocks. The maximum rate for the Convey Flow block is
mathematically derived. Maximum rates may also be implicitly specified under certain condi-
tions in the Merge and Diverge blocks. In each case, the maximum rate is the highest rate of
flow those blocks will allow, and hence the highest potential rate of flow for that part of the
model.

☞ An inflow connector for a Convey Flow, Interchange, or Tank block can have one maximum
rate while the block’s outflow connector can have a different maximum rate. The maximum
rate for the Convey Flow block’s inflow is derived from settings in its dialog; the maximum
rate for its outflow is derived from dialog settings and model conditions. The maximum inflow
and maximum outflow rates for the Interchange and Tank blocks can be entered directly in
their dialogs.

 In order to avoid an error condition, each area of a model must have some mechanism in place
to restrict the rate of flow to a number that is less than infinity. If the required minimum set of
constraints is not present, ExtendSim stops the simulation and displays an error message.

Default maximum rate for Valve

450 Rates, Constraints, and Movement
Rates, rate sections, and the LP area

D
is

cr
et

e
R

at
e

Effective rate
One of the most important reasons for cre-
ating a discrete rate model is to determine
the actual rate of flow movement. The
effective rate is the calculated actual rate
of flow between Rate library blocks during
the simulation run. It is the result of an internal calculation taking into account the maximum
rates and all the constraints of the process. In some situations the effective rate is the same as
the maximum rate; in others it is lower. One effective rate is associated with each rate section
in a model, as discussed “Rate sections” on page 451.

In a rate section, the effective rate of flow cannot be higher than the lowest maximum rate for
all the blocks in that section. In fact, it can be lower than the lowest maximum rate, and could
even be zero (0), depending on model conditions.

While each rate section can have only one effective rate, a section can have more than one
block that has a maximum rate. In fact, it is common to have several Valve blocks, each with
their own maximum rate, in a rate section.

Infinite rate
An infinite rate is a theoretical rate that would cause the flow to instantaneously move from
one location in the model to another.

The Executive block’s Discrete Rate
tab specifies that a rate equal to or
greater than some number is consid-
ered infinite; the default is that a rate
1e10 is considered infinite, as
shown above.

You can change the infinite number to be anything that you want. However, because of the 12
digit precision limitation of the effective rates, the number should be set as close as possible to
the highest possible effective rate which would ever reach this limit. (Setting a correct infinite
rate is more critical in the case of potential upstream supply and potential downstream demand
calculations, an advanced topic discussed on page 533.)

Infinite effective rate
Since instantaneous movement is not possible in the real world, the Rate library does not sup-
port an infinite effective rate. The infinity number specified in the Executive establishes an
upper limit on the model’s allowable set of effective rates. If the simulation calculates an effec-
tive rate that equals or exceeds that number, ExtendSim will stop the simulation and generate
an error message. This could happen, for instance, if a source tank is directly connected to a
sink tank, without any intervening constraint.

Infinite maximum rate
The Executive’s infinity number (by default, 1e10) can be used in a block's rule set when con-
ditions are such that it cannot in any way constrain the movement of flow. For example this
would be accomplished by checking the (infinite)checkbox for a Valve’s maximum rate.
With an infinite maximum rate, the Valve will not limit the speed of flow passing through it.

If you set the Valve’s maximum rate field to blank or to a number 1e10, the block would also
not limit the speed of flow passing through it.

Effective rate (Valve’s Results tab)

From the Executive’s Discrete Rate tab

Rates, Constraints, and Movement 451
Rates, rate sections, and the LP area

D
iscrete R

ate
Upstream supply/downstream demand
This potential rate is considered when using an advanced mode in the Diverge. Merge, and
Sensor blocks. It is described fully in “Upstream supply and downstream demand” on
page 533.

Rate sections
A rate section is defined as a network of con-
nected blocks, all possessing the same effective
rate. Each rate section can include a succession
of blocks and connections. A rate section
always starts with an outflow connector and
ends somewhere downstream with an inflow
connector. Thus it will always contain at least
two blocks sharing at least one flow connection.

While some blocks always define the boundary between two rate sections, other blocks never
define a new rate section boundary:

• Because a residence block (Convey Item, Interchange, or Tank) can hold flow for some
period of time, its effective inflow rate can be different from its effective outflow rate. Since
the boundaries between rate sections never change, residence blocks always define the
boundary between two different sections, even if their effective inflow rate is the same as
their effective outflow rate. For example, a Tank’s inflow connection ends one rate section
and its outflow connection starts another section.

• Some passing (non-residence) blocks define a new rate section and others don’t. While flow
is not permitted to be held in a passing block for any length of simulation time, some passing
blocks are capable of defining boundaries between sections. For example, a Valve is part of
one, and only one, rate section. On the other hand, the Change Units block's effective inflow
rate will always be different than its outflow rate because it performs a unit conversion. It
therefore defines the boundaries between two rate sections.

☞ All residence blocks, and certain passing blocks, always define the boundary between two dif-
ferent rate sections. These boundaries are established internally by ExtendSim at the beginning
of the simulation run; they do not change.

The table below lists what role each block in the Discrete Rate library plays in defining the
boundaries of a rate section:

Block Always defines a
new rate section? Comments

Bias No The inflow effective rate is the same as the outflow
effective rate. The block influences the effective rate
associated with the section it is part of.

Catch Flow No The outflow effective rate is the same as the catch
effective rate.

Change Units Yes The outflow effective rate is the inflow effective rate
multiplied by the conversion factor.

Two rate sections in a model

452 Rates, Constraints, and Movement
Flow rules

D
is

cr
et

e
R

at
e

For an example of rate sections, see the “Comprehensive example” on page 461.

Rate precision
The mathematical precision for effective rates is limited to 12 digits. This can become an issue
if you separate any two effective rates in an area by more than 12 digits of precision. For more
information, see “Precision” on page 510.

LP area
While rate sections don’t change after the start of a run, the boundaries of the LP area change
dynamically during the simulation. An LP area is composed of one or more rate sections linked
together by the fact that their effective rates could change during the simulation run. When an
event occurs that causes the effective rate for one rate section to be reevaluated, ExtendSim
determines which other rate sections might be impacted. The affected rate sections constitute
the LP area and become part of the LP calculation.

Since the LP area is computed internally, and because it is most important for the LP calcula-
tion, it is discussed fully in “The LP area” on page 527.

Flow rules
Flow rules completely define how a block permits flow to move through during the simula-
tion run. When calculating rates of flow, ExtendSim's discrete rate architecture tries to maxi-
mize throughput throughout the system, subject to a set of constraints. In order to restrict flow,
discrete rate blocks are required to define their own sets of flow rules. The aggregated set of
these rules ultimately defines how fast flow is permitted to move over time throughout the
model.

A block’s particular set of flow rules is derived from four factors:

• The block’s fundamental behavior.

• How its dialog has been configured, such as setting a Tank’s maximum input rate or entering
a conversion factor in the Change Units dialog.

Convey Flow Yes The outflow effective rate can be different than the out-
flow effective rate because it is a residence block.

Diverge Yes The effective rates can be different across all flow con-
nectors – the input and all the outputs.

Interchange Yes See Convey Flow comment

Merge Yes See Diverge comment

Sensor No The inflow and outflow effective rates are the same.

Tank Yes See Convey Flow comment

Throw Flow No The inflow effective rate is the same as the throw rate.

Valve No The inflow and outflow effective rates are the same.

Block Always defines a
new rate section? Comments

Rates, Constraints, and Movement 453
Flow rules

D
iscrete R

ate
• How its value connections have been connected. For instance, the Valve block’s R (maxi-
mum rate) input connector can be used to dynamically modify the block’s maximum flow
rate.

• How its flow connections have been connected. A Tank is a source if only its outflow con-
nector is connected; it is a sink if only its inflow connector is connected.

These flow rules completely describe the events or conditions under which a particular block
may constrain the movement of flow through it. However, changes in a block’s constraints
during a simulation cause its effective rates to be reevaluated and can cause a connected
block’s effective rates to be reevaluated, propagating calculations throughout an LP area.
When recalculation is required, the Executive block (Item library) uses the aggregated set of
flow rules from all the blocks in the LP area to calculate a new set of effective rates for the
area. Thus a particular block’s flow rules can be superseded by the global calculations of the
Executive.

Critical and relational constraints
There are two primary types of flow rules: critical constraints and relational constraints.

Critical constraints
While all flow rules cooperate to constrain the rate of flow,
some blocks provide special rules called critical con-
straints. If a rate section contains one or more critical con-
straints, they place an upper bound to the rate of flow for the blocks within that section. A
critical constraint is unconditional – no matter what happens in the simulation, the effective
rate of flow cannot be higher than the lowest critical constraint of any block in that rate section.
For example, the Maximum rate field is a Valve's critical constraint; the entry in that field
defines an upper limit on the rate of flow through the block. If that entry is the lowest critical
constraint in the rate section, the effective rate for every block in that section cannot be higher.

The blocks with the potential to set a critical constraint for flow are the Convey Flow, Diverge,
Interchange, Merge, Tank, and Valve; of these, the Valve is most commonly used. As will be
shown in “Meeting the critical constraint requirement” on page 458, these blocks must be
placed at critical locations in order for the model to run properly.

 ExtendSim's discrete rate system attempts to move flow through the model as fast as possible.
Without any mechanism to impede its progress, the effective rate would theoretically approach
infinity and the flow would move from one part of a model to another instantaneously. In order
to avoid this error condition, each LP area of the model must contain one or more constraints
(typically a Valve) to restrict the flow to a number that is below infinity. If the required mini-
mum set of critical constraints is not present in a model, ExtendSim stops the simulation and
displays an error message.

Relational constraints
Relational constraints define the way the effective rates of different sections are related to
each other, creating dependencies between rate sections. For instance, the relational constraint
between one rate section (effective rate x) and another rate section (effective rate y), could be
defined as xy, x=y, 2x-3=y, or any other expression. Relational constraints get updated when
the block reacts to new parameters or to changes in its state, but they don’t affect a block’s crit-
ical constraints.

Critical constraint in a Valve

454 Rates, Constraints, and Movement
Defining a critical constraint

D
is

cr
et

e
R

at
e

An example of a relational constraint is the
Change Units block, where the use of a con-
version factor causes the outflow effective
rate to be different than the inflow effective
rate. The Change Units block defines the
boundaries between one rate section and
another; the conversion factor specifies the relationship of the two effective rates.

For another example of a relational constraint, see “Comprehensive example” on page 461.
For an advanced discussion of relational constraints, see “The relational constraint calculation”
on page 531.

☞ You don’t enter relational constraints, they are determined by the behavior of the blocks.

Comparison of constraints
Some blocks can set a critical constraint, some can set a relational constraint, and some can do
both. Even for blocks that can set constraints, the block may in some situations place no con-
straint on the flow.

• The blocks that can set a critical constraint are the Convey Flow, Diverge, Interchange,
Merge, Tank, and Valve.

• Relational constraints can be set by the Change Units, Convey Flow, Diverge, Interchange,
Merge, and Tank blocks.

For example, a Tank where both the Maximum inflow rate and Maximum outflow rate are
checked will set critical constraints for its inflow and outflow.

If neither Maximum inflow rate nor Maximum outflow rate is checked, the Tank will not
have any critical constraints but could have relational constraints. If the Tank has a finite
capacity but is neither full nor empty, it places no constraints on the flow. However, once the
Tank reaches the full state, its inflow rate is required to be less than or equal to its outflow rate;
this is a relational constraint.

The effective rate for a rate section cannot be any higher than the lowest critical constraint set
for by any of the blocks in that section. Furthermore, because the aggregated set of flow rules
also typically contains relational constraints, the effective rate for the section can vary any-
where between zero and the smallest critical constraint.

☞ For a table that lists the blocks and which constraints they can provide, see “Types of informa-
tion provided to the Executive” on page 529.

Defining a critical constraint
As mentioned earlier, a critical constraint defines the upper limit to the rate of flow through a
rate section. While a particular rate section may or may not have a critical constraint, at least
one of the rate sections within the LP area must have a critical constraint mechanism to limit
the flow rate to a number that is less than infinity.

• You can explicitly set a critical constraint in the Valve, Tank, and Interchange blocks. You do
this by entering a maximum rate in the block's dialog, obtaining a value for the maximum
rate from the block’s input connector, or linking the maximum rate field to the value of a cell
in a global array or ExtendSim database.

• For the Convey Flow block, the critical constraint is derived from settings in its dialog and
sometimes other model values, rather than being entered directly.

Different inflow and outflow rates

Rates, Constraints, and Movement 455
Defining a critical constraint

D
iscrete R

ate
• A critical constraint may also be implicitly specified under certain conditions by the Merge
and Diverge blocks.

The next sections describe how to set a critical constraint. See also “Meeting the critical con-
straint requirement” on page 458 for examples of how to apply the constraint requirement in
your models.

Valve
The Valve is the block most often used for explicitly
setting a critical constraint. You can enter a value in
the maximum rate field in the block's dialog, link the
field to an ExtendSim database or global array, or con-
nect the block’s R (maximum rate) input connector to
some value output.

For an example of setting a fixed maximum rate for
the Valve, see the tutorial in the Rate Module Quick Start guide.

Dynamically changing the maximum rate
There are two ways to change a Valve’s maximum rate during a simulation run:

• Connect to the block’s R (maximum rate) input connector

• Link the block’s Maximum rate field to an ExtendSim database or global array

Connecting to the Valve’s R input connector or linking its maximum rate field to a data source
overrides any values directly entered in the maximum rate field. Instead, that field will display
the current maximum rate as determined by the simulation run.

☞ The check boxes for “Initial maximum rate” and “Poll constraint every”, discussed below, are
only used when the Valve's maximum rate is configured to change dynamically.

For an example of using the Valve’s R input connector to cause the maximum rate to change
dynamically, see the tutorial in the Rate Module Quick Start guide.

☞ As you saw in the Rate Module Quick Start guide, the “Add Shutdown” button in the Valve’s
dialog automatically connects a Shutdown block (Item library) to the Valve's R input connec-
tor. This can be used to stop the flow, or reduce its rate of movement, for a period of time. See
also “Shutting down” on page 331 for a description of how to use the Shutdown block.

Initializing the maximum rate
When the Valve’s maximum rate is configured to change dynamically, the Initial maximum
rate check box serves an important role. This is because the first effective rate calculations for
a simulation occur just before simulation time starts moving forward. If the Valve’s R connec-
tor is connected or if the maximum rate field has been dynamically linked, problems can arise
at this stage because neither the block connected to the R connector nor the linked data source
has yet had a chance to provide an initial value. The Initial maximum rate checkbox resolves
this issue by initializing the maximum rate.

The initial value entered in the dialog will be used until the Valve gets a different value from its
R input connector or from the linked data source.

☞ For multiple runs, the Initial maximum rate check box prevents the Valve from using the last
maximum rate from the current run as the initial maximum rate for the next run.

Defining constraints for Valve

456 Rates, Constraints, and Movement
Defining a critical constraint

D
is

cr
et

e
R

at
e

Polling constraints
The check box to Poll constraint every... can be used when a Valve’s maximum rate is con-
figured to change dynamically. This option directs the Valve to request a new maximum rate
value at fixed intervals during the run. This causes the Valve to periodically query the block
connected to its R (maximum rate) input connector or the cell linked to its maximum rate field
for the new values. Any values received between the queries will be ignored.

This checkbox is optional when the maximum rate field is connected to a fixed number in a
linked cell in a data source. It is required if the linked cell contains a random number or if the
R input connector is connected to a passive block like the Random Number (Value library),
since a passive block won’t independently generate a new value for the maximum on its own.
(The checkbox is not needed if the R connector is connected to block that actively generates
values, such as the Lookup Table block set to output values at regular time intervals in the dis-
crete rate tutorial.)

☞ Each time the maximum rate in a Valve changes, effective rates must be re-calculated across
multiple sections. If you are using the poll constraint feature in several Valves, consider having
them update at the same time. This will dramatically reduce the number of recalculations.

☞ While the polling feature can be handy during the early stages of the model building process,
flow rates in real world systems rarely change at fixed intervals. Use this feature judiciously
and with caution.

Controlling how and when the Valve applies its maximum rate
The Valve’s Control Flow tab has advanced options that allow you to manage how and when
that block applies its maximum rate. By setting a goal or using hysteresis, you can explicitly
control when the Valve’s constraining rate will be observed, when it will be ignored, and for
how long either of those will happen. These topics are discussed in the “Delaying Flow” chap-
ter.

Tank and Interchange
The Tank and Interchange blocks have
dialog options for explicitly defining
their maximum inflow and outflow
rates. Unlike the maximum rate in a
Valve, these constraints do not change
dynamically during the simulation.

You can enter either a maximum inflow rate or a maximum outflow rate, or both of these.

Default maximum rates for Tank

Rates, Constraints, and Movement 457
Defining a critical constraint

D
iscrete R

ate
The Tank Constraint example shows two flow streams with identical behavior. In the bottom
flow stream, Tank 2 uses the options Maximum inflow rate and Maximum outflow rate to
replace the filling and emptying valves found in the upper flow stream.

☞ Instead of using a Valve block to constrain flow, setting maximum inflow and/or a maximum
outflow rates in a Tank or Interchange block can be used to satisfy the model’s requirements
for a constraint.

Convey Flow
The Convey Flow block calculates critical constraints for its inflow and outflow connectors
separately. The critical constraints are derived from model conditions and settings in the dia-
log.

• The critical constraint for the Convey Flow block’s inflow is calculated by multiplying the
block’s effective speed by its maximum density entry.

☞ The effective speed can be less than or equal to the speed set in the dialog. If the block is non-
accumulating, or if it is accumulating but cannot accumulate more, and the block’s ability to
deliver flow exceeds downstream demand, the effective speed will be lower than the entered
speed.

• The critical constraint for the block’s outflow is the result of the multiplication of the block’s
speed setting by the density of flow present at the outflow end of the block.

☞ Setting the initial contents or capacity for a Convey Flow block is discussed in the chapter
“Storage and Units”. The “Delaying Flow” chapter shows how to use the Convey Flow block
to delay the movement of flow in a model.

Merge and Diverge
The critical constraint for one or more of a Merge or Diverge block’s branches can be implic-
itly specified under certain conditions. Most often, the result would be a rate of 0 (zero).

Tank Constraint model. Top stream with two Valves to constrain flow; bottom
stream with maximum rates defined in Tank 2.

458 Rates, Constraints, and Movement
Meeting the critical constraint requirement

D
is

cr
et

e
R

at
e

When a Merge or Diverge block is set to certain modes, flow can be blocked from moving
through one or more of its branches. For example, if one branch of a Diverge block in Distribu-
tional mode has been assigned a blank value or a value <=0, flow through that branch is halted.
Similarly, flow through all but the selected branch is blocked when the Merge block is in Select
mode. In both of these cases, the maximum rate would be 0 for the affected branches.

The “Mode table” on page 465 lists each mode for the Merge and Diverge blocks. The column
labeled “Parameter values that always block the flow” indicates which conditions would
always cause a branch to have an implied constraint of 0.

Meeting the critical constraint requirement
As discussed earlier, while a particular rate section may or may not have a critical constraint, at
least one of the rate sections within the LP area must have a critical constraint mechanism to
limit the flow. Otherwise, the rate of flow would approach infinity.

☞ By definition, residence blocks always delineate the boundary between two rate sections. A
general rule is that there must be at least one critical constraint between every two residence
blocks. (The critical constraints can be provided by the Convey Flow, Diverge, Interchange,
Merge, Tank, and Valve blocks. The residence blocks are the Convey Flow, Interchange, or
Tank.) The exceptions to the general rule include certain situations where a Merge or Diverge
block is between two residence blocks.

The following examples illustrate some ways the required critical constraint mechanism can be
met in discrete rate models.

Valve or Convey Flow
The No Merge or Diverge model illustrates two typical ways to provide a critical constraint to
the rate of flow between two residence blocks (in this case, Tanks) that don’t have a Merge or
Diverge block between them.

The example to the right uses a Valve to constrain
the flow between two Tanks. This is the most
straight forward and most common situation. In
order for the Valve’s maximum rate to provide the
critical constraint it must be:

• Greater than or equal to 0 (zero)

• Less than 1e10 (the defined infinite rate)

• Not a blank

The example to the left uses a Convey Flow
block to meet the requirement for a critical con-
straint. A Convey Flow block derives the criti-
cal constraint for its inflow from its dialog
settings and the critical constraint for its outflow
from its dialog settings and model conditions.

Because it has critical constraints at both its inflow and outflow connectors, the Convey Flow
block limits the rate of flow from the first Tank to the second to a number that is less than
infinite.

Tank or Interchange
Instead of using a Valve to provide the critical constraint between two residence blocks, you
can specify maximum inflow and maximum outflow rates for an intervening Tank or Inter-

Rates, Constraints, and Movement 459
Meeting the critical constraint requirement

D
iscrete R

ate
change block. With these maximum rates, the Tank or Interchange will limit the rate of flow
between the two residence blocks to a number less than infinite. This is shown in the Tank
Constraint example discussed in “Tank and Interchange” on page 456.

Merge or Diverge blocks
If a Merge or Diverge block is between two residence blocks, the inflow and outflow branches
may or may not require a critical constraint mechanism.

☞ For any Merge/Diverge mode, if a critical constraint has been placed on a Merge block’s out-
flow branch, no critical constraints are required on its inflow branches. Likewise, a critical
constraint on a Diverge block’s inflow branch means that no critical constraints are required on
its outflow branches. If those constraints have not been placed, the critical constraint require-
ment depends on the block’s mode.

The following table provides an overview of each mode’s requirements for critical constraints
when neither the Merge block’s outflow branch nor the Diverge block’s inflow branch has a
critical constraint. (In this table, the word “variable branch” means an inflow branch for the
Merge block or an outflow branch for a Diverge block.)

Note: For the Proportional mode, the variable branch with the critical constraint should not
have a proportion <=0. Otherwise, that branch will be closed and the other variable branches
will have potentially infinite effective rates. This is an error condition.

☞ Merge and Diverge blocks, including their modes, are described fully in the chapter “Merging,
Diverging, and Routing Flow”.

The two examples that follow use the Minimum Valve model to illustrate some of the table’s
concepts.

Mode Critical constraint requirements if there is no critical constraint on the
non-variable branch

Batch/Unbatch Only on one of the variable branches

Distributional Each variable branch

Neutral Each variable branch

Priority Each variable branch

Proportional Only on one of the variable branches (See Note, below)

Select Each variable branch

Sensing Each variable branch

460 Rates, Constraints, and Movement
Meeting the critical constraint requirement

D
is

cr
et

e
R

at
e

Proportional mode
The top section of the Minimum Value model indi-
cates the critical constraint requirement when a
Merge or Diverge block is in Proportional mode. If
the block is located between two residence blocks,
only one critical constraint is needed as long as the
branch's proportion is neither 0 nor blank. (This
lower requirement for constraints is an exception to
the general rule described on page 458.) The effec-
tive rates for the other branches are deduced from the
Valve's maximum rate.

In the Minimum Valve example shown on the right, a
Valve is placed on a Diverge block’s bottom outflow
branch, and that branch does not have a 0 or blank
proportion.

Priority mode
The lower section of the Minimum Value model indicates the critical constraint requirements
when a Merge or Diverge block is in Priority mode. In this case, the number of critical con-
straints that must be placed on the branches between residence blocks depends on where those
constraints are placed. These situations are shown in the Minimum Valve model.

If a critical constraint is placed between a residence
block and a Diverge block’s inflow branch, you do not
need to place any other critical constraints on the
Diverge block’s outflows. Likewise, if you place a
critical constraint on a Merge block’s outflow branch,
you do not need to place any critical constraints on its
inflow branches. This is shown on the right, where a
Valve with a maximum rate greater than or equal to 0
but less than 1e10 (the infinite rate) is on a Diverge
block’s inflow branch and there are no critical con-
straints required on its outflow branches.

If you don’t
place a critical constraint on a Diverge block’s inflow
branch, you must place at least one critical constraint
on each outflow branch. Likewise, if you don’t place
a critical constraint on a Merge block’s outflow
branch, you must place at least one critical constraint
on each inflow branch.

This is shown in the screenshot to the left, where
there is no critical constraint on the Diverge block’s
inflow branch. This means each outflow branch must
have a critical constraint, in this case a Valve with a
maximum rate greater than 0 but less than 1e10 (the
infinite rate).

Only one constraint needed

No constraint on each outflow

Constraint on each outflow

Rates, Constraints, and Movement 461
Comprehensive example

D
iscrete R

ate
Comprehensive example
The following example illustrates many of the
concepts from this chapter. The top line of the
Tank Constraint model, shown on the right, has
two rate sections, two critical constraints, and
one relational constraint.

☞ The sections that follow use the abbreviation
FPT to indicate “flow units per time unit”.

Rate sections
Rate sections are determined internally by a communication between Rate library blocks and
the Executive (Item library). The boundaries between rate sections are established at the begin-
ning of the simulation run; they do not change during the run even if the effective rates change.

At the beginning of the simulation run:

• The Filling valve has a maximum rate of 10, gets its inflow from an infinite Source, and
sends its outflow to an empty Storage tank that has a capacity for 100 flow units. The system
will thus calculate an effective inflow and outflow rate of 10 FPT for the Filling valve at the
start of the simulation run. (This will change once the Tank fills.)

• The Storage tank has a a capacity for 100 flow units, gets its inflow from a valve with a max-
imum rate of 10 FPT and sends its outflow to a valve with a maximum rate of 5 FPT. At the
beginning of the simulation run, its effective inflow rate will thus be 10 FPT and its effective
outflow rate will be 5 FPT.

• The Emptying valve has a maximum rate of 5 FPT and sends its outflow to an infinite Sink.
Its effective inflow and outflow rate is 5 FPT.

At the start of the simulation run, the Storage tank’s effective inflow rate is different from its
effective outflow rate. Thus the first rate section for the Tank Constraint model starts at the
Source block’s outflow connector and ends at the inflow connector on the Storage tank. The
second rate section starts at the Storage tank’s outflow connector and ends at the Sink’s inflow
connector.

Critical constraints
There are two critical constraints in the top line of the Tank Constraint model. The first critical
constraint is the 10 FPT entered in the Filling valve’s maximum rate field. The second is the 5
FPT entered in the Emptying valve’s maximum rate field.

Relational constraint
Relational constraints define the way the effective rates of different sections are related to each
other. At the beginning of the simulation run there are no relational constraints – the effective
inflow rate is independent of the effective outflow rate. When the Tank (which has a finite
capacity of 100 flow units) becomes full, it applies one critical constraint: inflow rate must be
less than or equal to outflow rate.

Simulation’s impact on the effective rates
Since it is empty at the start of the run, the Storage tank's initial set of flow rules will not
include placing any restrictions on its inflow rate. Consequently, the initial effective rate of
flow through Rate Section 1 is limited only by the Filling valve's critical constraint of 10 FPT.

Tank Constraint model

462 Rates, Constraints, and Movement
Comprehensive example

D
is

cr
et

e
R

at
e

However, this initial effective rate for the first rate section is only temporary. Since the Storage
tank's capacity is finite and since Rate Section 2's effective rate is only 5 FPT, the Storage tank
will eventually become full. Once this happens, the effective rate of 10 FPT in Rate Section 1
can no longer be maintained. Consequently, the Storage tank introduces a relational constraint
that requires its inflow effective rate (Rate Section 1) to be less than or equal to its outflow
effective rate (Rate Section 2). Once the Storage tank is full, its relational constraint causes the
effective rate through Rate Section 1 to be reduced to 5 FPT.

Discrete Rate Modeling

Merging, Diverging, and Routing Flow
Using the Merge, Diverge, Throw Flow and Catch Flow blocks

464 Merging, Diverging, and Routing Flow
Blocks of interest

D
is

cr
et

e
R

at
e

When building models, you will frequently encounter situations where you want to route the
streams of flow in a model. This is accomplished using the Catch Flow, Diverge, Merge, and
Throw Flow blocks.

The Merge and Diverge blocks have similar interface and capabilities. These two blocks send
and receive flow through a variable number of inflow and outflow connectors. Their dialogs
provide rule-based options to merge or diverge flow in a discrete rate environment.

The Throw Flow and Catch Flow blocks also have similar interfaces. These blocks route flow
remotely from point to point.

This chapter covers:

• Blocks for merging, diverging, and routing flow

• Merge and Diverge modes

• Additional features of the Merge and Diverge blocks

• Using the Throw Flow and Catch Flow blocks

☞ The models illustrated in this chapter are located in the folder \Examples\Discrete Rate\Merge
and Diverge.

Blocks of interest
The following blocks from the Rate library will be the main focus of this chapter.

Catch Flow
Receives flow sent from Throw Flow or Diverge blocks. Allows you to group blocks
that can send the flow into sets, so that the list of possible connections can be filtered.

Diverge
Distributes flow from one inflow branch to one or more outflow branches at a time. The
block has several modes for determining how the flow is distributed through the
branches.

Merge
Merges flows from one or more inflow branches at a time into one outflow branch. The
block has several modes for determining how the inflows should be received.

Throw Flow
Sends flow to Catch Flow or Merge blocks. Allows you to group the blocks that can
receive the flow into sets, so that the list of possible connections can be filtered.

Merging and diverging flow
The systems modeled using discrete rate technology typically have multiple flow streams that
need to be merged into one stream or, conversely, one flow stream that needs to be diverged to
multiple streams. The Merge and Diverge blocks have been designed specifically to model this
type of routing behavior.

The Merge and Diverge blocks have seven different rule-based options that determine how
they send and receive flow. These modes mostly behave as mirror images of each other in the
two blocks. The list of modes, and their similarities and differences, are summarized in the
“Mode table”, below. The examples that follow the table show how each of the modes can be
applied.

Merging, Diverging, and Routing Flow 465
Merging and diverging flow

D
iscrete R

ate
☞ For the Merge block, each input connector is referred to as an inflow branch. For the Diverge
block, each output connector is referred to as an outflow branch. Collectively they are known
as the variable branches.

Mode table
The following table lists the Merge and Diverge modes in alphabetical order and summarizes
their main similarities and differences.

Characteristics
Explanations for the mode characteristics are:

• Some modes use a fixed flow rule to obtain or distribute the flow – no matter what happens
in the rest of the model, the fixed rule will be respected. For other modes, the flow rules
express a preference and are only invoked in specific situations depending on model condi-
tions.

• Competing requests for flow amongst Merge and Diverge blocks that have been set to the
Distributional, Priority, and Sensing modes require the use of bias ordering. This is dis-
cussed in “Biasing flow” on page 510.

• While other parameter values may block the flow in certain circumstances (for instance, if a
number is out of range), for some modes a Blank or zero (0) will always cause the flow to be
stopped. Values that are out of range will cause an error message; a zero (0) or Blank will not
generate an error message.

• As discussed in their respective sections, incompatibilities can arise if an area of the model
has one or more blocks that use the Sensing mode and other blocks that use either the Distri-
butional, Neutral, or Priority mode. These situations should be avoided whenever possible as
they can give inaccurate results.

Select mode
When the Merge or Diverge blocks are in Select mode, only one selected branch at a time is
open. A table in the block’s dialog allows you to assign a unique ID number to each inflow
branch (for the Merge block) or outflow branch (for the Diverge block). The ID connector on
the block’s icon is then used to select which branch to open.

Mode See page

Sum of
inputs =
sum of
outputs?

Fixed rule?
Bias order
required?

Parameter value at
each branch that
will always block
the flow

Compatible
with Sensing
mode?

Batch/Unbatch 467 No Yes No None Yes

Distributional 470 Yes No Yes Blank, <=0 Maybe

Neutral 472 Yes No No None Maybe

Priority 468 Yes No Yes Blank Maybe

Proportional 468 Yes Yes No Blank, <=0 Yes

Select 465 Yes Yes No None Yes

Sensing 471 Yes No Yes Blank, <=0 Yes

466 Merging, Diverging, and Routing Flow
Merging and diverging flow

D
is

cr
et

e
R

at
e

Options in the block’s dialog allow you to specify what happens if the value at the ID connec-
tor doesn’t match any of the branch IDs listed in the table:

• Choose top connection

• Choose bottom connection

• Stop flow

• Generate error

A blank value received at the ID connector always stops the flow until the connector receives a
valid input.

☞ The Select mode uses a fixed flow rule to obtain the set of effective rates for each branch and to
determine which branch to route the flow to.

Select Mode Diverge model
In the Select Mode Diverge model, a
Create block is set to output a sequential
value (1, 2, 3, or 4) every 20 time units.
At its ID input connector, the Diverge
block receives the value from the Create
block, compares that value to entries in
its dialog table, and selects the appropri-
ate outflow connector. Three Tank
blocks, each with an infinite capacity for
flow units, are connected to the Diverge
block. The Tank blocks are identified by
the ID values entered in the Diverge
block’s dialog. For example, an Output
ID of 1 indicates the Tank labeled
“Infinite Sink 1”.

In this example the Create block is
responsible for controlling the Diverge
block. When the Create block sends a
value of 2 to the Diverge block’s ID connector, the flow is routed to Infinite Sink 2, and so
forth.

Notice that in this model 4 is an invalid number and the Diverge block is set to Invalid value
at ID: stop flow. When the Create block sends a value of 4, all flow through the Diverge
block stops and a red bar appears on the block's right side. This pause in the flow could be used
for a specific purpose, for instance to allow time to empty downstream Tanks.

☞ Try running the model after checking Pause each step (in the upper left corner of the model).
This will cause the simulation to pause so you can more easily see the effect of the Create
block sending values to the Diverge block. Clicking the Pause/Resume button in the toolbar
will continue execution to each succeeding event. (There can be more than one event without
time advancing.) For more information, see “Stepping through a model” on page 89.

Select Mode Merge model
This model is the mirror image of the Select Mode Diverge model discussed above. While the
three source tanks provide an infinite supply of flow, it is the Merge block that controls which
tank flow is drawn from. Since the Merge block is in Select mode, the Create block controls

Select Mode Diverge model

Merging, Diverging, and Routing Flow 467
Merging and diverging flow

D
iscrete R

ate
the routing of flow by providing different values (1, 2, 3, 4 sequentially every 20 minutes) at
the Merge block’s ID connector.

In this model, the Merge block is set to Invalid value at ID: choose top connection. This
means that when the ID connector gets a value of 4 from the Create block, it will select the
flow from its top input connector.

Batch/Unbatch mode
The Batch and Unbatch modes are used to cause a different total amount of outflow than what
would be indicated by the total amount of inflow or to change the total amount of inflow into a
different total amount of outflow.

• When the Merge block is in Batch mode, each unit of flow from each inflow branch is com-
bined into one outflow unit. The effective rates of each inflow branch and the outflow con-
nector are thus required to be equal. In this mode, the Merge block's behavior is similar to
that of the Batch block (Item library).

• When the Diverge block is in Unbatch mode, each unit of flow from its inflow branch is
cloned into one unit of flow for each outflow branch. The effective rates for the inflow con-
nector and each outflow branch are thus required to be equal. In this mode, the Diverge
block's behavior is similar to that of the Unbatch block (Item library).

☞ The Batch/Unbatch modes are different from all the other modes because the amount of total
inflow is never equal to the amount of total outflow.

Batch Mode Merge model
In the Batch Mode Merge example, the
Merge block is set to Merge mode: batch.
Each time unit the block takes one unit of
flow from Infinite Source 1 and one unit of
flow from Infinite Source 2. It then com-
bines them to make one unit of output flow
per time unit. Since the model runs for 1,000
time units, the Infinite Source 1 and Infinite
Source 2 blocks each provide 1,000 units of
flow.

Notice the amount of flow (1,000 units) that
has entered the Infinite Sink is half the total
amount of flow that has left the two source
tanks. This is because the effective rate for
the Merge block’s outflow connector is required to be the same as the rate at each of its two
inflow branches.

Unbatch Mode Diverge model
In this example, one unit of flow per time unit from the Infinite Source is unbatched into two
flow units per time unit – one for Infinite Sink 1 and the other for Infinite Sink 2. Notice the
total quantity of flow (2,000) in the two sink tanks is double the amount of flow (1,000) that
exited the source tank.

Batch Mode Merge model

468 Merging, Diverging, and Routing Flow
Merging and diverging flow

D
is

cr
et

e
R

at
e

Proportional mode
With the Proportional mode, you define in a table what the proportion of flow through each
branch will be. The proportion for each branch is defined in the table relative to each of the
other branches. For instance, a value of 2 for the top outflow branch and 4 for the bottom out-
flow branch would indicate that the bottom branch should have twice the amount of flow as the
top branch. If a particular branch's proportion has been defined to be blank or <= 0, the effec-
tive rate for that branch is set to 0 and the flow is stopped for that branch.

☞ See “Merge blocks in Proportional mode” on page 517 for options when a Merge block is part
of an empty loop.

 This mode uses a fixed flow rule where the effective rate at each branch is required to meet the
proportion defined by the table. Consequently, if the flow through one or more of the branches
is blocked or starved, the effective rates for all branches will be set to zero and all flow through
the block is halted.

Proportional Mode Diverge model
In this example, flow coming from the Infinite
Source is evenly distributed between the
Diverge block’s three outflow branches. This
occurs because the proportions in the table in
the Diverge block’s dialog have been set to
1:1:1. With this proportion, the effective rate
across all three branches is required to be the
same – an identical amount of flow must pass
through each branch.

The initial constraining rate for the three
Valve blocks is set to 100. However, the Shut-
down block forces Valve 1's constraining rate
to alternate between 0 and 100 as the model
runs. This has an impact on the effective rate
for all three branches. When the constraining
rate for Valve 1 switches to 0, the outflow from all three branches goes to 0 even though the
constraining rate for Valves 2 and 3 is still equal to 100. This is because the Diverge block
must enforce its ratio, which is 1:1:1 in this example.

Proportional Mode Merge model
This model is the mirror image of the Proportional Mode Diverge model discussed above.
While all three Valve blocks limit the supply of flow from the source tanks at an initial con-
straining rate of 100, the Shutdown block forces the constraining rate in Valve 1 to alternate
between 0 and 100. As in the previous model, when the constraining rate in Valve 1 switches to
0, the effective rates for all three branches become 0 because the Merge block is in Propor-
tional mode and must enforce the 1:1:1 equality it is set to.

Priority mode
The Priority mode allows you to attach priorities to the inflow branches of the Merge block and
the outflow branches of the Diverge block. These priorities only impact the effective rates
assigned to the branches when discrepancies arise between the upstream flow supply and the
downstream flow demand; otherwise they are ignored.

Proportional Mode Diverge model

Merging, Diverging, and Routing Flow 469
Merging and diverging flow

D
iscrete R

ate
• In the case of the Diverge block, when the upstream supply is greater than or equal to the
downstream demand, the block passes as much flow through each branch as the downstream
demand will allow and the priorities are ignored. However, when the cumulative down-
stream demand exceeds upstream supply, the priorities that have been assigned to each
branch are used to calculate the appropriate effective rates for the outflow branches.

• In contrast, the Merge block passes as much flow as possible through each inflow branch
when downstream demand exceeds upstream supply, ignoring the priorities. However, when
the cumulative upstream supply exceeds downstream demand, the priorities assigned to each
branch are used to calculate the appropriate effective rates for the inflow branches.

Special cases apply to the use of the Priority mode in a Merge or Diverge block:

• If the priority for a particular branch has been set to blank, the effective rate for that branch
will be zero and the flow will stop for that branch.

• If the priorities of two or more branches are equal, the flow will be divided among them in a
“distributional” manner with equal proportions (see Distributional mode, below.)

☞ The priority entries in a Diverge block’s dialog are not fixed rules but instead are situational;
they are only used to resolve discrepancies when downstream demand exceeds upstream sup-
ply. For a Merge block, the entries are used to resolve discrepancies when upstream supply is
greater than downstream demand.

 Merge/Diverge blocks in Priority mode are not always compatible with Merge/Diverge blocks
in Sensing mode. Consequently, an area of the model with some blocks in Sensing mode and
others in Priority mode are prone to error. See “Cautions when using potential rates” on
page 533 for more information.

Priority Mode Diverge model
In this example, the
constraining rates in
the valves have been
set such that the
upstream supply of 8
flow units per time
unit through Valve 1
exceeds the cumula-
tive downstream
demand of 6 set by
Valves 2, 3,and 4.
Because a large
enough supply of flow
exists to satisfy down-
stream demand, the
priorities in this case
are ignored and have
no impact on the set of effective rates defined for each outflow branch.

However, if a “supply scarcity” is introduced by changing the constraining rate in Valve 1 from
8 to 4, the Diverge block will calculate a set of effective rates that distributes the now limited
supply of flow according to the defined priorities. Since the priorities have been assigned in
descending order (top outflow branch has highest priority), the Diverge block will do its best to

Priority Mode Diverge model

470 Merging, Diverging, and Routing Flow
Merging and diverging flow

D
is

cr
et

e
R

at
e

satisfy the downstream demand that has been placed on the top outflow branch first. After that,
if supply is still available, the Diverge block will attempt to service subsequent branches. This
pattern is repeated until every branch has been satisfied or until the upstream supply of flow
runs out, whichever comes first.

Priority Mode Merge model
When the blocks are in Priority mode, the difference between a Merge block and a Diverge
block (illustrated above) is that the priorities defined in the Merge block’s table impact the
effective rates for the inflow branches if there is a downstream “scarcity of demand”. The Pri-
ority Mode Merge model illustrates the use of Priority mode when 1) the downstream demand
exceeds upstream supply, and 2) downstream demand is less than upstream supply.

Distributional mode
Similar to the Proportional mode described on page 468, the Distributional mode allows you to
define a desired set of proportions for each branch. However, unlike the Proportional mode
(but similar to the Priority mode discussed on page 468), these proportions serve as the deci-
sion rule for assigning effective rates to the branches only when discrepancies arise between
the upstream flow supply and the downstream flow demand.

• In the case of the Diverge block, when the upstream supply is greater than or equal to the
downstream demand, the block passes as much flow through each branch as the downstream
demand will allow and the proportions are ignored. However, when downstream demand
exceeds upstream supply, the proportions assigned to each branch are used as a guide to
determine how the limited supply should be distributed across the outflow branches.

• In contrast, the Merge block passes as much flow as possible through each inflow branch
when downstream demand exceeds upstream supply, ignoring the proportions entered in the
dialog’s table. However, when upstream supply exceeds downstream demand, the propor-
tions assigned to each branch are used as guides to determine how the limited demand
should be distributed across the inflow branches.

☞ The distributional proportions entered in a Merge or Diverge block’s table are significant only
in certain situations; they are ignored otherwise. Proportions do not follow a fixed flow rule;
they only impact the effective rates assigned to the branches when discrepancies arise between
the upstream flow supply and the downstream flow demand.

 Merge/Diverge blocks in Distributional mode are not always compatible with Merge/Diverge
blocks in Sensing mode. Consequently, an area of the model with some blocks in Sensing
mode and others in Distributional mode are prone to error. See “Cautions when using potential
rates” on page 533 for more information.

Merging, Diverging, and Routing Flow 471
Merging and diverging flow

D
iscrete R

ate
Distributional Mode Diverge model
In this example, the pro-
portions for the Diverge
block’s two branches are
set to 1:1. The constrain-
ing rates in the valves are
defined such that the
upstream supply of 10
flow units per time unit
through Valve 1 equals
the cumulative down-
stream demand of 10 set
by Valves 2 and 3.
Because a large enough
supply of flow exists to
satisfy downstream demand, the distributional proportions are ignored and have no impact on
the set of effective rates defined for each outflow branch of the Diverge block.

Two examples highlight what happens when the Diverge block is set to Distributional model
and there is a “supply scarcity” that causes the upstream supply to be less than the downstream
demand:

• If the constraining rate in Valve 1 is changed from 10 to 8, the Diverge block will use the 1:1
proportions that have been defined in its dialog to allocate the now limited supply between
the two downstream demanding branches. In this case, 4 units of flow per time unit will
move through both the top and bottom branches.

• If the constraining rate in Valve 1 is set to 9 units of flow per unit of time, the situation is dif-
ferent. According to the 1:1 proportions that have been defined in its dialog, the Diverge
block should allocate 4.5 units of flow to each of the two downstream demanding branches.
However, the constraining rate for Valve 3 is 4 units of flow per time unit and that is all it
can accept. The extra 0.5 units of flow will be routed through the top branch because the
downstream demand for the bottom branch cannot keep up with the upstream supply (4.0 vs.
4.5) and the Distributional mode will always try to push as much flow as possible.

☞ The Diverge block's Proportional mode is used to resolve discrepancies when downstream
demand is greater than upstream supply.

Distributional Mode Merge model
When the blocks are in Distributional mode, the difference between a Merge block and a
Diverge block (illustrated above) is that the proportions defined in the Merge block’s table
impacts the effective rates for the inflow branches only if there is a downstream “scarcity of
demand”. The Distributional Mode Merge model illustrates the use of the Distributional mode
when 1) the downstream demand exceeds upstream supply, and 2) downstream demand is less
than upstream supply.

☞ The Merge block's Proportional mode is used to resolve discrepancies when upstream supply is
greater than downstream demand.

Sensing mode
Similar to the Proportional mode discussed on page 468, the Sensing modes use proportions to
calculate the effective rates for the branches. However, unlike the Proportional mode where

Distributional Mode Diverge model

472 Merging, Diverging, and Routing Flow
Merging and diverging flow

D
is

cr
et

e
R

at
e

you directly enter or control the proportions for each branch, the proportions for the Sensing
modes are derived dynamically from the model as it runs.

• In the case of the Diverge block, Demand Sensing proportions for the outflow branches are
calculated as a function of the potential downstream demand. For instance, the downstream
demand placed on a particular outflow branch becomes the proportion for that branch.

• Similarly, the Merge block uses the potential upstream supply to define the Supply Sensing
proportions for each inflow branch.

☞ Potential demand and supply rates are advanced concepts that are discussed in “Upstream sup-
ply and downstream demand” on page 533.

In the Sensing mode, the block's dialog has a table where you must define the maximum possi-
ble rate of flow through each branch. This upper bound is used as a way to limit throughput so
that the proportions can be determined if the upstream supply or the downstream demand is
infinite.

 The discussion on page 533 provides reasons why the Sensing mode should be used with
extreme caution and some situations where it should be avoided altogether. Given the potential
problems, and because similar behavior can be achieved using the Distributional mode, the
Sensing mode should be used only as a last resort.

Demand Sensing Mode Diverge model
In this example, the
constraining rates in
Valves 2, 3, and 4
define the demand for
flow downstream of the
Diverge block. They
therefore define the pro-
portions used to distrib-
ute the flow across the
Diverge block’s outflow
branches.

A maximum possible
rate of 1,000 for each
branch is entered in the
Diverge block’s table.
The block’s Results tab
(cloned onto the model
worksheet) displays each branch’s actual outflow rate and the amount of total outflow for the
simulation run.

Supply Sensing Mode Merge model
In the Supply Sensing Mode Merge example, the constraining rates in Valves 1, 2, and 3 define
the supply upstream of the Merge block. They therefore define the proportions used to distrib-
ute flow across the inflow branches.

Neutral mode
Unlike any of the modes discussed previously, the Neutral mode does not allow you to control
the effective rates for the branches. This is a passive mode where no branch has a throughput

Demand Sensing Mode Diverge model

Merging, Diverging, and Routing Flow 473
Features of the Merge and Diverge blocks

D
iscrete R

ate
advantage; the branch that gets chosen cannot be predicted. It is used when the system does not
need to control how the flow is routed.

• In the case of a Diverge block, when the upstream supply is greater than or equal to the
downstream demand, the block passes as much flow through each branch as downstream
demand will allow. However, when downstream demand exceeds upstream supply, the dis-
tribution of flow across each branch cannot be predicted.

• In contrast, the Merge block passes as much flow as possible through each inflow branch
when downstream demand exceeds upstream supply. However, when upstream supply
exceeds downstream demand, the distribution of flow across each branch cannot be pre-
dicted.

The Neutral mode should be used carefully but can be handy in certain cases. As a general rule
of thumb, if you don't care exactly which branch has priority, but you do want maximum flow,
consider using the neutral mode. The Neutral mode can also be used to resolve conflicting
decision rules. For example, using the Neutral mode in a downstream Merge block would
allow an upstream Diverge block in Proportional mode to control the effective rates of the
inflow branches in the Merge.

 Merge/Diverge blocks in Neutral mode are not always compatible with Merge/Diverge blocks
in Sensing mode. Consequently, an area of the model with some blocks in Sensing mode and
others in Neutral mode are prone to error. See “Cautions when using potential rates” on
page 533 for more information.

Features of the Merge and Diverge blocks
Some features available in the Merge and Diverge blocks of particular interest include:

• Bias order

• Managing flow attributes when flow merges and diverges

• Internal Throw and Catch connections

• Dynamically changing parameters

These features are described in the following sections.

Bias Order – resolving competing requests for flow
As models grow in complexity, it is common for the priorities or proportions defined in one
Merge/Diverge block to compete or conflict with the priorities or proportions defined in other
Merge/Diverge blocks. This problem of “competing requests for flow” is resolved by assigning
a bias order to the competing blocks. This is accomplished through entries in either the Model
Settings tab of the individual blocks or the Discrete Rate tab of the Executive block. The fol-
lowing example demonstrates one of the many ways competing requests can arise and be
resolved.

☞ Because certain modes allow flexibility in the way flow is distributed, Merge or Diverge blocks
set to Distributional, Priority, or Sensing modes must specify a bias order to resolve conflicts
between competing preferences for flow, as discussed below. For a complete description of the
bias concept and bias order, see “Biasing flow” on page 510.

474 Merging, Diverging, and Routing Flow
Features of the Merge and Diverge blocks

D
is

cr
et

e
R

at
e

Competing Requests for Flow model
This model demon-
strates how the pri-
orities in two
routing blocks com-
pete against each
other.

In this example:

• The Diverge
block’s outflow
branch priorities
have been speci-
fied in descend-
ing order while
the Merge blocks'
inflow branch pri-
orities have been specified ascending order.

• The two blocks share common flow streams.

While the Diverge block in this model will try to satisfy its top outflow branch first, the Merge
block will oppose that by trying to satisfy its bottom inflow branch. To resolve this conflict, the
Diverge block's priorities have been biased over the Merge block. This was accomplished by
selecting Each block defines its own bias order in the Discrete Rate tab of the Executive
block, then selecting the Diverge block in the Executive’s table and entering a bias of 1.

Selecting the option “Show bias order on icon” in the Discrete Rate tab of the Executive block
causes the bias value to be displayed near block icons as “<x>”. In the above model, the bias
order is indicated as <1> for the Diverge block and <2> for the Merge block, indicating that the
Diverge block has precedence over the Merge block’s requests.

☞ To see how the Bias block is used instead of Merge/Diverge blocks to resolve competing pref-
erences for flow, see the “Prioritize With Bias Blocks” model located in the folder \Exam-
ples\Discrete Rate\Merge and Diverge and discussed on page 510.

Managing flow attributes
When flow is merged or diverged, the management of flow attributes is based on settings in the
dialogs of the Merge and Diverge blocks.

The Flow Attributes tab of the Merge and Diverge blocks has several options that determine
how attribute values are handled when flow is merged or diverged. Default behaviors for layer
and string layer attributes are specified separately.

Whichever option is selected becomes the default option for that type of flow as it passes
through the block. For exceptions to the default, the blocks provide a table for specifying cus-
tom behavior for each attribute.

Internal throw and catch
While the Rate library has two blocks, Throw Flow and Catch Flow, specifically designed to
transport flow without the use of connection lines, the Diverge and Merge blocks have been

Competing Requests for Flow model

Merging, Diverging, and Routing Flow 475
Features of the Merge and Diverge blocks

D
iscrete R

ate
given throw/catch abilities as well. See “Throwing flow and catching flow remotely” on
page 476 for a full discussion.

Changing decision rules dynamically
With the exception of the Batch/Unbatch and Neutral modes, decision rule parameters for the
Merge/Diverge modes can be changed dynamically during the run. However, this is an
advanced feature that requires some caution and extra insight into how ExtendSim works.

There are two ways to dynamically change a decision rule for a Merge/Diverge mode:

• Allow the rules to be
controlled by other
blocks. To do this,
check the appropriate
checkbox (such as Pri-
orities defined using
value connectors, as
shown to the right) on the Merge or Diverge block’s Options tab. When this checkbox is
selected, a set of value input connectors appear on the block’s icon, with one connector for
each branch.

• Link the parameter table to an ExtendSim database table or global array. Any changes made
to the table or array while the model runs will have the same effect as using a block to
dynamically change the values.

Limiting the number of recalculations
While this advanced feature is useful for changing how effective rates are calculated on the fly,
there are potential pitfalls. Since computations typically happen sequentially on a computer,
new parameter values for each branch are changed one at a time. Ideally, the Merge/Diverge
block will not recalculate the new set of effective rates for each branch until after all parame-
ters have been updated. If this is not the case, however, the block will be forced to unnecessar-
ily calculate an entirely new set of effective rates every time a parameter is updated. At the
very least this will cause your runtimes to be longer than need be. At the very worst, redundant
rate calculations could introduce bugs into your model when effective rates are temporarily
calculated using one or more out-of-date parameter values.

There are three approaches that will help avoid this problem:

1) The issue can be bypassed if the inputs on one Merge/Diverge block are controlled by the
outputs from one equation-based block, such as the Equation block (Value library). This is
because the equation block will update all its outputs with the new results prior to alerting
the Merge/Diverge block to the change. For an example of this, see the model “Change Pri-
orities with Equation”.

2) By checking Update only when a True value is received at the GO connector in the
block’s Options tab. This allows the calculation of a new set of effective rates to be con-
trolled explicitly. In this case, changes to the parameters are ignored until a message is
received at the GO input connector. This is shown in the example model “Change Propor-
tions with Trigger” which requests a new set of proportions at the beginning of each goal.
(A goal represents the production of 1000 units of flow and is repeated over and over until
the end of the simulation.) The values at the inputs change every 10 time units, but because

Modifying decision rules dynamically (Priority mode)

476 Merging, Diverging, and Routing Flow
Throwing flow and catching flow remotely

D
is

cr
et

e
R

at
e

the chosen set of parameter values remains unchanged for the duration of the goal, effective
rates are recalculated only at the beginning of each new goal.

3) By checking Poll new parameters only each: x time units in the block’s Options tab.
This causes a new set of parameters to be updated at fixed intervals. In this case, changes to
the inputs are ignored until the next interval in time arrives. In the example “Change Pro-
portions Periodically”, the model picks a new set of proportions every time another 100
units of time is reached.

☞ The options Update only when a True value is received at the Update connector and
Poll new parameters only each: x time units can be combined together.

Throwing flow and catching flow remotely
The most common way to route flow from one block to another is by drawing a connection
from an outflow connector to an inflow connector. This is a powerful mechanism for routing
flow because it's simple to implement and it provides a very clear picture of how the flow is
being routed in a model. The use of connection lines between connectors, however, can prove
to be cumbersome when many streams of flow need to be routed into or out of hierarchical
blocks.

The ExtendSim throw/catch mechanism solves this issue by allowing flow to be moved with-
out the use of connection lines. By creating a throw/catch connection via block dialogs, flow
can be routed from a throwing block to any catching block in the model.

In the Rate library:

• Flow can be sent from the Throw Flow and Diverge blocks

• Flow can be received by the Catch Flow and Merge blocks.

• Any sending block can throw to any catching block regardless of location.

The rules restricting how normal flow connections can be drawn between outflow and inflow
connectors also apply to throw/catch connections:

• The flow can go one way only – from throw to catch

• One throw can be connected with one and only one catch

• One catch can be connected with one and only one throw

☞ The advantage of using a Diverge block to throw flow or a Merge block to catch flow, is that
each outflow or inflow branch can throw or catch a separate stream of flow remotely. The
Throw Flow and Catch flow blocks, on the other hand, are limited to one flow source or desti-
nation each.

Merging, Diverging, and Routing Flow 477
Throwing flow and catching flow remotely

D
iscrete R

ate
Creating a throw/catch connection
The creation of a throw/catch connection can be
made from either the sending (Throw Flow or
Diverge) or the receiving (Catch Flow or Merge)
block. Connections are made by selecting the
block to catch or throw the flow in a popup menu
in a block’s dialog. Each eligible block appears
in the list with its block label and global block
number. Once established, the connection infor-
mation is automatically displayed in the dialogs
of the sending and receiving blocks. In the
screenshot above, the Catch Flow block will
receive flow from a Diverge block labeled “Diverge B”; the Diverge block’s global block num-
ber is 4.

Choosing the connector position for Merge and Diverge blocks
If a Diverge or Merge block is part of the throw/catch connection, after selecting the connect-
ing block, you must also choose a Merge or Diverge connector position for flow to come from
or go to. This is because the Merge and Diverge blocks have multiple inflow and outflow
branches. Some of their inflows or outflows may not be used for throwing/catching and some
throwing/catching blocks may get flow from or send flow to different branches on a single
Merge or Diverge block.

The number that indicates a Merge or Diverge block’s particular connector position is dis-
played in the leftmost column of the table in the Merge/Diverge block’s Throw or Catch tab;
the number of the topmost inflow or outflow branch is zero (0). You select the connector posi-
tion from a popup menu to the right of the Position field in the corresponding block. The menu
will list all the available connector positions for the named block. In the screenshot in the pre-
ceding section, the top outflow connector position (0) for the Diverge block labeled Diverge B
is entered in the Position field of a Catch Flow block’s dialog.

☞ An asterisk to the right of a connector position number in the popup menu indicates that the
connector is already being used by some other throw/catch block.

Filter options to facilitate throw/catch connections
In large models, it is possible to have a great number
of sending and receiving blocks from which a
throw/catch connection can be made. To simplify
the popup list of blocks eligible for connection,
three types of filters can be applied:

• Group filter

• Block type filter

• Only unconnected blocks filter

These filters can be used in combination with each
other.

Selecting a connection in a Catch Flow block

Filtering options

478 Merging, Diverging, and Routing Flow
Throwing flow and catching flow remotely

D
is

cr
et

e
R

at
e

Group filter
Each block with throw or
catch capabilities can be
added to a throw/catch
group. Groups can be cre-
ated or selected through
the group popup menu
found in the sending and
receiving blocks. When this popup is blank, the block does not belong to a group. When a
block has been added to a group, its throw/catch options are limited to the blocks currently in
that group.

Block type filter
By default, the block types a throwing block can connect to include both Catch Flow and
Merge blocks and the block types a catching block can connect to include by Throw Flow and
Diverge blocks.

• For throwing blocks, the list of blocks to select from can
be narrowed to only Catch Flow blocks or only Merge
blocks.

• For catching blocks, the list of blocks to select from can
be limited to only Throw Flow blocks or only Diverge
blocks.

Only unconnected blocks filter
This filter narrows the selection of possible blocks to only those blocks without an established
throw/catch connection.

Examples of throw and catch connections
The two example models that follow show how to use catching and throwing in a model. The
first model uses Throw Flow and Catch Flow blocks; the second model uses a Diverge block.

Catch Flow and Throw Flow model
The Catch Flow and Throw Flow
model shows two lines, one above the
other. They produce identical results
even though the flow connections
have been created differently:

• The top line uses normal flow con-
nection lines to connect Valve A to
Valve AA.

• The bottom line uses a throw/catch
connection to connect Valve B to
Valve BB. In this line, the flow is
sent remotely by a Throw Flow
block and received by a Catch
Flow block.

Defining a Group

Block type filters for a Diverge block

Catch Flow and Throw Flow model

Merging, Diverging, and Routing Flow 479
Throwing flow and catching flow remotely

D
iscrete R

ate
The particulars of the throw/catch connection can be
viewed from the dialogs of either the Throw Flow or
Catch Flow blocks. In the Throw Flow dialog you can
select the Catch Flow block and see the throw/catch
connection; in the Catch Flow dialog you can select
the Throw Flow block and see the throw/catch connection.

Catch Flow and Diverge model
Similar to the previous model,
the top and bottom lines for the
Catch Flow and Diverge model
produce identical results even
though the flow connections
have been created differently:

• The top line of the model a
uses regular connections to
connect the two outflow
branches of a Diverge block to
Valve AA and Valve AAA.

• The bottom line uses throw/
catch connections to connect
the outflow branches of the
Diverge block to Catch Flow
BB and Catch Flow BBB.

In the bottom line, both Catch
Flow blocks indicate in their dia-
logs that the block labeled
Diverge B is remotely sending the flow. Since the flow is being sent by a Diverge block which
can have multiple outflow branches, and since each Catch Flow block must receive its flow
from a separate source, the Catch Flow blocks must also specify which of the Diverge block’s
connector positions they will receive flow from.

In the screenshot at right, the Catch tab of Catch Flow
BB indicates that it is receiving flow from the Diverge
block labeled Diverge B. It is getting that flow from
the Diverge block’s top outflow branch (outflow con-
nector position 0).

☞ If the throw/catch connection has been properly
defined for a particular branch of a Merge or Diverge block, the “Open” button for that branch
will appear in the last column of the table in the block’s Throw or Catch tab.

Portion of Throw Flow dialog

Catch Flow and Diverge model

Portion of Catch Flow BB dialog

480 Merging, Diverging, and Routing Flow
Throwing flow and catching flow remotely

D
is

cr
et

e
R

at
e

Discrete Rate Modeling

Delaying Flow
For a certain period of time, either

maintaining flow at a certain speed or blocking it.

482 Delaying Flow
Blocks of interest

D
is

cr
et

e
R

at
e

The “Rates, Constraints, and Movement” chapter discussed how to specify critical constraints
(such as a Valve’s maximum rate) and the factors that determine the actual speed of flow mov-
ing through a model.

☞ Since the concepts of flow rules and critical constraints are central to the discussion of delay-
ing flow, it is assumed that you have already read the “Rates, Constraints, and Movement”
chapter.

This chapter describes how to use advanced methods to delay flow – for a specified period of
time or until a specified condition has been met, either blocking the movement of flow or
maintaining it at a certain speed. It illustrates several methods for delaying flow, including how
to:

• Control how and when a Valve observes or ignores its maximum rate setting:

• Setting a goal for a quantity of flow

• Setting a goal for a duration

• Using hysteresis to control when the block’s maximum rate will be observed

• Use a Shift block (Item library) with a Convey Flow, Interchange, Tank, or Valve to delay
flow movement for a specified period of time

• Transport flow over a defined distance at a specified speed with a Convey Flow block

☞ Most of the models illustrated in this chapter are located in the folder \Examples\Discrete
Rate\Delaying Flow. The tutorial models mentioned are located at \Examples\Tutorials\Dis-
crete Rate.

Blocks of interest
The following blocks from the Rate library will be the main focus of this chapter.

Convey Flow
Delays the movement of flow from one point to another. Can accumulate flow to a
maximum density, accumulate flow to fill empty sections, or act as a non-accumu-
lating conveyor.

Valve
Controls and monitors the flow, limiting the rate of flow passing through. This
block can also be used to set a goal for the duration of flow movement or the
amount of flow.

Controlling a Valve’s maximum rate
The section “Defining a critical constraint” on page 454 showed how to set a Valve’s maxi-
mum rate. Options on the Valve’s Flow Control tab provide advanced control over how and
when the Valve applies its maximum rate. These settings determine when the Valve’s maxi-
mum rate is observed or ignored, and for how long.

The advanced control options include:

• Setting a goal for a certain quantity of flow to pass through the Valve.

• Setting a goal for how long flow can move through the Valve or for how long it should be
stopped from moving.

• Determining what happens when the goal ends.

• Using hysteresis to delay the Valve’s response to system requirements.

Delaying Flow 483
Controlling a Valve’s maximum rate

D
iscrete R

ate
Using the Flow Control tab
By default, the settings in a Valve’s Flow Control tab are disabled. Use
the tab’s popup menu, shown at right, to choose either the Goal or Hys-
teresis option.

If the Goal option is selected, an additional popup menu appears to the
right. Use this second menu to choose:

• Goal as a quantity

• Goal as a duration

Observing the maximum rate for a goal
Whether you select a quantity or a duration goal, a Valve’s maximum rate is observed while a
goal is On. While the goal is off, you have the option to choose whether the maximum rate is
observed or not and whether the flow is stopped. Thus your purpose in using a goal could be to
block flow for a period of time and allow it to move through when the goal is off, allow flow
for a period of time and block it at other times, accept a certain quantity of flow but stop flow
when the goal is off, and so forth. In fact, you can choose to observe the maximum rate when
the goal is off. This can be useful for a quantity goal, when you just want the Valve to report
when a goal is finished.

• If its maximum rate is 0 (zero), the Valve will block flow while its goal is On.

• If its maximum rate is >0, blank, or infinite, the Valve will allow flow to pass through at that
rate while its goal is On. (If the maximum rate is blank, the Valve uses an infinite rate.)

☞ If a Valve’s maximum rate is zero and a quantity goal is On, no flow will go through the block
and the goal will never end.

Options when goal is Off
Dialog options allow you to choose what will happen when the goal switches to Off:

• Stop the flow

• Ignore maximum rate (do not constrain flow)

• Observe maximum rate

Setting a Valve’s quantity goal
Using popup menus in a Valve’s Control Flow tab, you can specify that the block has a goal to
pass a certain quantity of flow from its inflow to its outflow. Additional options allow you to
specify what the Valve should do once that quantity of flow has passed.

The quantity goal modulates a Valve's critical constraint (its maximum rate) by cycling
between On and Off states.

• While a quantity goal is On, the value in the Valve tab’s Maximum rate field, or the value at
the block’s R (maximum rate) input connector, is observed. The goal remains On until either
the amount of flow that has passed through the block reaches the target quantity, or the goal
is interrupted. At that point the goal switches to the Off state.

• What happens when the goal switches to the Off state depends on the Off option selected in
the block’s dialog: stop the flow, do not constrain flow, or observe maximum rate.

☞ To interrupt a goal, send a value to the Valve’s stop input connector.

Flow Control options

484 Delaying Flow
Controlling a Valve’s maximum rate

D
is

cr
et

e
R

at
e

Quantity Goal model
This model uses a Pulse block (Value library) to periodically start a new quantity goal. At the
start of the simulation run and every 60 minutes afterwards, the Pulse block sends a True value
(a number 0.5) to the Production Gate valve’s start connector, starting a new goal.

The Valve’s maximum rate is 20 gallons/minute and the
simulation runs for 480 minutes. The control for the
movement of flow through the block is provided by its
Flow Control tab. The desired quantity of flow, 500 gal-
lons, is entered in the dialog. While the goal is On, flow
passes through the Valve at a maximum rate of 20 gal-
lons/minute. After 500 gallons, the goal goes Off, the
flow is stopped, and the effective rate goes to 0. As the
simulation runs, a plotter displays the Valve’s effective rate, the quantity of the goal and the
times when it has been reached, and the number of each new goal.

Settings in the Flow Control tab cause the Valve to Start
a new goal when “start” connector value = 1. The
goal-starting options (seen at right) can also be set to start
a new goal when the block receives a message at its G
(goal) input connector or when the previous goal fin-
ishes.

You could have avoided building the Quantity Goal model by instead mentally calculating the
effect of the goal on the flow. The rate interactions and results determined by the next model
would not be so easy to compute.

Changeover Quantity Goal model
The Changeover Quantity Goal model involves a more complex system than the Quantity Goal
model from above. This model, based on the stage of the Yogurt Production model that is dis-
cussed in the tutorial in the Rate Module Quick Start guide, shows how a quantity goal in a
Valve can be used to control a sequence of production changeovers. The top part of the model

Quantity Goal model

Options for starting a new goal

Delaying Flow 485
Controlling a Valve’s maximum rate

D
iscrete R

ate
is composed of Rate library blocks and the bottom line is Item library blocks. A Decision block
(Value library) transmits values from a Valve (Rate library) to a Gate (Item library).

Since its initial goal has been set to “none”, the goal status is Off and flow through the Produc-
tion Gate valve is stopped at the start of the simulation. However, when an item passes through
the Get block (Item library) labeled Start Goal, a message is sent to the Production Gate
valve’s G (goal) input connector. Once that happens, the valve’s goal switches from Off to On
and the goal quantity is set to the value of the item’s Quantity attribute (5000 gallons).

In the bottom portion of the model, when the item leaves the Get block it moves into the
Queue, where it is blocked from leaving by a Gate block. The Gate will remain closed until the
Production Gate valve reaches its new goal of 5000 gallons. At that time the goal switches
from On to Off, the flow stops (because that is the option set on the Control Flow tab), and the
value at the GS (goal status) output is set to 3 (indicating that the goal has ended).

As a result, the Gate opens and the item moves into the Changeover Activity block where it is
delayed for the amount of time required to perform a changeover. After the changeover has
been completed, the item cycles back and initiates the next production cycle.

☞ By default, a Valve’s GS (goal status) output connector reports the following values:
0 when there is no goal
1 when a goal is starting
2 when a goal is in progress
3 when a goal has ended
4 when a goal is interrupted

Changeover Quantity Goal model

486 Delaying Flow
Controlling a Valve’s maximum rate

D
is

cr
et

e
R

at
e

The following screenshot shows how the Production Gate’s quantity goal has been configured
on its Flow Control tab:

• The value for the Goal quantity is received through the G input connector. (In this model, the
goal is 5000 gallons because each item has a Quantity attribute value of 5000.)

• The popup menu option Start run with goal Off has been selected. (This causes the goal to
be in the Off state at the start of the simulation.)

• The Valve has been instructed to Stop flow when the goal is Off.

• The popup menu option “Start run with goal Off” has been selected. (This causes the goal to
be in the Off state at the start of the simulation.)

• If a new goal is received before the previous one is finished, the new goal will be ignored.
(In this model, a new goal cannot arrive before the previous one is finished.)

An interesting aspect of this model is that the Production Gate valve has been set to have an
infinite maximum constraining rate. This means that it will, in and of itself, not limit the rate of
the flow moving through it. However, the block’s effective (actual) rate will be determined by
the two upstream Valves. One of these Valves is connected to a Lookup Table block (Value
library) that changes its maximum rate depending on the time of day. The other upstream Valve
is connected to a Shutdown block (Item library) that causes the movement of flow to be
stopped periodically for specified durations. This sequence causes some interesting effects in
the model, and the Production Gate’s effective rate ranges between 80 and 0 gallons/minute.

Flow Control tab, goal is quantity

Delaying Flow 487
Controlling a Valve’s maximum rate

D
iscrete R

ate
☞ This examples uses the G (goal) connector to control the “when” and “how much” aspects of
the goal. Alternately, the Control Flow tab allows you to choose to start a new goal when the
start connector receives a message or when the previous goal finishes.

Setting a Valve’s duration goal
Like the quantity goal, the duration goal is used to modulate a Valve's maximum rate. How-
ever, the duration goal cycles between the On and Off states as a function of time rather than
the volume criteria used for the quantity goal.

A duration goal remains in the On state for some amount of simulation time before switching
to the Off state:

• While a duration goal is On, the value in the Valve tab’s Maximum rate field, or the value at
the block’s R (maximum rate) input connector, is observed. The goal remains On until either
the specified amount of time has passed, or the goal is interrupted. At that point the goal
switches to the Off state.

• What happens when the goal switches to the Off state depends on the Off option selected in
the block’s dialog: stop the flow, do not constrain flow, or observe maximum rate.

☞ To interrupt a goal, send a value to the Valve’s stop input connector.

Duration Goal model
The Duration Goal model is similar to the Quantity
Goal model from above, except the goal allows the flow
to move through the Valve for a certain period of time.

In this model, the Valve’s Flow Control tab is set to
observe its maximum rate of 20 gallons/minute for 45
minutes. When the goal is On, the block passes through
whatever amount of flow it can, at the maximum rate of
20 gallons/minute. When the 45 minutes passes, the
goal is set to Off and all flow through the block stops. The Pulse block (Value library) restarts
the goal every 60 minutes. As the model runs, the block’s maximum rate cycles from 20 gal-
lons/minute to 0, depending on whether the goal is On or Off. As a result, the block’s effective
rate stays at 0 for the period of time (15 minutes) from when the previous goal ends until when
a new goal starts.

Changeover With Only Goals model
The Changeover With Only Goals model is equivalent to the Changeover Quantity Goal model
(discussed earlier) in terms of behavior. However, while the Production Gate valve still has a

Duration Goal model

488 Delaying Flow
Controlling a Valve’s maximum rate

D
is

cr
et

e
R

at
e

quantity goal in this model, the changeover is controlled using a second Valve with a duration
goal, rather than by an item.

Since it’s Flow Control tab specifies that it has an initial quantity goal of 5000 gallons, the Pro-
duction Gate valve starts the simulation by observing its maximum rate setting – infinity. How-
ever, as was true for the Changeover Quantity Goal model, the block’s actual effective rate will
be impacted by the Liquid Supply and Fruit Supply valves upstream.

The Production Gate's goal state is communicated to the Changeover Gate through the connec-
tion between the first block’s GS (goal status) output connector and the second block’s start
input connector. Because of this connection and because of how the duration goal has been
specified in the Changeover Gate, the duration goal starts in the Off state and will switch to On
only after the Production Gate's quantity goal is completed. After 20 minutes, the Duration
Goal is finished and the Changeover Gate sends a message to the Production Gate to start a
new quantity goal.

☞ Unlike the Duration Goal model that allows flow to pass through for a specified amount of
time, the duration goal in this model causes flow to be blocked for a certain period. The
Changeover Gate’s maximum rate is set to 0 and the goal’s duration is set to 20 minutes. While
the goal is On, the block’s maximum rate (0) is observed and no flow passes through, allowing
for the changeover.

Changeover With Only Goals model

Delaying Flow 489
Controlling a Valve’s maximum rate

D
iscrete R

ate
The following screenshot shows how the Changeover Gate’s duration goal has been configured
on its Flow Control tab:

• The goal duration is a constant 20 minutes. The duration could be made variable by instead
choosing Goal durations is: value at G connector.

• The 20 minute blocking of flow allows the changeover to occur. The maximum rate on the
Changeover Gate’s Valve tab is 0. This would cause the flow to be blocked in the absence of
any goal being set for this block. Consequently, if the block has a duration goal and it is On,
that maximum rate of 0 will be observed and flow will be blocked from entering. When the
goal turns Off after 20 minutes, the Changeover Gate doesn't apply any constraining rate on
the flow because it is set to Off: ignore maximum rate.

• A new duration goal is started only when the start input connector receives a value of 3.
Consequently, a new duration goal begins only when the upstream Production Gate's quan-
tity goal has finished.

• When the changeover has completed and the duration goal switches from On to Off, a signal
is sent from the Changeover Gate to the Production Gate. This results in a new quantity goal
starting in the Production Gate.

Setting hysteresis in a Valve
Hysteresis is a property of systems that causes them to not react instantly to a change. The pur-
pose of adding hysteresis in a model is to introduce a delay in the time it takes some part of the
system to switch from one state to another.

Hysteresis allows you to insert a lag or delay in a Valve’s response to system requirements. It is
used to avoid oscillations and to achieve better control over flow movement. This is accom-

Flow Control tab, goal is duration

490 Delaying Flow
Controlling a Valve’s maximum rate

D
is

cr
et

e
R

at
e

plished by using model conditions to explicitly control both when a Valve’s maximum rate is
observed and when it is ignored.

Unlike the quantity and duration goals discussed earlier, where the conditions for applying the
Valve’s maximum rate were entered in its dialog, hysteresis must always get its control infor-
mation from outside the block. The hysteresis option always relies on the Valve’s start input
connector to control when the Valve’s maximum rate will be observed and its stop input con-
nector to control when the maximum rate will be ignored. When the maximum rate is ignored,
the Valve’s dialog provides a popup menu for choosing if the flow stops or if the Valve does
not constrain the flow.

Hysteresis model
In this model, the Filling valve opens
when the Storage tank is empty and
closes when the tank is full. Conversely,
the Emptying valve opens when the
Storage tank is full and closes when the
tank is empty. As a result, the model
repeatedly cycles through the following
stages:

• Emptying valve closes and filling valve opens

• Storage tank starts accumulating flow

• Storage tank reaches the full state

• Emptying valve opens and filling valve closes

• Storage tank starts emptying

• Storage tank reaches the empty state

Based on settings in its Indicators tab, the Storage tank's I (indicator) connector outputs a value
of 0 when empty and 2 when it is full. (Tank indicators are discussed on page 429.)

The Filling valve’s Hysteresis set-
tings are shown at the right. When
this valve’s start connector gets a 0
from the Storage tank’s I output
connector, the valve observes its
maximum rate. When the Filling
valve’s stop input connector gets a
2, the block shuts down.

The Emptying valve’s hysteresis set-
tings are the opposite of the Filling
valve, as shown at the right. When
this valve’s start connector gets a 2
from the Storage tank’s I output con-
nector, the valve observes its maxi-
mum rate. When its stop input
connector gets a 0, the valve shuts down.

Hysteresis model

Hysteresis settings: Filling valve

Hysteresis setting for Emptying valve

Delaying Flow 491
Delaying flow with the Shift block

D
iscrete R

ate
Delaying flow with the Shift block
The Shift block (Item library) is discussed fully in “The Shift block” on page 372. It is used to
schedule capacity in certain blocks found in the Item and Rate libraries. Shifts come it two
types: On/Off and Numeric.

Rate library blocks do not support a Number type of shift. The following Rate library blocks
can be controlled using On/Off Shifts:

• Convey Flow. When the shift is Off, the effective inflow rate is set to 0, blocking any new
flow from entering. Depending on which option has been chosen in the Convey Flow’s dia-
log, the block’s speed will either also be set to 0 or it will remain unchanged from what is set
in the dialog. If the Empty when shift is off checkbox is checked, any flow already on the
conveyor at the Off shift time will continue progress towards exiting the block.

• Tank. The effective inflow and outflow rates are set to 0 when the shift is Off, effectively
shutting the block down.

• Interchange. Same logic as the Tank.

• Valve. Same logic as the Tank.

Adding a Shift to a model
The easiest way to add a Shift block to a discrete rate model is to click the Add Shift button
found on the Options tab of a Convey Flow, Tank, Interchange, or Valve block. This automati-
cally does the following:

• Places a Shift block on the model worksheet below the originating block

• Enters the Shift name in the originating block's Use Shift field

• Opens the Shift’s dialog so settings can be entered

To use the Shift, enter the required information in the block’s dialog. (The Shift controls the
originating block remotely; it does not need to be connected in the model.) Each Shift block
starts with a default name for its shift. If you subsequently change the name of the shift, the
new name will be reflected in the block that uses that shift.

For more information about using the Shift block, see “The Shift block” on page 372.

Convey Flow block
Setting an initial contents and the capacity of a Convey Flow block is discussed in the chapter
“Storage and Units”. The current chapter focuses on the behavior of the Convey Flow block
and how to set parameters that affect how flow is delayed through the block.

Flow entering the Convey Flow block is available to leave only after a specified delay that has
been defined as a function of length and speed. The flow that enters is required to move some
distance at a certain rate of speed before arriving at the block's exit point. The Convey Flow,
then, is a residence block with flow distributed across its length at varying densities. (Density
is the amount of flow that has accumulated at any one point on the conveyor.)

This block is useful for representing a conveyor, industrial oven, refrigeration system, or other
similar piece of equipment with a length component where the position of flow must be taken
into consideration.

492 Delaying Flow
Convey Flow block

D
is

cr
et

e
R

at
e

 A Convey Flow block is computationally intensive, so it should be used only if the system you
are modeling requires very precise tracking of flow movement and position. For instances
when the block should not be used, see page 495.

Dialog settings
Movement of flow across the Convey Flow block is influenced by the dialog settings and
parameters.

Determining speed and distance
The Convey Flow block
offers two options:
Speed determines
travel time or Delay
determines travel
time. Depending on
which of these is
selected, the following
entries can be made:

• Speed. Specifies the
maximum potential
speed at which the
conveyor can trans-
port flow. However, when the potential supply of flow from the conveyor exceeds the down-
stream demand, the observed speed of the flow can become something less than the speed
parameter.

• Delay. Represents the amount of time flow will spend in the block if there is no downstream
blocking. If the block’s dialog is set to Speed determines travel time, the delay is calcu-
lated by dividing Length by Speed. If the dialog is set to Delay determines travel time, the
flow will take the entered Delay time to travel the stated Length.

• Length. Represents the distance flow must travel before reaching the block's exit point. The
length of a Convey Flow block has to be greater than 0.

• Maximum density. Density is the amount of flow that has accumulated at any one point on
the conveyor. The observed density of flow on a conveyor is a function of the upstream sup-
ply rate, the conveyor's speed, the downstream demand rate, and what settings have been
chosen in the block’s dialog. The Maximum density setting limits how high the pile of flow
can be at any one point along the conveyor. For example, if the upstream supply rate is
greater than or equal to the conveyor's maximum inflow rate (speed*maximum density),
then the amount of flow entering the conveyor will be equal to the maximum density. In this
case, it is the conveyor's capacity to receive flow that limits its effective inflow rate.

☞ The parameters for speed or delay can vary dynamically during the simulation; the length and
maximum density parameters remain fixed.

Convey Flow behavior
The Convey Flow block is divided into segments, where the boundaries of each segment are
defined by a change in the density of flow. Depending on the options chosen in the dialog, flow

Dialog parameters for Convey Flow

Delaying Flow 493
Convey Flow block

D
iscrete R

ate
could accumulate or “pile up” along the length of the block any time the amount of flow ready
to exit the block exceeds downstream demand.

The Convey Flow block has three options controlling how or if flow is allowed to accumulate:

• Accumulate-maximum density. Allows flow to accumulate up to its maximum density set-
ting. If the conveyor's ability to deliver flow exceeds downstream demand, any flow delayed
from exiting will begin piling up at the outflow end of the conveyor up to the maximum den-
sity level.

• Accumulate- fill empty segments. Allows flow to fill in any empty segments along the con-
veyor when the block’s ability to deliver flow exceeds downstream demand. (An empty seg-
ment is an area along the block’s length that has a density of 0.) This differs from the first
option in that one section of flow is not allowed to pile onto another section of flow.

• Non-accumulating. This option does not allow flow to accumulate. Therefore, the block’s
speed slows when its ability to deliver flow exceeds downstream demand.

☞ The Compare Convey Flow model compares the behavior of three Convey Flow blocks, each
set to one of these behaviors, under different emptying rates.

Constraining rates
Critical constraints define an unconditional maximum upper bound to the rate of flow. As dis-
cussed in the chapter “Rates, Constraints, and Movement”, the Convey Flow block calculates
critical constraints for its inflow and outflow connectors separately. The critical constraints are
derived from model conditions and settings in the dialog.

• The critical constraint for the Convey Flow block’s inflow is calculated by multiplying the
block’s effective speed by its maximum density entry.

☞ The effective speed can be less than or equal to the speed set in the dialog. If the block is non-
accumulating, or if it is accumulating but cannot accumulate more, and the block’s ability to
deliver flow exceeds downstream demand, the effective speed will be lower than the entered
speed.

• The critical constraint for the block’s outflow is the result of the multiplication of the block’s
speed setting by the density of flow present at the outflow end of the block.

Convey Flow information
The Convey Flow block provides different types of information concerning the distribution of
flow along the length of its conveyor. Some of the information is provided by default while
other mechanisms for reporting data, like sensors and indicators, must be customized through
the block's dialog.

494 Delaying Flow
Convey Flow block

D
is

cr
et

e
R

at
e

Distribution of flow
If you select Run > Show 2D Animation before you run the simu-
lation, the distribution of flow in the Convey Flow block will be
displayed across the top of its icon, as shown on the right.

On the Convey Flow block’s Animation tab, selecting Show
block's flow distribution in table during simulation causes a
table to appear. As the simulation runs, the table displays infor-
mation about the current distribution of the flow in each segment
of its length:

☞ The length of a Convey Flow block is divided into segments, where the boundaries of each seg-
ment are defined by a change in the density of flow. The table above indicates that this Convey
Flow block currently has 8 segments along its length.

Accumulation point
If the block is set to be accumulating, any accumulation will start at its outflow and go toward
its inflow. The point beyond which no more flow can accumulate is known as the accumula-
tion point. This point will probably move between the inflow and the outflow as the simula-
tion runs.

The Results tab reports information about the accumulated flow: the distance from the outflow
where the accumulation point is located, the indicator, and the accumulated quantity of flow.

If the command Run > Show 2D Animation is checked while the model runs, and there is accu-
mulation, a vertical red bar will move on the block’s icon during the simulation; this indicates
the location of the accumulation point. The “Flow and accumulation point” screenshot above
shows the red line of the accumulation point.

☞ The accumulation point is located somewhere along the length of a Convey Flow block that has
been set to accumulate flow.

Sensors
The Convey Flow block has a Sensors tab for specifying the locations and trigger points of
sensors along the length of the conveyor. Each sensor reads and communicates the density of
flow over time at a particular point on the conveyor. This information is displayed in a table in
the block’s dialog and reported by the block’s S (sensor) output connectors – one S output for
each sensor.

Flow and accumulation point

Table showing example distribution of flow

Delaying Flow 495
Convey Flow block

D
iscrete R

ate
You must specify in the table not
only the number of sensors
desired but also the location of
each one. (Use the +/- button in
the table’s lower right corner to
specify the number of sensors.)
The example table shown here
indicates that four sensors have
been placed along a ten foot section of the conveyor.

☞ The S connectors should be used judiciously. Extra events are used to update them at the proper
time and the calculation is computationally intensive.

Indicators
As discussed in “Accumulation point” on page 494, the accumulation point indicates the point
beyond which no more flow can accumulate. You might want an indication when the accumu-
lation point is within a particular segment of the Convey Flow block.

The Indicators tab on a Convey Flow block is used to define segments to indicate where the
accumulation point is along its length. Each segment is assigned a name, a defined range, and
an ID number. The ID number is used to update the block’s I (indicator) output connector as
the accumulation point moves from one segment to the next.

See “Indicators” on page 429 for complete information about creating and using indicators.

☞ The I connectors should be used judiciously. Extra events are used to update them at the proper
time and the calculation is computationally intensive.

When to avoid using the Convey Flow block
A Convey Flow block should be used only if the system you are modeling requires very pre-
cise tracking of flow movement and position. While the block is very precise, it is also very
time consuming, so use it with caution. Following are some usage guidelines:

• The travel time has to be long enough to justify using the Convey Flow block. If the impact
on the result of the simulation is small, it is a good strategy to ignore any travel time delays.
For instance, the amount of time required for product to traverse a pipe separating two tanks
is often insignificant and should usually be ignored.

• The distribution of flow along the Convey Flow block should impact the rest of the model in
some significant way. If the effective inflow rate varies significantly during the simulation
and/or if the speed changes, the product may be unevenly distributed across the length of the
conveyor. This discontinuity impacts the rate at which flow is able to exit the block over
time. The greater this variation in availability, the greater the potential impact on the rest of
the model and the greater the block's use can be justified.

One alternative would be to use a combination of Tank and Valve blocks to mimic a Convey
Flow block. This is far less computationally intensive than the Convey Flow block by itself.
While some configurations may not be as precise, you can use a combination of one Tank fol-
lowed by one Valve block in such a way that the behavior is identical or almost identical to the
results when using a Convey Flow block.

Another alternative is shown in the Tank and Valve to Convey model. In this example, the bot-
tom flow stream behaves almost identically to the upper stream without using a Convey Flow

Sensor tab table

496 Delaying Flow
Convey Flow block

D
is

cr
et

e
R

at
e

block. Because Valves A1 and B1 vary their constraining rate, the Convey Flow block (Convey
A) will get and create a lot of messages, slowing down the simulation. But the Convey B1 tank
won’t create the extra events. This will be slightly less precise but much more efficient.

☞ Never use a Convey Flow block if the system’s behavior can be modeled using a Tank and
Valve.

Discrete Rate Modeling

Mixing Flow and Items
Mingling discrete rate flows with discrete event items.

498 Mixing Flow and Items
Controlling flow with items and items with flow

D
is

cr
et

e
R

at
e

It is common for systems to exhibit a mixture of behaviors, where items from the discrete
event arena intermingle with discrete rate processes. In these “mixed mode” cases, a proper
understanding of both the Rate and Item libraries and how they can interact with each other is
required.

There are two general techniques for integrating discrete event blocks from the Item library
with discrete rate blocks from the Rate library:

1) Sending signals and sharing information via value connections. Value connections can be
very useful for triggering some type of action as the system moves from one state to
another. For example:

• Value connections can trigger the generation of an item when the level of flow in a
Tank reaches a certain level.

• The value of an attribute on an item passing through some part of a discrete rate model
could trigger a change in the constraining rate in a Valve block.

2) Mixing items with flow using the Interchange block, as you saw in the tutorial in the Rate
Module Quick Start guide. The Interchange block (Rate library) provides the ability for
items and flow to interface with each other. For example, an empty tanker truck (an item)
might arrive at a refinery and fill with gas (flow) at a continuous rate using an Interchange
block. Once full, the truck might be routed through a series of Item library blocks until it
reached its unloading destination. At that point the item would again interface with an
Interchange block to discharge its load.

This chapter focuses on the techniques used when the need for “mixed mode models” arises. It
will show how to:

• Control flow using blocks from the Item library

• Control items with blocks from the Rate library

• Mix flow with items using the Interchange block

☞ The models for this chapter are located in the folder \Examples\Discrete Rate\Flow and Items.

Controlling flow with items and items with flow
Rate library blocks can control the movement of items and Item library blocks can control the
movement of flow. In either case, value connectors communicate state changes to the con-
trolling blocks.

Items controlling flow
The Item Controls Flow model shows one of many ways blocks from the Item library can be
used to control the movement of flow in a model. It uses one item to open a valve, allowing a
tank to fill, then uses the same item to trigger the emptying of that tank.

Mixing Flow and Items 499
Controlling flow with items and items with flow

D
iscrete R

ate
Item Controls Flow model
Unless the presence of an item in an
Activity block triggers them to open,
Valves 1 and 2 are both closed during
the simulation run. While an item is in
the Activity block (Item library)
labeled Filling Valve 1, it causes Valve
1 to open; this allows the Reception
tank to fill. When the item moves to
the Activity block labeled Emptying
Valve 2, it causes Valve 1 to close and
Valve 2 to open. This allows the
Reception tank to empty into the Sink
tank. The closing and opening of the
valves is accomplished by detecting
which Activity block has the item and
for how long it is held there.

In this model, constant blocks (Value
library) provide a potential constrain-
ing rate of 100 for the valves. Multiplying the constant value by an Activity’s F (Full) output
(which will be 1 if the Activity has the item in it and 0 if it does not) gives the valves their
actual constraining rate (100 or 0). This causes the valves to open and close depending on
where the item is in the model. Both Activity blocks are set to delay the item for a random
amount of time, which represents how long the Reception tank can fill and empty.

Notice that the Reception tank can be full even while the item is still in the Filling Valve 1
activity. Since the tank can’t accept any more flow when it is full, and can’t start emptying
until the item moves to the Emptying Valve 2 block, the flow stops before the Filling process
has been completed. The next model shows how the Reception tank can let the item know that
it is full.

Flow controlling items
The example below illustrates one of ways blocks from the Rate library can be used to control
the movement of items in a model.

Item Controls Flow model

500 Mixing Flow and Items
Controlling flow with items and items with flow

D
is

cr
et

e
R

at
e

Flow Controls Item model
This model is extends the one above,
adding that the state of the Reception
tank alters the movement of the item
and interrupts the filling process.

As in the prior model, the Reception
tank fills and empties based on the
movement of an item and delays set in
the two Activity blocks.

In this model, whenever the Reception
tank is full, it sends an indicator signal
to the Decision block (Value library).
This block in turn notifies the Activity
block labeled Filling Valve 1, pre-
empting the item whose presence
opened Valve 1 and allowed the tank
to fill. When the item is preempted, it
moves to the Activity block labeled
Emptying Valve 2. This causes Valve 1
to close, Valve 2 to open, and the
Reception tank to empty into the Sink for the duration specified in the second Activity block.

Flow controlling items and items controlling flow
The following model combines both of the previous concepts – flow controlling items and
items controlling flow – into an even more complex system.

Step The Flow Process model
In this model the location of a “cycling item” triggers the opening and shutting of valves for
the flow, while tank states control the opening and shutting of the gates for the item. The con-
trol logic is circular in nature: the item's location defines the current stage; the current stage

Flow Controls Item model

Mixing Flow and Items 501
Controlling flow with items and items with flow

D
iscrete R

ate
controls the opening and shutting of valve blocks; valves impact the level of flow; and the level
of flow controls the item's location.

Flow controlling the item
The top section of the model is where flow controls the item. The I (Indicator) connectors on
both the Reception and Processing tanks (Rate library) control the three Gate blocks (Item
library) used in the item stream at the bottom part of the model. Gate 1 is open only while the
Reception tank is in the full state. Conversely, Gate 2 is open only while the Reception tank is
in the empty state. Finally, Gate 3 is open only while the Processing tank is empty.

Item controlling the flow
The bottom section of the model is where the item controls the flow. In this case, the three
Valve blocks (Rate library) in the top part of the model are controlled by the lengths of the
three Queue blocks (Item library) in the item stream in the bottom portion. The item stream has
only one item which cycles through the item-based blocks in a loop. Consequently, the queue
lengths for each Queue in this loop will alternate between 1 and 0. For instance, Valve 1 is
open only when the length in the Stage 1 queue equals 1. Similar logic applies to Valve 2 and
Valve 3.

The activity in the model is divided into four stages: open Valve 1 and release flow into Recep-
tion; open Valve 2 and release flow into Processing; process the flow; open Valve 3 and release
flow into Sink

Stage 1: Open Valve 1 and release flow to Reception
The I (Indicator) connector on the Reception tank is controlling Gate 1. At the start of the sim-
ulation, Gate 1 is closed because the Reception tank is not full (it's actually empty at this
point), and the cycling item is blocked from leaving the Stage 1 queue. Notice the highlighted

Step The Flow Process model

502 Mixing Flow and Items
Using the Interchange block to mix items with flow

D
is

cr
et

e
R

at
e

area where the Max & Min block (Value library) is used to translate the cycling item's location
into a stage number. Since the cycling item remains in the Stage 1 queue, the model is now in a
Stage 1 holding pattern. Consequently, Valve 1 is opened (so the Reception tank starts receiv-
ing flow) and Valves 2 and 3 are closed.

Stage 2: Open Valve 2 and release flow to Processing
Once the Reception Tank reaches the full state, Gate 1 is opened and Gate 2 is closed. This
allows the item to move on to the Stage 2 queue. The result is that Valve 2 opens, Valves 1 and
3 close, and flow starts moving from the Reception tank into Recycling and Processing. Gate 2
remains closed while the Reception tank empties.

Stage 3: Process the flow
Once the Reception tank is completely empty, Gate 2 is opened, Gates 1 and 3 are closed, and
the item enters an Activity block labeled “Stage 3”. While the item remains in Stage 3, all three
Valve blocks remain closed. The Activity block, which has a delay of 2 minutes, is used to
keep the flow in the Processing tank for some period of time so it can be processed.

Stage 4: Open Valve 3 and release the flow
Once processing is completed, the item leaves Stage 3 and moves into the Stage 4 queue. Since
Gate 3 is currently closed (because the Processing tank is not empty), the model is now in a
Stage 4 holding pattern and Valve 3 opens. Once the Processing tank is empty, Gate 3 opens
and the item cycles back to the State 1 queue where the whole processes starts all over again.

☞ While this model is useful for demonstrating how mixed mode models can control item and
flow movement, the same behavior can be created without items using the Valve block’s Hys-
teresis option. For more information, see “Setting hysteresis in a Valve” on page 489.

Using the Interchange block to mix items with flow
The Rate library’s Interchange block is unique in that it allows items and flow to interface
directly with each other. Flow can enter the Interchange block not only through its inflow con-
nector but also through the arrival of an item. Conversely, flow can exit the block through its
outflow connector or through the exiting of an item.

The use of the Interchange block was introduced in the tutorial in the Rate Module Quick Start
guide, and the block’s capacity to hold flow is discussed starting on page 440 of the Flow
Sources, Storage, and Units chapter. This chapter will describe how the Interchange block
interfaces flow with items.

☞ The Interchange block is where an item can be filled with flow or emptied of flow.

There are a number of occasions where it can be useful to provide items with the ability to
store, transport, and empty flow as they move from one section of a discrete rate model to
another. For example, the attribute capabilities used to distinguish one item from another can
also be used to distinguish one block of flow carried by one item from another block of flow
carried by a different item. This can be an especially useful modeling construct since flow
units by themselves are indistinguishable from each other.

Behavioral rules
The Interchange block has two very different modes (“Tank only exists while item is in it” and
“Tank is separate from item”) that affect how the block behaves. (These modes were intro-
duced on page 440 and will be discussed more fully on page 504.) Even so, the Interchange
block always follows a fundamental set of rules:

Mixing Flow and Items 503
Using the Interchange block to mix items with flow

D
iscrete R

ate
• The item input and item output connectors on the Interchange block must both always be
connected.

• At least one of the Interchange block's inflow/outflow connectors must be connected (both
may be connected as well).

• The Interchange block's capacity for holding items is permanently fixed at one item.

• The Interchange block loads and unloads the item and its flow instantaneously. (Flow pres-
ent in the item when it enters the block is instantaneously available to the block; flow leav-
ing the block with an item is instantaneously removed from the block.)

The flow connector configuration
The behavior of the Interchange
block is dramatically affected by
how the inflow and outflow con-
nectors have been connected. As
mentioned above, only one of the
two flow connectors needs to be
connected. If only the inflow con-
nector is connected, arriving items
can only be filled with flow, and if only the outflow connector is connected, arriving items can
only unload flow.

Item release conditions
The release conditions determine when an item is scheduled to leave the Interchange block;
they are the same for both block modes. Releases can also be accomplished at any time using
the Preempt connector.

Scheduled releases
There are 5 options for defining when the item should be
released:

• When contents >= Target. This option requires the
item to be filled with a certain amount of flow prior to
release. The Target amount is entered in the dialog.

• When contents <= Target. Requires the item's flow
level to empty to a certain point prior to release. The
Target amount is entered in the dialog.

• As soon as possible. Releases the item whenever there is downstream item capacity for the
item, irrespective of the current flow level.

• Only with preempt connector message. Releases the item when a true value is received at the
block’s PE (preempt) value input connector.

• When level reaches indicator. Requires the flow contents to reach a certain level prior to
release. Indicators (segments that indicate the level of contents) must first be entered on the
block’s Indicator tab for this option to be used.

Arriving item is always filled (left) or is always emptied (right)

Release options for Interchange block

504 Mixing Flow and Items
Using the Interchange block to mix items with flow

D
is

cr
et

e
R

at
e

Preemption
The scheduled release conditions can
be superseded at any time by using the
preempt connector. Whenever the pre-
empt connector receives a value that
corresponds to the preemption options selected in the Item/Flow dialog, seen above, it will
trigger a preempt.

☞ To immediately dispose of an item after it releases flow, connect an Exit block (Item library) to
the Interchange block’s item output connector. To instead have an item present all the time,
connect a Create block set to Create items infinitely to the block’s item input connector.

Interchange modes
The Interchange block has two modes:

• Tank only exists while item is in it

• Tank is separate from item

These are illustrated below.

Tank only exists while item is in it
In this mode, the Interchange's capacity to handle flow is completely dependent upon the pres-
ence of an item. The arriving item can be thought of as a “tank” with a capacity to hold flow.
This item/tank can move through the item-based blocks just like any other item would. How-
ever, once it enters an Interchange block, the item/tank can release flow directly into the
block’s outflow connection and/or accept flow directly from its inflow connection. In the
absence of the item/tank, the Interchange block has no flow capacity.

Two very important behaviors result from an item exiting the block when it is set to this mode:

• Once the conditions for item release have been met, the exiting item will always take with it
any flow currently residing in the block.

• Until a successor item arrives, the Interchange’s inflow and outflow will be blocked.

 In this mode, the absence of an item eliminates not only the Interchange's capacity to hold flow
but also its capacity to pass flow from an upstream source to a downstream sink. (This differs
from the behavior of a Tank block, which passes flow through even if its capacity has been set
to zero.)

Shipping model
A typical exam-
ple of how the
Interchange
block could be
used in this mode
is illustrated by
the Shipping
model. In this
example, an
empty ship (an
item) arriving at
a loading port (an

Preemption options for Interchange block

Shipping model

Mixing Flow and Items 505
Using the Interchange block to mix items with flow

D
iscrete R

ate
Interchange block) where it is filled with cargo according to a filling rate. Once full, the ship
sails for a period of time (represented by an Activity block) until reaching the new destination
port (another Interchange block). At this point the ship’s cargo is unloaded according to the
unloading rate.

To simulate the loading process, flow is piped from the Interchange block's inflow connector
into the item/ship. Once filled, the item/ship exits the block, taking the flow with it. Con-
versely, once the item/ship arrives at the second Interchange block, flow is piped from it into
the second Interchange block's outflow connector.

The item/ship travels with a Quantity
attribute that has been set to a value of
1000. This attribute sets the ship’s capac-
ity. For the filling process, the Inter-
change releases the ship when it is full,
that is, after 1,000 units of flow have been piped in. The second Interchange block releases the
ship when it is empty, that is, after 1,000 units of flow have been piped out. At the end of the
simulation run, the ship has not yet been released from the unloading dock because it still con-
tains 100 units of flow.

Yogurt Production model
The Yogurt Production model, located in the folder
\Examples\Turorial\Discrete Rate and discussed in the
tutorial for the Rate Module Quick Start guide, is an
example of using an Interchange block set to Tank
only exists while item is in it.

In this model, empty item/pallets are generated ran-
domly by a Create block (Item library). The arrival of
an item/pallet causes the Interchange block to have
flow capacity; the maximum capacity of 24 cartons is
entered in the block’s dialog. Once the maximum
capacity is reached, the full pallet leaves the block. The
Interchange block then has no capacity until another pallet arrives.

Yogurt Changeover model
This model is based on the Yogurt Production
model from above. The Yogurt Changeover
model, however, provides a period of time (the
changeover) for an operator to remove each
full pallet and replace it with an empty pallet,
and there is an infinite supply of empty pallets.

In this model, each Create block (Item library)
can generate an infinite number of items so
that empty pallets are available as required.
Activity blocks (Item library) represent the two
minute changeover time. Once a pallet has
been released from an Activity, it notifies a
Gate block (Item library) to open, pulling in a pallet from the Create block. This process causes
the Interchange to not have a new pallet/item to fill until the changeover from the previous pal-
let is finished.

Release options for unloading

Yogurt Production palletization

Yogurt Changeover palletization

506 Mixing Flow and Items
Using the Interchange block to mix items with flow

D
is

cr
et

e
R

at
e

☞ The Create block’s ability to Create items infinitely is specifically intended for this type of
situation. It provides an infinite supply of items that are available on demand, creating items
whenever there is a capacity for flow.

Tank is separate from item
In this mode, the Interchange block's ability to handle flow is identical to the Tank block irre-
spective of the presence of an item. That is, the Interchange can be set to have an initial amount
of flow, its capacity can be set through the dialog or through a connector, and maximum
inflow/outflow rates can be defined.

The only difference lies in the Interchange block's ability to pipe flow into and out of items.
When the Interchange block is set to Tank is separate from item, the block can receive and
hold flow that has been provided by its inflow connector or the arrival of an item and it can
release flow through its outflow connector or through the exiting of an item.

☞ When the Interchange block is in this mode, an item carrying flow releases its entire load
instantaneously upon arrival. However, depending on other settings in the block, the item can
also take flow with it upon exiting. If this is the case, the Interchange block's flow level is dec-
remented instantaneously when the item leaves. Furthermore, an item whose load of flow
exceeds the block’s capacity will be blocked from entering the Interchange.

Bucket Elevator 1 model
The Bucket Elevator 1 model
simulates a series of buckets
(items) pulling flow out of a
source (an Interchange block)
located at a low elevation,
transporting the water in a
series of steps to an infinite
sink located at a higher eleva-
tion (another Interchange
block), and then returning
empty through a series of steps
to the source. Both Inter-
change blocks are set to Tank
is separate from item. With
this setting, both the source
and the sink have the capacity
to hold water even in the
absence of an item.

This model is similar to a con-
tinuous loop of buckets draw-
ing water from a well,
emptying into a catch basin,
and returning to the well.
There are ten bucket/items and
each bucket has a capacity of
100 gallons; this is defined in the Resource Item block by the attribute Capacity. There are also
ten slots in this “pseudo-conveyor” – each represented by an Activity block that can hold one
item/bucket. The delay at each slot is 1/10 the sum of all the delays, as determined by the
items’ Speed attribute.

Bucket Elevator 1 model

Mixing Flow and Items 507
Using the Interchange block to mix items with flow

D
iscrete R

ate
Even if the source has less than 100 gallons, the buckets keep moving and grab as much water
as possible. As each bucket reaches the top, its contents are released instantaneously into the
sink, and the journey back down to the sink immediately starts. Running the simulation with
animation on shows the buckets as they cycle from the well, up to the catch basin, and then
back down again.

Bucket Elevator 2 model
The Bucket Elevator 2
model is similar to the
Bucket Elevator 1 model,
except there is some
added complexity. In this
model, the flow blocks at
the bottom and top of the
model represent streams
of water. In the bottom
stream, some of the water
is removed by the buck-
ets, but the rest continues
on at a varying rate of
flow. Likewise, after the
buckets have unloaded
their contents into the
sink, water flows from
the top stream at a vary-
ing rate.

Both Interchange blocks
have a capacity of 1,000.
Based on settings in the
Interchange block’s Indi-
cators tab, the level of
water affects the con-
straining rate of the Valve
that follows each of the blocks.

Indicators are a method of reporting
what category or range the current level
of flow falls into; the table from the
Source block’s Indicators tab is shown
to the right. An Equation block (Value
library) looks at the Interchange block’s
I (indicator) output to determine the
range the water level in the tank falls into. The block then adjusts the Valve’s maximum rate
depending on that information and an equation.

The upper and lower streams in this model have different equations; the upper stream bases the
Valve’s maximum rate on a constant while the lower stream bases it on a random distribution.
In the lower stream for instance, if the Source tank’s level is equal to or less than the Low
range, the maximum rate is a Triangular distribution that is most likely 30 units. If the level
falls within or above the High range, the most likely maximum rate for the Valve is 150; other-
wise, the most likely rate is 100.

Bucket Elevator 2 model

Indicators for the source

508 Mixing Flow and Items
Using the Interchange block to mix items with flow

D
is

cr
et

e
R

at
e

☞ For more information about indicators, see “Setting indicators” on page 430.

Converting between item and flow attributes
The Interchange block’s Flow Attributes tab provides a matrix for mapping between item and
flow attribute names. The mapping table transfers the values of an item’s attributes to the spec-
ified flow attributes and vice versa. The block’s dialog provides options for how the mapping
should affect entering and departing items. For an example, see the Interchange block in the
Yogurt Production With Flavors Plus model, located at Examples\Tutorials\Discrete Rate.

Discrete Rate Modeling

Miscellaneous
Concepts that don’t easily fit into other chapters

510 Miscellaneous
Precision

D
is

cr
et

e
R

at
e

This chapter covers:

• The precision of calculations

• Using bias to give preference to some component or portion of a model and how that affects
effective rates

• Global and advanced options in the Executive

• Value connector abbreviations and meanings

• The different types of information that animation displays

Precision
An LP area is made up of one or more rate sections; it encompasses all the rate sections for
which the Executive block has been notified that effective rates might change. The LP area has
a linear program (LP) that is responsible for calculating an effective rate for each section con-
tained within that area. (The LP area and LP calculations are discussed fully in “LP technol-
ogy” on page 526.)

The maximum mathematical precision for an LP area is 12 digits. Because one LP can be
responsible for calculating multiple effective rates for its rate sections, and because LP preci-
sion is limited to 12 digits, precision can become an issue not only for the individual effective
rates but also for the effective rates calculated for the entire LP area. For example, if an LP area
contains two rate sections where the first rate section's effective rate was 1,000,000 flow units
per time unit (FPT), the effective rate for the second section could be no smaller than 0.0001
FPT.

☞ To preserve adequate precision for all rate sections, don’t separate any two effective rates
within an LP area by more than 12 digits of precision.

Biasing flow
The discrete rate architecture includes a feature called bias – a method for stating a preference
that flow travel one route rather than another.

☞ Bias is only relevant when the flow is merged or diverged.

The advantages of the bias concept are that it:

1) Gives you a way to specify preferences for how flow circulates in one part of the model
compared to other parts.

2) Provides flexibility in resolving conflicts for how flow should be distributed among com-
peting branches.

Bias is present in a model whenever you use one or more of the following blocks:

• A Bias block in a model that contains Merge or Diverge blocks set to a non-fixed mode (dis-
cussed in “Merge and Diverge blocks” on page 512).

• A Merge or Diverge block (Distributional, Priority, or Sensing modes only)

Because bias can skew the way flow is distributed, it is taken into consideration by the global
LP calculation and can thus have an effect on effective rates. (For specific information on how
bias is used in the calculation of effective rates, see the advanced topic “LP technology” on
page 526.)

☞ We suggest that you read the chapters “Rates, Constraints, and Movement” and “Merging,
Diverging, and Routing Flow” before the Bias section.

Miscellaneous 511
Biasing flow

D
iscrete R

ate
Bias order
If a block in a model has bias, it has a bias order that indicates its ranking compared to all the
other blocks with bias. Each biasing block is listed in order from the top (strongest) bias order
to the lowest (weakest) bias order. The block at the top of the ranking list has a bias order
greater than 0. Bias orders lower than the top have numbers higher than the top number; bias
numbers that are Blank or less than or equal to 0 are ignored.

Since the bias order is used during the LP calculation of effective rates, changing the bias order
often results in a different set of effective rates. It is therefore important to understand the con-
cept of bias order and the influence it has on how effective rates are calculated.

☞ The bias of a Bias block is by definition stronger than the biasing effect of any Merge or
Diverge block. So Bias blocks will always have higher bias orders than Merge and Diverge
blocks.

Bias block
The Bias block allows you to specify a preference for where the flow should be directed.
Wherever the Bias block is located in the model, it pulls in as much flow as possible. If a
model has multiple Bias blocks, each has its own bias order.

 If the model’s Merge and Diverge blocks use non-fixed rules to obtain or distribute flow, there
is some leeway in how flow can be biased and the Bias block is useful. If the model’s Merge
and Diverge blocks all use fixed rules, there is no possibility of biasing the flow with the Bias
block. (Fixed and non-fixed rules are discussed in “Merge and Diverge blocks” on page 512.)

Dialog settings and bias order
The block’s bias order can be set
directly in its dialog or it can be
modified dynamically through
the B (bias) input connector or
by linking the Bias order dialog
parameter to an ExtendSim data-
base. You can enter an initial
bias order that has effect until the
block gets a bias order value
dynamically; you can also show
the block’s bias order on its icon.

The Bias dialog shown at the
right is for one of two Bias
blocks in a model. The block
shown has the highest preference
for flow, as indicated by the set-
ting Bias order: 1.

The dialog table reports information about each Bias block in the model, its bias order, block
label or name, and block number. You can use the table’s Bias column to change the bias order
for any of the listed blocks.

Calculation of the effective rate
The preferences for flow defined by Bias blocks has an effect on the calculation of the effec-
tive rate. If there is more than one Bias block in the model, each block’s preference is
expressed in turn based on its bias order. As each Bias block takes its turn, it calculates the

Bias dialog

512 Miscellaneous
Biasing flow

D
is

cr
et

e
R

at
e

maximum effective rate which could circulate at its location, without taking into consideration
the preferences expressed by blocks with a lower bias order. When its maximum effective rate
has been determined, that rate will be fixed for the succeeding calculations involving blocks
with lower rankings.

• The bias order of Bias blocks can change dynamically during the simulation

• If multiple Bias blocks have identical bias orders, the way the flow is distributed between the
effective rates cannot be predicted. The model will use one of the possible solutions.

• If a Bias block has a bias order that is Blank or is less than or equal to 0, the block does not
express any preference.

Prioritize With Bias Blocks model
This model illustrates
how Bias blocks can
be used to indicate
preferences for flow. It
is similar to the Com-
peting Requests for
Flow model discussed
on page 474. How-
ever, this model uses
Bias blocks to indicate
the preferred route for
flow, rather than bias
order settings in
Merge and Diverge
blocks set to Priority
mode.

In the Prioritize With
Bias Blocks model, the Merge and Diverge blocks at set to Neutral mode and the Bias blocks
indicate flow preferences. The results are identical to the Competing Requests for Flow model.

☞ This model is located in the folder \Examples\Discrete Rate\Merge and Diverge.

Merge and Diverge blocks
As shown in the “Mode table” on page 465, some Merge/Diverge modes use a fixed rule to
obtain or distribute the flow. For other Merge/Diverge modes, flow rules are only invoked in
specific situations depending on model conditions.

Because it influences the way flow is distributed, the bias concept only applies to Merge or
Diverge blocks set to non-fixed rule modes: Distributional, Priority, or Sensing. To avoid con-
fusion when Merge or Diverge blocks have competing requests for flow, blocks with these
modes must specify a bias order.

Fixed rule modes
The Batch/Unbatch, Proportional, and Select modes all use a fixed flow rule to obtain or dis-
tribute flow. For example, the way flow is distributed between the branches for a Merge/
Diverge in Proportional mode will follow the proportions set in the block’s dialog. No matter
what happens in the rest of the model, the proportions will be respected.

The bias setting options in these block’s Model Settings tabs will be disabled.

Prioritize With Bias Blocks model

Miscellaneous 513
Biasing flow

D
iscrete R

ate
☞ If the model contains Merge and Diverge blocks that are only set to the Batch/Unbatch, Pro-
portional, or Select modes, bias has no impact on the effective rates.

Non-fixed rule modes
The Distributional, Neutral, Priority, and Sensing modes do not use a fixed rule to obtain or
distribute flow. Instead, they provide a certain degree of freedom about where the flow can be
directed.

A Merge or Diverge block in Priority mode, for example, impacts the flow as follows:

• Taking into consideration how much flow it can get, the block will do its best to direct as
much flow as possible to its top priority branches.

• However, the block just expresses a “preference” for where to send the flow; model condi-
tions determine how well those preferences can be achieved and the top priority branches
may not actually get the most flow.

☞ If the model contains any Merge or Diverge blocks set to the Distributional, Priority, or Sens-
ing modes, the bias order must be specified. (There is no bias order required for the Neutral
mode.)

Setting a Merge or Diverge block’s bias order
When set to the Distributional, Priority, or Sensing modes, the Merge and Diverge blocks must
express a bias order. This is accomplished as follows:

1) By default, the Executive is set to Bias order: defined by Simulation Order. With this
setting, the bias order for each Merge and Diverge block is automatically determined based
on Simulation Order. Simulation Order is set in the command Run > Simulation Setup >
Continuous tab; the default is Flow order. It would be unusual to change the simulation
order from the default Flow order.

2) You can also directly enter a bias order for a biasing Merge or Diverge block. To do this,
first change the Executive’s default setting from Bias order: defined by Simulation
Order to Bias order: each block defines its own. Then do one of the following:

• In the block’s Model Set-
tings tab, use the two array
buttons (“<<” and “>>”)
to change the block’s bias
order. This also changes
the block’s position in the
tab’s bias order table.

• Or, in the Executive’s Dis-
crete Rate tab, select the
row that contains the
desired block, then use the
<< and >> arrows to
change its position in the
table. The bias order
changes when the position of the block in the table changes.

Model Settings tab

514 Miscellaneous
Global and advanced options in the Executive

D
is

cr
et

e
R

at
e

Bias order table
The bias order table in a Merge or Diverge block’s Model Settings tabs displays each biasing
Merge and Diverge block, its bias order, block label or name, mode, and Simulation Order.

• If the blocks are set to Bias order: defined by Simulation Order, the table will be inacti-
vated since bias order is determined automatically.

• If the blocks are set to Bias order: each block defines its own, the table is active only in
Merge or Diverge blocks in the Distributional, Priority, and Sensing modes. In blocks with
those modes, it can be used to change the blocks’ bias order, as discussed above.

The Model Settings tab also reports the number of Bias blocks in the model; Bias blocks
always have a higher bias order than any Merge or Diverge block.

Competing preferences
“Bias Order – resolving competing requests for flow” on page 473 discusses how competing
preferences between Merge and Diverge blocks is resolved using Merge and Diverge blocks.

Global and advanced options in the Executive
The Executive block (Item library) oversees the global discrete rate system. It is responsible
for calculating a model’s effective rates, centralizing and coordinating the information from
Rate library blocks as discussed in the advanced topic “LP technology” on page 526.

The Executive’s Discrete Rate tab is used as a central location for setting options used through-
out a discrete rate model. These options are divided into global and advanced options, as dis-
cussed below.

Global options
The Executive’s global options are:

• Defining the “infinite” rate

• Defining a “zero” effective rate

• Setting options for how often blocks should update their flow status

• Choosing that the Valve animate and report blocking and starving information

• Managing flow units

The first three options are listed in a global
options frame at the top of the tab (shown
below); the fourth option is located at the bot-
tom of the tab. They are all discussed in the fol-
lowing sections.

Infinite rate
The Discrete Rate tab specifies that a rate equal
to or greater than some number is considered
infinite; the default setting is that a rate 1e10 is considered infinite. This information is
important when setting critical constraints and for the determination of the effective rate. It is
discussed fully in “Infinite rate” on page 450.

Zero effective rate
The Discrete Rate tab specifies that an effective rate less than or equal to some number is con-
sidered zero, resulting in no flow. The default setting for that number is 1e-10. It is strongly

Global options in Executive

Miscellaneous 515
Global and advanced options in the Executive

D
iscrete R

ate
suggested that you do not change the default setting unless you have an excellent reason to do
so.

Update flow status
In the Rate library, some values change continuously over time. The frequency of updating
those values can be customized by setting options for the Convey Flow, Diverge, Interchange,
Merge, Tank, and Valve blocks. They define how often the following information is updated:

• The level of flow in residence blocks (Convey Flow, Interchange, and Tank)

• The amount of flow passing through the Convey Flow, Diverge, Interchange, Merge, Tank,
and Valve blocks

At a minimum, the discrete rate global system
updates flow status only when it needs to. The
updating options provide two additional oppor-
tunities to have calculations performed. The
option that has been selected in the Executive is displayed in each block’s Options tab (shown
in the screenshot), along with any choices associated with that option. The choices in the
popup menu are:

• Only when necessary. This default setting is computationally the most efficient option
because flow status is updated only when needed by the system. With this setting, the infor-
mation is updated:

• When a block is determined to be part of an LP area

• Whenever a block creates an internal event such as reaching a new indicator

• When a block receives an active message at one of it value output connectors

• Each block defines how often. If this option is selected, each block’s Options tab will give
you the choice to check the option Update animation and results at each event. If that is
checked, the calculation of the flow status will occur at each step for that block.

• Each block at each step. With this choice, every block will update at each step. This option
has to be used cautiously because it is computationally demanding to update the information
this frequently.

Valve animates and reports blocking and starving information
This option only affects the animation and reporting of Valve blocks. A Valve can be limiting,
not-limiting, blocked, starved, or blocked and starved. By default, the Valve’s Results tab and
S (status) output connector only report whether the block is limiting (0) or not limiting (1). The
Results tab also reports cumulative information regarding the percentage of time the block was
limiting or not limiting.

When the global option is checked, the block’s Results tab and its S output report all selected
status information as a value:

• limiting only (0)

• starved only (1)

• blocked only (2)

• starved and blocked (3)

• and so forth.

Valve’s default update setting

516 Miscellaneous
Global and advanced options in the Executive

D
is

cr
et

e
R

at
e

There are many options that can be selected for reporting, as shown below.

☞ A Valve’s complete status information is helpful during the early stages of model construction
and for debugging purposes. However, it can slow the simulation, so by default the option is
not checked.

The differentiations are animated on the Valve’s icon as discussed in “Valve” on page 521.

Manage flow units for discrete rate models
This section of the Discrete Rate tab provides a central location where flow units can be
renamed or added to or deleted from a model. To delete or rename a flow unit, select it in the
table and click the appropriate button. Flow units are discussed on page 441.

Advanced options
The advanced options in
the Discrete Rate tab only
apply to specific situations:

• Merge or Diverge blocks
in the Distributional, Pri-
ority, or Sensing modes

• Merge blocks in Propor-
tional mode when there
is an empty loop

☞ Merge and Diverge modes
are discussed in the chapter
“Merging, Diverging, and
Routing Flow”.

Merge or Diverge blocks
in Distributional, Priority, or
Sensing modes

This first set of options determines how bias order is set for certain Merge and Diverge blocks
and whether the bias order is displayed on the block’s icon.

Advanced options in Executive

Miscellaneous 517
Global and advanced options in the Executive

D
iscrete R

ate
Bias order determination
For a Merge and Diverge block in the Distributional, Priority, or Sensing mode, the choices are
that the block’s bias order number is defined by:

• Simulation Order. This is the default; it causes the bias order to be automatically calculated
by the simulation order of the blocks in the model.

• Each block. This option allows the user to customize the bias order of each Merge and
Diverge block (Distributional, Priority, or Sensing mode only) in the model.

For detailed information about the requirement for a bias order and how it is set, see “Merge
and Diverge blocks” on page 512.

Displaying the bias order
For Merge and Diverge blocks in the Distributional, Priority, or Sensing mode, a popup menu
provides choices for displaying their bias order:

• Show bias order on icon

• Don’t show bias order on icon

• Each block decides whether to show bias order on icon

If the bias order is displayed on a block’s icon, it will be in the format <#>, where # is the bias
order number. If the third option is chosen, a checkbox will appear in each Merge or Diverge
block’s Model Settings tab. Check the Show bias order on icon checkbox if you want the
block to show the bias order number on its icon.

Merge blocks in Proportional mode
For Merge blocks in Proportional mode, a conflict can result if the block is part of an empty
loop (can’t get flow). If a Merge block’s proportions are 1:2 for instance, what should happen
if the top inflow branch is part of an empty loop and cannot get any flow from that loop?

The Executive provides three options for how empty
loop situations should be resolved:

• Branches need simultaneous inflows to push flow.
With this default setting, flow is stopped at all
inflow branches if one or more of them are part of
an empty loop.

• Blocks push flow even in empty loops. This choice allows the branches with flow to send it
through. The result is that the branch that is part of the empty loop will then get some flow.

• Each block defines how it will push flow. This setting causes an additional popup menu to
appear in the Model Settings tab of any Merge block in Proportional mode. The two choices
in each Merge’s dialog are:

• The block pushes flow even
in empty loops. This is the
default setting; it allows
branches with flow to send it
through.

• Each branch needs simultaneous inflows to push flow. With this choice, flow is
stopped at all inflow branches if one or more of them cannot get any flow.

Executive options for empty loops

Model Settings tab of Merge block

518 Miscellaneous
Common connectors on discrete rate blocks

D
is

cr
et

e
R

at
e

Which of the three empty loop options you choose depends on the behavior of the system you
are simulating.

Merge Proportion Setting model
In this model the two flow streams have identical settings except for how the Merge blocks
handle empty loops. So that each block can specify its own behavior, the Executive’s setting
for the section “Merge blocks (Proportional mode and empty loop)” is Each block defines
how it will push flow.

The Merge block in the top stream
(Wait for Flow) specifies that
Each branch needs simultane-
ous flow while the Merge block in
the bottom stream (Push Flow) is
set to Blocks push flow even in
empty loops. The flow is blocked
at the Merge block in the top
stream but flows through the
Merge block in the bottom stream.

☞ This model is located in the folder
\Examples\Discrete Rate\Merge
and Diverge.

Common connectors on dis-
crete rate blocks

Most Rate library blocks have inflow and outflow connectors and value input and output con-
nectors. The Interchange block also has item input and output connectors.

Flow connectors pass information about the effective rate from one discrete rate block to
another. Item connectors pass discrete items.

For value connectors, many discrete rate blocks use abbreviations or acronyms to indicate the
connector’s purpose. Some of these abbreviations represent more than one purpose and are
context sensitive.

The following connector labels appear for value connectors on Rate library blocks:

Connector In or Out? Meaning

AL Output Accumulation length - for a Convey Flow block, the distance from
its end to the accumulation point.

AQ Output Accumulated quantity - the amount of flow that has been accumu-
lated along a Convey Flow block’s accumulation length.

B Input Bias order number

C Input Capacity

CO Output Contents

D Input Delay

DR Output Potential downstream demand rate

factor Input Conversion factor in Change Units block

Merge Proportion Setting model

Miscellaneous 519
Common connectors on discrete rate blocks

D
iscrete R

ate
G Input Quantity of flow (quantity goal) or duration of time (duration goal)
for a Valve. Can also be used to start a new goal, depending on
Valve’s dialog setting.

G# Output Goal number

GD Output Goal duration

GS Output Goal status:
0 - no goal
1 - starting
2 - in progress
3 - ended
4 - interrupted

GQ Output Goal quantity

GO Input Activate a status update: 0 or 1 (Sensor and Merge/Diverge)

I Output Indicator (Convey Flow, Interchange, or Tank)

IC Input Item capacity

ICO Input Item contents

ID Input Inflow/outflow branch ID for Merge/Diverge in Select mode

IT Input Target value to release item

L Output Length of item line: 0 or 1

LE Output Level of contents

NB Output Number blocked: 0 or 1

PE Input Preempt item

PT Output Process time

Q Output Cumulative quantity

R Input Maximum rate (Note that the effective rate is reported by the flow
input and output connectors.)

S (on Convey
Flow)

Output Status:
0 = empty
1 = intermediate
2 = full

S (on Inter-
change or
Tank)

Output Status direction (Interchange):
-1 = down
0 = stable
1 = up

S (on Valve) Output Status [if Valve only reports limiting or non-limiting]:
0 = limiting
1 = non-limiting

Connector In or Out? Meaning

520 Miscellaneous
Animation

D
is

cr
et

e
R

at
e

Animation
Rate library blocks can be animated during the simulation if Run > Show 2D Animation has
been selected before a simulation run. For blocks with animation, the following information
explains what each display means.

☞ The models illustrated in this section are located in the folder \Examples\Discrete Rate\Miscel-
laneous.

Tank
Tanks animate information about their levels and information about the direction of flow
within the Tank.

Level information
The table below shows animation of the Tank’s level under different conditions.

S (on Sensor
or Valve)

Output Status [if Valve reports full status:]
0 = limiting (Valve) or unused (Sensor)
1 = starved
2 = blocked
3 = starved and blocked

S (0-n) Output Sensors - numbered from 0 to n (Convey Flow)

SP Input Speed parameter

SP Output Effective speed

SR Output Potential upstream supply rate

start Input Start hysteresis

stop Input Stop hysteresis

TL Output Cumulative time Valve was limiting, effective rate > 0

TU Output Cumulative time Valve was not limiting, effective rate > 0

TLO Output Cumulative time Valve was limiting, effective rate = 0

TUO Output Cumulative time Valve was not limiting, effective rate = 0

Finite Capacity Infinite Capacity Specific Behaviors

Full (contents 100, capacity 100) Full Overfull (contents 1,000,
capacity 100)

Some flow (contents 50,
capacity 100)

Some flow (10 units) Overfull (contents 1,000, no capacity)

Connector In or Out? Meaning

100 1000

50 10 1000

Miscellaneous 521
Animation

D
iscrete R

ate
Direction information
An arrow is animated on the icon to indicate the direction of change in the Tank’s level. When
there is no arrow, it means that the Tank has neither an inflow nor an outflow rate.

Interchange
The Interchange block displays the same animation behavior as a Tank, shown above. In addi-
tion, a ball appears in the middle of the block’s icon when an item is present in the block. The
ball is red if the item is ready to leave the block but is blocked downstream. Otherwise, the ball
is green. If the option Tank only exist while Item is in it is chosen and there is no item in the
block, the tank icon animates as white with cross-hatching.

Valve
A Valve reports its maximum and effective rates when animation is turned on. If the option
Valve animates and reports blocking and starving information is not selected in the
Executive block’s Discrete Rate tab (the default setting), a Valve will display only its limiting
or non-limiting status. If that option is selected, it will also report its blocking and starving sta-
tus. (See “Valve animates and reports blocking and starving information” on page 515 for full
information.)

Empty (contents 0, capacity 100) Empty No capacity and empty

Item filling (contents 50,
capacity 100)

Item emptying (contents
50, capacity 100)

Item blocked downstream
(contents 99,
capacity 100)

No item present (Tank only
exists while item is in it)

Finite Capacity Infinite Capacity Specific Behaviors

0 0

522 Miscellaneous
Animation

D
is

cr
et

e
R

at
e

Displaying limiting and non-limiting status
By default, the Valve only animates information about its limiting or non-limiting status.

Limiting is when the effective rate equals the maximum rate. In this case, the Valve is what
limits the flow. When a Valve is non-limiting, the effective rate is less than the Valve’s maxi-
mum rate. In that case, the Valve has no impact on the flow.

• When the effective rate is not the same as the constraining (maximum) rate, the two numbers
are represented as effective rate/constraining rate above the icon. If the two rates are the
same, only one number appears.

• If the Valve is limiting and the effective rate is greater than 0, the interior of the icon is plain
blue. If the Valve is limiting to 0, the interior of the icon is plain red. If the Valve is not lim-
iting, the interior of the icon is white.

• When the effective rate is greater than 0, a blue rectangle appears along the icon, and the
rates are written in blue. When there is no flow, the blue rectangle does not appear on the
icon and the rates are written in red.

Also displaying blocking and starving status
If the option Valve animates and reports blocking and starving information is selected in
the Executive block’s Discrete Rate tab, Valves will also animate their blocking and starving
status information.

Non-Limiting Limiting

Effective rate 5, maximum rate 10 Effective rate 5, maximum rate 5

No flow, maximum rate 10 No flow, maximum rate 0

Limiting only Blocked Starved Blocked and Starved

Limiting Non-limiting, with flow Non-limiting, with flow Non-limiting, with flow

Maximum rate 0 Non-limiting, no flow Non-limiting, no flow Non-limiting, no flow

Limiting, with flow Limiting, with flow Limiting, blocked, and
starved with flow

Miscellaneous 523
Animation

D
iscrete R

ate
If a Valve is blocked, it means that there are one or more blocks downstream which are limiting
the flow through the Valve. If a Valve is starved, it means there are one or more upstream
blocks that limit the flow to the Valve.

• If there is no flow, there will not be a horizontal line through the Valve. If there is flow, and
the Valve is non-limiting, the horizontal line through the Valve is a patterned blue. The hori-
zontal line is a plain blue color if there is flow.

• If a Valve is limiting, the central, vertical part of the Valve is plain blue (if the maximum rate
is >0) or red (if the maximum rate = 0).

• If the right side of the Valve’s icon is plain blue, the block is partially blocked by down-
stream blocks. If there is a red line on the right side of the icon, the flow is completely
blocked downstream.

• If the left side of the Valve’s icon is plain blue, the block is partially starved by upstream
blocks. If there is a red line on the left side of the icon, the flow is completely starved
upstream.

Goal and hysteresis animation
A Valve that uses a quantity goal to control its flow has a blue line below its icon. If the Valve
controls its flow with a duration goal, the line is green. While the goal is On, a progression bar
appears along the top of the blue or green goal line.

A Valve that uses hysteresis has a purple line at the bottom of its icon. While hysteresis is
active, the purple line is thicker for all or part of its length.

Sensor
The shape and color of the Sensor block’s icon indicates if the flow is being blocked, starved,
or both., and if there is flow or not.

Limiting, no flow Limiting, no flow Limiting, blocked, and
starved and no flow

Quantity goal, about 75% completed Duration goal, about 75% completed Hysteresis is active

Flow? Blocked Starved Blocked and Starved

Yes >>>

Limiting only Blocked Starved Blocked and Starved

524 Miscellaneous
Animation

D
is

cr
et

e
R

at
e

Convey Flow
The animation of the Convey Flow block shows what mode it is in, the distribution of flow
along its length, the position of the accumulation point, and other information.

Mode animation

For further exploration, the Compare Convey Flow model compares the behavior of three Con-
vey Flow blocks, each set to one of the possible modes, under different emptying rates. The
model is located in the folder \Examples\Discrete Rate\Delaying Flow.

Distribution of flow and other information
A Convey Flow block animates the distribution of flow as follows:

• A blue shape along the top of its icon indicates flow distribution.

• A slowing of flow movement causes the blue shape to have a green border.

• The complete stopping of flow movement causes the blue shape to have a red border.

• If the block has reached its capacity, the shape is a solid blue rather than a dotted blue.

• If the block is empty, a black line will appear at the top of its icon, as seen above.

• The position of the accumulation point is indicated by a red vertical line that moves along
the length of the icon. This is shown in the first, second, and fourth screenshots below and is
discussed on page 494.

No >>>

Accumulate-maximum density Accumulate-fill empty segments Non-accumulating

Distribution of flow Slowing movement Stopped Capacity reached

Flow? Blocked Starved Blocked and Starved

Discrete Rate Modeling

Advanced Topics
Some additional information

for those of you who want to know more

526 Advanced Topics
What this chapter covers

D
is

cr
et

e
R

at
e

The earlier chapters in the Discrete Rate module discussed important concepts you need to
know to build discrete rate models. This chapter provides an overview of the way discrete rate
calculations are made and describes the underlying functioning of the Rate library. This infor-
mation is not necessary to build discrete rate models but will be of interest to advanced users.

 It is highly recommended that you read the previous discrete rate chapters before this one, par-
ticularly the chapter “Rates, Constraints, and Movement”.

What this chapter covers
• The LP technology that has global oversight over a discrete rate model

• How the LP area is determined

• The sequence of events for the LP calculation

• How bias affects the calculation

• The types of information provided to the Executive

• How a relational constraint is calculated

• The potential rates “upstream supply” and “downstream demand”

• Messaging in discrete rate models

LP technology
Linear programming problems involve the optimization of an objective function subject to a
set of constraints. The purpose of solving a linear programming problem is to maximize or
minimize selected variables in the objective function.

LP technology is the method ExtendSim uses to provide global oversight to maximize the
movement of flow throughout a discrete rate system. The discrete rate architecture employs an
integrated LP Solver DLL to solve a series of equations to optimize effective rates at each
point of the simulation run.

The purpose of the LP calculation is to determine the maximum effective flow rates in the sys-
tem given the constraints defined by block settings and the structure of the model. After all the
rules for storage capacity and movement have been declared in the model, ExtendSim uses the
Executive block’s LP calculations to cause as much flow as possible to move through the sys-
tem. This calculation is handled automatically and internally.

Overview
In a discrete rate model, the Rate library blocks communicate with each other and with the
Executive block. In turn, the Executive communicates with an integrated linear program (LP
Solver). The Rate library blocks are dependent on each other, have an effect on one another,
and are part of a global LP system that evaluates the entire model to calculate its effective flow
rates.

• A rate section is a network of connected blocks, all possessing the same effective rate.
Established at the beginning of the simulation run, rate sections do not change. (See “Rates,
rate sections, and the LP area” on page 449 for more information.)

• An LP area is made up of one or more rate sections; the actual configuration can change
during the simulation. A change in a block’s constraints during the simulation run initiates a
propagation of messages through all the rate sections whose effective rates might change.
This propagation defines the LP area at that point in time.

Advanced Topics 527
LP technology

D
iscrete R

ate
• Each rate section within the LP area contributes a part of an LP equation for a recalcula-
tion. The purpose of the recalculation is to determine the maximum effective flow rates in
the system, given the constraints defined by block settings and the structure of the model.
The result is the set of effective rates for each section in the LP area at that point in the sim-
ulation. The system is optimized such that only the rate sections in the LP area are recalcu-
lated; all the other effective rates in the system don’t need to recalculate at that moment and
won’t.

• Among other things, the LP calculations take into consideration each block’s:

• Critical constraints, which place an upper bound on rate sections connected to that
block.

• Relational constraints, which define the way rate sections are related to each other.

• Bias, which is a block’s preference that flow travel one route rather than another.

The LP area
The LP area is made up of one or more rate sections linked together by the fact that their
effective rates could change at that point in the simulation – a change in the effective rates in
one section might impact effective rates in the other sections. The rates, constraints, and biases
within the LP area are used by the LP Solver to calculate the optimal set of effective rates for
the rate sections contained within that area.

The effective rate of one section can affect the effective rate of another section through rela-
tional constraints. When an event occurs that causes a rate section’s effective rate to be reeval-
uated, blocks propagate “rate block flow” messages (see “Block messages” on page 537)
throughout the model to determine which other rate sections might be impacted by the new
event. The affected rate sections constitute the LP area and rate sections outside of the LP area
are not included in the recalculation, reducing redundant computations.

The boundaries of the LP area are determined through the propagation of messages between
Rate library blocks. A change in a block’s constraints during the simulation run causes the
block to notify the Executive and send messages which propagate through all the rate sections
whose effective rates might change as a result. Whether the block is the originator of the recal-
culation request or receives a propagation message:

• The block declares which of its connected rate sections are in the LP area. The propagation
process then creates a global list of rate sections to include in the current LP area.

• If the block provides a relational constraint connection between two or more rate sections,
the effective rates connected to that block are dependent on one another. The block then con-
tinues the message propagation to all the dependent block(s), who propagate the message to
their dependent blocks, and so forth.

The change in the originating block will definitely cause a recalculation of the effective rates
for all directly connected rate sections, and (depending on relational constraints between the
sections) might cause a recalculation of the effective rates for other rate sections.

☞ The boundaries of the LP area will change dynamically during the simulation depending on
which effective rates are involved in the recalculation and which relational constraint depen-
dencies occur between rate sections.

528 Advanced Topics
LP technology

D
is

cr
et

e
R

at
e

The sequence of events
A change in a block’s constraints during the simulation run initiates a reevaluation of all the
effective rates for the LP area at that point in time. The block’s constraint change will defi-
nitely cause a recalculation of the effective rates for all directly connected rate sections, and
(depending on relational constraints between the sections) might cause a recalculation of the
effective rates for other rate sections. The sequence is:

1) A block’s constraint changes.

• If a block’s status changes it can affect its effective inflow and/or outflow rates. For
example, the effective inflow rate for a finite Tank block that is filling up is greater than
its effective outflow rate. When the Tank becomes full, it creates an event because its
effective inflow rate can no longer exceed its effective outflow rate.

• When a block reacts to new parameters, the effective inflow and/or outflow rates must
be reevaluated. For example, a Merge block in Select mode might choose its top inflow
branch at the start of the simulation. If the block subsequently receives an order to
select its bottom inflow branch, its effective rates have to be recalculated.

2) The block posts a zero-time event requesting a reevaluation of effective rates.

3) The LP area is determined based on the propagation of block messages.

• Starting with the originating block. messages are propagated through the model to all
the blocks that might be affected by the change. This propagation of messages defines
the boundaries of the LP area.

• The LP area encompasses all the rate sections with effective rates that might change
during the calculation.

• For a complete description of the LP area and how it is determined, see page 527.

4) As the LP area is determined, the blocks update their status.

• Each block that is part of the LP area updates the amount of flow which has passed
through it since the last update.

• If the block is a residence block (Convey Flow, Interchange, or Tank), the amount of
flow the block is holding is also updated.

• Note: The frequency of status updates outside of an LP calculation is set in the Execu-
tive. See “Update flow status” on page 515 for information.

5) Blocks report to the Executive how they impact effective rates.

• Each block in the LP area declares the flow rules (critical and relational constraints)
that it applies to the rate section it is connected to.

• The block’s bias order is stored in a list. Each block declares its bias order (if any) and
provides coefficient information to the Executive. The coefficients allow the Executive
to build an objective function that considers the effect of the bias.

• See “Types of information provided to the Executive” on page 529.

6) The Executive determines an objective function.

• The objective is to maximize the flow rate for each rate section subject to the con-
straints defined by the blocks’ flow rules.

Advanced Topics 529
LP technology

D
iscrete R

ate
• Each decision variable in the objective function is the effective rate of a section in the
LP area. For instance, the objective could be “Maximum effective rate = 1*ER1+
1*ER2 + 1*ER3…”, where ERn is the effective rate for a rate section in the LP area.

• If there is no bias, or all the intermediate calculations related to bias order have been
completed, the coefficient of each variable will be 1. If there is bias, the coefficient
could be other than 1.

7) The Executive communicates with the LP Solver.

• The Executive gives the LP Solver the objective function and the information from the
blocks and rate sections within the LP area.

• Critical constraints put an upper bound on some of the effective rates (the decision
variables). Relational constraints provide a link between the effective rates of different
rate sections and must be taken into consideration during the calculation. For instance,
if effective rate X is less than or equal to effective rate Y, the objective function must
conform to that information.

8) The Solver performs a calculation.

• The Solver calculates an optimized set of effective rates for the LP area.

• The result is an intermediate LP calculation (if there is bias) or the final LP calculation
(if there is no bias).

• For full details, see “The LP calculation” on page 532.

9) Steps 6-8 are repeated, if necessary.

• If the blocks in the LP area have bias, the Executive must determine intermediate
objective functions and the Solver must perform intermediate calculations. The number
of recalculations is equal to the number of blocks with bias, plus 1.

• For each recalculation, the list of critical and relational constraints is changed to
include the constraints caused by the particular bias order being considered.

• See “Bias information” on page 530.

10)The rate sections are notified.

• The Executive sends “Executive block flow” messages to the head of the rate sections
to update to the new effective rates.

• The blocks receiving this information update according to their dialogs and value con-
nectors. They then post new events if necessary.

☞ Since the purpose of the recalculation is to maximize the entire set of effective rates, some rates
will change while others might not.

Types of information provided to the Executive
When effective rates need to be recalculated, Rate library blocks provide critical and relational
constraint and bias information to the Executive.

To learn which blocks contribute which types of information, see “Table summarizing con-
straint and bias information” on page 531.

Flow rules
Flow rules consist of critical and relational constraints.

530 Advanced Topics
LP technology

D
is

cr
et

e
R

at
e

• If a rate section has a critical constraint, it places an upper limit to the effective rate within
that section. Since effective rates are decision variables in the LP’s objective function calcu-
lation, critical constraints place an upper bound on some of the equation’s variables.

• Relational constraints describe the dependencies between different rate sections. In some
blocks, relational constraints can vary depending on the state sensitivity of the block; in oth-
ers they are permanently active.

• An example of a state sensitive relational constraint can be found in a Tank block.
(Tanks are always within two rate sections; the input side and the output side define the
sections.) As long as a Tank is empty, its relational constraint is defined as “effective
outflow rate is less than or equal to effective inflow rate”. Once the Tank becomes “not
empty”, the relational constraint doesn't apply.

• An example of a permanent relational constraint can be found in a Change Units
block where a conversion factor defines the relationship of the inflow effective rate to
the outflow effective rate. If the factor varies over time, the relational constraint may
also vary. But the dependency between the inflow and outflow effective rates is active
for each calculation which includes the two rate sections.

Bias information
When the LP area is created, the Executive ranks all Bias blocks and any Merge or Diverge
blocks with a bias order in a list. The Executive considers the top bias from that list as part of
the objective function and instructs the Solver to perform an intermediate LP calculation using
that function and the current critical and relational constraints. Then the Executive takes the
next bias order into consideration, and so forth.

Since bias affects critical and relational constraints, each succeeding bias order means a new
objective function will be determined and a new set of critical and relational constraints will be
added to the previous ones. The results from the previous LP are used as inputs to the next LP.
This results in multiple intermediate LP calculations – one for each bias order in the list – until
the final result.

Most blocks with bias order supply:

• Flow rules (critical and relational constraints) which apply to all the LP calculations. (This
information is not supplied by a Bias block.)

• A set of coefficients that the Executive will use to build the objective function corresponding
to this bias order. Depending on the bias information received from the blocks in the LP
area, the intermediate objective function can include coefficients that are other than 1. (A
coefficient of 0, for instance, indicates that a particular effective rate does not need to be
maximized; it causes that effective rate to not be directly affected by the maximization.)

• Flow rules for that bias order which use the results of the intermediate calculation. (After the
intermediate calculation, the results of the calculation are used to add new flow rules to the
succeeding calculations.)

Some additional situations that enter into the calculation include:

• If a Bias block has a bias order that is Blank or is less than or equal to 0, the block does not
express any preference.

Advanced Topics 531
LP technology

D
iscrete R

ate
• If multiple Bias blocks have identical bias orders, the effective rates for these blocks cannot
be predicted. The model will use one of the possible solutions.

• Merge and Diverge blocks with bias order are always lower on the bias list than any Bias
block.

Table summarizing constraint and bias information
The following table summarizes the types of bias and constraint information (if any) Rate
library blocks supply to the Executive for the calculation of effective rates:

☞ Diverge and Merge blocks can imply a critical constraint depending on the branch parameter
and the mode.

The relational constraint calculation
The table that follows describes how the relational constraint is calculated for blocks that pro-
vide either permanent or state sensitive relational constraints.

For the purposes of this table:

• Xin is the effective inflow rate of a block and Xout is its effective outflow rate.

• Index i describes one of the inflow branches (for a Merge) and one of the outflow branches
(for a Diverge).

• The number of branches is n.

Block Mode Critical
Constraint

Relational:
Permanent

Relational:
State Sensitive

Bias
Order

Bias No Yes No Yes

Catch Flow No No No No

Change Units No Yes No No

Convey Flow Yes No Yes No

Diverge Neutral, Proportional,
Select, Unbatch

Depends Yes No No

Diverge Distributional, Priority,
Supply Sensing

Depends Yes No Yes

Interchange Yes No Yes No

Merge Batch, Neutral,
Proportional, Select

Depends Yes No No

Merge Distributional, Demand
Sensing, Priority

Depends Yes No Yes

Sensor No No No No

Tank Yes No Yes No

Throw Flow No No No No

Valve Yes No No No

Block Calculation

Change Units The permanent boundary is Xin = factor*Xout

532 Advanced Topics
LP technology

D
is

cr
et

e
R

at
e

The LP calculation
The Executive block maximizes an objective function composed of the set of effective rates for
the LP area. If there is no block with bias order involved in the LP area, the Executive block
maximizes the sum of all the effective rates in the LP area – in this case, only one LP calcula-
tion is necessary.

If the blocks in the LP area have bias, the Executive must determine multiple intermediate
objective functions and the Solver must perform multiple intermediate calculations. The num-
ber of recalculations is equal to the number of blocks with bias plus 1.

When the LP area involves blocks with bias order, the calculations are made in cascading
order. For each bias order, an intermediate calculation is made with an objective function
depending on the type of block that is being evaluated:

• Bias block. The function to maximize is the sum of the effective rates attached to the Bias
blocks with an identical bias order. When the calculation is made, the function is used as a
new rule for the succeeding intermediate calculations. The calculation is: sum effective rates
within the bias order>= result of the maximized function.

• Merge/Diverge in Priority mode. The function to be maximized contains the effective rates
from the variable inflow and/or outflow branches of the block. The lower the priority of the
branch, the higher the coefficient associated with the effective rate. The calculation is: sum
p*Xp (for p: 1=>n with 1 top priority and n lowest priority). When the calculation is fin-
ished, the objective function is used as a new rule for the next intermediate calculations (sum
p*Xp >= result of the maximized function).

• Merge/Diverge in Batch/Unbatch, Distributional, Neutral, Proportional, Select, or Sensing
mode. This calculation is beyond the scope of this document.

When all the intermediate LP calculations have been made, the last LP calculation maximizes
the sum of all the effective rates for the LP area.

Convey Flow If the block is in an accumulating situation (outflow rate is blocked or partially
blocked downstream) and doesn't have any more capacity for accumulation, a
state sensitive boundary applies: Xin<=Xout

Diverge Select. A permanent relational constraint applies between the inflow effective
rate and the selected outflow effective rate: Xin=Xout selected

Proportional. A set of permanent relational constraints applies to insure the pro-
portions: Xout_i = factor_i*Xin (i: 0=>n-1)

Batch/Unbatch. Permanent relational constraints: Xout_i = Xin (i: 0=>n-1)

Neutral, Priority, Distributional and Supply Sensing. Permanent relational con-
straint Xin = Xout_1+…… Xout_n

(Other calculations are beyond the scope of this document.)

Interchange As long as the tank is full, Xin<=Xout. As long as the tank is empty, Xout<=Xin
(State sensitive relational constraint)

Merge Same as the Diverge with Xout and Xin reversed

Tank See Interchange

Block Calculation

Advanced Topics 533
Upstream supply and downstream demand

D
iscrete R

ate
Upstream supply and downstream demand
The effective rate is not the only result a rate-based model can provide. The potential
upstream supply rate and the potential downstream demand rate can also be useful in
special situations – the rates determine the branch proportions for Merge and Diverge blocks in
Sensing mode (as discussed in “Sensing mode” on page 471) and the Sensor block can be used
to report the potential rates for making model decisions.

☞ This is an advanced topic because the concept is complex and there is an elevated potential for
error, as discussed in the section “Cautions when using potential rates”, below. Careful model
verification and validation, and an advanced knowledge of the ExtendSim LP technology, are
required to avoid unexpected results.

Definition
The potential upstream supply rate is the theoretical rate at which an upstream source could
provide flow to the beginning of a rate section if there weren’t any downstream limitations on
flow movement (downstream capacity is infinite). For instance, for a not-full Tank at the
beginning of a rate section, the upstream supply rate would equal the Tank’s effective inflow
rate. A not-full Tank does not limit the inflow rate it can receive. In this case, the effective
inflow rate is also the potential upstream supply rate.

The potential downstream demand rate is the theoretical rate at which a downstream sec-
tion of the model could receive flow from the end of an upstream rate section if there were an
unending upstream supply of flow (upstream source is infinite). For instance, for a not-empty
Tank at the end of a rate section, the potential downstream demand rate would be equal to the
Tank’s effective outflow rate. A not-empty Tank does not limit the outflow rate it can provide.
In this case, the effective outflow rate is also the potential downstream demand rate.

Upstream supply and downstream demand could potentially be infinite. For example, the
upstream supply rate right after a Tank (if the tank doesn't declare any constraint on its outflow
rate) is infinite.

☞ When flow movement is from left to right, the information to calculate the upstream supply
rate is propagated from left to right while downstream demand information is propagated from
right to left.

Requirements for the supply/demand calculation
For a model’s Executive block to calculate a potential supply or demand rate, at least one of the
following blocks must be part of the LP area:

• Sensor block. The only purpose of the Sensor block is to display the potential rates wherever
it is located in the model. The Sensor block only provides information; it has no direct
impact on the calculation of effective rates.

• Diverge block in Demand Sensing mode. Proportions for the outflow branches are calcu-
lated as a function of the potential downstream demand. For example, the downstream
demand placed on an outflow branch becomes the proportion for that outflow branch.

• Merge block in Supply Sensing mode. The block uses the available upstream supply rate to
define the Supply Sensing proportions for each inflow branch.

Cautions when using potential rates
We strongly recommend exercising caution when using the Merge/Diverge blocks in Sensing
mode, or when relying on a potential rate reported by the Sensor block, because:

534 Advanced Topics
Upstream supply and downstream demand

D
is

cr
et

e
R

at
e

• Getting information about these rates slows down the simulation. The Executive has to make
a lot more LP calculations to extract the potential rate information.

• In some cases the potential rates as reported by the Sensor block are not accurate. Depending
on how flow is diverged and merged, the potential supply or demand rates could be aggre-
gated even if they should not be. This is illustrated in the “Supply & Demand Warning
model” described below.

• Merge/Diverge blocks in Distributional, Neutral, and Priority modes are not always compat-
ible with Merge/Diverge blocks in Sensing mode. Consequently, models with blocks that
mix Sensing mode with Distributional, Neutral, or Priority modes are prone to error.

• A Merge or Diverge block in Sensing mode has a bias order. Depending on the block’s loca-
tion in the Executive’s list of bias orders:

• The effective rates might be different.

• The block might not follow the proportions specified by the Sensing mode.

For instance, the effective rates are different in the “Combine Priority Sensing model” and
the “Combine Sensing Priority model”, and neither of those models follow the Sensing rule.

Issues when relying on the Sensor to report potential rates
Based on how a model is configured, and the mode selected in a Merge or Diverge block, a
Sensor block could report erroneous information.

Supply & Demand Warning model
In this model, the Sensor blocks correctly report the upstream supply. But Sensor A reports an
invalid downstream demand of 1400 gallons/minute. The actual downstream demand is 1000
gallons/minute, reported by Sensor C. This is determined by verifying the demand results,
compared to what was expected, from right to left.

Evaluating the model from right to left (for the downstream demand rate):

• Sensor C reports a demand (Demand C) of 1000 gallons/minute because Valve C limits flow
to 1000 gallons/minute. The Sink at the end of the line doesn't limit the inflow rate at all.

• Demand B1 is 1000 gallons/minute because the Prioritize 2 block has its top priority at
branch B1. (Verification: If a Tank with flow is present at branch B1, Prioritize 2 and Valve
C would accept 1000 gallons/minute coming from branch B1.)

Supply & Demand Warning model

Advanced Topics 535
Upstream supply and downstream demand

D
iscrete R

ate
• Demand B2 is 400 gallons/minute because the effective rate on branch B1 is 600 and
Demand C is 1000: Demand B2=Demand C-effective rate B1. (Verification: If a Tank with
flow is present at branch B2, it could provide 400 gallons/minute because the total Prioritize
2 can accept is 1000 and the block already takes 600 from the top priority branch.)

• Sensor A reports a demand of 1400 gallons/minute because Demand B1 is 1000 and
Demand B2 is 400. However, this is incorrect. (Verification: If a Tank with flow is placed
right before Prioritize 1, the outflow effective rate would be 1000 gallons/minute and not
1400 gallons/minutes. The erroneous result comes from the fact that the association of “cor-
rect” local rules doesn't guarantee a “correct” global result.

☞ By understanding flow rules and how they can affect the global result, you can avoid this prob-
lem. The most important step is verifying this model from left to right for the supply and from
right to left for the demand. Two solutions are 1) having the Prioritize 2 block be in Neutral
mode, and 2) placing a Valve with a maximum rate of 1000 between Sensor A and Prioritize 1.

Mixing Merge/Diverge block modes
Situations where Merge or Diverge blocks in Sensing mode are mixed with Diverge or Merge
blocks in Distributional, Neutral, or Priority modes within an LP area should be avoided as
they are prone to give inaccurate results.

In these types of mixed-mode situations, the LP area is going to be recalculated multiple times
to provide the effective rates and the upstream supply and downstream demand rates. All the
blocks in the LP area must provide one set of constraints to the Executive so it can solve the
effective rates and a second set of constraints so the Executive can solve the supply and
demand rates. This causes repeated intermediate LP calculations, the results of which are
affected by constraints which are applied for the supply and demand rates. This may yield
inaccurate results.

Unexpected effects of bias order
As discussed on page 512, the Distributional, Priority, and Sensing modes require bias order to
be defined. This affects their effective rates. However, the only mode whose proportions are
influenced by the bias ranking is the Sensing mode.

When effective rates within an LP area have to be recalculated, the Executive makes a list of
blocks ranked from the top bias order to the bottom. Depending on a Merge or Diverge block’s
ranking in the Executive’s list, the effective rates might be different. If the block is in Sensing
mode, the proportions will also be influenced. The two models that follow illustrate these
issues.

Combine Priority Sensing model
In this model, a Diverge block (Prioritize 1) is set to Priority mode and a Merge block (Sensing
2) is set to Supply Sensing mode. The blocks’ Model Settings tabs are set to Each block

536 Advanced Topics
Upstream supply and downstream demand

D
is

cr
et

e
R

at
e

defines its own bias order. The table in the tabs indicates Prioritize 1 has the top bias order
and Sensing 2 has the lower bias order.

The supply in branch B1 is 1,000 while the supply in branch B2 is 400. However, the Sensing
2 block doesn’t distribute flow following the expected supply proportion.

• Because the Prioritize 1 block has the top bias order, the Executive gives priority to that
block in choosing how to distribute the flow between the branches B1 and B2.

• At the first intermediate result of the LP calculation, branch B1 gets an effective rate of 600
gallons/minute and branch B2 gets 0 gallons/minute.

• Because this decision has been made for branches B1 and B2, the Sensing 2 block with its
lower bias order cannot control the proportion of flow it will get through branches B1 and
B2. For example, if the supply from B1 is 1000 gallons/minute and the supply from B2 is
400 gallons/minute, the proportion between the effective rates for the Sensing 2 block’s
inflow is not 71% B1 (1000/1400) and 29% B2 (400/1400) but rather 100% B1 and 0% B2.

Combine Sensing Priority model
Like the preceding model, the Diverge block (Prioritize 2) in this model is set to Priority mode
and the Merge block (Sensing 1) is set to Supply Sensing mode and the Model Settings tabs for
the blocks are set to Each block defines its own bias order. However, in this model the table
indicates that Prioritize 2 has a lower bias order than Sensing 1.

• The Sensing 1 block has the top bias order, so the Executive gives priority to that block to
choose how the flow it receives should be distributed between branches B1 and B2.

• At this point of the LP calculation, the Prioritize 2 block gets a supply of 1000 gallons/min-
ute and has not decided how to distribute the flow. With that limited information, the poten-

Combine Priority Sensing model

Combine Sensing Priority model

Advanced Topics 537
Messaging in discrete rate models

D
iscrete R

ate
tial upstream rate is calculated as 1000 gallons/minute for Supply B1 and 1000 gallons/
minute for Supply B2. Therefore, Sensing 1 decides to get 50% of the flow from inflow
branch B1 and the other 50% of the flow from branch B2.

• Because the decision has been made for branches B1 and B2, Prioritize 2 with its lower bias
order can no longer control the distribution of flow between branches B1 and B2.

Messaging in discrete rate models
As discussed in “How ExtendSim passes messages in models” on page 101, the ExtendSim
architecture allows application messages to be sent from ExtendSim to a model’s blocks and
block messages to be passed between blocks.

Discrete rate models use the same application messages as do continuous and discrete event
models. The block messages sent between Rate library blocks are discussed below.

Block messages
Discrete rate blocks have a sophisticated and complex messaging structure for communicating
with each other and with blocks from the Value and Item libraries. They can be categorized as:

• Event
• Value connector
• Item connector
• Flow connector
• Rate block flow
• Executive block flow
When a block initiates a recalculation of the set of effective rates, a succession of messages
and calculations are also initiated. Understanding how block messages work can prevent
redundant messages from being created. At the very least redundant messages will cause run-
times to be longer than need be. At the very worst, redundant rate calculations could introduce
bugs into a model when effective rates are temporarily calculated using one or more out-of-
date parameter values. For instance, see “Limiting the number of recalculations” on page 475.

☞ By limiting the number of times the set of rates have to be recalculated, the operational effi-
ciency of the model is maximized. For example, see “Limiting the number of recalculations”
on page 475.

Event messages
Event messages communicate between the Executive block and Rate library blocks. In a dis-
crete rate model, the simulation clock advances from one event to another. Each time the clock
advances, the Executive block sends event messages to the blocks that have associated them-
selves with that event. There are two types of events: future and current.

• A future event message occurs when the simulation clock reaches a time posted by a block.
For instance, when the level in a Tank increases, it posts a future event to the Executive cor-
responding to the Tank’s “full time”. Once the simulation clock has advanced to this future
event, the Executive sends an event message to the Tank, alerting it that it is full.

• A current event message occurs when a block wants to be activated before the simulation
clock advances, but after it has completed its response to another message. For instance,
instead of a Valve immediately calculating a new effective rate when its constraining rate
changes, it will post a current event to the Executive letting it know that it will have to recal-

538 Advanced Topics
Messaging in discrete rate models

D
is

cr
et

e
R

at
e

culate at a certain time. This gives all the other blocks in the model the opportunity to update
before the recalculation occurs.

☞ In discrete rate models, blocks from the Value library typically neither post events to the Exec-
utive nor receive event messages from the Executive. This has important ramifications on the
behavior of continuous blocks in discrete rate models.

Value connector messages
Blocks in a discrete rate model send value connector messages either because a new number is
needed by an input connector or because the value of an output connector has changed. These
messages request updated information for the input connectors or notify connected blocks that
the output value has changed. For example, if a Valve block’s R value input connector is con-
nected and the Valve receives a new value at R, the constraining rate on the flow changes. This
will cause a recalculation of the set of parameters in the model.

These messages work the same in discrete rate models as in discrete event models. They are
discussed fully at “Value input and output connector messages” on page 419.

Item connector messages
Discrete rate models often have portions that are item-based, using blocks from the Item
library. The Rate library’s Interchange block also has item connectors; it provides a mechanism
for interacting with item-based blocks in a discrete rate model.

Item connector messages (primarily wants, needs, and rejects) use a conversation of mes-
sages to propel items from one item-based block to another through the model. The item con-
nector messages work the same in discrete rate models as in discrete event models. They are
discussed fully at “Item connector messages” on page 421.

Flow connector messages
Flow connectors provide the value of the effective inflow and outflow rates. Flow connector
messages cause the effective inflow/outflow rate to be updated for all connected blocks each
time the LP calculation determines that the effective rates have changed.

Rate block flow messages
As soon as a block from the Rate library receives a message, if it determines that the effective
inflow and outflow rates might change, it initiates a propagation of these messages. This prop-
agation of messages is used to define the LP area – the area of the model which could be
impacted by the originating block’s change.

Executive block flow messages
When a calculation of a set of effective rates for the LP area has been initiated, the Executive
block calculates the new set of effective rates and sends messages to the blocks in order to
propagate the results. These message update all the blocks in an affected area with a new effec-
tive rate.

Appendix

Menu Commands and Toolbars
A reference section describing

each menu item and tool

“I wish it, I command it. Let my will
take the place of a reason.”

— Juvenal

540 Menu Commands and Toolbars
File menu

A
pp

en
di

x

This chapter explains all the commands that appear in the menus and the circumstances in
which you might use them. At the end of this chapter is a description of the buttons in the
application toolbar and ExtendSim database.

File menu

New Model
Creates an untitled model worksheet.

New Text File
Creates an untitled text file. You can use this to create text
files for the Read and Write blocks, as input to sensitized
blocks, or for any other ExtendSim feature that uses a text
file as input. See “Text files” on page 240 for more informa-
tion.

Open...
 Libraries are opened from the Library menu, shown on
page 550. Databases open when the model opens, as
described at “Database menu” on page 557.

Opens an existing model (or text file) along with any librar-
ies and databases that the model uses. (To open a library file
not used by the model, use the Open Library command described on page 551.)

You can also open a model by double-clicking the model file; if ExtendSim is not already
open, this action will launch ExtendSim before opening the model. However, this action only
opens the most recently installed release of ExtendSim, which may not be what you want. See
“Update Launch Control (Windows only)” on page 542 to control which application launches.

You can have any number of models open at the same time; open models are listed at the bot-
tom of the Window command.

☞ If ExtendSim can’t find a library used by a model, the message Searching for library... will
appear as described in “Searching for libraries and blocks” on page 57. If ExtendSim cannot
find all of the blocks used in the model, the missing ones will be replaced with text blocks.
When this occurs, ExtendSim will open the model as Model-x to prevent accidentally saving
over the old model.

Recent Files
Lists the 20 most recently opened files; new files will only be listed after they have been saved.

Close
Closes the active window—model worksheet, dialog, or text file. If there are any files with
unsaved changes, first asks whether you want to save them.

Revert Model
Becomes active after you make a change to a saved model. Reverts the model to the last ver-
sion saved, discarding any changes made since then. ExtendSim warns you before it completes
this command.

Menu Commands and Toolbars 541
File menu

A
ppendix
Save and Save As
Saves the active window. Choose Save to save the file under the current name or Save As to
give a name to a new file or to save an existing file under a different name. The exact wording
will be different, depending on which active window is being saved: Save Model As, Save
Block to Library As, or Save HBlock to Library As.

☞ If a crash occurs during the save process, your original file could get corrupted. To protect
against file corruption when saving, ExtendSim first renames the previously saved version of
the model as ModelName.BAK. To recover a model from a backup file, rename the backup
file as ModelName.MOX.

Show Page Breaks
Causes ExtendSim to draw a set of page boundaries on the active window (worksheet, note-
book, etc.) and place page numbers in the upper left hand corner of each page. The page
boundaries show where page breaks will occur if you print the window. The command applies
to each active window separately and the location of the page breaks is dependent on choices
in the Print and Page Setup commands.

Print...
Opens a dialog so you can print the
active window—model worksheet, note-
book, tab in a block dialog, etc.

The Print dialog provides standard
options such as page range and number
of copies. Click the Preferences button to
specify other parameters such as paper
size, border, and printing on both sides.

☞ The parameters displayed in the Printing
Preferences dialog, as well as whether
you can print to paper, file, PDF, or fax,
depend on the selected printer and which
drivers have been installed.

To save your settings after making
changes, click the Print dialog’s Apply
button. If you don’t want to print after
selecting Apply, click Cancel.

To print to PDF, choose a PDF writer such as Adobe PDF or Microsoft Print to PDF. All the
parameters and settings are ignored and the document will be saved at full size as long as it is
under 200” x200”. Documents bigger than that will automatically be scaled to fit that maxi-
mum size.

Choosing Model > Show Object IDs or Model > Show Simulation Order before choosing
Print, will cause the blocks on the model worksheet to print with that information on them.

☞ In some situations, such as when trying to print a library window, use the right-click menu
instead of the menu command.

542 Menu Commands and Toolbars
Edit menu

A
pp

en
di

x

Page Setup
Opens a window for selecting paper size, source, orientation and margins. These parameters
are dependent on the printer selected in the Print dialog.

☞ For the most options, use the Preferences button in the Print dialog.

Update Launch Control (Windows only)
If you typically launch ExtendSim by double-clicking a model file, the ExtendSim application
that was most recently installed will open. This may not be what you want.

Selecting this command causes the currently active ExtendSim application to be the applica-
tion that opens when a model (.mox) or library (.lix or .lbr) file is double-clicked. This is only
applicable if you have more than one instance of the ExtendSim application installed and you
want to cause a specific instance of the application to open when you double-click files. For
example, give this command in ExtendSim 9 if you have both v9 and v10 installed, and you
want model files to automatically launch v9 when they are double-clicked.

☞ Depending on your privileges, you may need to right-click the ExtendSim application and
select Run as Administrator before launching and giving this command.

The application in which this command was last given will control the launching of the model
and library files. To switch applications that will launch those files, just give the command in
the File menu of whichever application you want to be in control of launching.

Properties
Opens a window that gives information about the selected graphic object, block, etc.

Exit/Quit
Leaves ExtendSim. If there are any files with unsaved changes, first asks whether you want to
save them.

Edit menu

Undo
Reverses actions in a last-done, first undo order.

Redo
Reverses the Undo actions in a last-undone, first
reverse order.

Cut
Removes the selected item (such as a block, some
text, or numeric data from a data table) and places it
on the Clipboard.

Copy
Copies the selected object to the Clipboard. Copying
is useful for duplicating parts of a model as well as
for exporting to other applications. You can copy a single block, a piece of text, a group of
blocks and text, graphical objects, or numeric values from a data table. You can also copy sec-
tions of a notebook or dialog box as a picture.

Menu Commands and Toolbars 543
Edit menu

A
ppendix
 The objects copied (blocks and text, graphics, etc.) depend on the cursor used to make the
selection. To copy multiple objects of different types, such as text and a graphic, use the All
Objects cursor.

Copying data and pictures is discussed in “Copy/Paste” on page 223.

Copy Data With Headings
Copies the table headings as well as the data from the selected data table.

Paste
Copies the contents of the Clipboard to the model. If the Clipboard contains text, a block, or a
graphic item, the copied item is placed at the insertion point. For example, if you copy a block,
click on the model worksheet, and then use the Paste command, the block will be pasted where
you clicked the mouse. If there is no insertion point, the item is placed in the upper left corner
of the worksheet.

Duplicate
Makes a copy of the selected item and puts it near the original item. This is faster and often
more convenient than first copying and then pasting an item.

Clear
Removes the selected item. The menu changes to indicate what is selected, such as “Clear
Data” or “Clear Blocks”. A cleared object is not held in memory and is not in the Clipboard.

Find...
This command opens a different win-
dow depending on where the search is
initiated: the worksheet, the block’s
structure, or a database window.

1) If invoked when the cursor is on the
model worksheet, the command
presents the Find Object dialog. In
this dialog, search for a given
object ID, label, or name. The
Object ID is a unique, permanent
identifier for all objects in a
model—blocks, text, graphics, connection lines, animation objects, and so forth. Name
means the name of the object and label is a secondary identifier assigned to the object. For
example, a block named “Equation” (Value library) could be labeled as “Calculate Over-
flow” and have an Object ID of 4 on the model worksheet. Note that the Find Object dialog
also reports the Local ID (which may different from the Object ID if the object is nested
within a hierarchical block) as well as the Object Type (block, text, oval, etc.)

☞ Blocks have a given name and can be assigned a label through their dialogs. Blocks and all
other objects can be assigned names and labels through their properties.

☞ See the Find and Replace block (Utilities library) for additional block search capabilities,
including the ability to find a dialog value and replace it with another value.

544 Menu Commands and Toolbars
Edit menu

A
pp

en
di

x

2) If invoked when the cursor is on
the Script or Help tab of a block’s
structure, the command presents
the Find String dialog. Enter the
text you want to search for in the
Find box. ExtendSim searches for
text starting at the current selec-
tion and going to the end of the
text. If the specified string is found, the string is selected. If it is not found, the insertion
point is not moved. For more information about how this dialog is used, including the use
of the Regular expression option, see the Technical Reference.

3) When searching in an ExtendSim database,
this command provides two dialogs that help
locate a number or string. The Find Data in
Database command is invoked in Schema
view when the cursor is on the name of a table
or is in the table pane. The Find Data in Table
command is invoked in Data view when the
cursor is on the name of a table, or in the tables pane, or in the blank space of the Viewer
window. The search process, as well as the Whole words and Match case options, work the
same as for the Find String dialog, above.

☞ To find a table, sort the tables by name in the database window.

Find Next
Finds the next instance of the string entered in the Find String dialog, discussed above. Is only
enabled if the Find String dialog is active.

Select All
Selects all the objects, such as all the blocks in a model or all the text in a field.

 The objects that get selected (blocks and text, graphics, and so on) depend on the cursor cho-
sen. To select multiple objects of different types, such as text and a graphic object, use the All
Objects cursor.

Enter Selection
Causes the selected text to be the search string in the Find String dialog and the Find Next
command; both are discussed above. Especially useful for finding all instances of text that is
already in the code of a block.

Options
Lets you specify how you want ExtendSim to behave in general, controlling actions for all
models. Note that this is different from the Simulation Setup command which only affects the
running of a specific model.

Menu Commands and Toolbars 545
Edit menu

A
ppendix
Model tab of Options command

Option Description

Insert Executive block
in new models if Item
library is open

If your ExtendSim product installs the Item library, the assumption is
that you want to build discrete event or discrete rate models, which
require an Executive block. If instead you want to build continuous pro-
cess models, uncheck this box or delete the Executive from your models.

Use default connec-
tion line for each con-
nector type

Specifies that blocks in the Value, Item, and Rate libraries will use the
default connection line for each type of connector. See “Connection line
appearance” on page 116.

Bump Connect for
Item and Rate

Use Bump Connect to add an Item or Rate library block to a block in a
model. Click on the desired block in the library menu or library window,
then place the block in the model by bumping its itemIn or inFlow con-
nector to the corresponding output of a block on the worksheet. This
adds and connects the new block to the existing block using whichever
connection line choices you’ve made.

This option only apply to Item and Rate connectors.

Default style when
drawing connections

Specifies which style (Smart, Right Angle, Straight, or Free Form) is the
default when creating new connection lines. The selected style will be
indicated in the Model > Connection Line Style menu.

Tooltips: Display when
cursor hovers over
blocks

Causes the block name, number, and library to be displayed when the
cursor is hovered over a block on the model worksheet. If you hover the
cursor over a connector, the connector name and value are displayed.
Note that Help captions for the toolbar stay on even if this choice isn’t
selected.

546 Menu Commands and Toolbars
Edit menu

A
pp

en
di

x

Tooltips: Include addi-
tional block informa-
tion

In addition to the block name, number and library, when a cursor is hov-
ered over a block this command will cause additional information, such
as a description of the block, to be displayed.

Play sound at end of
run

Causes ExtendSim to play the default system sound at the end of every
simulation run, if sound is on. (Note: whether sound is on or off the sta-
tus bar shows “Simulation finished at timexx” at the end of each run.)

Metric distance units Specifies that default distance or length units in the Convey Item and
Transport blocks (Item library) is meters instead of feet. In the Convey
Flow block (Rate library), distance and length units are specified directly
in the block’s dialog and this setting is ignored.

Text file font Sets the default font for text files, such as when you give the command
New Text File or when you open a text file.

This option does NOT set the default font and size in the application
toolbar nor does it affect the font used when creating a text box or
working in a block’s Script tab.

Note that there is a separate option for setting the default font when
working in a block’s Script tab; see “Script tab of Options command” on
page 549.

Path to model that
opens when Extend-
Sim launches

If a model pathname is entered here, that model will open when Extend-
Sim is launched. (By default, when ExtendSim is installed Getting
Started.mox is the default model.) If no path is specified, ExtendSim will
look for the model in the application directory or folder.

Option Description

Menu Commands and Toolbars 547
Edit menu

A
ppendix
Libraries tab of Options command

Option Description

Automatic search If selected, causes ExtendSim to automatically find and open the librar-
ies used in a model. If this is not selected, ExtendSim will prompt for the
location of each library that the model uses. See also “Substituting one
library for another” on page 68.

List blocks in Library
menu by category

Causes blocks in each library to be listed in hierarchical menus by cate-
gory. Unselect this choice if you want all of the blocks listed alphabeti-
cally.

Warn when opening
legacy or prior version
libraries

The warning appears if you use the Library > Open Library command to
open a specific type of library: either a legacy (obsolete) library or an
unconverted library developed in a prior ExtendSim release.

NOTE: Legacy libraries are included so that models created using those
obsolete libraries can still run. Legacy libraries should not be used to cre-
ate new models. Whether checked or not, the warning is not displayed if
the library automatically opens due to the model being opened.

Library windows:
Open when library is
opened

Causes the corresponding library window to open whenever a library
opens. This occurs whether the library is opened directly from the
Library menu or because a model that uses that library is opened.

Library windows:
Show path to library

Causes the library window to display the path to the library below the
library’s name. The same information is supplied if you hover over the
library’s name in the library window. (If the path is just “Libraries”, the
library is in the Libraries folder of the current application.)

548 Menu Commands and Toolbars
Edit menu

A
pp

en
di

x

Library windows:
Show block modified
and compiled dates

Displays the modified and compiled dates for each block in the library
windows.

Alternate path By default when opening a model, ExtendSim first searches for the
needed libraries in the folder that contains the model. If not found, it then
searches in the Documents/ExtendSim/Libraries folder. The alternate
path specifies a location that ExtendSim will search after the model
folder but before searching in the Libraries folder. Click in the Alternate
path field and use the Browse button to specify the alternate path. See
also page 57.

Open these libraries on
launch

Enter names of libraries you want automatically opened when Extend-
Sim starts. Type in the name or use the Browse button to locate a library
and cause its name to be entered in the selected field. Note that Extend-
Sim will still ask for the location of any libraries located outside of the
active application’s Libraries folder. To cause a library to not preload,
delete its name from the field.

☞ Depending on the particular product, the major libraries are listed on
this tab and will preload by default. For example, launching Extend-
Sim CP causes the Chart, Report, Utilities, and Value libraries to
also open.

Open these library
windows

When ExtendSim is launched, opens the window of the library listed
directly to the left of the checkbox. By default library windows stack on
the right side of the application window and each library window has its
own tab on the right side.

☞ The order of the tabs depends on the order in which the libraries are
listed in the Edit > Options > Libraries tab, or the order libraries are
opened if they are not listed in that table. And by default the library
window displayed in front will be the first library in the list.

Option Description

Menu Commands and Toolbars 549
Edit menu

A
ppendix
Script tab of Options command

Option Description

Show: End of line Shows the end of line characters as visible characters. The script editor
places invisible characters at the end of each line; this option makes
those characters visible.

Show: White space Shows both tab and space characters as visible characters. The script edi-
tor places invisible characters wherever there is a tab or space; this
option makes those characters visible.

Show: Indentation
guides

Shows vertical lines to indicate the tab indentation of the code. Useful
for seeing if you’ve indented the code correctly, especially for long
indented sections of code.

Show: Word wrap Otherwise known as line wrap. When the line is full, this option automat-
ically moves subsequent words to the beginning of the next line, so that
the text stays within the viewable window.

Script window font Sets the default font and size for text in the Script tab of a block’s struc-
ture window.

Colors: Shows the default colors for keywords, comments, and so forth, and pro-
vides Change buttons for selecting different colors.

550 Menu Commands and Toolbars
Library menu

A
pp

en
di

x

Miscellaneous tab

Library menu

Option Description

Toolbar button size Allows you to change the size of the buttons in the toolbar

Check for newer ver-
sion when ExtendSim
launches

Allows ExtendSim to do an Internet search for new versions when it
launches, determining if the installed version is the most current version.
The search occurs each time ExtendSim is launched. If the installed ver-
sion is current, nothing happens. If the installed version is not current, or
if ExtendSim is unable to connect to the Internet, a message is placed on
the About ExtendSim startup screen.

Save backup model
files

If a crash occurs during the save process, your original file could get cor-
rupted. To protect against file corruption when saving, ExtendSim first
renames the previously saved version of the model as “Model-
Name.BAK”. To recover a model from a backup file, rename the backup
file as ModelName.MOX. This option is checked by default for your
safety Rob Brownie!

Tooltips for block dia-
log items: Show on
block dialogs

Displays the variable/message dialog names when the cursor is hovered
over fields in a block’s dialog.

Tooltips for block dia-
log items: Show in
block structure’s Dia-
log tab

Displays the variable/message dialog names when the cursor is hovered
over fields in the Dialog tab of a block’s structure.

Menu Commands and Toolbars 551
Library menu

A
ppendix
When you open a model, ExtendSim opens the required
libraries automatically. And depending on settings in the
Edit > Options > Libraries tab, specific libraries will open
whenever ExtendSim is launched. To open or close a library
manually, use the Library menu. For more information
about libraries and their usage, see “Opening, closing, and
searching for libraries” on page 56.

Open Library...
Opens a window for selecting which library file(s) to open.
If a default path to a folder has been entered in the Edit >
Options > Libraries tab, this command will open that folder.
Otherwise, it opens the ExtendSim/Libraries folder.

Once opened, the library’s name will appear at the bottom
of the Library menu in alphabetical order. To view the blocks in the library, go to the Library
menu and then to the name of the library. When the library name is selected, blocks will be
listed to the right of the menu either alphabetically or by category, depending on the option
selected in Edit > Options >Libraries tab. The first choice in each list is Open Library Window
which opens a window listing the blocks in the library, as discussed at “Library windows” on
page 58.

Close Library...
Opens a window listing all the open libraries. Select the library or libraries to be closed from
the list and click Close. Libraries that are in use cannot be closed. Closing a library also closes
its library window.

Open All Library Windows
Opens the library windows for every library that is open and causes the library windows to
dock on the right side of the application window. Depending on settings in the Edit > Options >
Libraries tab, library windows might also open automatically whenever ExtendSim is
launched. Note: see also the two buttons at the top of the library window docking area for
opening and closing all library windows.

Close All Library Windows
Closes all the library windows that are currently open. Note: see also the two buttons at the top
of the library window docking area for opening and closing all library windows.

☞ Does not close the library; see the Close Library command for that.

552 Menu Commands and Toolbars
Library menu

A
pp

en
di

x

Library Tools
☞ The following commands are of interest mainly to block

developers.

New Library
Creates a new library and opens a dialog for entering its
name.

Compile Libraries
Opens a dialog for selecting which libraries to compile.
Libraries must be open to be included in the list. To com-
pile libraries with debugging code, give the Add Debug
Code to Libraries command before giving this command.
To remove debugging code, give the Remove Debug Code
from Libraries command, then give the Compile Libraries command.

Compile Selected Blocks
Causes the selected blocks to be recompiled. To activate the command, select blocks in the
library window. Uncompiled blocks show in the library window with their names in red italics.

Add Debug Code to Libraries
Opens a dialog for selecting which libraries will be recompiled with debugging code. Give this
command, then give the Compile Libraries command. Blocks with debugging code enabled
show in the library window and on the model worksheet with a red border around their icons.

Remove Debug Code from Libraries
Opens a dialog for selecting which libraries will be recompiled without debugging code. Give
this command, then give the Compile Libraries command.

Add External Code to Libraries
Opens a dialog for selecting libraries. For each block in a selected library, moves its source
code into a separate text file. This is useful for source code control. For more information, see
the Technical Reference. Blocks with external code enabled show in the library window with a
green CM on their icons.

Remove External Code from Libraries
Opens a dialog for selecting libraries. Moves the external source code back into each selected
library’s blocks. For more information, see the Technical Reference.

Protect Library
After two warning messages, opens a dialog for selecting which library to protect. Protection
removes the ModL source code from all the blocks in the selected library so users cannot
access block code. For more information, see the Technical Reference.

 You would only use this command to protect libraries of blocks you build yourself. Do not use
this command with the libraries that are included with ExtendSim.

Set Library Version
Allows you to set the long and short version strings for libraries you have developed. This is
useful for version control if you are programming your own libraries.

Menu Commands and Toolbars 553
Model menu

A
ppendix
Convert Library to RunTime Format
Changes a copy of a selected library to Runtime format. This removes the ModL code, as dis-
cussed in the Protect Library command, above and ensures that Model Developer editions of
ExtendSim cannot open or use the protected library.

Converting to Runtime format provides an easy method for providing libraries to others for
evaluation or model running, while preventing those libraries from being used to build models.

☞ If creating Run Time libraries on a different computer platform than the eventual target, you
must compile the library on the target platform before converting it to a Run Time library.

List of libraries
As libraries are opened, they are listed at the bottom of the Library menu in alphabetical order.

Model menu

Make Selection Hierarchical
Encapsulates selected blocks into a single hierarchical
block and replaces those blocks on the model work-
sheet with the hierarchical block. This is described in
“Hierarchy” on page 120.

New Hierarchical Block...
Opens a window for starting a new hierarchical block.
This prompts you for the name of the new hierarchical
block, then opens a blank hierarchical block structure
for building the encapsulated model. This is described
in “Creating a new hierarchical block” on page 124.

Open Hierarchical Block Structure
Opens the structure of a hierarchical block so you can
edit its icon or Help. Note that the hierarchical block
must be selected on the model worksheet. This com-
mand is equivalent to holding down the Alt (Windows)
or Option (Mac OS) key while double clicking a hierar-
chical block on the model worksheet. See “Modifying
hierarchical blocks” on page 128.

Open Enclosing Hierarchical Block
Finds the hierarchical block that contains the selected block. If the enclosing hierarchical block
is at the top level of the model worksheet, the hierarchical block will be selected (shows as
highlighted) on the worksheet. If the enclosing hierarchical block is below the top level of the
worksheet, the command opens the hierarchical block’s worksheet, showing the submodel that
contains the selected block.

Hierarchical Block Icon View
Places a miniaturized picture of its submodel on the selected hierarchical block’s icon. This
enables a live view of the worksheet and contents of the HBlock, including updates of the ani-
mation inside the HBlock.

554 Menu Commands and Toolbars
Model menu

A
pp

en
di

x

Connection Line Style
Sets the format of the connection lines. For details, see “Connection line appearance” on
page 116.

Show Named Connections
Inserts connection lines between named connections. This is useful to show data flow in com-
plex models with many named connections. Named connections are discussed at “Named con-
nections” on page 118.

Hide Connections
Hides the connection lines between blocks. This is a cosmetic change that is mostly used to
enhance presentations. Select the command again to show the connecting lines.

☞ This command works at each level of hierarchy separately and takes effect in whichever level
is the active window. Thus if you want only the top level of the model to not show connections,
but the hierarchical levels to show connections, choose the command when no hierarchical lev-
els are open.

Hide Connectors
Hides the connectors visible on blocks. This is a cosmetic change that is mostly used to
enhance presentations. Select the command again to show the connectors.

☞ This command works at each level of hierarchy separately and takes effect in whichever level
is the active window. Thus if you want only the top level of the model to not show connectors,
but the hierarchical levels to show connectors, choose the command when no hierarchical lev-
els are open.

Show Block Labels
Shows the block labels below the blocks in the model.

Show Object IDs
Puts the Object ID in square brackets on each block in the model. Object IDs are unique, per-
manent identifiers. The blocks inside a hierarchical block show two numbers—the first is the
block’s global Object ID and the second is the block’s local number within the hierarchical
block.

☞ While each object in ExtendSim—block, text, graphic object, and so forth—has a global
Object ID, this command only shows the IDs for blocks. To see the Object ID for a non-block
object, right-click the object and look in its Properties dialog.

Show Simulation Order
Puts the number of the block’s order of execution on the blocks in the model. Hierarchical
block internals have their own simulation order relative to the parent block. Simulation order
only relates to continuous process models; it is discussed in the Continuous Modeling Quick
Start guide.

Because blocks can override the system’s simulation order, this display may be inaccurate for
discrete event (Item library) and discrete rate (Rate library) blocks that send block-to-block
messages.

Menu Commands and Toolbars 555
Model menu

A
ppendix
Set Simulation Order...
Opens a window for setting the selected block’s order of execution in the model. Simulation
order only relates to continuous process models; it is discussed in the Continuous Process
Modeling Quick Start guide.

Create/Edit Dynamic Link...
Opens the Link dialog so a selected block’s parameter field or data table can be linked to an
internal data structure (ExtendSim database or global array). This action creates a two-way
dynamic link between the data structure and the dialog item. Dialog parameters can be linked
to a cell in a global array or database table; dialog and graph data tables can be linked to a
global array or database table. Although you can link data tables to a database table, you can-
not link an individual cell in a data table to a cell in a database.

☞ The Create/Edit Dynamic Link command is only used for linking parameters and tables to
internal data structures.

When you give the Create/Edit Dynamic Link command, a window appears with tabs for
selecting the data structure. Depending on the structure selected, other options are presented.
To delete a dynamic link, click the linked parameter or select the linked data table and give the
Create/Edit Dynamic Link command. In the dialog, choose Delete Link.

The command is equivalent to right-clicking the dialog item and choosing Create/Edit
Dynamic Link, or (for a data table) clicking its Link button. Dynamically linked parameters are
outlined in light blue. Dynamically linked data tables display the words DB (database) or GA
(global array) in their upper left corner. For more information, see “Dynamic linking to internal
data structures” on page 229.

.☞ Another type of internal data source is a dynamic array, which is implemented through a
block’s code. You cannot use the Create/Edit Dynamic Link command to link to a dynamic
array without programming. However, if a data table is already programmatically linked to a
dynamic array, its upper left corner will be blue.

Open Dynamic Linked Blocks...
Opens the Find
Links dialog,
shown on the
right.

The Find Links
dialog is useful
for locating and
examining linked
dialog items or
registered blocks.

The options in the
dialog allow you
to choose where
you want to
search (the contents of databases, global arrays, and/or dynamic arrays) and what you want to
find (code-defined links, user-defined links, or registered blocks). User-defined links were cre-
ated by the modeler through the user interface; code-defined links were defined by block devel-
opers through ModL code. Registered blocks do not have any specific dialog items associated

556 Menu Commands and Toolbars
Model menu

A
pp

en
di

x

with a link. Instead, the block just requests that it be informed when the linked data source
changes.

☞ Since registered blocks are mainly for developers, they are discussed in the Technical Refer-
ence.

The DB selectors and the GA popup menu on the right of the dialog specify which database or
global array structure will be searched for.

☞ Leaving the DB name or GA name popup menus to the default (empty) choices as seen above
will find any linked database or global array.

When the OK button is clicked, ExtendSim opens the dialogs of all the blocks with the speci-
fied types of links or registration.

☞ If the model is large and you specify all types of links this command can open many block dia-
logs. It is usually advisable to search for specific types of links, so as not to have more dialogs
open than needed.

Sensitize Parameter...
If a dialog parameter is selected, this command opens the Sensitivity Setup dialog, which lets
you set values for sensitivity analysis. An alternate method of opening the Sensitivity dialog is
to click on the dialog parameter once while holding down the Control (Windows) or Command
(Mac OS) key.

A parameter that has sensitivity settings has a frame inside of it. If sensitivity analysis is active
for a parameter (that is, if the Enable sensitivity choice is checked in the Sensitivity Setup dia-
log), the frame is green. If the sensitivity analysis is inactive for the parameter or if it is turned
off for the model as a whole, the frame is red.

Sensitivity analysis is discussed in “Sensitivity analysis” on page 138.

Open Sensitized Blocks
Opens the dialogs of all blocks that have sensitized parameters. This is useful for finding
which blocks are used in the scenario. The command opens dialogs with sensitized parameters
even if sensitivity has been disabled for a parameter or is not active for the entire model. For
more information, see “Sensitivity analysis” on page 138.

Protect Model...
Opens a window for protecting the model from any modifications other than changing dialog
values. Can also be used to lock a hierarchical block. Protecting models and hierarchical
blocks is useful if you are giving the model to others who are unfamiliar with ExtendSim fea-
tures and may accidentally move or delete blocks. For more information, see “Protecting the
model” on page 255.

 Always make unlocked copies of models before you lock them. Once you have locked a model
with a password, you must have that password to unlock the model.

Menu Commands and Toolbars 557
Database menu

A
ppendix
Database menu
The database win-
dow is for viewing
and managing the
schema and data
for an ExtendSim
database. The
schema is the skel-
eton structure that
represents the logi-
cal view of the
entire database—
tables, fields, and
parent/child rela-
tionships. The data view is where records are created and data is entered.

To open a database window for an existing database, do one of the following:

• Click the name of the database at the bottom of the Database menu.
• Give the Window > Database List command and double-click a database in the list.
ExtendSim databases are stored with the model. They open when the model opens and are
saved or closed when the model is saved or closed. For more information about creating and
using ExtendSim databases, see “ExtendSim databases for internal data storage” on page 232
and the eBook ExtendSim Database located at Documents/ExtendSim/Documentation.

☞ Database windows have their own sets of buttons, as shown on page 573.

558 Menu Commands and Toolbars
Database menu

A
pp

en
di

x

New Database...
Opens a dialog for naming and creating a new ExtendSim data-
base for the model. The dialog also shows a list of the model’s
current databases so you can avoid using a duplicate name—
ExtendSim will warn you if you try to use a duplicate name.

☞ A model window must be opened for this menu to be enabled.

☞ The database’s name may not start with an underscore (_), may
not be used by another database in that model, and cannot exceed
63 characters. Database names are not case sensitive and they can
contain spaces.

Edit Database Properties...
Opens a dialog for selecting a database to rename.

Import Database...
Opens a window for creating a new ExtendSim database by
importing a database text file that has been exported from an
entire ExtendSim or SDI Industry database. (See the “Export
Database...” command for how the database text file was created.)

In the window, select the database text file to import and give it a
name. This command imports all the tables, fields, records, data,
and relations from the exported database and creates a new data-
base. If you choose the name of an existing database instead of a
new name, a dialog gives options for how like-named and other
tables should be handled.

To instead just import tables to an existing database, see the “Import Tables to Database...”
command.

Export Database...
Exports the entire selected ExtendSim database—all tables, fields, records, and so forth—into
a special database text file. Do this to import the database into another model, send the data-
base to another user, or prepare a database text file for use by the ExtendSim DB Add-In for
Excel. Exported databases can only be imported to ExtendSim or to the ExtendSim DB Add-In
for Excel.

To instead export only specific tables from a database, see the “Export Selected Tables” com-
mand.

Import Tables to Database...
With an existing ExtendSim database window active, opens a window for selecting a database
text file that was created using the “Export Selected Tables” command and adds the imported
tables to the existing database. This command imports all the tables from the exported file and
places them below the existing tables in the Tables pane. If you end up with unneeded tables,
you can delete them.

To instead create an entirely new database using imported files, see the “Import Database...”
command.

Menu Commands and Toolbars 559
Database menu

A
ppendix
Export Selected Tables
Creates an ExtendSim database text file containing only the selected tables. Use this command
instead of the “Export Database...” command, when you want an exported file that contains
only a portion of the database. To enable the command, select one or more tables in a database
window.

New Table...
Opens a window for creating a new table for an ExtendSim database and adds it to the list of
tables in the database’s All Tables tab. The dialog that appears displays a list of the database’s
existing tables. After naming the table, click OK. To enable this command, bring a database
window to the front.

☞ To delete a table from a database, select the table and use the Delete or Backspace key or go to
the Edit > Clear Selected Tables command. A dialog displays the delete options and, if there is
data dynamically linked to the table, warns you before deleting it.

Edit Table Properties...
Opens a dialog for editing table properties such as
the table name, whether it should be initialized, and
its tooltips. This dialog is discussed in the separate
document titled ExtendSim Database Tutorial and
Reference. The command works the same as right-
clicking a database table and selecting Edit Table
Properties.

Clone Selected Tables to Tab...
Clones the table or tables to another tab in the data-
base window. To enable this command, bring a
database window to the front, as described under
Database menu, above. Bring the source tab to the
front. Select the tables to clone using the Block/Text
cursor and give the command. (Or right-click a
selected table and choose “Clone Selected Tables to
Tab”.) In the dialog, select the tab to copy the table
to.

☞ Cloning is different than duplicating or copying and pasting a table. Tables that are copied are
neither linked to each other nor to the original table. However, a cloned table will behave
exactly like the original table and will change when the original table changes. Likewise,
changes made to the cloned table will be reflected in the original table.

Import Delimited File To Table...
Use this command to import into a table a file that was created in Excel or some other applica-
tion. See note below about exported delimited text files.

560 Menu Commands and Toolbars
Database menu

A
pp

en
di

x

Copies data from a text file into the selected table. After
choosing the file to be imported, the Select Delimiter dialog
appears.

Rows in a text file are automatically separated by returns;
you must specify how the columns are delimited (sepa-
rated). Most exported text files have columns delimited by
tabs but check the format of the text file before choosing
this command. For more information, refer to “Importing
and exporting data” on page 223.

☞ A table from a database must be selected before this command can be used.

Export Table to Delimited File...
 The main purpose of exporting a table as a delimited text file is so the file can be read by Excel
or some other application. And the main purpose of importing a delimited file is to use a file
created in Excel or some other application. However, delimited files are not automatically for-
matted as an ExtendSim database table as would be generated using the Export Selected Tables
or Import Tables to Database commands. If you want to work on ExtendSim databases in
Excel, a better method would be to use the ExtendSim DB Add-In.

Use this command to create a text file that can be read by Excel or some other application.

Copies data from a selected database table to a text file. It works the opposite of the “Import
Delimited File To Table...” command. After you give the file name, ExtendSim puts up the col-
umn separator dialog (as shown in the previous section), so you can specify which type of sep-
arator to use in the text file. For more information, refer to “Importing and exporting data” on
page 223.

Append New Field...
Creates a new field for the selected table and puts the field
below any other fields in the list. Works the same as right-
clicking a database table and selecting Append New Field.

As seen above, the dialog gives options for setting the
field’s name, type, initialization, and other properties. To
enable this dialog, select a table in the Schema view and
either right-click for the command or give the command
from the menu.

☞ To delete a field, use the Delete or Backspace key, right-
click and choose Clear Selected Fields, or go to Edit > Clear
Fields. A dialog displays the delete options and, if there is
data dynamically linked to the field, warns you before delet-
ing it.

Insert New Field...
Works like the Append New Field command, except inserts
the new field above the selected field in the table.

Menu Commands and Toolbars 561
Database menu

A
ppendix
Edit Field Properties...
Opens a dialog for editing field properties; the dialog is similar to the Append New Field dia-
log shown above. This command works the same as right-clicking a database field and select-
ing Edit Field Properties.

Append New Records...
Creates new records for the selected field and puts the records below any other records in the
field. A dialog requests the number of records to add. To enable the command, choose the Data
view in the database window or double-click the table to open the Table window, then right-
click on a field.

☞ To delete a record, use the Delete or Backspace key or go to Edit > Clear Record. A dialog dis-
plays the delete options and, if there is data dynamically linked to the record, warns you before
deleting it.

Insert New Records...
Works like the Append New Records command, except inserts the new record above the
selected record.

Delete Selected Records
Removes the selected records from the currently active ExtendSim database table.

Make Cell Random...
Makes the selected cell random. Choosing this option opens a dialog for selecting the distribu-
tion (including a named distribution) and its parameters.

Remove Cell Randomness...
Returns a randomized cell to being a constant.

Read/Write Index Checking
“For database read/write functions, this command enables error messages if a read/write func-
tion call has illegal indexes. This is a good tool for finding illegal indexes and enabling this
option does not impact the speed of a simulation run. Leave it unchecked if it is preventing a
legacy model from running. New models have this checked by default.

List of databases
At the bottom of the Database menu is a list of open data-
bases. The list can also be seen by giving the command
Window > Database List.

☞ Some databases are reserved and will only be listed if the
command Show Reserved Databases is given in the Develop menu. The names of reserved
databases, such as RightClickConnect shown here, are preceded by an underscore (_) character
and in general should not be modified unless you really really really know what you’re doing.

562 Menu Commands and Toolbars
Develop menu

A
pp

en
di

x

Develop menu
The Develop menu is used when creating or modify-
ing blocks and storing them in libraries. See the
ExtendSim Technical Reference to learn how to cre-
ate your own libraries of blocks and for additional
information on using these commands.

New Block...
Opens a dialog for creating a new block. In the dia-
log, select the library where the block will reside,
then specify the block’s name.

Currently open libraries are listed on the left. Use the
Open Another Library button to open a library that is
not yet open, or the Create New Library button to
create a library for the new block.

After the block has been named and installed in the
selected library, the block’s default structure window
appears with tabs for the icon, dialog, script, and
help. For a quick overview on building a new block, see the Technical Reference.

Open Block Structure
Opens the structure of the selected block, with tabs for the block’s icon, dialog, script, and
help. You can also right-click a block’s icon and choose this command.

☞ This command is equivalent to holding down the Alt (Windows) or Option (Mac OS) key while
double-clicking a block’s icon in the library window or on the model worksheet.

Rename Block...
Opens a dialog for renaming a block. This command is only enabled when a block’s structure
is the active window.

Menu Commands and Toolbars 563
Develop menu

A
ppendix
Set Block Category...
Opens a dialog for setting a block’s category. This serves two
functions:

• To organize blocks within the Library menu by functionality.
• To organize blocks within statistical reports by functionality.

This command is only enabled when the block’s structure is the
active window. If Show category in Library menu is not
checked in the dialog, the block name will be listed in alpha-
betical order directly under the library’s name in the Library
menu. Note that you cannot change the categories of ExtendSim blocks.

Compile Block
Compiles the ModL code for the block. This is useful for checking the syntax of the code that
you are working on without having to close the block’s structure. This command is only avail-
able when the block’s structure is the active window. You can also choose to compile the block
with debugging information and with external source code, as discussed below.

Generate Debugging Info
If this command is selected when the Compile Block command is given, ExtendSim generates
debugging information for the block. This allows you to debug block source code using break-
points, watch points, and so forth. If compiled with debugging code, block icons will show on
the model worksheet and in the library window with a red border around them.

When used in models, blocks with debugging code run slower. To remove debugging code
from a block, open the block’s structure and uncheck the Generate Debugging Info command,
or right-click the block on a model worksheet and select Remove Breakpoints and Debugging
Code. To remove debugging code for an entire library, see “Remove Debug Code from Librar-
ies” on page 552.

External Source Code
If this command is selected when the Compile Block command is given, ExtendSim generates
a text file containing the block’s source code. This is used for version control. If a block has
been compiled with external source code, it will be listed in the library window with the desig-
nation CM (code management) on the right side of its icon.

New Include File
Creates an untitled Include file.

Open Include File...
Opens a window for browsing to an existing Include file.

Delete Include File...
Opens a window for browsing to an existing include file so it can be deleted.

Shift Selected Code Left
Moves the selected lines of the ModL code one tab stop to the left. This command is only
enabled when a block’s structure is open and the Script tab is the active window.

564 Menu Commands and Toolbars
Develop menu

A
pp

en
di

x

Shift Selected Code Right
Moves the selected lines of the ModL code one tab stop to the right. This command is only
enabled when a block’s structure is open and the Script tab is the active window.

Go To Line...
Allows you to quickly move to a specific line in the block code. This command is only enabled
when a block’s structure is open and the Script tab is the active window.

Go To Function/Message Handler
Jumps to where the function or message handler is defined in the code. Select the function or
message handler name where it is used in the code, then give the command. This is equivalent
to holding down the Alt (Windows) or Option (Mac OS) key while double clicking the func-
tion or message handler name, or right-clicking on the function or message handler name. This
command is only enabled when a block’s structure is the active window and the cursor is in the
structure’s Script tab.

Move Selected Dialog Items to Tab
Allows you to move the selected dialog items from one tab to another. Only enabled when the
block’s structure window is open, the Dialog tab is active, and one or more dialog items is
selected.

Set Breakpoints and Add Debugging Code
Recompiles the block in debugging mode (if not already done) and opens two windows: the
Breakpoints window for the model and the Set Breakpoints window for the block. As dis-
cussed below, the Breakpoints window shows the breakpoints for all the blocks in the model.
The Set Breakpoints window shows the source code for the block and has a breakpoint margin
at the left. This command is only enabled when a block is selected on the model worksheet.

Remove Breakpoints and Debugging Code
Removes the breakpoints from the selected block and closes the Set Breakpoints window. This
command is only enabled when a block is selected on the model worksheet.

Open Breakpoints Window
Opens the global Breakpoints window, showing all breakpoints from all blocks in the model.
This command is only enabled when a model worksheet is open.

Continue
Continues execution from a breakpoint. This command is only enabled when the source
debugger is the active window and you are stepping through the code.

Step Over
Steps over a function call when stepping after a breakpoint. This command is only enabled
when the source debugger is the active window and you are stepping through the code.

Step Into
Steps into a function call when stepping after a breakpoint. This command is only enabled
when the source debugger is the active window and you are stepping through the code.

Menu Commands and Toolbars 565
Run menu

A
ppendix
Step Out
Steps out of a called function to return to the caller when stepping after a breakpoint. This
command is only enabled when the source debugger is the active window and you are stepping
through the code.

Break to Debugger
Immediately opens the debugging window if libraries are compiled with debugging code and
you are running a model or starting some operation in a block's dialog. This will show exactly
where and what block code is executing. This is very useful in finding problems and loops in
block code.

Show Reserved Databases
Causes the model’s reserved databases, if any, to be listed at the bottom of the Database menu
and in the Database List. Reserved databases allow programmers to use database capabilities
without the model-user being aware of the database. Since reserved databases can only be cre-
ated and modified through the ExtendSim database API, they are discussed in the ExtendSim
Technical Reference.

 There’s a really good reason why a database is reserved. So unless you are the developer who
created the database, you probably should not be giving this command.

Run menu
The Run menu lets you modify when and how your sim-
ulation runs, show animation, and generate model
reports. A hierarchical menu at the bottom provides
commands for debugging models. For more information
about running models, see “Model Execution” on
page 83.

Run Simulation
Starts a simulation. This is the same as clicking the Run

 or button in the Model toolbar. The command
first checks every block in the model to see that it has
been compiled.

☞ The icon of the Run Simulation button changes depend-
ing on which Run Mode has been selected in the Model
toolbar. If the model has been set to run in the fastest
(rather than multi-threaded) mode, the Run button will
be . For more information, see “Run modes” on
page 87.

Note that during the simulation run, the Run button in the toolbar changes to a Pause button
while the simulation is running and to a Resume button while the simulation is paused. See
“Model toolbar” on page 569 for more information.

Run Optimization or Scenarios
Runs an optimization or scenarios. This command is disabled unless there is an Optimizer or
Scenario Manager block (Value library) in the model. See “Optimization” on page 158, or see
“Scenario analysis” on page 143. Note that you cannot run optimization and scenarios at the
same time. ExtendSim will warn if you give this command, or use the Run Optimization or
Scenarios button, with both an Optimizer and a Scenario Manager block in the model.

566 Menu Commands and Toolbars
Run menu

A
pp

en
di

x

Use Sensitivity Analysis
Causes ExtendSim to use sensitivity analysis settings when you run the simulation. Only
enabled if a dialog parameter value has sensitivity settings. For more information, see “Sensi-
tivity analysis” on page 138.

Simulation Setup...
Opens a dialog for setting the start time, end time, and other settings for a simulation run as
well as options for setting random number seeds. The dialog is described in detail in “Simula-
tion setup” on page 84.

Show 2D Animation
Causes blocks in the model that have animation to animate when the simulation is run. This is
discussed in“Animation” on page 110. Note that some blocks can show some animation, such
as text on the icon reporting final values, even if Show Animation is not selected. You can also
choose to animate along connection lines or between named connections, as discussed below.

Animate Connection Lines
This option controls whether or not 2D animation pictures will be displayed along connection
lines in discrete event models. If on, blocks from discrete event libraries (such as the Item
library), will display their item animations; this is discussed in “Animating the movement of
items between blocks (discrete event modeling only)” on page 111. If off, only animations on
block icons will be displayed. This command requires that Show 2D animation be enabled and
is only available for discrete event models.

Animate Named Connections
For named connections (where text labels, rather than connection lines, indicate the path of
items), this option will cause the 2D animation picture to travel in a straight line between the
two text labels. If this option is turned off, the animation picture will disappear when it has
reached a text label and reappear at the matching text label. This command requires that Show
2D animation be enabled and is only available for discrete event models.

Launch StatFit (Windows only)
Opens the Stat::Fit application. This command is only enabled if Stat::Fit is installed. Stat::Fit
is a Windows only product that is included with certain ExtendSim products; it can be pur-
chased separately for use with other ExtendSim products. For more information about Stat::Fit,
see “Stat::Fit (Windows only)” on page 172.

Stop
Stops the simulation. This is the same as the Stop button in the toolbar. As an alternative,
hold down the Ctrl (Windows) or Command (Mac OS) key while pressing the period (.) key. In
any case this will cause a window to appear where you can choose to continue the run or end it.

Pause
Halts the simulation temporarily. This is the same as the Pause button in the toolbar. Note
that the Pause button replaces the Run button in the toolbar once the simulation starts running.
Once the simulation is paused, the Resume button appears until the simulation is resumed.
To restart the simulation, give the Resume command, below, or click the Resume button.

Menu Commands and Toolbars 567
Run menu

A
ppendix
Resume
Restarts a paused simulation. This is the same as the Resume button in the toolbar. Once
the simulation has resumed, the Pause button appears in the toolbar until either the simula-
tion gets paused or the run finishes.

Step
Steps the simulation run depending on which option (Step Each Block or Step Entire Model) is
selected in the Run > Model Debugging menu. This is the same as the Step button in the tool-
bar. See the Step commands in the Model Debugging menu below, as well as “Stepping
through a model” on page 89.

Model Debugging
This hierarchical menu shown to the right facilitates
finding a modeling problem. For additional model
debugging help, see “Debugging Tools” on page 205.

Pause at Beginning
If enabled, pauses the simulation after it starts so that
you can step through the run from step zero. The first
pause occurs before the first step but after the initial
model processing (initialization, error checking, etc.)
While the simulation is paused, the word Paused
appears in the model’s status bar.

Step Each Block
Controls the behavior of the Step command or button so that you can step through a simulation
block by block. Only active when the Pause button or command has been activated.

Step Entire Model
Controls the behavior of the Step command or button so that you can step through an entire
cycle of all the blocks in the model. Each Step command starts at the selected block and con-
tinues the simulation run until the execution order returns to the original block. Only active
when the Pause button or command has been activated. This is a good way to examine what
happens in the intervals between when a block is called.

Generate Trace
The Trace commands are used to generate a Trace file of the values for each selected block in
the active model worksheet at each step of the simulation. ExtendSim will prompt for a name
for the new trace file when the model starts running. The content of the trace file depends on
which blocks have been selected to be included. For more information, see the following com-
mands and “Model tracing” on page 216.

Add Selected Blocks to Trace
Causes blocks that have been selected in the active model worksheet to be included in the trace
file. Trace files are generated if Generate Trace is checked when the model is run.

Add All Blocks to Trace
Causes all blocks in the active model worksheet to be included in the trace file. Trace files are
generated if Generate Trace is checked when the model is run.

568 Menu Commands and Toolbars
Window menu

A
pp

en
di

x

Remove Selected Blocks from Trace
Causes blocks that have been selected in the active model worksheet to be removed from the
trace file.

Remove All Blocks from Trace
Causes all blocks in the active model worksheet to be removed from the trace file. Use this
before starting a new type of trace.

Show Tracing Blocks
Causes blocks that have been included in a trace to show the word Trace on them in the model
worksheet.

Profile Block Code
Generates a text file showing the percentage of time that each block spent executing during the
simulation run. See “Look for inefficient settings or code” on page 99 for more information
about profiling a model.

Window menu
For the Windows operating system, the Window menu list
the standard Tile, Cascade, Next, and Previous commands.

The menu also lists open ExtendSim windows—models,
dialogs, and library windows—at the bottom. To bring a
window to the top of your workspace, select it from this
menu.

Navigator
Opens or brings forward the Navigator for the active model. This is the same as choosing the
Navigator button in the toolbar. The Navigator is an explorer-type interface for a model work-
sheet, showing all blocks and hierarchical layers. For more information about the Navigator,
see “Navigator” on page 110.

Database List
Opens or brings forward a window showing the databases (if any) used in the model. This is
the same list of databases that is shown at the bottom of the Database menu. Databases and
their usage are discussed at “ExtendSim databases for internal data storage” on page 232.

Open Enclosing Hierarchical Block
Finds the hierarchical block that contains the selected block. If the enclosing hierarchical block
is at the top level of the model worksheet, the hierarchical block will be selected (shows as
highlighted) on the worksheet. If the enclosing hierarchical block is below the top level of the
worksheet, the command opens the hierarchical block’s worksheet, showing the submodel that
contains the selected block.

Tools menu

File toolbar

The standard buttons for opening a new model, opening an existing model, saving, and print-
ing.

Menu Commands and Toolbars 569
Tools menu

A
ppendix
Edit toolbar

The standard Cut, Copy, Paste, Undo, Redo, and Find buttons. Between the Undo and Find
buttons are buttons for zooming in and out, returning to normal size, and zoom to fit.

Hint: on the model worksheet, hold down Ctrl while moving the mouse’s scroll wheel to zoom
in and out.

☞ What happens when you use Cut, Copy, and Paste depends on the cursor that is used. For
example, using the Block/Text cursor to frame-select and copy disparate items (blocks, text,
graphic objects, pictures, etc.) will only copy the blocks and the text. Using the All Objects
cursor would copy all the items.

Model toolbar

Controls simulation and animation behavior and opens the Navigator.

• The first button is the Run Mode button. As discussed in “Run modes” on page 87, toggle to
fastest run mode (shown above) when running a single model one or more times and use the
multi-threaded run mode when running multiple models at the same time.

• The Run Simulation button:

• Is either a single green arrow if the Run Mode (discussed above) is set to fastest run or
multiple arrows if the Run Mode is set to multi-threaded. Use the fastest run for single
models, even if running them multiple times. Use multi-threaded if you are running
multiple models at the same time.

• Changes to a Pause button while the simulation is running and to a Resume button if
the simulation is paused.

• The Run Optimization/Scenarios button is only enabled if the active model contains the Sce-
nario Manager or the Optimizer block; both are from the Value library. Furthermore, you
cannot run optimization and scenarios at the same time and ExtendSim will warn if you use
this button with both an Optimizer and a Scenario Manager in the model.

• The Animation Slider and the Faster and Slower Animation icons apply only to 2D anima-
tion.

• The last button on the right, the Navigator, presents an explorer-type representation of the
model; it is discussed on page 110.

Text toolbar

For setting the font and its style (such as Bold or Underline) and size.

• For model-wide use, set the font and format before creating any text boxes

570 Menu Commands and Toolbars
Tools menu

A
pp

en
di

x

• Create a text box by double-clicking on the model worksheet or by selecting the Text Box
button in the Shapes tool.

• The Align Text button, shown at right, cycles through options for the selected text:
left adjusted, centered, or right adjusted.

• By default text is drawn with a transparent background. Toggle the Transparent Background
button, shown to the right of the Align Text button above, to cause the background of the
selected text to be an opaque white.

☞ For text files, which by nature don’t retain font information, set the default font and size in the
Edit > Options > Model tab. That option does not apply to the text boxes discussed above.

Shapes toolbar

For drawing and coloring shapes, lines, and text and for adding borders to shapes and text. For
more information, see “Graphic shapes, tools, and commands” on page 107.

☞ To get a square or circle, right-click a Rectangle or Oval shape to access its Properties. Then set
the object’s width and height to be the same.

☞ By default, text and shapes other than lines do not have a border. Before selecting a border
color for text or a shape, choose a border width using the Line/Border Thickness button.

Alignment toolbar

Use these tools to manipulate graphic objects such as shapes, text, and lines. The buttons allow
you to align selected text and graphics, cause an overlapping object to be sent to the back or
brought to the front, flip a selection of multiple objects, and rotate a selected object 90 degrees
from where it is or (Free Rotate) a specified number of degrees from zero.

☞ Depending on which cursor is used, different behaviors will occur. For example, using the
Block/Text cursor to frame-select and align disparate items (blocks, text, graphic objects, pic-
tures...) will only align the blocks and the text. Using the All Objects cursor would align all the
items.

 The Flip buttons only flip the relative positions of multiple objects that have been selected
together. They do not result in the displaying of the reverse image of a graphic. Use an applica-
tion such as Photoshop to create reverse images of graphics.

Cursors toolbar

Displays the Block/Text, Graphics, Clone, and All Objects cursors. Also shows the position of
the cursor on the model worksheet and on the Icon and Dialog tabs of a block’s structure.

☞ Depending on which cursor is used, different behaviors will occur. For example, using the
Block/Text cursor to frame-select and copy disparate items (blocks, text, graphic objects, pic-

Menu Commands and Toolbars 571
Help menu

A
ppendix
tures, etc.) will only copy the blocks and the text. Using the All Objects cursor would copy all
the items.

Library Windows toolbar

These two tools are located by default at the far right of the toolbar, over the library window
docking area. Use them to open or close the library windows for all open libraries.

☞ Opening or closing a library window does not open or close the associated library. See the
Library menu for opening and closing a library.

Dialog Items toolbar

Inserts dialog items (buttons, checkboxes, popup menus, controls, etc.) used when creating a
block’s dialog. Since this set of buttons is only used when building or modifying blocks, the
tool is unchecked by default. See the Technical Reference for information about each of these
dialog items and how they are called from the block’s code.

Icon toolbar

Inserts connectors and animation objects used when creating a block’s icon. Since this set of
buttons is only used when building standard or hierarchical blocks, the tool is unchecked by
default. The connectors are described on page 61.

Help menu
This menu has commands for accessing ExtendSim Help and useful web
sites as well as for activating your ExtendSim license.

ExtendSim Help
Opens a window with a list of available Help topics.

Support Center
Uses your current browser to open an ExtendSim web page with support
resources—example models, FAQs, manuals, and more.

☞ Use the form on this web page to initiate a support ticket. Your query will
be dealt with by an experienced Tech Support representative and
answered as quickly as possible.

Check for Updates
Uses your current browser to open an ExtendSim web page with information about the latest
release of ExtendSim.

☞ Your product’s current release number is located on the startup window. Select the About
ExtendSim command in the Help menu.

572 Menu Commands and Toolbars
Help menu

A
pp

en
di

x

ExtendSim Online
Uses your default browser to open the home page at www.ExtendSim.com.

Activate License
Opens the Activation Dialog so you can enter an Activation Key for an Individual license of
ExtendSim. The Activation Key represents your license for ExtendSim as well as which
ExtendSim product you purchased.

• If your device has Internet access and its security system doesn’t block the process, activa-
tion can occur automatically.

• If automatic activation is blocked, ExtendSim will display an alternate method so you can
activate the license manually.

• License activation is tied to the computer upon which activation is performed; it is granted
and handled by our activation server and database.

 In most cases Individual licenses of ExtendSim may be installed on only one device and acti-
vation on a second device will fail unless the license has been revoked from the original
device.

Revoke License
Use this command to remove your license from your current device.

• Revoke the license from the current device before selling or decommissioning it

• Then activate ExtendSim on a different device using the same Activation Key

 Revoking the license does not uninstall ExtendSim. Use the normal operating system proce-
dures to uninstall ExtendSim from your device.

Reactivate License
 Do not use this command if you are updating ExtendSim from one minor release to another,
such as from 10.x to 10.y.

Only use this command for an Individual license and only if there has been a major change to
the actual license, such as:

• A change in the expiration date for the annual Maintenance and Support Plan

• A change in the number of Reliability Event Cycles

The command tries to automatically revoke the current license over the internet without exiting
ExtendSim, then immediately tries to reactivate it using the same Activation Key as before. If
revoking and reactivation cannot be accomplished automatically, ExtendSim will display an
alternate method so you can perform the process manually.

 Do not use this command if you are changing the number of concurrent users for a Floating
license or to increase the number of concurrent instances for a Cloud license.

Floating License
This command is only enabled if you have a Floating license, which is controlled by License
Manager. As opposed to an Individual license, a Floating license allows multiple installations
of ExtendSim and multiple concurrent users.

Menu Commands and Toolbars 573
ExtendSim database window toolbars and buttons

A
ppendix
Check Out a Floating License
Allows you to check out a computer’s Floating license, temporarily disconnecting that Extend-
Sim license from the License Manager. This is most often done for a laptop that is to be used
offsite. Checking out a license reduces the maximum number of concurrent users the License
Manager allows. That number will be restored when the license is properly checked back in.

Check In a Floating License
After reconnecting the client computer to the server that hosts the License Manager, use this
command to return a license that had been temporarily checked out from the network. This
also restores the number of concurrent users the server allows.

About ExtendSim (Windows only)
Opens the startup window which lists information about your ExtendSim product and its
license. To close the startup window, click it.

☞ The About ExtendSim window also lists the ExtendSim product’s release number.

ExtendSim database window toolbars and buttons

Database window - Schema view

Buttons for adding a new table, adding or inserting fields in a table, showing and hiding all
tables, or cleaning up the display of visible tables so none overlap.

Database window - Data view

Buttons for appending, inserting, or deleting records, making a cell random or removing ran-
domness, and sorting a table’s data.

☞ If you double-click a table, these buttons also appear in the Table Viewer except the Viewer has
an additional button to open or bring forward the database window.

574 Menu Commands and Toolbars
ExtendSim database window toolbars and buttons

A
pp

en
di

x

Appendix

Value Library Blocks
A detailed description of the

building blocks in the Value library

576 Value Library Blocks

A
pp

en
di

x

This chapter provides tables of the blocks in the Value library, separated by category. Each
Value library block has an icon that represents its function, predefined input and output con-
nectors for quick model building, and a dialog for entering parameters and viewing results.

The tables have brief descriptions and are useful to get an idea of a block’s functionality in
your model. For more details about the usage of a block:

• Click the Help button in the lower left of the block’s dialog

• Look in the index of ExtendSim’s online Help for the block’s name

Submenus
The blocks are listed by the block categories displayed in hierarchical submenus of the Value
library menu:

• Data Access: Accessing global data

• Holding: Accumulating or storing values

• Inputs: Generating values

• Math: Calculating values

• Model Analysis: Finding the best solution

• Outputs: Writing data to files or display

• Routing: Routing or deciding which value to use

• Statistics: Calculating mean, variance

Data Access
The blocks in this category are used to access and store data in your models.

Block Function

Data Import Export Enables the direct exchange of data between internal ExtendSim files
(ExtendSim databases or global arrays) and external files (Excel, text
files, ADO and ODBC compatible databases, and files from the Internet
via FTP.)

Data Init Defines any values needed to initialize multiple database tables and
global arrays before a simulation run starts.

Data Source Create Creates, resizes, deletes, and views global arrays and text files. Global
arrays are general purpose arrays available anywhere in the model. Text
files are ascii files containing text data, used as a data source, that can be
saved on the computer's local hard drive or on the network.

Note: If you are interested in creating, editing, or viewing database
tables, use the commands in the database menu.

Value Library Blocks 577

A
ppendix
Holding
The blocks in this category are used to accumulate or store contents.

Data Specs Outputs selected specifications on data sources. Data sources can be
either ExtendSim databases or global arrays.

Each row in the table defines a specification whose value will be output
on the corresponding variable output connector on the block.

Read Reads data from a data source to be used in a model. The data sources
supported are the ExtendSim database, global arrays, Excel workbooks,
Text Files, and local tables.

You can specify whether you want to read a single number or a row or
column of data and you can specify when the data should be read.

Write Writes data from a model to a data destination. The data destinations
supported are: ExtendSim databases, global arrays, Excel Workbooks,
Text Files, and Local Tables.

You can specify whether you want to write a single number or a row or
column of data, and when the data should be written.

Block Function

Holding Tank Accumulates the total of the input values, and allows you to request an
amount to be removed if it is available. You can also choose to allow a
request that would make the contents go negative (such as an overdraft).

You can specify that the inputs are summed or integrated.

Wait Time Holds its inputs for a specified amount of simulation time (the delay)
before passing them to the output. This block works like a conveyor
with slots: values come into a slot, advance position based on an
advance in simulation time, then exit when their slot reaches the end of
the conveyor.

Note: This block should not be used in a discrete event model.

Block Function

578 Value Library Blocks

A
pp

en
di

x

Inputs
The blocks in this category generate values to be used as inputs for other blocks.

Math
The blocks in this category are used to perform mathematical calculations and functions.

Block Function

Constant Generates a constant value at each step. You specify a constant value in
the dialog (the default constant is 1.0). This block is typically used for
setting the value for inputs to other blocks. For example, you can use it
for a steady flow of fluid, cash, or a delay time value.

If the ValueIn input on the left is connected, the input value is added to
the constant in the dialog and the sum of those two numbers is output.

Pulse Outputs a true value (1) at specified times, and a false value (0) at all
other times. In the dialog, you specify the time between outputting true
values (the delay or time out); the dialog value is overridden by the D
connector. The R connector resets the block back to the beginning of the
delay period.

Random Number Generates random integers or real numbers based on the selected distri-
bution. You can use the dialog or the three inputs, 1, 2, and 3 to specify
arguments for the distributions. You can select the type of distribution
or use an Empirical Table. The Empirical distribution uses a table to
generate a discrete, stepped, or interpolated distribution.

Simulation
Variable

Outputs the value of a simulation variable. It is usually used in conjunc-
tion with a decision-type block, for example, to halt a process after cur-
rent time reaches a certain value. The variables you can use are: current
run number, current step, current time, end time, number of runs, num-
ber of steps, start time, time step, and random seed.

Block Function

Decision Makes a decision and outputs TRUE or FALSE values based on the
inputs and defined logic. The dialog lets you perform the following tests
comparing A to B: greater than, greater than or equal to, equal to, less
than, less than or equal to, and not equal. You can also test for A being
an invalid number (noValue). The block can be set to use hysteresis.

Equation Outputs the results of the equations entered in the dialog. You can use
ExtendSim's built-in operators, functions, and some or all of the input
values as part of the equation. The equations can have any number of
inputs and any number of outputs.

Value Library Blocks 579

A
ppendix
Model Analysis
The blocks in this category are used to find optimum parameter and input values for your sim-
ulation.

Integrate Integrates the input values over time using either Euler or Trapezoidal
integration methods. If present, an initial value is added to the outputs.

Lookup Table Acts as a lookup table (x in and y out) that are used to calculate what the
output value would be for the given input. Input values can come from
an input connector (the default) or can be simulation time. The output
can be discrete, interpolated or stepped.

Math Performs a selected mathematical operation on its inputs and outputs a
result.

Max & Min Determines the maximum and minimum values from among the values
input. The dialog shows the maximum and minimum values and the
input connectors they came from. The block outputs the maximum or
minimum values and the respective connector number.

Query Equation Intelligently searches a database and reports the best-ranked record and
its field values. Outputs to database or connectors.

Time Unit Converts the value at the input connector from one time unit to another.

Block Function

Optimizer Searches for the best set of model parameters that maximizes profit or
minimizes cost, given parameter limits and any entered constraints.
Uses evolutionary strategies that are similar to genetic algorithms.

Block Function

580 Value Library Blocks

A
pp

en
di

x

Outputs
The blocks in this category output data to files or to display.

Routing
The blocks in this category route values or decide which values to use.

Scenario Manager Evaluate and compare different model configurations with results.

Block Function

Command Sends Excel macro or other commands to a spreadsheet application
when triggered by the “Send” connector.

Display Value Displays the value at the input connector on each simulation step. This
is useful for debugging models and scripts because you can display the
value of a block's value output connector at any time.

Notify Notifies the user when an event occurs. The notification can take the
form of playing a sound, stopping the simulation, or querying the user
for a new input value.

Block Function

Catch Value Outputs values thrown from a Throw Value block. You specify in the
dialog of the block which throw block(s) this block is connected to. This
block is typically used for passing a value from one point in a model to
another without using connectors, in conjunction with Throw Value
blocks.

Select Value In Selects its output value to be one of its inputs according to the value of
the select connector. Up to 253 inputs can be used.

Select Value Out Sends its input value to one of its outputs according to the value of the
select connector. Up to 253 outputs can be used.

Block Function

Value Library Blocks 581

A
ppendix
Statistics
The blocks in this category report and clear statistics on various blocks.

Throw Value Throws a value to one or more catch blocks in the model. You specify in
the dialog of the block which catch block(s) this block is connected to.
This block is typically used for passing a value from one point in a
model to another without using connectors, in conjunction with Catch
Value blocks.

Block Function

Clear Statistics Clears the statistics in various blocks in a model at a specific time or
event. Useful in reducing the effects of warm-up in a model.

Mean & Variance Calculates the mean, variance, and standard deviation of the values
input during the simulation.

Block Function

582 Value Library Blocks

A
pp

en
di

x

Appendix

Item Library Blocks
A detailed description of the

building blocks in the Item library

584 Item Library Blocks

A
pp

en
di

x

This chapter provides tables of the blocks in the Item library, separated by category. Each Item
library block has an icon that represents its function, predefined input and output connectors
for quick model building, and a dialog for entering parameters and viewing results.

The tables have brief descriptions and are useful to get an idea of a block’s functionality in
your model. For more details about the usage of a block:

• Click the Help button in the lower left of the block’s dialog

• Look in the index of ExtendSim’s online Help for the block’s name

Submenus
The blocks are listed by the block categories displayed in hierarchical submenus of the Item
library menu:

• Activities: Processing items

• Batching: Joining and dividing items

• Data Access: Accessing global data

• Information: Getting information about items

• Properties: Assigns and displays properties for items

• Queues: Holding, sorting, and ranking items

• Resources: Representing items as resources

• Routing: Moving items to the correct place

• Executive: Needed in every discrete event and discrete rate model to handle events

Activity
The blocks in this category are used to process items in the model.

Block Function

Activity Holds one or more items and passes them out based on the process time
and arrival time for each item.

Convey Item Behaves as a conveyor (accumulating or non-accumulating) that moves
items from one location to another.

Transport Transports item from one point to another based on distance and speed
information.

Item Library Blocks 585

A
ppendix
Batching
The blocks in this category are used to join and divide items.

Data access
The blocks in this category are used to access and store data in your models.

Workstation Behaves as a workstation that has both processing and queueing
aspects.

Block Function

Batch Allows items from several sources to be joined as a single item. Useful
for synchronizing resources and combining various parts of a job (“kit-
ting”).

Unbatch Produces multiple items from a single input item. This block can be
used to disassemble a kit, break a message packet into component mes-
sages, route the same message to several places, or distribute copies of
invoices.

Block Function

Read(I) Reads data from a database when an item arrives. You can define an
indefinite number of reads to be made by the block when an item passes
through.

Write(I) Writes data to a database when an item arrives. You can define an indef-
inite number of writes to be made by the block when an item passes
through.

Block Function

586 Item Library Blocks

A
pp

en
di

x

Information
The blocks in this category provide information about the blocks in your model.

Properties
The blocks in this category assign and display item properties.

Block Function

Cost By Item Views and displays the cost of the cost accumulators that pass through
it. By using a sorting attribute or the row connector, the throughput,
average cost, and total cost can be calculated for different item types.

History Views and displays information about the items that pass through it.
You specify which properties will be displayed. Properties can be attri-
butes on the item, priority values, or other more obscure values that are
available on the item.

Information Reports statistics about the items that pass through it, such as cycle time
and TBI (Time Between Items).

Block Function

Equation(I) Calculates equations when an item passes through. The equations can
use multiple inputs and properties of the item as variables, and the
result(s) of the equations can be assigned to multiple outputs and prop-
erties of the item.

Get Displays and outputs properties from items that are passing through.
The property value is shown in the dialog and output at the value output
connector. You can specify multiple properties and multiple output con-
nectors.

Query Equation(I) Intelligently searches a database and reports the best-ranked record and
its field values when an item arrives. Outputs to database, properties, or
connectors.

Set Sets the properties of items passing through the block from input con-
nectors, values in the dialog, or databases.

Item Library Blocks 587

A
ppendix
Queues
The blocks in this category hold, sort, and rank items.

Resources
The blocks in this category represent resources.

Block Function

Queue Queues items and releases them based on a user selected queuing algo-
rithm, such as Resource pool queue, Attribute value, First in first out,
Last in first out, and Priority. Options include reneging and setting wait
time.

If you need more advanced control over the queueing algorithm, con-
sider using the Queue Equation block, below.

Queue Equation Queues items and releases them based on the results of user entered
equations. The result(s) of the equations can optionally be assigned to
properties of the item

Queue Matching This block is useful for matching one type of item with another, such as
in reassembling parts in the correct order or to insure that subassemblies
are correctly matched with each other. Has a specified number of inter-
nal queues for holding items in separate groups. Releases a group when
there is downstream capacity and the group requirements have been
met.

Block Function

Resource Item This block holds and provides items (cars, workers, orders, and so forth)
to be used in a simulation. It can be used as part of an open or closed
system.

Resource Manager Develop sophisticated resource structures and requirements.

Resource Pool This block holds resource pool units to be used in a simulation. These
units limit the capacity of a section of a model. For example, this could
be used to represent a limited number of tables at a restaurant. The
Resource Pool block works with the Queue block in Resource Pool
mode and the Resource Pool Release blocks.

588 Item Library Blocks

A
pp

en
di

x

Routing
The blocks in this category move items to the correct place.

Resource Pool Release Releases a resource back to its resource pool as an item passes through.

Shift Generates a schedule over time which can be used to change the capac-
ity of other blocks in the model. Multiple Shift blocks can be connected
together to create complex shift patterns. For example the typical 40
hour work week can be built with two connected Shift blocks, the first
containing the work days, the second contains the work hours.

Shutdown Generates shutdown information for activities in the Item library and
valves in the Rate library according to inputs or distributions specifying
time between failures and time to repair.

Block Function

Catch Item This block catches items sent by Throw Item blocks without using con-
nection lines. Any number of Throw Item blocks can send items to a
Catch Item block.

Create Provides items or values for a discrete event simulation at specified
interarrival times. Choose either a distribution or a schedule for the
arrival of items or values into the model.

Exit Passes items out of the simulation. The total number of items absorbed
by this block is reported in its dialog and at the value output connectors.

Gate Limits the passing of items through a portion of the model, either by
demand or by using a sensor connector to monitor how many items are
in a section of the model.

Block Function

Item Library Blocks 589

A
ppendix
Executive
The block in this category is needed in every discrete event and discrete rate model to handle
events.

Select Item In Selects items from one input to be output based on a decision.

Select Item Out Selects which output gets items from the input, based on a decision

Throw Item This block throws items to a Catch block without using connection
lines. Any number of Throw blocks can send items to a single Catch
block. You could use the Throw and Catch blocks instead of using Com-
bine blocks, even from inside one hierarchical block to inside another
one.

Block Function

Executive This block must be placed to the left of all other blocks in discrete event
and discrete rate models. It does event scheduling and provides for sim-
ulation control, item allocation, attribute management, and other dis-
crete event and discrete rate model settings.

Block Function

590 Item Library Blocks

A
pp

en
di

x

Appendix

Rate Library Blocks
A detailed description of the

building blocks in the Rate library

592 Rate Library Blocks

A
pp

en
di

x

This chapter provides a brief description of the blocks in the Rate library. There are no block
categories used in this library. For more details about the usage of a block:

• Click the Help button in the lower left of the block’s dialog

• Look in the index of ExtendSim’s online Help for the block’s name

Block descriptions
The following table is useful to get an idea of a block’s functionality in your model. More
details about usage of a block can be obtained in two ways:

• Look in the index of ExtendSim’s online Help for the block’s name

• Click the Help button in the lower left of the block’s dialog

Block Function

Bias Prioritizes the flow going through it, and thereby allows you to specify a
preference for where the model’s flow should be directed. The bias from
a Bias block is by definition stronger than the bias from any Merge or
Diverge block.

Catch Flow Receives flow from non-connected Throw blocks. The Throw Flow and
Catch Flow blocks (and the Merge and Diverge blocks in certain modes
as well) can be used to move flow without the use of connection lines.

Change Units Changes the flow unit of measurement. Blocks that are connected
together through flow connections and share the same flow unit are
called a unit group. The Change Units block uses the conversion factor
to create a new unit group. This causes the blocks downstream of the
Change Units block to be in a unit group different from its upstream
blocks.

Convey Flow Add a delay to the flow available at the output of the block. The Convey
Flow is FIFO and can be accumulating or non-accumulating.

Diverge Distributes the input flow to two or more outputs. Systems modeled
using discrete rate technology frequently have one flow stream that
needs to be split (or diverged) into multiple streams (referred to as
branches). It has seven different rule-based options that define how the
inflow will be distributed across the outputs.

History(R) Views and displays information about the flow that passes through it.
The block has several filter, display, and alert options as well as an
option to store the history in a database at the end of the run.

Rate Library Blocks 593

A
ppendix
Interchange Acts as a Tank interfacing between Flow and Items. The Tank acts as
source, intermediate storage, or sink.

Merge Merges flows from multiple inputs into one output. Systems modeled
using discrete rate technology frequently have multiple flow streams
(referred to as branches) that need to be merged into one stream. It has
seven different rule-based options that define how the inflow will be
merged from all inputs.

Sensor Displays potential upstream supply and potential downstream demand
in a Flow branch.

Tank Acts as source, intermediate storage, or sink. As a residence type block
the Tank has the capacity to hold defined amounts of flow as time
advances. If a Tank has no outflow connection, by definition it is being
used as a sink. Conversely, if a tank has no inflow connection, by defini-
tion it is being used as a source.

Throw Flow Sends flow to non-connected Catch blocks. The Throw Flow and Catch
Flow blocks (and the Merge and Diverge blocks in certain modes as
well) can be used to move flow without the use of connection lines.

Valve Controls, monitors, and transfers flow. This block places an upper
bound on the rate at which flow is allowed to pass through. Goals can be
set up to control flow.

Block Function

594 Rate Library Blocks

A
pp

en
di

x

Appendix

Utilities Library Blocks
A detailed description of the

building blocks in the Utilities library

596 Utilities Library Blocks

A
pp

en
di

x

This chapter provides tables of the blocks in the Utilities library, separated by category. Each
Utilities library block has an icon that represents its function, predefined input and output con-
nectors for quick model building, and a dialog for entering parameters and viewing results.

The tables have brief descriptions and are useful to get an idea of a block’s functionality in
your model. For more details about the usage of a block:

• Click the Help button in the lower left of the block’s dialog

• Look in the index of ExtendSim’s online Help for the block’s name

Submenus
The blocks are listed by the block categories displayed in hierarchical submenus of the Utilities
library menu:

• Developer Tools: Provides information about OLE objects

• Discrete Event Tools: Managing and reporting on discrete event models

• Information: Getting information about the model

• Math: Performing mathematical calculations

• Model Control: Controlling how the model runs

• Time: Working with time functions

Developer Tools
The block in this category provides information about OLE objects.

Discrete Event Tools
The blocks in this category are used to manage and report on discrete event models.

Block Function

Object Mapper Gets information about IDispatch properties and methods exported by
activeX controls or objects that have been automated. It is useful for
those needing to navigate the object model of an outside application via
Extend's OLE programming capabilities.

Block Function

Event Monitor Displays the event calendar in discrete event models, revealing the
event times for all event posting blocks.

Item Messages Displays detailed information about the messages used to pass items.
This block is “invisible” to the items and messages and passes each
message it gets on to the next block. Also see the Record Message
block, below.

Utilities Library Blocks 597

A
ppendix
Information
The block in this category provides general model information to the user.

Link Alert Registers a section of a database so that the block receives a message
when data in the linked database changes.

Queue Tools Views and optionally initializes the contents of a queue via tables. Con-
nect the input connector to the length (L) connector on a queue (this is
the only type of connector that can be connected to this block).

Record Message Records all the messages that pass between two value connections in a
discrete event model. Also see the Item message block, above.

Stop Message Transfers the value from the input to the output without relaying any
discrete event messages. The output connector is set equal to the input
connector, but the message is not sent out through the output connector.

Block Function

Model Compare Used with the mini-app Compare Results. Reports a summary of any
differences between models run in different releases of ExtendSim.

Block Info Reports information (name, number, position, etc.) about the block con-
nected to its input connector.

Count Blocks Calculates the number of blocks of each type in the model.

Find and Replace Drag a clone of a dialog item onto this icon to search for similar dialog
items. You can also manually enter search criteria into the dialog.

Block Function

598 Utilities Library Blocks

A
pp

en
di

x

Math
The blocks in this category perform mathematical functions.

Model Control
The blocks in this category provide various means of controlling the simulation run.

Memory Usage Calculates the amount of memory required for each block, global array,
or database table in the model. It is helpful in locating where memory is
being used in large models.

Block Function

Data Fitter Uses matrix techniques to obtain a least mean square curve fit to a set of
data. Both the data and the fitted curve are output during a simulation
through the output connectors (D and F, respectively).

Block Function

Buttons Creates a pushbutton interface for a model. An equation is executed
whenever the button is pushed. The button itself can be cloned to the
model worksheet, notebook, or hierarchical block to create a user inter-
face for the model.

Feedback Helps resolve feedback calculation order issues in continuous models.
This is only for advanced use and only to be used in situations where
you know that you have a calculation problem that is based on the simu-
lation order of a feedback loop.

Meter Displays the input relative to minimum and maximum values set in its
dialog.The color and pattern can change when the current value reaches
specified values. Useful as a progress bar or to animate hierarchical
blocks.

Model Interface Creates an interface for controlling a model.

Pause Sim Causes the simulation to pause when certain conditions are met.

Popups Allows you to define a custom popup menu that you can clone to the
worksheet and also use as a numeric input to your model. Outputs the
value of the popup defined in the dialog, which is usually cloned to the
worksheet.

Block Function

Utilities Library Blocks 599

A
ppendix
Time
The blocks in this category work with time functions in the model.

Run Model Primarily used to clone out the Run Simulation Now button onto the
worksheet or notebook. This can also be done with the Buttons block.
Runs the simulation when the “Run Simulation Now” button is pressed.

Slider Provides a flexible slider for models. It can be cloned to the worksheet
or Notebook, be linked to a database, and more.

Switch Defines a switch for use on a model worksheet. Differs from the use of
the switch control defined in the model menu in that it sends out a mes-
sage if it is in a discrete event model.This will have the effect of making
the other blocks in the model react immediately to the switch click.

Block Function

RealTimer Reports information about simulation run times, including duration of
the run and profiles of the execution time and memory allocation for
blocks in the model.

It should be placed at the far right side of the model worksheet.

TimeSync Synchronizes the model to run in real time. It does this by pausing on
each simulation step until the amount of simulation time that has passed
equals the amount of real time that has passed. This is only effective if
the model is running faster than real time.

Block Function

600 Utilities Library Blocks

A
pp

en
di

x

Appendix

Upper Limits
A list of the maximum numbers of things

that you can do at one time

602 Upper Limits

A
pp

en
di

x

Like every program, ExtendSim has its limits. It is unlikely you will find them in your normal
work, but it is good to know what they are. Note: Some limits depend on available memory.

Steps in a simulation run 2 billion

Total model data size 2.8E14 bytes

Number of simulations in a multiple run 2 billion

Block name or label length, characters 31

Blocks in a model 2 billion

Blocks in a library 200

Libraries open at one time 40

Text files open at one time 200

Databases per model 2 billion

Tables per database/fields per table/records per table 2 billion/1,000/2 billion

Output connectors in a model (nodes) 2 billion

Connectors per block 255

Length of a block’s ModL code (characters) 10 megabytes

Dialog items in a block 1024

2D animation objects 255/icon; unlimited through function

Dynamic arrays (each array) 2 gigabytes

Number of array dimensions 5

Maximum index for array dimensions 2 billion elements total

Dynamic arrays per block 255

Columns in a table 255 (data table); 255 (text table)

Total table size (cells) per block for static data tables 3260 (data table); 2030 (text table)

Total table size (cells) each, for dynamic data tables 2 billion

Variable name length: dialog item msg, connector
names

63

Variable name length: ModL local, static variables 127

Static and local variable declarations 32,767 bytes

Maximum popup menu length 5100 characters or 20 strings

User defined function arguments 127

Nested loops 32

Maximum, minimum of real numbers ±1E±308

Upper Limits 603

A
ppendix
Maximum, minimum of integer numbers ±2,147,483,647

Significant figures in real calculations 16 (double)

Number of attributes for discrete event item 500

604 Upper Limits

A
pp

en
di

x

Index

Symbols
_@ 115
_Animation property 352
_cost attribute 383, 387
_Item priority property 271
_Item quantity property 273, 352
_rate attribute 383, 387

Numerics
2D animation 45
3D objectID property 275

A-C
ABC (activity based costing) 380
About ExtendSim command 573
Access 243

import to or export from 225
accumulate data 135, 399

with Holding Tank block 400
accumulating conveyor

Convey Flow block 492
Convey Item block 341

accumulation point 494
Activate License command 572
activation key 572
ActiveX 242

automation 242
COM (Component Object Model) 242

ActiveX Automation 51
ActiveX Data Objects 243
activities

scheduling 325
activity based costing 380–393
Activity block 584

contents 210
multitasking 336
Preempt tab 330
preemption options 330
processing items 316
processing options 319
Shutdown tab 331

ad hoc experiments 141
Add All Blocks to Trace command 567

Add All To Trace command 216
Add Debug Code to Libraries command 552
Add External Code to Libraries command 552
Add Selected Blocks To Trace command 216
Add Selected Blocks to Trace command 567
address (of a data structure) 227
ADO 243
ADO (ActiveX Data Objects) 51
ADO compliant databases 225
Advanced Resource Management (ARM) 364, 378
Advanced Status report for Valve block 515
agent-based modeling 18
Air Freight with Item Log model 399
Align Text button 106
Align Text tool 570
Alignment tools 570
All Objects cursor 570
allocate item availability 413
alpha channel 108
Alt key 553, 564
Alternate path option 56, 548
analysis

simulation used for 6
analysis methods

scenario analysis 143
Analysis version 35
analyzing models 47
Animate Connection Lines command 111, 566
Animate Item block 113
Animate Named Connections command 111, 566
Animate Value block 113
Animate Value block (Animation 2D-3D library) 45
Animating Queue Contents model 292
animation

2D 110–??
Change all items to option 112
Change item animation using property option 112
debugging with 209, 215
Do not change item animation option 112
functions 115
Item Animation tab 111
pictures (adding) 115

animation (2D) 110–??
Animate Item block 113

744

In
de

x

Animate Value block 113
animating item movement 111
faster button 110
for Item library blocks 111
for Rate library blocks 520
hierarchical block’s icon 113
Item Animation tab 111
object 113
picture formats 115
pictures (selecting) 111
Show 2D Animation command 566
Slower Animation tool 100
slower button 110

animation (3D)
Item Animation tab 111

animation 2D 45
Animation 2D-3D library 112
Animation library 54
Animation library (legacy) 55
Animation Object button 114
animation object for 2D animation 113
Animation Slider 569
Antithetic random variates option 87
API 30
Append Database command 558
Append New Field command 560
Append New Records command 561
application messages 101

link alerts 102
Apply button 250, 541
AR Order ID 275
arguments for distributions 199
ARM method

 361
ARM system 364, 378
Array connector 61, 125
arrays

dynamic 236
global 233–235

arrival times 259–263
Arrivals and Activity model 377
Arrows option (connection lines) 118
ASCII files

text files 240
attributes

system 387
attributes (flow)

definition 431

displaying 434
Get(R) block 435
layers 433
merging and diverging 474
mixing with item attributes 435, 508
names 431
string 432
string layer 414, 432
types 432
values 431

attributes (item) 263–270
_cost 383, 387
_rate 383, 387
arrays 270
costing 387
DB address 265, 268
deleting 413
for setting processing time 322
managing 413
mixing with flow attributes 435, 508
removing 369
renaming 413
resource blocks 369
string 264, 267, 413
stripping 369
to hold cumulative values 399
types 264
using 265
value 264, 267

Attributes for Routing model 307
attribute-sorted queue 279
automated test environment 217
Automatic search option 57, 58, 68, 547
Automation 51
automation (ActiveX) 242
autoscaling 177
Autostep options 85
background picture 176
backup files 541, 550
BAK files 541
balking 281
Balking model 281
Bar Chart block 175

categories and series 179
grouped bar chart 175
series 178
stacked 175

Batch and Unbatch Variable model 356
Batch block 347, 585

745

Index
batching items 346
batch into one item 347
Batch means 136
Batch Mode Merge model 467
Batch on Demand model 351
batch size 356
batch/unbatch mode 467
batched value 356
batching 346–353

_Animation property 352
_Item quantity property 352
attribute options 352
batch size 347
Batch tab 347
delay kit at... 353
item properties 351
matching items 349
on demand 351
Options tab 347
priority options 352
Properties tab 352
resources with items 368
simple 349
using item attributes 349
variable number of items 350, 355

Batching and Unbatching model 355
Batching Variable model 350
beta distribution 199
Bézier curve 117
Bias block 511, 592
bias order 473, 511

displaying 517
effective rate calculations 511
in Merge and Diverge blocks 512
setting 513

biasing flow 510
binomial distribution 199
Blank value in Chart library block 178
block ??–66

adding to a model using Smart Block 60
arranging in libraries 68
BAD 70
bad 70
Bump Connect technique 60
categories (Value library) 576
category 547
changing the name of 562
CM designation 59, 67
compiled with debug code 59, 67

compiling 552, 563
copying to another library 69
corrupted 70
customizing 65
decision type 414
deleting from a library 69
duplicating in libraries 69
equation-based 189–195
for data management and exchange 245
Help block (creating) 80
help text 65
icons 65
information about 542
labels 602
labels (showing) 554
locking the code 68
messages 102, 419, 537
modifying 562
names 602
new 562
numbers (showing) 554
passing type 414
profiling 99
profiling code 568
property aware 259
protecting code 68
protecting the code 68
random number generator 197
red border around 59, 67
red name in library window 59
removing from libraries 69
renaming 69, 562
residence type 414
searches 58
Sensor 523
statistics 134
storing in libraries 56
structure 562
submenus for Item library 584
submenus for Value library 576
substituting one for another 58
templates for item blocks 414
types 414, 415
uncompiled 59
working with 59

Block Info block 597
block messages

in discrete event models 419
in discrete rate models 537

block number

746

In
de

x

local 65
showing 554

block type table 415
block units 442

defining 443
Block/Text cursor 570
blocking 305, 318, 335

definition 281
due to shutdown 336
in a Valve 515
in the Select Item Out block 301
using buffers to prevent 313

blocking of items 318
blocks

reports 184
blue circle 214
BMP (Bitmap) 115
Boids model 21
Border Color button 107, 108
Box connector 61
Box connetors 125
BPR library (legacy) 55
Break to Debugger command 565
Breakout model

models

Breakout 21
Breakpoint Conditions window 214
breakpoints 211

conditional 213
Breakpoints window 212, 213, 564
bringing data into the model 46
Bucket Elevator 1 model 506
Bucket Elevator 2 model 507
Buffering Operations model 310
Bump Connect command 545
Bump Connect technique 60
buttons

Database (ExtendSim) 573
for user interface 45
in toolbar (list) 568, 573

Buttons block 74, 598
Buttons block (Utilities library) 45
Calendar date definition option 84
calendar dates 372

defining non-calendar date 84
enabling 95

calendar format example 372

calendar of events 417
Call Center Optimizer model 172
Call Center Scenario Manager model 156
capacity

full and not-full 439
in a Tank block 439
in Convey Flow block 440
maximized in Convey Flow block 441
Rate library blocks 439

Cascade command 568
Catch Flow and Diverge model 479
Catch Flow and Throw Flow model 478
Catch Flow block 476, 592
Catch Item block 298, 307, 588

groups 299
routing items 294

Catch Value block 580
categories of blocks 547

Item library 584
Utilities library 596
Value library 576

Cauchy distribution 200
central tendency of distribution 199
Change all items to option 112
Change item animation using property option 112
Change Rate model 388
Change Units block 592

changing flow units 444
relational constraints 454

Changeover Quantity Goal model 484
Changeover With Only Goals model 487
changing number of rows 191, 193, 284
Chart Library

axis (Y1/Y2) 183
Chart library 54, 174

20 inputs 174
autoscaling 177
background picture 176
color and width 182
Cross Msg 178
Cursor Values box 182
Data Collection tab in Dialog tab 177
Data tab 183
Dialog tab 176
display options 176
Display tab in Dialog tab 176
filtering 178
Graph Properties window 183

747

Index
Graph tab 176
Intervals 183
key 182
Legend 182
Offset By 178
Places 183
reference line 184
Selection column 181
Start Time and End Time 178
style of traces 182
symbols on traces 182
Trace Editor 182
width of traces 182
worm chart 179

charts
for debugging 209

Check blocks for duplicate random number seeds
option 87

Check for newer version option 550
Check for Updates 571
Check In License command 573
Check Out a Floating License command 573
Chi Square distribution 200
circle shape, how to get 108
Clear command 253, 543
Clear Statistics block 136, 397, 581
Clearing Statistics model 136, 397
client application 236, 242
Clipboard 542
clipboard

explanation 109
Clone cursor 570
clone drop 146, 162
Clone Selected Tables to Tab command 559
clones 45, ??–74

deleting 73
finding original dialog item 73
moving 73
resizing 73
unlinked 74

cloning dialog items 72
Close All Library Windows 551
Close All Library Windows command 59
Close command 540
Close Library command 551
closed systems 370
closing a library 57
Cloud version 36

CM 59, 67
CM (code management) 563
code management (CM) 563
code management designation 59, 67
code-defined links 555
color of shapes, text, and lines 570
Colors option in Script tab 549
column separators 560
COM 51
COM (Component Object Model) 242
COM Object Model 51
Combine Priority Sensing model 535
Combine Sensing Priority model 536
Combined Rule model 288
combining resources with cost accumulators 390
comma separated values file 560
Command block 247, 580
communicating with external applications 50
Compare Results application 217
comparing models between releases 217
Competing Requests for Flow model 474
Compile Block command 67, 563
Compile Libraries command 67, 552
Compile Selected Blocks command 67, 552
compiling

blocks 563
libraries 552

component failures 334
Con checkbox (Line Chart) 178
concurrent users 37
conditional breakpoints 213
conditional routing 308
Conditional Routing model 309
confidence interval 135, 137, 138
confidence level 138
Connection Line Style command 554
connection lines

adding points 117
appearance 116
Bézier curve 117
Connection Line Style command 554
default for type of connector 116
Default Thickness choice 118
drawing 116
Flow connectors 116
free form style 545
Item connectorss 116

748

In
de

x

right angle style 545
smart style 545
straight style 545
styles 117
styles of lines 545
thickness 118
Value connectors 116

connections 116–??
adding and removing points 117
arrows option 118
checking 214
color options 118
connection lines 116
Default Thickness choice 118
default type of lines 116
default types of lines 545
dotted option 118
hiding 120, 554
incomplete 214
named 118
right angle option 118
showing 120
styles 118
thickness 118
Throw and Catch blocks 116
to multiple item inputs 406

connector
Array 61
arrays of connectors 62
Box 61, 125
common for Rate library blocks 518
common Item library connectors 415
compatible 64
diamond 125
Flow 61
hiding 554
Item 61
messages of item connectors 419, 421
messages of value connectors 419
names 126
Reliability 61
showing 120
text object 126
tooltips 545
types 61, 125
Universal 61
User Defined 61, 125
Value 61
variable 62

connectors 61–64

BatchQuantityIn 348
D input 325
default connection lines 116, 545
demand 309, 326, 328, 348, 351, 405
down 335
F 336
G 487
GS 485
hiding 120
ICO 428
PE 330
preempt 504
PT 400
R 455
S (sensor) 494
S (status) on Valve 515
SD input 332
SD output 333
select 408
sensor 405
start 328
start (on Valve) 490
StatusIn 374
StatusOut 374
TR 371

Connectors pane for hierarchical blocks 124
conserving resources 353
Constant block 578
constant distribution 200
constant values

definition 7
deterministic 7

constraining resources 365
constraints (discrete rate)

critical 453
impact on effective rates 461
relational 453

constraints (optimization) 171
adding 166
equations for 167
global 166, 171
individual 166, 171

contents
empty and not-empty 427
Rate library blocks 426

Continue command 564
Continuerandom number sequence option 86
continuous

tab for setting steps 85

749

Index
continuous blocks
in discrete event models 408

continuous modeling
definition 10
Executive block on worksheet 545
messaging 102
timing 92

Continuous tab 85
control of computers 52
control panel 45, 79
Controlling Shifts model 376
controls 76

Meter block 598
Meter block (Utilities) 77
Slider block 599
Slider block (Utilities) 77
Switch block 599

Convert Library to Run Time Format command 553
Convey Flow block 491–496, 592

accumulate-fill empty segments 493
accumulate-maximum density 493
accumulation point 494
animation 524
attributes 433
behavior 491
capacity 440
critical constraints 457
dialog settings 492
Indicators tab 495
initial contents 429
Initialize tab 429
length units 442
non-accumulating 493
Sensors tab 494
when to avoid using 495

Convey Item block 341, 584
accumulating 341
distance ratio 340
from and to locations 339
move time 339
non-accumulating 341
processing items 316
speed and calculated distance 339
speed and distance 339

Copy command 252, 542
Copy Data With Headings command 543
copy/paste 251
copying 250–253

data 251

dialogs 252
from ExtendSim to other applications 251
graphs 252
notebooks 252
within ExtendSim 251

cost accumulator 381
cost array 390
Cost attribute 275
Cost By Item block 389, 586
cost equation 159, 169
cost rates 382
Cost Stats block 184, 390
Cost Stats block (Item library) 138
costs 380–393

assigning 384
calculating 391
direct materials 383
drivers 380
fixed 380, 390
per time unit 384
per use 384
storage 383
variable 380
variable cost 390
waiting 383

Count Blocks block 597
Create block 273, 588

arguments of the distributions 409
generating items 258
setting processing time 316

Create/Edit Dynamic Link command 555
creating a user interface 44
creating flow 426
critical constraints 453, 530

Convey Flow block 457
defining 454
determining 461
Diverge block 457
meeting requirements 458
Merge block 457

Cross Msg 178
CSV files 560
Cumulative Time model 324
Cursor tools 570
Cursor Values 182
Custom Blocks library 55
Custom statistical method 136
Custom Time model 322

750

In
de

x

Cut command 542
cycle time 137, 412

tracking from other than origin 413
tracking item from origin 412

Cycle Time 1 model 412
Cycle Time 2 model 413
cycling

fixed number of items 327
fixed period of time 329

D-F
D input connector 325
dashboard 45, 74
data

accumulating 135
copying/pasting 251
databases for storing 233
exchanging (ActiveX) 242
exchanging with external applications 236
global arrays for storing 234
import and export 224
import/export methods 223
importing/exporting 224
management ??–245
management and exchange using blocks 245
managing 233
raw historical 172
repository 233
structures (addressing) 227

data accumulation 399
Data Collection tab 177
data exchange

copy/paste 251
user interfaces for 222

data export 49
Data Fitter block 598
data fitting 199
Data Import Export block 224

configuring 225
modes 224
timing of the data exchange 226

Data Import Export block (Value library) 46, 50,
246, 576

Data Init block 235, 246, 576
data input and import 46
data management 47
Data Source Create block 246, 576
Data Specs block 235, 246, 577

Data Specs block (Value library) 47
data structures

addressing 227
internal (linking to) 555

Data tab 183
data tables

copying data 251
linking to internal structures 229

data view
buttons 573
for a database 557

database 47
Access 243
accessing with Read and Write blocks 226
copying 251
deleting a linked parameter 231
exporting to external applications 224
external (exchanging data with) 240
internal (ExtendSim) 555
link alerts 228, 233, 247
Link dialog 230
SQL 243

Database (ExtendSim) 233–??
column separators 560
copying a database 251
data view 557, 573
Database List window 251
database window 557
DB address attribute 265
delimiters 560
ExtendSim DB Add-In 233
linking 229
linking to 555
list of open databases 561
named distributions 561
number of databases per model 602
opening linked blocks 555
random distributions for cells 561
random number seed 87
random numbers 561
Read/Write Index Checking 561
reserved databases 561, 565
Scenario DB 145
schema view 557, 573
tab delimited files 560
toolbar buttons 573

Database Factors table
entering values 155

database list
for copying a database 251

751

Index
Database List command 568
Database menu 557
Database table

copying 251
copying data 251

database variables 150
database window

opening 557
databases

ADO compliant 225
Day Shift Capacity Change model 375
DB address attribute 265

defining 266
DB Job Shop model 229
DB Line Chart

Open column 181
DB Line Chart block 175, 180

options for when data is collected 181
DB Statistics block 184
DB Statistics blocks (Report library) 48
DDL (dynamic data linking) 47, 229
debugger

Add Debug Code 552
blue circle 214
Breakpoints window 564
Continue 564
debugging code 564
equation debugger 211
Generate Debugging Info 563
open breakpoints window 564
set breakpoints 564
Set Breakpoints window 564
Step Into 564
Step Out 565
Step Over 564

debugging 206
blocks compiled with debug code 59, 67
blocks for 207
equationss 211
hints for debugging 206
models between releases 217
Read/Write Index Checking 561
source code debugger 211
validating a model 26
verifying a model 26

Debugging command 50
Decision block 309, 578

controlling the flow of items 294
decision type blocks 414

Default Thickness choice 118
default types of connection lines 545
delay kit... 353
Delete Include File command 563
Delete Link button 232
delete rows 191, 193, 284
Delete Selected Records command 561
delimiters 560
delta connector 325
delta time

setting 85
DeltaTime variable 85
demand connector 309, 326, 328, 405
demand scarcity 470
Demand Sensing Mode Diverge model 472
density (maximum) 492
design

simulation used for 6
design of experiments

maximum, minimum, step 147
methods 148

deterministic
definition 7

deterministic models 7
Develop menu 562
Dialog Factors table 145
Dialog Item Tools 571
dialog items

cloning 72
finding clones 73

Dialog Responses table 148
Dialog tab 176
dialogs 64–65

copying 252
open when running 65
opening 64
title bar 64

Discrete Event library (legacy) 55
discrete event modeling 380

activity-based costing 380–393
animation (2D) 111
attributes of items 263
batching items 346
continuous blocks in 408
cycle time 412
definition 11
event scheduling 416
Executive block 413

752

In
de

x

item generation 259–263
item movement 404
messaging 102, 103, 419
posting events 418
preprocessing 407
processing items 316
queueing 278
resources 360
restricting items 407
routing items 294
statistics 396
templates 414
time-based parameters 409
timing 93
tips 404
travel time 406
zero time events 417

discrete rate modeling 442
2D animation of blocks 520
attributes of flow 431
bias order 473, 511
bias order when merging/diverging 512
biasing flow 510
capacity 439
competing requests for flow 473
contents 427
defining bias order 474
definition 11
downstream demand 468, 533
event messages 537
Executive block flow messages 538
fixed flow rules 465
flow connector messages 538
flow rules 452
hysteresis 489
indictors of flow 429
inflow branches 465
item connector messages 538
LP area 452, 527
LP technology 526
messages 537
messaging 537
outflow branches 465
Rate block flow messages 538
rate sections 451
throw and catch 476
time units 442
upstream supply 468, 533
value connector messages 538

Display tab 176

Display Value block 99, 207, 580
Display Value block (Value library) 50
distance

metric 546
distribute properties option 356
distribution

arguments 409
central tendency 199
list of distributions 199–202
location argument 199
shape argument 199
shape of exponential 260
skewness 199
spread 199
theoretical 199
varying the arguments 409

distribution fitting 48
distributional mode 470

bias order determination 517
Distributional Mode Diverge model 471
Distributional Mode Merge model 471
distributions

beta 199
binomial 199
Cauchy 200
Chi Square 200
constant 200
empirical 199, 200
Erlang 200
exponential 200, 260
Extreme Value Type 1A 200
Extreme Value Type 1B 200
gamma 200
geometric 200
hyperexponential 200
Hypergeometric 201
inverse gaussian 201
Inverse Weibull 201
Johnson SB 201
Johnson SU 201
Laplace 201
Logarithmic 201
Logistic 201
loglogistic 201
lognormal 201
negative binomial 201
normal 201
Pareto 202
Pearson type V 202
Pearson type VI 202

753

Index
Poisson 202
Power Function 202
Rayleigh 202
triangular 202
uniform integer 202
uniform real 202
user-defined 199
Weibull 202

Diverge block 592
bias order 473, 512
bias order table 514
critical constraints 457
displaying bias order 517
features 473
fixed rule modes 512
Flow Attributes tab 474
modes (mixed in model) 535
modes (summarized) 465
non-fixed rule modes 513
requirements for critical constraint 459
setting bias order 513
throwing flow 476

DLLs 51, 82, 245
Do not change item animation option 112
documentation 40
DOE

maximum, minimum, step 147
methods 148

double-headed arrow
for expanding a variable connector 63

down connector 335
downstream demand 468

cautions when determining 533
definition 533
discrepancy with upstream supply 470
scarcity of demand 470

drag and drop editing 107
dragging cursor

definition 63
picture 62

drawing objects 570
drawing tools 107
dt (delta time) 92
Duplicate command 543
duplicating rows 191, 193, 284
duration goal 487
Duration Goal model 487
duration of simulation 92
dyn 555

dynamic array 47
linking 229

dynamic arrays 236
linking to 555
number per block 602

dynamic data linking (DDL) 229
finding linked dialogs 232
finding registered blocks 555

Dynamic Link Libraries 51
Dynamic Link Libraries (DLLs) 82, 245, 248
dynamic links to internal data structures 555
dynamic modeling 6
Dynamic Resource Qualification model 226
dynamic values 254
dynamically changing parameters 254
Each block defines its own bias order 474
Edit Database Properties command 558
Edit Field Properties command 561
Edit menu 542
Edit Table Properties command 559
Edit tools 569
effective rate 450

defining a zero effective rate 514
impacted by constraints 461

Electronics library 55
empirical distribution 200
empty and not-empty 427
Enable Debugger check box 211
End of line option 549
End time 96

manually controlling 413
End time option 84
Enter Selection command 544
Equation block 80, 578

input variables 190
output variables 192
Resize table 191

Equation block (Value library) 44
equation debugger 211
equation editor 195
Equation(I) block 80, 400, 586

example of use 411
input variables 190
output variables 192
properties of items 258

equation-based blocks 189–195
code colorization 195
code completion 195

754

In
de

x

components 190
equation debugger 211
equation editor 195
header files 196
include files 196
input variable types 190
output variable types 192
user-defined functions 190
Variable Type popup for inputs 191
Variable Type popup for outputs 193

equations
blocks for 188
equation editor 195
local (temporary) variables 190
static (permanent) variables 190

Erlang distribution 200
ERP programs

import to or export from 225
Euler integration 203
event calendar 417
Event Monitor block 208, 596
event scheduling 416
Event Scheduling model 418
events 416, 537

calendar 417
current 419
future 419
generating 417
messages in discrete event models 419
posting 418
reports 184
zero time 417

Evolutionary Optimizer 48
Excel 240

exchanging data with 239
ExtendSim DB Add-In 233
using Data Import Export block 225
using Read and Write blocks 227

Excel Add-In 558
exchanging data

dynamic data linking (DDL) 229
piece-by-piece 226

Executive block 100, 589
advanced options 516
bias information for calculation 530
bias order definitions 513
bias order determination 517
description 413
Discrete Rate tab 514

flow messages in discrete rate models 538
global options 514
infinite rate 514
infinite rate setting 450
Item Contents tab 210
on worksheet by default 545
properties of items 258
update flow status 515
Valve options 515
zero effective rate 514

Exit block 588
removing items 258

Exit command 542
experiments

Optimizer 48
Scenario Manager 48
Sensitivity Analysis 49

Explicit Ordering model 306
explicit shutdown 335
Explicit Shutdown model 336
exponential distribution 200, 260
export data 224
Export Database command 50, 558
Export Selected Tables command 50, 559
Export Table to Delimited File command 560
exporting data 224–??

methods 223
ExtendSim

Analysis version 35
architecture 30
capabilities for modeling 30
Cloud version 36
databases 233–??
documentation 40
Excel Add-In 558
Help 41, 571
legacy libraries 55
levels of use 31
libraries 54
licensing options 36
manuals 40
messaging in models 101
OEM version 36
Options command 544
Player version 35
product line 32
products 33
Rate module 34
source code debugger 211

755

Index
support 41, 571
Technical Reference 40
training 42
updates 42, 571
upgrades 42
upper limits 602
User Reference 40

ExtendSim CP 33
ExtendSim database 47
ExtendSim DB Add-In 233
ExtendSim DE 33
ExtendSim Help command 571
ExtendSim Online command 572
ExtendSim Pro 34
External Source Code command 563
Extreme Value Type 1A distribution 200
Extreme Value Type 1B distribution 200
F connector 336
factor source list 155
factors 143
Faster Animation button 110
Feedback block 598
fields (database) 230

for DB address attribute 265
fields (parameter)

linking to a database or global array 229
outlined in green 229
outlined in red 229
outlined in yellow 229

FIFO queue 279
file format

of original graphic 110
pictures 115

File menu 540
File tools 568
files

backup 541, 550
exporting data 560
importing data 560
opening most recent 540
sharing 255

Fill Color button 106
Select Color window 108
transparency 108

filter options
block type filter 477
group filter 477
only connected blocks filter 477

Filtering 178
Final messages, in Link dialog 231
Find and Replace block 208, 253, 597
Find command 210, 543
Find Data in Database dialog 544
Find Links dialog 232, 555
Find Next command 544
Find Object dialog 543
Find String dialog 544
fixed costs 380, 390
fixed flow rule 465, 468
Fixed Items model 328
fixed rule modes 512
Fixed Time model 329
floating licenses 37
flow

accumulation point 494
attributes 431
biasing 510
catching 476
competing requests for 473
controlled by items 498
controlling flow 482
controlling items 499
creating 426
delaying 482
indicators 429
Interchange block 502
levels 429
LP technology 526
managing units 516
options when goal is off 483
preference 511
ranges 429
rules 452
status 515
streams (merging and diverging) 464
throwing 476
units 441

flow attributes 431
displaying 434
with item attributes 435

flow connector messages
in discrete rate models 538

Flow connectors 61, 125
Flow Control tab 482

goals 483
hysteresis 489

Flow Controls Item model 500

756

In
de

x

flow layers 433
Flow library (legacy) 55
flow rates

effective 450
infinite 450
maximum 449
overview 449
types 449

flow rules
critical constraints 453
fixed 465, 468
information to Executive 529
relational constraints 453

flow units
changing 444
declaring 443
group selector button 443
managing 443, 516

Free Rotate button 109
FTP 52

import to or export from 225
FTP (File Transfer Protocol) 244
FTP block (ModL Tips library) 52
full and not-full 439
Full factorial design 157
functions (calling from blocks) 188

G-I
G (goal) connector 487
Game of Life model 19
gamma distribution 200
Gate block 326, 407, 588

controlling the flow of items 294
Generate Debugging Info command 563
Generate Trace command 216, 241, 567
generating events 417
generating items 259–263
Generic library (legacy) 55
Generic time unit 93
geometric distribution 200
Get block 269, 586

properties of items 258
Get(R) block 435
global array 47

linking 229
global arrays 233–235

advantages of using 233

creating and using 234
data types 234
interacting with 235
linking to 555
methods for creating 234
populating with data 235

global object ID 64
global time units

converting from local time units 84
definition 93

Global time units option 84
Go To Function/Message Handler command 564
Go To Line command 564
goal

duration 487
options when off 483
quantity 483
starting 485
status 485

goal seeking 159
Graph Properties dialog 183
Graph tab 176
graphic objects 107, 570

aligning 570
graphical user interface 44
graphics

file formats 110
Graphics cursor 570
graphs

copying 252
customizing 183

green +/- resize button 284
green arrow for equation debugger 212
green parameter fields 229
grouped Bar Chart 175
groups

for Catch Item block 299
GS connector 485
GUI 45
header files 196
Help 41
help 571

getting technical support 41
Help block 80
Help menu 571
Hide Connections command 120, 554
Hide Connectors command 120, 554
Hierarchical Block Icon View command 553

757

Index
hierarchical blocks 120–131
animation of icon 113
cautions when using 130
changing 128
characteristics 121
commands for 553
connecting 126
connectors 125
creating 122
creating a new 124
Icon tab 124
icon, modifying 125
item templates 414
library (saving in) 127
locking 255
Make Selection Hierarchical command 123
making a selection into a 123
modifying 128
New Hierarchical Block command 124
password protecting 255
pictures, adding 65
Rename Block command 129
Save Block to Library As command 128
saving 127
saving to library 541
structure window 122, 127
submodels 125
Worksheet tab 124
worksheet window 122

hierarchy 44, 120–131
commands 553
Navigator 110
Navigator tool 46
physical 121
pure 121
uses 120

Histogram block 175
historical log

item contents 210
History block 208, 398, 586
History block (Item library) 49
History model 398
History(R) block (Rate library) 49
History(R) blocki 592
holding items 405
Holding Tank block 577

accumulating values 410
integration in 202
summation in 202

How To
Analyze and assess 47
Bring data into the model 46
Create a user interface 44
Export data from the model 49
Manage data for use in the model 47
Report results 49
Represent the system 44

hyperexponential distribution 200
Hypergeometric distribution 201
hysteresis 328

in discrete event models 327
in discrete rate models 489

Hysteresis model 490
icon

changing the appearance (hierarchical block) 129
custom 65
views 66

Icon pane for hierarchical blocks 124
Icon tab 124

Connector pane 124
Icon pane 124
Icon Views pane 124

Icon Tools 571
Icon Views pane for hierarchical blocks 124
IDE 30
Imagine That, Inc. 41
import data 224
Import Database command 558
Import Delimited File to Table command 560
Import New Database command 47
importing data 224–??

methods 223
Include additional block information option 546
include files 563
include files for equation-based blocks 196
Indentation guides option 549
indexing 248
indicators 429, 495

in Bucket Elevator 2 model 507
Indicators tab 430, 495
individual licenses 36
infinite rate 450, 514
inflow branch 465
Information block 208, 412, 586
Information block (Item library) 137
Init messages, in Link dialog 231
initial bias 98

758

In
de

x

initial conditions 97
initial contents

Rate library blocks 426
initial maximum rate 455
Initializing and Viewing model 291
Input Line Balancing model 298
input variables

in equation-based blocks 190
variable types 191

Insert New Field command 560
Insert New Records command 561
Integrate block 579
integrated development environment 30
integration

in the Holding Tank block 202
interactive simulation 65, 76, 77

importing/exporting data 224
inter-application communication 50
interarrival time 259
Interchange block 502, 593

animation 521
attribute conversion 508
attributes 433
behavioral rules 502
block units 442
critical constraints 456
initial contents 428
maximum rate 449
mode options 428
modes 504
preemption 504
release options 503
Tank is separate... 428, 429, 506
Tank only exists... 428, 504

interface 74
buttons 74
On/Off Switch block 77

internal database 47
Internet access 52
interpolated trace 182
interprocess communication 50
Interprocess communication (IPC)

definition 236
Intervals 183
Inventory Lab model 172
Inverse Gaussian distribution 201
Inverse Weibull distribution 201
Item Animation tab 111

item attributes 263
item connector messages

in discrete event models 421
in discrete rate models 538

Item connectors 61, 125
item contents 210
Item Contents tab 210
Item Controls Flow model 499
item index 275
Item library 54, 584–589

and continuous models 64
connectors 415
moving items 404
pitfalls to avoid 405

Item Log Manager (Report library) 49
Item Log Manager block 184, 208, 399
Item Messages block 208, 210, 596
items

allocate availability 413
animating in 2D 111
as cost accumulators 381
attributes 263–270
balking 281
batching 295, 346
batching properties when unbatching 356
blocking 281, 305, 318
contents of blocks 210
controlled by flow 499
controlling flow 498
cost accumulators 381
costing 138, 381
delay time 319
distribute properties when unbatching 356
generating 259–263
holding 405
index 275
Interchange block 502
jockeying 282
joining 295, 346
matching 349
merging streams 295
moving 404
parallel processing 299
predicting the path of 301
preempting 330
preserving properties when unbatching 356
processing 316–343
processing by type 312
processing time 319

759

Index
properties 263–275
properties when batched 351
properties when unbatched 356
pulling 405, 422
pushing 405, 421
quantity, using 273
reneging 281
resource constraints 365
resource vs cost accumulators 381
routing 300
scaling a large number 407
selecting 295
time between arrivals 137
travel time 406
unbatching 300
viewing 405

Items (DB) library (legacy) 56

J-L
JIT 337
JMP custom design 157

Min/Max column of Scenario Manager block 148
Jockey model 283
jockeying 282
Johnson SB distribution 201
Johnson SU distribution 201
just-in-time system 337
Kanban model 338
kanban system 337
key 182
Laplace distribution 201
Launch StatFit command 566
layers of flow 433
least dynamic slack 285
Least Dynamic Slack model 286
legacy libraries 55

Animation 55
BPR 55
Discrete Event 55
Flow 55
Generic 55
Items (DB) 56
Mfg 56
Plotter 55
Quick Blocks 56
SDI Tools 56

Legacy library warning option 547
Legend 182

length units 442
levels for factors 144
levels of use 31
libraries ??–69

alternate path 56, 548
block categories 547
block storage 56
closing 57, 551
compiling 552
compiling with debugging code 552
conversion to Runtime format 553
copying blocks between 69
corrupted blocks 70
discontinued 55
example libraries 55
ExtendSim 54
legacy 55
maintaining 551
new 67, 552
number of blocks per 602
open when ExtendSim launches 548
opening 56, 551
preload 548
protecting block code 68, 552
removing blocks from 69
saving blocks in 67
saving hierarchical blocks in 127
searching for 57, 540
size 602
source code management 563
substituting 57, 68
version control 67, 563
version strings 552
window 58

Libraries tab of Options command 547
library

Animation 54
Chart library 54
Custom Blocks library 55
Electronics 55
Item library 54, 584–589
ModL Tips library 55
Rate library 54, 592
Templates library 55
Tutorial library 55
Utilities library 54, 596
Value library 54, 576–581

Library menu 551
Library Tools command 552
library window 58

760

In
de

x

blocks in categories 563
close all 551
closing all 571
dates option 548
docking 59
open all 551
Open when library is opened option 547
opening all 571
opening at startup 548
printing 250
Show path to library option 547
to copy blocks 69

Library Windows tools 571
license options 36
licenses

floating 37
single-user or individual 36

LIFO queue 279
limiters 242
limits of ExtendSim 602
Line Balance with Activities model 311
line balancing 297, 309
Line button 108
Line Chart block 175

background picture 176
worm chart 175

line wrap 549
Line/Border Thickness button 108
linear programming 526
lines

aligning 570
color 570
drawing 570
horizontal 108
vertical 108

Link Alert block 208, 597
link alerts 102, 223, 228, 231, 233, 247
Link button 229, 555
Link dialog 230

checkboxes 231
deleting a link 231
finding links 555

link update message options 231
linked list 47
List blocks in Library menu by category option 547
local block number 65
local copy 241
local time unit 94

location of distribution 199
locking a model 255
log

item contents 210
Logarithmic distribution 201
Logistic distribution 201
loglogistic distribution 201
lognormal distribution 201
Lookup Table block 410, 579

time units 321
time-based parameters 409

Lookup Table model 410
loop, empty 517
LP area 452, 527

flow rules 452
precision 510

LP calculation 532
bias information 530
flow rules 529
sequence of events 528
table summarizing information 531

LP Solver 526
LP technology 526

LP area 452
LP Solver 526

M-N
M/M/1 queue 280
mail slots 52
mailslots 245
mainframes 240
maintenance 334
Make Cell Random command 561
Make Selection Hierarchical command 123, 553
managing data 47
Manual design of experiments 157
manuals 40
Manufacturing library (legacy) 56
Markov chain 17
Markov Chain Weather model 17
Markov Chain Weather Simulation model 75
match into one item 347, 349
Matching Item model 349
material handling 338
Math block 579

controlling the flow of items 295
Max & Min block 298, 311, 579

761

Index
controlling the flow of items 295
Maximize Service Level model 287
maximized capacity in Convey Flow block 441
maximizing service levels 287
maximum density 492
maximum rate 449

dynamically changing 455
Interchange block 456
Tank block 456

Mean & Variance block 137, 400, 581
quantiles option 137

Mean & Variance block (Value library) 48
Memory Usage block 208, 598
Merge block 593

bias order 473, 512
bias order table 514
catching flow 476
critical constraints 457
displaying bias order 517
features 473
fixed rule modes 512
Flow Attributes tab 474
modes (mixed in model) 535
modes (summarized) 465
non-fixed rule modes 513
proportional mode and empty loop 517
requirements for critical constraint 459
setting bias order 513

Merge Proportion Setting model 518
Merging Inputs model 297
messages 421

application 101
block 102, 419
block-to-block 422
during simulation run 101
in discrete rate models 537
item connector 421
link alerts 102
needs 421
rejects 421
value connector 419

Meter block 77, 598
Meter block (Utilities library) 45
Metric distance units option 546
Mfg library (legacy) 56
Microsoft Access 225
minicomputers 240
Minimize Setup model 286
minimizing setup 286

Minimum Value model 460
Minitab optimal design 157
Miscellaneous tab of Options command 550
Mixed blocks statistical method 135
MM1 model 280
model 318

adding blocks using Smart Blocks technique 60
agent-based 18
analysis 143
architecture 30
backup files 541, 550
balking of items 281
before you start 25
blocking of items 281
blocks that represent functions 188
closing 540
comparison of types 11
continuous (definition) 10
copying 252
debugging hints 206
definition 5
design of experiments 148
deterministic 7
discrete event (definition) 11
discrete rate (definition) 11
distributions 198–202
ExtendSim capabilities 30
factors for scenario analysis 143
goals 24
initial conditions 97
inputs for scenario analysis 143
integration methods 203
item quantities 274
jockeying of items 282
locking 255, 556
logical models 6
measuring model performance 208
messages 101
multiple runs 88, 98
multiple windows 100
Navigator 110
non-terminating systems 96
notebook 79
number of runs 96
objectives 24
opening 540
password protection 255
path options 546
pictures in 109
preemption 330

762

In
de

x

process of creating models 21, 24
profiling 99
protecting 255
Queue Statistics 136
random number generator 197
random number seed 86
refining 25
reneging of items 281
resources 361
responses for scenario analysis 144
reverting 540
run length 96
running multiple models simultaneously 87, 100
saving 541
scenario management 143
sharing models 255
size 602
sound at end of run 546
starting 540
state chart 16
State/Action 16
statistical analysis 134
status bar 90
steps in creating 24
stochastic 7
systems 5
table of different types 11
terminating systems 96
tooltips 545
tracing 216–217
types of 11
validation 26, 48
verification 26, 48, 207
warm-up period 97

Model Compare block 208, 218, 597
Model Data database 154
Model Debugging command 99, 567
Model Developer Editions 33
Model Interface block 598
Model Interface block (Utilities library) 45
Model menu 553
Model tab of Options command 545
Model tools 569
modeling

terminology 6
models

Boids 21
Clearing Statistics 136
Game of Life 19

Markov Chain Weather 17
Monte Carlo 15, 137
Queue Statistics 15, 136
Run for CI 138
Sheep and Wolves Agents 21
Simple Resource Pool 366
State Action 17

modes (Merge/Diverge) 465
mixed mode situations 535
sensing 533

ModL
Develop menu 562
protecting block code 68
saving code as text file 552

ModL Tips library 55
Monte Carlo model 15, 137, 228
Monte Carlo simulation 14
Move Selected Dialog Items to Tab command 564
multi-dimensional analysis 142
Multiple Cost Accumulators model 392
Multiple Pools model 366
Multiple Resources model 386
multiple scenarios 88
multiple simulaiton runs 179
Multirun analysis 136
multi-sim plotter 179
multitasking 336
multi-threaded run mode 87
multi-threading capability 87
MySQL 243

import to or export from 225
name tracking 228
named connections 118

Show Named Connections command 120
named distribution 561
names of blocks

length of name 602
Navigator button in toolbar 110
Navigator command 568
Navigator tool 46, 110
negative binomial distribution 201
neutral mode 472
New Block command 562
New Database command 558
New Hierarchical Block command 124, 553
New Include File command 563
New Library command 67, 552

763

Index
New Model command 540
New Table command 559
New Text File command 241, 540
Next command (Window menu) 568
non-accumulating conveyor

Convey Flow block 493
Convey Item block 341

Non-Calendar date definitions 84
non-fixed rule modes 513
Non-Processing model 400
non-terminating system 96
normal distribution 201
notebooks 45

as control panel 79
copying 252

Notify block 77, 207, 580
Notify block (Value library) 46
Notify block (Value) 92
Number of steps option 85
Number shift 373

O-P
Object ID

definition 543
object ID

showing 554
Object Mapper block 242, 596
object model 242
ObjectID 275
objective function 159, 161, 169
objects (graphic)

copying 251
drawing 107

observed statistic 401
ODBC (Open Database Connectivity) 244
OEM version 36
Offset By 178
OLE (Object Linking and Embedding) 243
OLE/COM 51
On/Off shift 373
One cell per trace 180
One field per trace 180
One table per trace 180
online help 41
Open All Library Windows command 59, 551
Open Block Structure command 562
Open Breakpoints Window command 564

Open column in DB Line Chart 181
Open command 540
Open Dynamic Linked Blocks command 232, 555
Open Enclosing Hierarchical Block command 553,

568
Open Hierarchical Block Structure command 553
Open Include File command 563
Open libraries on launch option 548
Open Library command 551
Open Library Window command 58, 551
Open Sensitized Blocks command 556
open systems 370
Open these library windows option (Libraries tab)

548
opening

libraries 56
library windows 58

optimization 48, 158–172
adding variables 161
algorithms 159
constraint equations 167
constraints 166, 171
cost equation 169
determining the form of the function 161
entering the objective function 164
maximum samples 170
objective function 169
overview 159
profit equation 169
setting limits for the variables 163
steps for using 159
terminate if best and worst 171
tutorial 160
variables table 168

Optimize 1 model 160
Optimize 2 model 172
Optimize 3 model 172
Optimizer block 161, 168, 253, 579

clone drop 162
cost equation 159
objective function 159, 161
Results tab 172
Run Parameters tab 170
Shift-click 162

Option key 553, 564
Options command 544

Libraries tab 547
Miscellaneous tab 550

764

In
de

x

Model tab 545
Script tab 549

Oracle
import to or export from 225

order
bias 473

outflow branch 465
Output Line Balancing model 310
output variables

in equation-based blocks 192
variable types 193

Oval button 108
page breaks 250, 541
page numbers 250, 541
Page Setup command 542
parallel processing 299, 318

buffering 309
explicit ordering 305
line balancing 309
simple parallel connections 318
successive ordering 304
using one Activity block 318

parameters
arguments 199
changing dynamically (methods for) 254
definition 6
deleting a link to a database 231
green 229
red 229
yellow 229

Parent Record Index 192, 194
Pareto distribution 202
passing blocks 414
password protecting a model 255
password protection 255
Paste command 543
Paste Picture command 109
Path to model option 546
Pause at Beginning command 89, 567
Pause button 569
Pause command 89, 566
Pause Sim block 89, 92, 208, 598
Pause Sim block (Utilities library) 45, 50
PDF format 250, 541
PE input connector 330
Pearson type V distribution 202
Pearson type VI distribution 202
PICT (picture) resource 115

pictures
copying 252
file formats 110, 115
from other applications 252
starting with @ 115
working with 109

Places 183
Play a sound 77
Play sound at end of run option 546
Player version 35
Plot Now button 181
plotter 174–??

types of 174
Plotter library

is in Legacy status 174
Plotter library (legacy) 55
Poisson distribution 202
Poll constraint every... 456
Polygon button 108
pools

Advanced Resource Management method 361
Resource Pool method 361

Popups block 598
Popups block (Utilities library) 45, 47
Power Function distribution 202
precision in LP area 510
Predict the path of the item 301
preempt connector 504
Preempt tab 330
Preempting model 331
preemption 330

definition 329
options in Activity block 330

Preferences button 541
preferences for ExtendSim 544
preprocessing 407
preserve uniqueness 357

in both Batch and Unbatch 357
in either Batch or Unbatch 357

preserved value 356
Previous command (Window menu) 568
PRI 192, 194
Print command 541
print dialog 541
printing 250, 541

Apply button 250
library windows 250
page breaks 250, 541

765

Index
page numbers 250, 541
PDF files 250, 541

Printing Preferences dialog 541
prior version library warning 547
priorities 271–272

used for routing 306
Prioritize With Bias Blocks model 512
priority mode 468

bias order determination 517
Priority Mode Diverge model 469
Priority Mode Merge model 470
Priority model 280
priority-sorted queue 279, 280
probability distributions 198–202
processes

costs 385
discrete event 316
examples 316
interrupted 329
parallel 318
serial 317

Processing by Type model 312
processing items 316–343

fixed number of items 327
for a fixed period of time 329
hysteresis 327
interrupting 329
just-in-time (JIT) 337
Kanban system 337
multitasking 336
scheduling 325
setting the time 319
shutting down the process 331
time sharing 323

processing time
custom 322
fixed 320
implied 323
random 321
scheduled 320
setup time 324

product line 33
Profile Block Code command 568
profiling 99, 568
profit equation 169
programming

profiling 568
protecting block code 552

Prompt for output value 77

properties 263–275
_3D objectID 275
_Animation 352
_Cost 275
_item index 275
_Item quantity 273, 352
_Rate 275
3D objectID 275
AR Order ID 275
batched value when unbatching 356
distribute when batching 356
item attributes 263–270
item index 275
of items when batched 351
of items when unbatched 356
options when batching 352
preserved value when unbatching 356
priority 271–272
Properties tab in Batch/Unbatch blocks 352
quantity 272
Rate attribute 275
Resource Order ID 275

Properties command 542
Properties tab of Batch/Unbatch blocks 352
propeties

Cost attribute 275
proportional mode 468
Proportional Mode Diverge model 468
Proportional Mode Merge model 468
Protect hierarchical blocks checkbox 255
Protect Library command 69, 552
protect model 556
Protect Model command 255, 556
protecting a model 255
PT connector 400
Pull from the opposite connector 179
pulling items 405, 422
Pulse block 578
Pulse block (Value library) 135
pushing items 405, 421

Q-S
Quantiles option 137
quantity goal 483
Quantity Goal model 484
quantity of items 273, 352
Query Equation block 226, 246, 579

input variables 190

766

In
de

x

output variables 192
Query Equation block (Value library) 47
Query Equation(I) 586
Query Equation(I) block 226

input variables 190
output variables 192

Query Equation(I) block (Item library) 47
queue

animating contents 291
attribute-sorted 279
contents 289
FIFO (first in, first out) 279
initializing contents 290
jockeying 282
least dynamic slack 285
LIFO (last in, first out) 279
M/M/1 queue 280
manipulating contents 289
matching by Item attributes 288
maximizing service levels 287
minimize setup 286
priority-sorted 279, 280
reneging 281
resource pool queue 367
server systems 279
sorting mechanisms 278
user-defined sorting 279
viewing contents 289

Queue block 587
contents 210
in resource pool queue mode 360
queuing 278
resource pool queue mode 365

Queue Equation block 283, 587
input variables 190, 284
output variables 192, 285
queuing 278
Release popup 285
tie breaking capabilities 288

Queue Matching block 288, 587
queuing 278

Queue Matching model 289
Queue Statistics model 15, 136
Queue Tools block 289, 597

queuing 278
queue/server systems 279
queueing disciplines 278
Quick Blocks library (legacy) 56
Quick Start guides 40

Quit command 542
R connector 455
R, G, B 108
Random Activity model 321
random distributions 198–202
Random Intervals model 260
Random Number block 578

setting time-based parameters 409
Random Number block (Value library) 44
random number generator 86, 197

optional 197
recommended 87, 197

random number stream 198
random numbers 197–198

resetting 198
Random Numbers tab 86

and confidence intervals 138
random seed 86, 198
Random seed option 86
Random Shutdown model 335
random variables (definition) 7
randomness 7
ranking rules 285

least dynamic slack 285
maximizing service levels 287
minimize setup 286
tie-breaking 288

Rate attribute 275
Rate block flow messages

in discrete rate models 538
Rate library 54, 592

animation 520
common connectors 518

Rate module 34
rate sections 451

boundaries 451
determining 461

rates
effective 450, 514
goal 483
infinite 450
maximum 449
precision 452
sections 451
types in discrete rate model 449

rates of flow 449
Rayleigh distribution 202
RBD 14

767

Index
description 14
Reactivate License command 572
Read block 241, 577

addressing the data structure 227
Read block (Value library) 46, 47, 226, 246
Read from the opposite connector 179
Read(I) block 46, 585

addressing the data structure 227
Read(I) block (Item library) 47, 226, 246
Read/Write Index Checking command 561
Read-only link 231
RealTimer block 92, 599
Receive Inventory model 385
Recent Files command 540
Record Message block 208, 210, 597
Record Message block (Utilities library) 50
Rectangle button 108
red block name in library window 59
red border around block icons 59
red border around blocks 67
red circle in equation debugger 212
red dotted line 214
red parameter fields 229
Redo command 542
reductio-ad-absurdum 26
reference line 184
registered blocks

finding 555
regular expression 544
relational constraints

definition 453
determining 461
permanent 530
state sensitive 530

release number 573
Reliability block diagramming (RBD) 14
Reliability connectors 61, 125
Remove All Blocks From Trace command 216
Remove All Blocks from Trace command 568
Remove Cell Randomness command 561
Remove Debug Code from Libraries command 552
Remove External Code from Libraries command

552
Remove Selected Blocks From Trace command 216
Remove Selected Blocks from Trace command 568
Rename Block command 562
reneging 281

Reneging model 282
replications 144
Report library 54
Reports Manager block 184
representing the system 44
reserved databases 561, 565
Reservoir 3 model 211
Reset random numbers for every run option 86
residence blocks 414
Resize a data table 191
Resource Item block 368, 384, 587

advantages and disadvantages 362, 368
creating resources as items 361

Resource Item method 361
Resource Manager 587
Resource Manager block 360

advantages and disadvantages 362
Resource Order ID property 275
Resource Pool block 365, 587

advantages and disadvantages 365
creating resources 360

Resource Pool method 361
advantages and disadvantages 362

Resource Pool Release block 365, 588
releasing resources 361

resources
attributes for tracking information 369
batching method 368
combining with cost accumulators 390
conceptual 362
conserving 353
constraining flow of items 365
costing 381
for costing 385
from different resource pools 366
implicit modeling of 361
limited 365, 368
modeling methods 361
number available 365, 368
Resource Pool method 365
scheduling 370
scheduling using other methods 372
scheduling using Shift block 372
scheduling using TR connector 371
used in multiple places 367

Resources model 375
responses 144
restraints on resources 365

768

In
de

x

Resume button 569
Resume command 567
Revert Model command 540
Revoke License command 572
right-click to add blocks 60
RightClickConnect 561
Rounded Rectangle button 108
routing

based on priority 306
conditional 308
explicit 305
implicit 302
remotely 307
sequential 304
using Throw Item and Catch Item blocks 298, 307

Run
option in Chart block 179

Run > Debugging command 50
Run as Administrator 218
Run for CI model 138
run length 96

determining 98
Run menu 87, 565
Run Mode button 569
Run Model block 92, 599
Run Model block (Utilities library) 45
run modes 87

Fastest 87
multi-threaded 87
single-threaded 87

Run Optimization or Scenarios command 88, 165,
565

Run Optimization or Scenarios tool 165
Run Optimization/Scenarios button 569
run parameters 84
Run Parameters tab 170
Run Scenarios command 88, 565
Run Simulation button 569
Run Simulation command 88, 565
running a model 87
runs

multiple (resetting random numbers) 198
setting the number of 84

Runs option 84
Runtime format 553
RunTime versions 35
S (sensor) output connector 494

S (status) connector on Valve 515
SAP

import to or export from 225
Save backup model files option 550
Save Block to Library As command 128, 541
Save HBlock to Library As command 541
Save Model As command 541
Save Model command 541
Save Text Document As command 241
saving

a hierarchical block 127
a library 67
a model 541

scaling
number of items 407

Scatter Chart block 175
X Msg, Y Msg 179

scattergram 175
scenario analysis 143

database variables 151
design of experiments 148
Dialog Factors table 145
Dialog Responses table 148
dialog variables 144
factors (defined) 143
levels 144
Model Data database 154
replications (defined) 144
responses (defined) 144
source list 155
sources 151
targets 151
tutorial I 144
tutorial II 150

Scenario DB database 145, 149
Scenario Manager 48, 580
Scenario Manager block 143, 253

clone drop 146
Dialog Factors table 145
Dialog Responses table 148
Export tab 150
Include in Report column 148
Min/Max column 148
Report Set column 148
Scenarios tab 148, 157
shift-click 146

Scenario Manager DB Factors model 156
Scenario Manager Final Car Wash model 153
scenarios 88

769

Index
Scheduled Intervals model 262
Scheduled Shutdown model 333
Scheduled Time model 321
scheduling

activities 325
events 416
labor 372
resources 372
shutdown 333

Scheduling Activities 1 model 326
Scheduling Activities 2 model 327
scheduling algorithms 278
Scheduling Resources model 371
schema view

buttons 573
for a database 557

scrap generation 304
Scrap Generation model 304
Script tab of Options command 549
Script window font option 549
scripting functions 52, 253
SD input connector 332
SD output connector 333
SDI Tools library (legacy) 56
searching for library... 540
seed 86, 198
Select All command 544
Select Color window 108
select connector 408
Select Item In block 295, 589

routing items 294
selection options 296
starving conditions 296

Select Item Out block 589
blocking conditions 301
routing items 294
selection options 300

Select mode (in Merge/Diverge block) 465
Select Mode Diverge model 466
Select Mode Merge model 466
Select Value In block 580
Select Value Out block 580
Selection column 181
selection options for Select Item Out block 300
selection options in Select Item In block 296
sending data out of the model 49
sensing mode 471, 533

bias order determination 517
Sensitivity Analysis 49
sensitivity analysis 138

disabling 141
enabling 141
multiple dimensions 142
opening sensitivity blocks 556
overview 138
Sensitize Parameter command 139, 556
settings 140
steps 139

Sensitivity dialog 140
Sensitize Parameter command 139, 556
Sensor block 533, 593

animation 523
sensor connector 405
Sensors tab 494
sequential routing 304
serial port 248
serial processing 317
Serial Processing model 317
Series 178
Series Editor 178
server application 236, 242
Set block 267, 586

properties of items 258
Set Block Category command 563
Set Breakpoints and Add Debugging Code com-

mand 564
Set Breakpoints window 211, 564
Set Library Version command 552
set point 429
set points 34
Set Simulation Order command 555
Set(R) block 432
Setup tab 84
setup time 324
Setup Time 2 model 325
shape of distribution 199
shapes 570

aligning 570
circle 108
horizontal line 108
square 108
vertical line 108

Shapes tools 570
Shared Libraries 82, 245, 248
sharing files

770

In
de

x

model locking 255
Sheep and Wolves Agents model 21
Shift block 327, 372, 588

adding to a model 491
in discrete rate model 491
managing resources 361
Number shift 373
On/Off shift 373
shift types 373
status connectors 374

Shift On and Off model 374
Shift Selected Code Left command 563
Shift Selected Code Right command 564
Shift-click 135, 162
shift-click 146
Shipping model 504
Show 2D Animation command 110, 111, 566
Show Block Labels command 120, 554
Show block modified & compiled dates option 548
Show Named Connections command 120, 554
Show Object IDs command 250, 554
Show Page Breaks command 250, 541
Show Reserved Databases command 561, 565
Show Simulation Order command 215, 554
Show Tracing Blocks command 216, 568
shutdown 331

definition 330
explicit 335
options for items 332
options in Activity block 332
scheduled 333

Shutdown block 588
controlling item processing 316
time between failures (TBF) 334
time to repair (TTR) 334

Shutdown tab 331
Sim messages, in Link dialog 231
Simple Batching model 349
Simple Connections model 302, 318
Simple Resource Pool model 366
Simple Routing model 302
Simple Routing One Queue model 303
Simulate Multitasking Activity model 337
simulation

agent-based 18
analysis tool 6
beep at end of run 546
benefits 4

controlling the run 91
definition 6
design tool 6
deterministic 7
duration 92, 98
dynamic modeling 6
goals 24
importance 4
messages 101
monitoring the run 91
Monte Carlo 14
multiple 88, 98
number of runs 84
number of runs (maximum) 602
objectives 24
order of execution 215
pausing 89, 566
process 24
prompt for user input 77
replications 144
running 87
running multiple models simultaneously 87, 100
runs (determining) 98
slowing down a 100
sound 77
speeding up a 98
state chart 16
State/Action 16
status bar 90
stepping through 89
steps 24
stochastic 7
stopping 77, 566
terminology 6
the process 24
timer inconsistencies in discrete event models 91
timing 92
types of 11

simulation order 554
Simulation Setup command 84, 566

Continuous tab 85
Random Numbers tab 86
Setup tab 84

Simulation Variable block 578
single-threaded run mode 87
skewness of distribution 199
Slider block 77, 599
Slider block (Utilities library) 45
Slower Animation button 110
Smart Blocks technique 60

771

Index
Sort By Type model 389
sounds 77, 546
source code

control 552
external 563
protection 552

source list for scenario analysis 155
sources 151
speed and calculated distance 339
speed and distance

in a Convey Flow block 492
spread of distribution 199
spreadsheets 239
SQL (Structured Query Language) 244
SQL Server 243
SQLServer

import to or export from 225
square shape, how to get 108
stacked Bar Chart 175
standalone licenses 36
start connector 262, 328
start connector (on Valve) 490
start time

absolute vs. relative 262
Start time option 84
Starting seed used in last model run option 86
starving

in a Valve block 515
in Select Item In block 296

State Action model 17
state chart modeling 16
State/Action modeling 16
StatFit 48, 172–174, 566

tutorial 172
StatFit Example model 173
static values 254
statistical analysis 134
statistical bias 136, 397
statistical data fitting 199
statistical method 136
statistics 134–??, 137, ??–138

Batch means method 136
bias 397
blocks for discrete event models 396
clearing 397
confidence interval 138
custom method 136
cycle time 137, 412

moving average 137
multirun analysis 136
observed 401
sensitivity analysis 138
time weighted 401
warm-up period 136, 397

Statistics block 134, 184, 207, 253, 397
confidence interval 135
Shift-click 135
statistical methods 136

Statistics blocks (Report library) 48
status bar 90
steady-state systems 97
Step 4 DE Tutorial model 145
Step command 567
Step Each Block command 89, 567
Step Entire Model command 89, 567
Step Into command 564
Step Out command 565
Step Over command 564
Step The Flow Process model 500
stepped trace 182
steps

number of 85
number of (maximum) 602

Stepsize calculations option 85
stepwise refinement 4
stochastic models 7
Stop command 566
Stop Message block 412, 597
Stop the simulation 77
storage costs 383, 391
storing data 47
straight horizontal or vertical line 108
string attributes

declaring for items 413
string attributes for items 264
string item attributes

defining 266
string layer attributes

declaring 414
structure window

hierarchical blocks 127
structure window of hierarchical blocks 122
Styles option (connection lines) 118
submodels 125
Supply & Demand Warning model 534

772

In
de

x

supply scarcity 469
Supply Sensing Mode Merge model 472
Support Center command 571
support for ExtendSim 41
support ticket 571
Switch block 77, 599
Switch block (Utilities library) 45
system attributes 387
system representation 44
systems

definition 5
discrete event 316

T-V
tab delimited files 242, 560
tables

changing number of rows 191, 193, 284
deleting rows 191, 193, 284
duplicating rows 191, 193, 284

Tank block 593
animation 520
attributes 433
block units 442
capacity 439
critical constraints 456
direction animation 521
initial contents 427
level animation 520
maximum rate 449

Tank Constraint model 457, 461
Tank Flow Unit model 444
targets 151
Technical Reference 40
technical support 571

information to provide 41
resources 41

templates for discrete event models 414
Templates library 55
terminating systems 96
text

aligning 569, 570
as a connector in hierarchical blocks 126
border 107
box 106
color 570
copying 107
drag and drop 107
entering 106

formatting 106, 569
Text Box button 106, 570
Text file font option 242, 546
text files 225

changing the font 242
closing 540
creating 241, 540
exporting 560
importing 560
opening 241, 540

Text tools 106, 569
Throw & Catch model 298
Throw Flow block 476, 593
Throw Item block 298, 307, 589

popup list of Catch Item blocks 299
routing items 294

Throw Value block 581
throw/catch

filters in discrete rate models 477
in discrete event models 298
in discrete rate models 476

throw/catch connection 477
Ticks 183
Tile command 568
time

between arrivals 259
between failures (TBF) 334
to repair (TTR) 334

time between item arrivals 137
Time per step option 85
time sharing 323
Time Sync block 92
Time Unit block 579
time units 93–96, 442

generic 93
global 84
in discrete rate model 444
local 94

time weighted 137
Time Weighted Statistic model 401
time weighted statistics 401
time-based parameters 409
timer 90
TimeSync block 599
toolbar

buttons 568, 573
changing size of icons 550

tools

773

Index
drawing 107
Tools menu 568
Tooltips

uses 253
tooltips 49

additional block information 546
Show in block structure’s Dialog tab option 550
show on block dialog items option 550

tootips
setting the option 545

total cost 391
TR connector 371
Trace Editor 182
traces

color and width 182
point style 182
styles 182
symbols 182
Trace Editor 182

tracing 216–217
steps 216

training 42
transparency 108
Transparent Background button 106, 570
Transport block 584

distance ratio 340
from and to locations 339
move time 339
processing items 316
speed and calculated distance 339
speed and distance 339

transportation 338
Transportation 1 model 342
Transportation 2 model 343
travel time 406

options 339
triangular distribution 202
Tutorial library 55
Unbatch block 353, 585

unbatching items 346
Unbatch Mode Diverge model 467
unbatch/batch mode 467
unbatching 300, 353–356

batch size 356
batched value 356
create multiple items 354
distribute properties 356
item properties 356

preserve uniqueness 357
preserved value 356
release cost resources 354
variable number of items 355

Undo command 542
Uniform Integer distribution 202
Uniform Real distribution 202
unit groups 442
units

block 442
group 442
length 442
managing flow units 516
metric 546
time 442, 444

Universal connector 61, 125
update check option 550
update flow status 515
Update Launch Control command 542
updates 42
updates, checking for 571
upgrades 42
upper limits 602
upstream supply 468

cautions when determining 533
definition 533
discrepancy with downstream demand 470
supply scarcity 469

Use database table _Seed...option 87
Use recommended random number...option 87
Use Sensitivity Analysis command 566
User Defined connector 61, 125
user interface 45, 72–80

buttons 45
creating 44
for data exchange 222

User Reference 40
user-defined functions 190, 196
user-defined links 555
user-defined queue 279
Utilities library 54, 596
validation 26, 48
value attributes 264
value connector messages 408, 419

in discrete rate models 538
Value connectors 61, 125
value item attributes

defining 266

774

In
de

x

Value library 54, 576–581
blocks in non-continuous models 64

values
definition 7
dynamic 254
static 254

Valve block 593
advanced status reporting 515
animating blocking/starving status 522
animating goal 523
animating hysteresis 523
animating limiting status 522
animation 521
critical constraints 455
duration goal 487
Flow Control tab 482
goal for rate 483
GS (goal status) connector 485
hysteresis 489
maximum rate 449
maximum rate initialization 455
polling constraints 456
quantity goal 483
status options 515

variable branches 465
variable connectors 62

collapsing 63
contracting 62
expanding 62

variable cost rate 390
variable costs 380
Variable Name column 192

output variables 194
Variable Type popup

input variables 191
output variables 193

Variable Value field 192
variables

input, in equation-based blocks 190
local 190
output, in equation-based blocks 192
static 190

variables (definition) 7
variables table 168
verification 26, 48, 207, 217
Verifying Information model 399
version control 67
viewing items 405
views (icon) 66

W-Z
Wait Time block 577
waiting costs 383, 391
wants 421
Warm when opening legacy or prior version library

option 547
warm-up bias 98
warm-up period 97, 136, 397
Weekly and Daily Shifts model 376
Weibull distribution 202
White space option 549
window

database 557
library 551
Navigator 110

Window menu 568
wizards 52

also see Model-Building Wizards 31
Word wrap option 549
Worksheet tab 124
Workstation block 585

processing items 316
worm chart 175, 179
Write block 241, 577

addressing the data structure 227
Write block (Value library) 47, 50, 226, 246
Write(I) block 585

addressing the data structure 227
Write(I) block (Item library) 47, 49, 226, 246
X and Y checkboxes (Scatter Chart) 178
X Msg, Y Msg 179
XML

import to or export from 225
Y Msg 179
Y1/Y2 axes 183
yellow parameter fields 229
Yogurt Changeover model 505
Yogurt Production model 505
Yogurt Production with Flavors model 435
Yogurt Production with Flavors Plus model 435
zero effective rate 514
zero time events 417

	Table of Contents
	Why I Created ExtendSim

	Simulation
	An Overview of Simulation
	Why simulate?
	What you can do with simulation
	Systems, models, and simulation
	Systems
	Models
	Simulation
	In summary

	Additional modeling terminology
	Modeling methodologies
	Model parameters, inputs, and outputs
	Constants and randomness

	Modeling Methodologies
	Methods for specifying systems
	Main modeling methodologies
	Other modeling approaches

	How time is treated in the main modeling methodologies
	Table of continuous process, discrete event, and discrete rate differences
	Which one do you choose?
	“The” model of a system
	Mixing it up
	One interface for all modeling needs

	Other modeling approaches
	Reliability Block Diagramming
	Monte Carlo modeling
	State/Action models
	Agent-based models

	There’s a Process To It
	The modeling process
	Goals of modeling
	The simulation process
	Before you build a model
	Refining models

	Model verification and validation
	Model verification
	Model validation

	About ExtendSim
	Capabilities, Products, and Licensing
	What ExtendSim can do
	Modeling capabilities
	Simulation architecture
	Levels of use

	ExtendSim products
	Simulation capabilities
	Core features in ExtendSim products
	Model Developer Editions
	RunTime and specialized products

	Licensing options
	Individual licenses for a single user
	Node-Locked licenses for sequential users
	Floating licenses for concurrent users

	Support: Documentation, Training, and Upgrades
	ExtendSim written documentation
	Quick Start Guides (QSG’s)
	Tutorial/Reference Books
	User Reference
	Technical Reference

	Videos and additional resources
	Quick Start interface
	Videos
	Online help
	Web Advice
	Networking

	Technical support

	How To
	The Big Picture
	Overview
	Model-building to represent the dynamics of the system
	Creating a user interface for the model
	Getting data into the model
	Managing data for use in the model
	Analyzing data and assessing results
	Reporting results and exporting data
	Communicating with external applications and devices

	Libraries and Blocks
	Overview
	The libraries that ship with ExtendSim
	Item library (not available in ExtendSim CP)
	Chart library
	Report library
	Rate library (only available in ExtendSim Pro)
	Utilities library
	Value library
	Animation library
	Electronics library
	Example Libraries folder
	Legacy folder

	Opening, closing, and searching for libraries
	Opening a library
	Closing a library
	Searching for libraries and blocks

	Library windows
	Opening library windows
	Docking and stacking
	Code management and debugging designations
	Closing library windows

	Working with blocks
	Placing blocks on the model worksheet
	Connectors
	Connecting to different connector types
	Dialogs
	Animating blocks
	Customizing block icons
	Icon views

	Hierarchical blocks
	Creating and maintaining libraries
	Creating a new library
	Saving and compiling libraries
	Substituting one library for another
	Arranging blocks in libraries
	Protecting the code of library blocks
	Converting libraries to RunTime format

	Managing blocks
	Copying blocks
	Changing a block’s name
	Removing blocks
	Corrupted blocks

	Customizing the User Interface
	Overview
	Cloning
	How to clone a dialog item
	Using cloned items
	Unlinked clones

	Creating a dashboard interface
	Buttons
	Popup menus
	Model Interface template
	Run Model and Pause Sim

	Control blocks
	Meter
	Slider
	Switch

	Interacting with the model user
	Notify block

	Hierarchy
	Notebooks
	Documenting models
	Text and graphics
	Help block

	Equation blocks
	Centralizing data in a database
	Additional interactive features if you program
	External applications as an interface

	Model Execution
	Overview
	Simulation setup
	Setup tab
	Continuous tab
	Random Numbers tab
	Comments tab

	Running a simulation
	Menu commands and toolbar buttons
	Running a model multiple times
	Stepping through a model
	Other points when running models
	Status bar
	Blocks that control or monitor simulation runs

	Timing
	Continuous simulation timing
	Discrete event simulation timing

	Simulation order (continuous models)
	Time units
	Global time unit
	Local time unit
	Calendar dates
	Time unit conversions (non-Calendar dates)

	Other Units
	Flow units
	Length

	Length and number of runs
	Terminating systems
	Non-terminating systems
	Determining the length and number of runs

	Speeding up a simulation
	Select fastest run time
	Decrease the display of data or movement
	Look for inefficient settings or code
	Other factors that affect simulation speed

	Slowing down simulations
	Working with multiple models
	How ExtendSim passes messages in models
	Application messages
	Block to block messages

	Presentation
	Overview
	Text
	Entering text
	Formatting text
	Moving and copying text
	Drag and drop text

	Graphic shapes, tools, and commands
	Shapes tools
	Alignment tools

	Working with pictures
	Navigator
	Animation
	Overview
	Blocks with built-in animation
	Blocks for customized animation
	Animation functions
	Pictures for animation

	Connections
	Drawing a connection line
	Connection line appearance
	Model > Connection Line Style
	Named connections

	Showing and hiding model elements
	Hierarchy
	Uses for hierarchy
	Characteristics of hierarchical blocks
	Important notes about hierarchical blocks
	Creating and accessing hierarchical blocks
	Making a selection into a hierarchical block
	Creating a new hierarchical block
	Saving hierarchical blocks
	Modifying hierarchical blocks

	Other presentation features
	ExtendSim databases
	Notebooks
	Cloning
	Creating a custom user interface

	Analysis
	Overview
	Blocks that calculate statistics
	Statistics
	Clear Statistics
	Mean & Variance
	Information
	Cost Stats

	Confidence intervals
	Used in blocks
	How to generate

	Sensitivity analysis
	Overview
	Use sensitivity analysis
	Specifying the sensitivity method
	Turning sensitivity on and off
	Reporting the results
	Multi-dimensional scenarios

	Scenario analysis
	How the Scenario Manager works
	Tutorial I (dialog parameters)
	Tutorial II (database variables)
	Other models
	Suggestions for running scenarios faster
	DOE methods

	Comparison of analysis methods
	Optimization
	How optimization works
	Steps for using optimization
	Tutorial assumptions
	Open the model
	Determine the form of the function
	How to add variables to the Optimizer
	Creating the variables
	Setting limits for the variables
	How to determine the objective function
	Enter the objective function
	Run the optimization
	Results
	About constraints
	Calculating individual constraints
	Calculating global constraints for 6000 and 8000 drink tanks
	Enter the constraint equations
	Using the Optimizer block

	Stat::Fit (Windows only)
	Tutorial

	Chart library
	Using charts
	Types of charts
	Chart structure
	The three tabs on the left side of chart blocks
	Display tab (top of the Dialog tab)
	Data Collection tab (top of the Dialog tab)
	Graph tab
	Data tab

	Model reporting
	Reports Manager block

	Math and Statistical Distributions
	Overview
	Blocks that represent functions
	Other options

	Equation-based blocks
	Advantages
	Overview
	Equation components
	Input variables
	Output variables
	Equation Editor
	Include files for equations

	Random numbers
	Random number generators
	Random seeds
	Resetting random numbers for consecutive runs

	Probability distributions
	Characteristics of distributions
	Choosing a distribution
	Distribution fitting
	ExtendSim distributions

	Integration vs. summation in the Holding Tank block

	Debugging Tools
	Debugging hints
	Verifying results as you build a model
	Connector information
	Cloning dialog items

	Blocks for debugging
	Measuring performance to debug models
	Find command
	Item Contents of queues and activities
	The Source Code Debugger
	Debugging equations
	Tutorial for the equation debugger
	Setting breakpoints
	Stepping through the code
	Getting to the overflow calculation
	Setting a conditional breakpoint

	Dotted lines for unconnected connections
	Animation features for debugging
	Animating the model
	Animating item properties (discrete event models only)

	Notebook
	Stepping through the simulation
	Show Simulation Order command (continuous blocks only)
	Slow simulation speed
	Model reporting
	Model tracing
	Generating traces
	Tracing example

	Automated test environment (Windows only)
	Components
	To perform verification for several models:
	To compare results for one model

	Data Management and Exchange
	Overview
	User interfaces for data exchange
	Copy/Paste
	Importing and exporting data
	User interfaces
	Data Import Export block

	Reading and writing data
	Read, Write, and Query Equation blocks
	Read and write interfaces
	Addressing the data structure
	Interface methods
	Triggers
	Link alerts
	Compared to dynamic data linking (DDL)
	Where to get more information

	Dynamic linking to internal data structures
	Interfaces
	Link dialog

	Internal data storage and management methods
	ExtendSim databases for internal data storage
	Overview
	Link alerts
	Excel Add-In for ExtendSim databases

	Global arrays
	Compared to ExtendSim databases
	Creating a global array
	How to create and use a global array

	Dynamic arrays
	Linked lists
	Exchanging information with external applications (IPC)
	Client and Server
	IPC protocols and technologies for communication
	Communicating with external applications and files
	Spreadsheets
	External databases
	Text files
	ActiveX/COM/OLE (Windows only)
	ADO (Windows only)
	ODBC/SQL
	FTP
	DLLs and Shared Libraries
	Mailslots (Windows only)

	Blocks for data management and exchange
	Read and Write blocks
	Query Equation and Query Equation(I) blocks
	Data Source Create
	Data Init
	Data Specs
	Command
	Blocks for developers

	Link alerts
	Data source indexing and organization
	Communicating with external devices

	Miscellaneous
	Printing
	Show Page Breaks
	Page Setup
	Print command

	Copy/Paste and Duplicate commands
	Copying within ExtendSim
	Copying from ExtendSim to other applications
	Copying from other applications to ExtendSim

	Tooltips
	Scripting functions
	Referencing dialog variables
	Blocks that use the interface
	Supporting the interface
	Methods for referencing dialog variables as factors

	Changing parameters dynamically
	Methods

	Sharing model files
	Protecting the model

	Discrete Event Modeling
	Items, Properties, and Values
	Blocks of interest
	Item generating and removing
	Item properties
	Property-aware blocks

	Item generation
	Generating items at random intervals
	Random intervals with dynamic parameters
	Generating items according to a schedule

	Item properties
	Item attributes
	Priority
	Quantities
	Other item properties

	Queueing
	Blocks of interest
	Queueing disciplines
	Queue/server systems
	M/M/1 queues
	Priority queues

	Queueing considerations
	Blocking
	Balking
	Reneging
	Jockeying

	Sorting items using the Queue Equation block
	How the block works
	Variables
	Ranking rules
	Least dynamic slack
	Minimizing setup
	Maximizing service levels
	Combined rules

	Matching items using the Queue Matching block
	Queue Matching model
	Other models that use the Queue Matching block

	Advanced queue topics
	Viewing and manipulating queue contents
	Initializing a queue

	Animating queue contents

	Routing
	Commonly used blocks
	Blocks that route items
	Blocks that affect the flow of items

	Items from several sources
	Select Item In dialog
	Merging several item flows into one stream
	Balancing multiple input lines
	Throw Item and Catch Item blocks for merging item streams

	Items going to several paths
	Select Item Out dialog
	Implicit routing
	Simple routing
	Scrap generation
	Sequential ordering
	Explicit ordering
	Routing decisions based on Item properties
	Conditional routing
	Machines that can only process certain types of items

	Processing
	Commonly used blocks
	Systems and processes

	Processing in series
	Processing in parallel
	Parallel processing using one block
	Simple parallel connections

	Setting the processing time
	Processing time for an Activity
	Processing time for other activity blocks
	Fixed processing time
	Scheduled processing time
	Random processing time
	Custom processing time
	Implied processing time
	Cumulative processing time: time sharing
	Adding setup time

	Bringing an activity on-line
	Scheduling activities

	Controlling the flow of items to an activity
	Fixed number of items
	Fixed period of time

	Interrupting processing
	Preemption
	Shutting down

	Multitasking
	Simulate Multitasking Activity model

	Kanban system
	Transportation and material handling
	Travel time
	Transport blocks
	Convey Item blocks
	How the length is calculated
	Transportation models

	Batching and Unbatching
	Blocks of interest
	Batching
	Batch dialog
	Simple batching
	Batching by matching items
	Batching a variable number of items
	Properties when items are batched
	Delaying kits

	Unbatching
	Simple unbatching
	Variable batching and unbatching
	Properties when items are unbatched

	Preserving the items used to create a batch
	Both blocks choose to preserve uniqueness
	Either block chooses to preserve uniqueness

	Additional models

	Resources and Shifts
	Blocks of interest
	Resource pool blocks
	Other resource blocks

	Modeling resources
	Many approaches to modeling resources
	Comparison of the three explicit methods
	Advanced Resource Management
	Resource Pool method
	Resource Item method

	Closed and open systems
	Scheduling resources
	Scheduling resource pools and resource items
	Scheduling resource items

	The Shift block
	Shift types and what they control
	Status connectors
	Shift models

	Advanced Resource Management

	Activity-Based Costing
	Blocks of interest
	Modeling with activity-based costing
	Item types
	Defining costs and cost rates
	Combining resources with cost accumulators
	Combining cost accumulators
	Working with cost data

	How ExtendSim tracks costs
	Setting the _cost and _rate attributes
	Combining resources with cost accumulators
	Calculating costs
	Combining multiple cost accumulators

	Statistics and Model Metrics
	Commonly used blocks
	Gathering statistics
	Clearing statistics
	Clearing Statistics model

	Using the History block to get item information
	History model
	Verifying Information model

	Using the Item Log Manager to get item information
	Accumulating data
	Non-Processing model
	Processing model

	Time weighted versus observed statistics
	Time Weighted Statistics model

	Timing the flow of items in a portion of the model

	Tips and Techniques
	Moving items through the simulation
	How items move through the simulation
	Connections to multiple item input connectors
	An item’s travel time
	Using scaling for large numbers of items
	Preprocessing
	Restricting items in a system
	Connecting to the select connector

	Continuous blocks in discrete event models
	Setting time-based parameters using connectors
	Varying a distribution’s arguments
	Using the Holding Tank block to accumulate values

	Cycle timing
	Using the Timing attribute feature
	Using a Set or Equation(I) and Information blocks

	Item library blocks
	Executive block
	Templates
	Block types
	Common connectors on discrete event blocks

	Event scheduling
	Event calendars
	Zero time events
	Event Scheduling model

	Messaging in discrete event models
	Block messages

	Discrete Rate Modeling
	Introduction
	Creating Flow
	Blocks of interest
	Residence blocks for creating flow

	Creating flow
	Empty and not-empty
	Tank initialization
	Interchange block modes
	Convey Flow initialization

	Indicators
	Setting indicators
	Getting information about levels

	Flow attributes
	Names and values of flow attributes
	Types of flow attributes
	Creating and assigning a flow attribute
	How flow attributes are propagated in the model
	Managing and displaying flow attributes
	Flow attributes and item attributes

	Storage and Units
	Blocks of interest
	Residence blocks for holding flow
	Changing the flow unit group

	Capacity
	Full and not-full
	Tank block’s capacity
	Interchange block’s capacity
	Convey Flow block’s capacity

	Units and unit groups
	Definitions
	Declaring and selecting flow units
	Defining block units
	Time units

	Changing the unit group
	Change Units block

	Rates, Constraints, and Movement
	Blocks of interest
	Rates, rate sections, and the LP area
	Types of rates
	Rate sections
	Rate precision
	LP area

	Flow rules
	Critical and relational constraints

	Defining a critical constraint
	Valve
	Tank and Interchange
	Convey Flow
	Merge and Diverge

	Meeting the critical constraint requirement
	Valve or Convey Flow
	Tank or Interchange
	Merge or Diverge blocks

	Comprehensive example
	Rate sections
	Critical constraints
	Relational constraint
	Simulation’s impact on the effective rates

	Merging, Diverging, and Routing Flow
	Blocks of interest
	Merging and diverging flow
	Mode table
	Select mode
	Batch/Unbatch mode
	Proportional mode
	Priority mode
	Distributional mode
	Sensing mode
	Neutral mode

	Features of the Merge and Diverge blocks
	Bias Order – resolving competing requests for flow
	Managing flow attributes
	Internal throw and catch
	Changing decision rules dynamically

	Throwing flow and catching flow remotely
	Creating a throw/catch connection
	Filter options to facilitate throw/catch connections
	Examples of throw and catch connections

	Delaying Flow
	Blocks of interest
	Controlling a Valve’s maximum rate
	Using the Flow Control tab
	Observing the maximum rate for a goal
	Setting a Valve’s quantity goal
	Setting a Valve’s duration goal
	Setting hysteresis in a Valve

	Delaying flow with the Shift block
	Adding a Shift to a model

	Convey Flow block
	Dialog settings
	Constraining rates
	Convey Flow information
	When to avoid using the Convey Flow block

	Mixing Flow and Items
	Controlling flow with items and items with flow
	Items controlling flow
	Flow controlling items
	Flow controlling items and items controlling flow
	Step The Flow Process model

	Using the Interchange block to mix items with flow
	Behavioral rules
	The flow connector configuration
	Item release conditions
	Interchange modes
	Converting between item and flow attributes

	Miscellaneous
	Precision
	Biasing flow
	Bias order
	Bias block
	Merge and Diverge blocks

	Global and advanced options in the Executive
	Global options
	Advanced options

	Common connectors on discrete rate blocks
	Animation
	Tank
	Interchange
	Valve
	Sensor
	Convey Flow

	Advanced Topics
	What this chapter covers
	LP technology
	Overview
	The LP area
	The sequence of events
	Types of information provided to the Executive
	The LP calculation

	Upstream supply and downstream demand
	Definition
	Requirements for the supply/demand calculation
	Cautions when using potential rates

	Messaging in discrete rate models
	Block messages

	Appendix
	Menu Commands and Toolbars
	File menu
	New Model
	New Text File
	Open...
	Recent Files
	Close
	Revert Model
	Save and Save As
	Show Page Breaks
	Print...
	Page Setup
	Update Launch Control (Windows only)
	Properties
	Exit/Quit

	Edit menu
	Undo
	Redo
	Cut
	Copy
	Copy Data With Headings
	Paste
	Duplicate
	Clear
	Find...
	Find Next
	Select All
	Enter Selection
	Options

	Library menu
	Open Library...
	Close Library...
	Open All Library Windows
	Close All Library Windows
	Library Tools
	List of libraries

	Model menu
	Make Selection Hierarchical
	New Hierarchical Block...
	Open Hierarchical Block Structure
	Open Enclosing Hierarchical Block
	Hierarchical Block Icon View
	Connection Line Style
	Show Named Connections
	Hide Connections
	Hide Connectors
	Show Block Labels
	Show Object IDs
	Show Simulation Order
	Set Simulation Order...
	Create/Edit Dynamic Link...
	Open Dynamic Linked Blocks...
	Sensitize Parameter...
	Open Sensitized Blocks
	Protect Model...

	Database menu
	New Database...
	Edit Database Properties...
	Import Database...
	Export Database...
	Import Tables to Database...
	Export Selected Tables
	New Table...
	Edit Table Properties...
	Clone Selected Tables to Tab...
	Import Delimited File To Table...
	Export Table to Delimited File...
	Append New Field...
	Insert New Field...
	Edit Field Properties...
	Append New Records...
	Insert New Records...
	Delete Selected Records
	Make Cell Random...
	Remove Cell Randomness...
	Read/Write Index Checking
	List of databases

	Develop menu
	New Block...
	Open Block Structure
	Rename Block...
	Set Block Category...
	Compile Block
	Generate Debugging Info
	External Source Code
	New Include File
	Open Include File...
	Delete Include File...
	Shift Selected Code Left
	Shift Selected Code Right
	Go To Line...
	Go To Function/Message Handler
	Move Selected Dialog Items to Tab
	Set Breakpoints and Add Debugging Code
	Remove Breakpoints and Debugging Code
	Open Breakpoints Window
	Continue
	Step Over
	Step Into
	Step Out
	Break to Debugger
	Show Reserved Databases

	Run menu
	Run Simulation
	Run Optimization or Scenarios
	Use Sensitivity Analysis
	Simulation Setup...
	Show 2D Animation
	Animate Connection Lines
	Animate Named Connections
	Launch StatFit (Windows only)
	Stop
	Pause
	Resume
	Step
	Model Debugging

	Window menu
	Navigator
	Database List
	Open Enclosing Hierarchical Block

	Tools menu
	File toolbar
	Edit toolbar
	Model toolbar
	Text toolbar
	Shapes toolbar
	Alignment toolbar
	Cursors toolbar
	Library Windows toolbar
	Dialog Items toolbar
	Icon toolbar

	Help menu
	ExtendSim Help
	Support Center
	Check for Updates
	ExtendSim Online
	Activate License
	Revoke License
	Reactivate License
	Floating License
	About ExtendSim (Windows only)

	ExtendSim database window toolbars and buttons
	Database window - Schema view
	Database window - Data view

	Value Library Blocks
	Item Library Blocks
	Rate Library Blocks
	Utilities Library Blocks
	Upper Limits

	Index

