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a  b  s  t  r  a  c  t

Integrated  sites  are  tightly  interconnected  networks  of large-scale  chemical  processes.  Given  the large-
scale  network  structure  of these  sites, disruptions  in  any of its  nodes,  or individual  chemical  processes,
can  propagate  and  disrupt  the  operation  of the  whole  network.  Random  process  failures  that  reduce  or
shut down  production  capacity  are  among  the  most  common  disruptions.  The  impact  of  such disruptive
events  can  be  mitigated  by  adding  parallel  units  and/or  intermediate  storage.  In  this  paper,  we address  the
design  of  large-scale,  integrated  sites  considering  random  process  failures.  In  a  previous  work  (Terrazas-
Moreno et  al.,  2010),  we  proposed  a novel  mixed-integer  linear  programming  (MILP)  model  to  maximize
the  average  production  capacity  of an  integrated  site  while  minimizing  the  required  capital  investment.
ndogenous uncertainties
i-criterion optimization
ixed-integer linear programming

enders decomposition

The  present  work  deals  with  the solution  of large-scale  problem  instances  for  which  a  strategy  is  proposed
that  consists  of  two elements.  On  one  hand,  we use Benders  decomposition  to  overcome  the  combinatorial
complexity  of  the  MILP  model.  On  the  other  hand,  we  exploit  discrete-rate  simulation  tools  to  obtain  a
relevant  reduced  sample  of failure  scenarios  or states.  We  first illustrate  this  strategy  in a small  example.
Next,  we  address  an industrial  case  study  where  we  use  a detailed  simulation  model  to assess  the  quality
of  the  design  obtained  from  the  MILP  model.
. Introduction

The optimal design and operation of integrated production
etworks is a current and future opportunity in the chemical pro-
ess industry. For instance, The Dow Chemical Company owns
exas Operations, an integrated site that manufactures 21% of the
ompany’s products sold globally (Wassick, 2009). BASF’s site in
udwigshafen is another example of a large integrated produc-
ion system with over 200 production plants (BASF, 2010). Both
f these sites began as smaller manufacturing facilities and grew in
apacity and complexity over many decades. In contrast with the
radual integration of these heritage sites, recent strategic initia-
ives require the grassroots design of very large integrated process
etworks. The joint venture between Saudi Aramco and The Dow
hemical Company to construct and operate a world-scale chem-

cal and plastic production complex in Saudi Arabia is an example
f such an initiative (Dow, 2007).

These integrated sites feature different interconnected process

etworks. A failure event that reduces the production rate of any
f the processes can propagate throughout the network. Some
vents are planned, for example, preventive maintenance of major

∗ Corresponding author. Tel.: +412 268 3642; fax: +1 412 268 7139.
E-mail address: grossmann@cmu.edu (I.E. Grossmann).

098-1354/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2011.10.005
© 2011 Elsevier Ltd. All rights reserved.

plant components; the remaining failure events occur at random,
requiring corrective maintenance. The focus of this work is on the
second type of events, namely, failure modes that decrease pro-
duction capacity and that occur at random times with random
repair durations. The industrial significance of this problem is illus-
trated in a paper by Miller, Owens, and Deans (2006) from The Dow
Chemical Company. These authors explain the benefit of designing
reliability into manufacturing systems and illustrate the scope of
the involvement of Reliability–Availability–Maintainability (RAM)
teams during the design of large-scale manufacturing systems. A
note on terminology; availability is the ratio of uptime to total time
or the fraction of time the unit is producing product, reliability is
the probability of a unit or piece of equipment being in an up state
at a particular time.

To study these stochastic failures, computer simulations are
commonly used to test the effect of design alternatives in the avail-
ability or effective capacity of integrated systems. This approach
is applicable to an integrated chemical facility. As expected for
an integrated system, the increasing number of design degrees of
freedom and the increasing number of stochastic inputs quickly
increases the difficulty and time to search the design space,

requiring more computing and modeling resources. In addi-
tion, the successful ranking and selection of options is often
challenging to do cleanly when the search space is large. We
believe that mathematical programming techniques can be used in

dx.doi.org/10.1016/j.compchemeng.2011.10.005
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:grossmann@cmu.edu
dx.doi.org/10.1016/j.compchemeng.2011.10.005
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onjunction with process simulation tools to provide an efficient
ool for improving the design of integrated sites by significantly
educing the design space. This new space can be then thoroughly
xplored and validated via simulation. Additional opportunities for
pplying optimization to the solution of the design, planning, and
cheduling of integrated sites can be found in Wassick (2009).

In our previous work (Terrazas-Moreno, Grossmann, Wassick,
 Bury, 2010), we proposed a mixed-integer linear programming

MILP) model for the optimal design of integrated sites subject to
andom failures and random supply and demand. The optimiza-
ion criteria were the maximization of the probability of meeting
ustomer demands and the minimization of capital investment. To
e a practical and useful tool for design teams, this challenging
odel must be solved efficiently. A literature review of optimiza-

ion approaches for related problems, which includes the works
y Davies and Swartz (2008),  Pistikopoulos, Thomaidis, Melin,
nd Ierapetritou (1996),  Pistikopoulos, Vassiliados, Arvela, and
apageorgiou (2001),  and Straub and Grossmann (1990, 1993),  can
e found in that paper.

In the present paper, we propose a novel algorithm based on
enders decomposition (BD) (Benders, 1962) to solve large-scale

nstances of the MILP model mentioned above. There is rich lit-
rature on the application of BD to the design of process systems
nder uncertainty. Most of these applications model uncertainty
sing a stochastic programming (SP) representation and apply vari-
tions of the BD algorithm. The standard decomposition technique
s referred to as L-shaped decomposition (Van Slyke & Wets, 1969)
n the stochastic programming literature. Straub and Grossmann
1993) proposed a nonlinear programming (NLP) model for max-
mizing the feasible operating region of a network with uncertain
rocess parameters and used Generalized Benders Decomposition
GBD) (Geoffrion, 1972) to solve this problem. A similar approach
as proposed by Pistikopoulos (1995) and applied by Ierapetritou,
cevedo, and Pistikopoulos (1996) and Acevedo and Pistikopoulos

1998) as a general algorithmic technique for solving a class of prob-
ems defined as process design and operations under uncertainty.

ore recently, Liu, Fan, and Ordonez (2009) addressed the design of
eliable transportation networks subject to unpredictable natural
isasters using Generalized Benders Decomposition (GBD).

The work by Santoso, Ahmed, Goetschalckx, and Shapiro (2005)
s related to the model and algorithm we present in this paper,
lthough they deal with exogenous uncertainties as opposed to
ndogenous uncertainties in our case. The paper by Santoso et al.
2005) proposes a two-stage stochastic programming (SP) model to
ptimize the design of a supply chain network under uncertainty.
he authors consider in their MILP model uncertainty in parame-
ers such as processing cost, raw material supply, finished product
emand, and processing capacity of manufacturing facilities. These
ncertain parameters are discretized in order to build scenarios
ith different combinations of parameter values. The resulting
umber of scenarios can be huge for realistic problem instances.
he paper proposed an algorithm based on BD where the 1st stage
etwork design variables are considered complicating. An interest-

ng feature of this paper is that Benders decomposition is enhanced
ith convergence accelerating techniques based on three ideas. The
rst is adding constraints besides the usual dual cuts to the mas-
er problem that can be derived as strengthened dual cuts or from
onstraints expressed in terms of variables in the master problem
hat were redundant and not included in the full space model. The
econd idea is a heuristic for finding good feasible solutions. The
hird is a trust region algorithm that prevents the master problem
rom oscillating wildly in the first iterations.
All of the implementations of BD and GBD mentioned above cor-
espond to SP problems with exogenous uncertainties. That is, the
tochastic process is independent of design decisions (Jonsbraten,

ets, & Woodruff, 1998). If we exclude exogenous uncertainties
emical Engineering 37 (2012) 89– 103

like demand and raw material supply, then the source of remain-
ing uncertainties are random process failures, which are dependent
on design decisions. This implicitly assumes that when a unit is
“up” that it operates at the design rates. The number and selec-
tion of parallel processing units in the network are not known
a priori, i.e., they are decision variables. Since the only processes
where random failures can occur are those that are selected from
the superstructure, the realizations of uncertainties are also a func-
tion of the decision variables. This type of uncertainty, defined
as endogenous, significantly increases the complexity of the prob-
lem as well as the computational resources required for solving it.
This paper proposes a novel implementation of Benders decompo-
sition for two-stage stochastic programming (SP) problems with
endogenous uncertainties. The technique we propose partly over-
comes the combinatorial explosion in problem size that occurs with
non-anticipativity constraints required in this type of problems
(Jonsbraten, Wets, & Woodruff, 1998).

In the following sections, we present the problem of optimal
design of integrated sites and its representation as a two-stage
MILP stochastic programming problem. Some important proper-
ties of the problem are given, and the decomposition approach
that exploits these properties is presented. Finally, we test the
methodology with two numerical examples, one of them being an
industrial case study. As part of the solution of this case study, we
analyze a scenario reduction technique, and we  report the results
of simulating the operation of the Pareto-optimal designs with a
commercial simulation tool, ExtendSim® (Imagine That Inc., 2010).

2. Problem statement

In this section, we describe the problem of optimal design of
highly available integrated sites.

The following list of given data, degrees of freedom, optimiza-
tion criteria, and assumptions is reproduced with minor changes
from Terrazas-Moreno et al. (2010).

Given are:

• The superstructure of an integrated site with allowable parallel
production units in each plant and intermediate storage tanks.

• A set of materials that the plants consume and produce.
• Mass balance coefficients for all units in the superstructure.
• The maximum capacity that can be assigned to each unit in the

integrated site.
• Maximum supply of raw materials and maximum demand of

finished products.
• Number of failure modes, production rate loss as a result of each

failure, and the time between failure (TBF) and time to repair
(TTR) per failure mode, either as probability distributions or mean
values (MTBF and MTTR, respectively).

• A cost function that relates design decisions with capital invest-
ment.

The problem is to determine:

• The number of production units for each plant.
• The capacity of each unit.
• Sizes of intermediate storage between plants.
• For each state, material flows between plants and rate of accu-

mulation or depletion of material in storage.

The objective is to determine the set of Pareto-optimal solutions

that:

• Maximize the average production rate at which the integrated
site supplies chemicals to an external market.
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Minimize the capital investment.

An interesting aspect of our approach is the development of a
et of discrete states that correspond to all possible combinations
f failure modes in the integrated site and a set of frequency and
uration equations that allows us to calculate the mean residence
ime mrt  and frequency of encounters fr of all possible states in the
ystem, based only on the knowledge of the MTTR and MTTF of the
nits in the superstructure (Billinton & Allan, 1992).

The following assumptions and simplifications are made:

. Random failures are independent events.

. The cost function is represented by piece-wise linear approxi-
mations.

. The production units in the plants are dedicated single product
continuous processes.

Multiple failures in real integrated systems can be causally
elated. If this is the case, our first assumption will result in inaccu-
ate statistical information of the discrete states described above.
n practice, this is rare except at the equipment component level,

hich is at a level of detail finer than the failures considered
n this work. Consequently, most reliability simulation is carried
ut assuming independent failure modes. In this sense, the inde-
endence assumption made in this work will not add any more

naccuracy than what is regularly used in industrial simulations.
tatistically uncorrelated events allow us to determine discrete
tate probabilities, residence times, frequency, etc. using standard
requency and duration calculations (Billinton & Allan, 1992). Using

 piecewise linear approximation of the objective function pre-
erves linearity in the problem. The number of piecewise functions
an be increased or decreased depending on the level of precision
equired in cost calculations. Finally, the third assumption limits
he applicability of the approach to systems that can be modeled
s continuous dedicated plants. Multiproduct plants would require
cheduling considerations and a system of multiple storage tanks.

. Overview of solution strategy

The solution approach we use in this paper integrates simula-
ion and optimization tools. The simulation is built as a discrete
ate model in ExtendSim software (Imagine That Inc., 2010). In a
iscrete rate model, flow rates and tank levels are updated only
hen needed, by an internal linear programming (LP) solver at each
iscrete event. In our problem, events are failures and repairs that
hange the rate of flow of materials among plants and changes in
ank level status (e.g. full, empty, high, low). The optimization step
nvolves a mixed-integer stochastic programming representation
f the integrated site and exploits state-of-the-art computational
echnology for solving mixed-integer programs. The main idea of
tochastic programming (SP) is to build a set of scenarios that con-
ists of discrete realizations of uncertainties in the problem, and
hen optimizing the expected value of the objective criterion over
ll possible scenarios. In our problem, the scenarios correspond to
he discrete failure states.

Combining the two technologies (simulation and optimization)
xploits their complementary advantages. Discrete rate simulation
s able to represent the operation of the integrated site in great
etail. In fact, these types of models have been used at The Dow
hemical Company to simulate real manufacturing systems and
alidate them against actual operating data. Each simulation run,

owever, requires that design variables be fixed. Searching for an
ptimal design requires enumeration techniques that are time con-
uming and provide no guarantee of finding the optimal solution.
y building and solving mixed-integer linear programming (MILP)
Fig. 1. Summary of solution strategy using simulation and optimization tools.

models, one can find a guaranteed optimal solution using state-
of-the-art MILP solvers such as CPLEX (ILOG, 2011). MILP models,
however, are equation-oriented: the objective function and opera-
tional constraints have to be expressed in algebraic terms. In order
to do so, the modeler is required to make certain simplifications of
real systems. We  use optimization to find a set of Pareto-optimal
designs using an algebraic model of the system and simulation to
evaluate in more detail the performance of these candidate designs.
If the number of scenarios (discrete states) used in the optimization
model is impractically large, as is the case in when there is a large
number of possible failure modes, we  also use the simulation model
to generate a sample of the most representative scenarios. Finally,
we determine some sensitivity analysis derived from the optimal
solution to provide guidelines for fine-tuning the design using the
simulation model. Fig. 1 summarizes the solution process described
above.

The following sections describe in more detail each of the ele-
ments in the simulation and optimization solution approach. First,
we develop the MILP model of the integrated sites and explain
how the resulting formulation corresponds to a two-stage stochas-
tic programming (SP) problem with endogenous uncertainties.
The SP formulation relies on constructing a set of failure scenar-
ios that can be impractically large for the problem at hand. To
overcome the computational complexity involved in solving large
instances of the problem, we  propose a novel decomposition algo-
rithm based on Benders decomposition. Next, we describe the
discrete-rate model used to simulate the integrated site. Finally,
we present two case studies: an academic example and an indus-
trial case study. The first example is meant to illustrate the results
of the optimization approach. Since the number of failure modes
is small, we  can enumerate all discrete failure states, and there is
no need for a simulation model to obtain a representative sample
of states. We  use this small example to introduce the methodology
for sensitivity analysis. Since the industrial case study is signifi-
cantly larger, it requires the simulation–optimization–simulation
sequence depicted in Fig. 1. We  use this example to explain the
methodology for constructing a sample of failure states.

An important note to keep in mind is that in the SP representa-
tion, the discrete states that correspond to combinations of failure
modes are called scenarios. For our purposes, the terms states
and scenarios are equivalent, but the latter is used in some of the
remaining sections in order to be consistent with the SP literature.
4. Mixed-integer linear programming model

The starting point for the mathematical model of the inte-
grated site is a superstructure that corresponds to a network of
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Fig. 2. Building block fo

rocesses and storage tanks. Each of the nodes in the network has
he structure shown in Fig. 2. The variables are described in the
omenclature section in Appendix A.

In previous work (Terrazas-Moreno et al., 2010), a mixed-
nteger linear programming (MILP) formulation for solving this
roblem was proposed in which exogenous uncertainties in sup-
ly and demand were also included. The most important features of
he formulation are: (i) a superstructure that contains all potential
arallel units and storage tanks in all plants in the process network,
ii) a state-space representation of the integrated site where each
iscrete state corresponds to a combination of simultaneous failure
odes, and (iii) a model of intermediate storage, based on the con-

ept of random walks (Heyman & Sobel, 1982), to determine the
verage and variance of the levels of material in the storage tanks
s a function of the network design. The transitions between states
random process failures and repairs) follow the behavior of a con-
inuous time Markov chain (Heyman & Sobel, 1982). This approach
llows the calculation of the mean and variance of the time spent in
ach state, the frequency of visits to each of them, and the proba-
ilities of finding the integrated site in any state using statistical

nformation from historical reliability data of existing processes
hat resemble the ones postulated in the superstructure.

All of the above elements are integrated in an MILP formula-
ion that maximizes the expected stochastic flexibility [E(SF)] of
nished products and minimizes the capital investment required
y the network design (Terrazas-Moreno et al., 2010). The bi-
riterion optimization problem is solved using the �-constrained
ethod (Ehrgott, 2005). The degrees of freedom are the selection

f units from the superstructure, the size and location of interme-
iate storage tanks, and the production capacity of the plants. An

mportant difference between our previous paper and the present
ne is that here we maximize average production rate instead of
xpected stochastic flexibility (Straub & Grossmann, 1990). The
ystem resides during a portion of the operating horizon in states
here some of the components are affected by failure modes that

emporarily decrease production rate. Maximizing average produc-
ion rate over a long operating time involves designing the system
o that the effect of random failures is minimized and, therefore, has

 similar effect on the system design as the objective of maximizing
(SF). Computation of E(SF) relies on the criterion of whether or not
he system can match the demand rate in each of the discrete fail-
re states and fails to capture the difference between a state where
he production rate is slightly less than the demand rate from one

here the entire system is shut down. The objective of maximiz-

ng long-term average production rate better matches industrial
esign criteria than the maximization of E(SF). Appendix of this
aper contains the complete mathematical formulation. Details of
t j in the integrated site.

the model and a description of each of the constraints can be found
in Terrazas-Moreno et al. (2010).

5. Stochastic programming representation

We  model the problem of optimal design of an integrated site
(IS) as a two-stage stochastic mixed-integer linear program. The
vector of first stage design decisions d includes binary variables
to represent the selection of production units from a superstruc-
ture and continuous variables, such as production unit capacities
and storage tank sizes. Stage two  decisions only involve continuous
variables. A number of failure modes contained in a set L can occur
in the production units of the superstructure at random times. This
fact introduces endogenous uncertainty to the operation of the IS.
Furthermore, this uncertainty is of a discrete nature (whether or
not failure � ∈ L occurs) and can be modeled using a parameter y�

that is 0 if failure � occurs and 1 otherwise. The probability of a
failure � occurring at any point in time is prob�. We  define a vector
y = {y�} where � = 1, . . .,  |L|; this vector has zeros in the positions cor-
responding to failures occurring simultaneously at any given time
in the IS. There is a finite number of possible 0–1 combinations for
the vector y. Each of these combinations defines a scenario in set
S. Therefore, each scenario s ∈ S corresponds to an instance of the
vector y, and it can be represented as ys = {y�

s }, � = 1, . . .,  |L|. Assum-
ing independent probabilities of failures, the probability associated
with each scenario is ps =

∏
�:y�

s =0prob�
∏

�:y�
s =1(1 − prob�). The

second stage variables xs ∈ � q are used to model material flows in
the integrated site (IS) for each scenario s ∈ S.

Remark
Set S contains all possible failure scenarios in the superstructure,

but each flowsheet selection defines a subset of relevant scenarios.
The scenarios in S can be aggregated – several scenarios can be
projected into a single one – to derive any relevant subset for any
possible flowsheet selection.

The following mixed-integer linear programming (MILP) prob-
lem is the deterministic equivalent of the stochastic optimal design
problem. It also corresponds to a compact representation of the
model presented in Appendix A. In the MILP model below, the
variables xs represents the vector of second-stage decision vari-
ables defined in the model in Appendix A. These variables are
flowj,j′,n,s, f P

j,n,s
, f B

j,n,s
, f IN

j,n,s
, f OUT

j,n,s
, psm,s, ıs

j,n
. The variable d

is a vector of first-stage design variables that corresponds to the

following variables in Appendix A: invj,n, sd̃j,n, vj,n, pcm, zm.

Max
∑
s ∈ S

psc
T
s xs − penT sl (1a)
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s.t.

1
s xs + B1

s d ≤ c1 ∀s ∈ S (1b)

2
s xs ≤ diag(B2

s d(e − ys)
T ) ∀s ∈ S (1c)

s ∈ S

Fsxs + Gd − sl ≤ h (1d)

3d ≤ Capital (1e)

B(d)s,s′
xs = xs′

]
∨
[¬B(d)s,s′

xs ≥ 0
xs′ ≥ 0

]
∀s ∈ S, s′ ∈ S, s′ < s, (s, s′) ∈ NA (D1)

d ∈ D, xs ∈ �q, sl ∈ �+, where D = {d|di = 0, 1,

i = 1, i = 1, . . . , p, di ∈ �r+, i = p + 1, . . . , r}
B(d)s,s′ = {True, False} ∀(s, s′) ∈ S2

(1h)

The objective function (1a) represents the maximization of the
verage flow of product to external consumers. The coefficient
enT penalizes the slack variables sl that are introduced in con-
traint (1d) for guaranteeing feasibility of the subproblems and
ccelerating the convergence of our implementation of Benders
ecomposition. The penalty term is large enough to enforce the
lack variable to become equal to zero at the optimal solution. In
he examples we solve in this paper, we use a value of 10 for the
enalty term. Constraints (1b) and (1c) represent the mass bal-
nces in the superstructure. Constraint (1c) imposes reductions on
he production rates of the plants in the integrated site, accord-
ng to the active failure modes in state s; it will have terms of
he form: psm,s ≤ pcm[1 − (1 − ys

�
)(rc�)] (refer to constraint (A11) in

ppendix A). The notation diag(X) corresponds to the diagonal ele-
ents of the matrix X; and e is a unitary vector. Constraint (1d) is a

ompact representation of the intermediate storage model we  pro-
osed in previous work (Terrazas-Moreno et al., 2010). Constraint
1e) corresponds to the �-constraint for the bi-criterion optimiza-
ion problem since it restricts the cost of a flowsheet with design
ariables d to be less than or equal to the maximum available invest-
ent, Capital.  Disjunction (D1) establishes a relationship between

he operating variables of scenario s and s′. The Boolean variable
(d)s,s′ is true if scenarios s and s′ are indistinguishable in the flow-
heet defined by d. It is important to notice that (D1) is not defined
or every possible pair (s′,s), but only for those pairs that fulfill two
onditions: (a) by symmetry of the constraint set, the first con-
ition is s′ < s; (b) that pair (s′,s) should belong to set NA,  which

s made up of all pairs that differ in the value of exactly one ele-
ent of the vector ys. These properties are explained in detail by
oel and Grossmann (2006).  We  can represent (D1) using inequal-

ty constraints and a binary variable ˛s,s′ (d) in (1f) and (1g) (Raman
 Grossmann, 1994), which yields the following MILP problem:

ax
∑
s ∈ S

psc
T
s xs − penT sl

s.t.

1
s xs + B1

s d ≤ c1 ∀s ∈ S

2
s xs ≤ diag(B2

s d(e − ys)
T ) ∀s ∈ S

s

Fsxs + Gd − sl ≤ h (1d′)
3d ≤ Capital

s ≤ xs′ + M˛s,s′ (d) ∀s ∈ S, s′ ∈ S, s′ < s, (s, s′) ∈ NA (1f)
emical Engineering 37 (2012) 89– 103 93

xs ≥ xs′ − M˛s,s′ (d) ∀s ∈ S, s′ ∈ S, s′ < s, (s, s′) ∈ NA (1g)

d ∈ D, xs ∈ �q
+, sl ∈ �+ where D = {d|di = 0, 1 ,

i = 1, . . . , p, di ∈ �r , i = p + 1, . . . , r}
˛s,s′ (d) = 0, 1 ∀(s, s′) ∈ S × S

(1h′)

Inequalities (1f) and (1g) are non-anticipativity constraints,
where the constant M is a large number that renders these inequal-
ities to be redundant for ˛s,s′ (d) = 1. The term ˛s,s′ (d) is a function
of the integrated site flowsheet and is defined as follows:

˛s,s′ (d) =

⎧⎪⎨
⎪⎩

0 if scenarios s and s′ are indistinguishable in

the network topology defined by d

1 otherwise

For instance, if design d does not include unit m from the super-
structure, then states s′,s that differ only on whether or not unit
m has failed are considered indistinguishable. The explicit function
for ˛s,s′ (d) is as follows:

˛s,s′ (d) =
∑
m ∈ M

∑
� ∈ Lm

zm�s,s′
�

∀j ∈ J, s ∈ S, s′ ∈ S, s > s′, (s, s′) ∈ NA

(1i)

where �s,s′
�

is a problem parameter that can be derived from the
vector ys

�
. The vector ys

�
is a fixed parameter defined in a previous

section to be 1 if failure � does not occur as part of state s, and 0
otherwise. Let the parameter �s,s′

�
be defined as below.

�s,s′
�

= max{ys
� − ys′

� , (1 − ys
�) − (1 − ys′

� )} ∀� ∈ L,

s ∈ S, s′ ∈ S, s > s′(s, s′) ∈ NA (1j)

In Eq. (1j) �s,s′
�

is set to one if states s and s′ are distinguishable
with respect to failure �; that is, if the failure occurs in one state
and not in the other.

Remarks

1. The state space S usually has high dimensionality, so that the
number of constraints defined by ∀s ∈ S, s′ ∈ S, s′ < s, (s, s′) ∈ NA
can become computationally intractable.

2. For a fixed design d̂, constraints (1f) and (1g) can be solved
outside of the optimization problem (1). In this case, we can
aggregate all indistinguishable scenarios a priori, and generate
a reduced set SB.

3. Problem (1) with fixed d̂ and a reduced set SB of scenarios
corresponds to a linear programming (LP) problem. Since this
LP problem excludes constraints (1f) and (1g), it results in a
decrease of orders of magnitude in the number of constraints
when compared against the full two-stage MILP stochastic prob-
lem.

6. Decomposition algorithm

6.1. Basic idea

The algorithm we propose in this section results in a significant
reduction of the number of non-anticipativity (NA) constraints that
are initially considered in problem (1). This algorithm can be used
(as we  do in our numerical examples) with other existing modeling
techniques to reduce the number of NA constraints as in Goel and
Grossmann (2006).  NA constraints are required only because the

optimal design is a degree of freedom. The failure scenarios are
built considering all units in the superstructure,  but not necessarily
all of these units will be part of the optimal network topology. When
two or more failure scenarios are different only with respect to a
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ailure in units that are not part of the network, a non-anticipativity
onstraint has to be activated to make those scenarios identical.

Figs. 3 and 4 illustrate this point for a three unit example.
The basic idea of the algorithm is to iteratively solve for the

esign (flowsheet) in a problem with only a few scenarios, and
hen solve the rest of the problem in a reduced space where only
cenarios relevant to the fixed flowsheet are considered. Since only
ailures relevant to installed units are considered in the second step,
here is no need for NA constraints. We  use the basic concept of Ben-
ers decomposition to obtain the flowsheet in the master problem
nd to solve the rest of the scenarios in the subproblem. Our contri-
ution to the method is that the subproblem is solved in a reduced
pace where there is a limited number of scenarios and no (or only
ery few) non-anticipativity constraints.

Definitions
According to what we have defined so far in the paper, we  have
he following sets:

 = {� : � is a failure mode in the superstructure}

1

2

1

2

Design A

11

Design B

1

2

3

1

2

3

Superstructu re:

Fig. 4. NA constraints are required since flow
tion of failure scenarios.

S = {s : s represents a combination of failure modes in L}

ys = {ys
� : ys

� = 0 for active failure mode, 1 otherwise,

� = 1, . . . , |L|}

We now include the following definitions

L̄k ⊆ L is a subset of failures relevant to a network

topology k

Sk
B = {s : s represent a combination of failure modes in �Lk}

SM = {s : subset of failure modes for master problem}, SM ⊆ S

C
SM:=Complement of SM

Finally, we  define a subset of the Cartesian product as:

FNk = {(s′, s) : ys′
� = ys

�, ∀� ∈ L̄k} ⊆ S × Sk
B

D

U D

U

U D

Unit 1

Unit 2

Unit 3 D U DU D U UD

Equalit y co nstra ints li nk sc enari os 
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sheet structure is a degree of freedom.
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The pair (s′,s) represents all the duplets in the Cartesian prod-
ct (S × Sk

B). For each of these duplets there is a corresponding pair
s′

, ys. Recall that ys is a vector with as many elements as failure
odes � ∈ L, and that ys′

�
is a vector with as many elements as fail-

re modes in � ∈ Lk, where |Lk| ≤ |L| since there are more failures
n the units of the superstructure that in the units corresponding
o a particular topology k, which is conformed of a subset of the
nits in the superstructure. If for failures relevant to topology k,
hat is � ∈ Lk ys′

�
= ys

�
, scenarios s′ and s are equivalent with respect

o failures relevant to topology k. That is, looking only at the units in
opology k, scenarios s′ and s, have the same combination of active
ailure modes. If this condition is met, (s′,s) are members of FNk.

In fact, FNk defines a function FNk : S → Sk
B that maps between

he sets S and Sk
B, since for every element s′ ∈ S there is only one

orresponding element in s ∈ Sk
B. This relationship operates in the

ollowing way: taking any element in s′ ∈ S we look for the element
 ∈ Sk

B such that (s′, s) ∈ FNk.
The function FNk : S → Sk

B can be used to project the different
cenarios in S that are identical with respect to the failures in Lk
nto one scenario in Sk

B. This use of FNk is illustrated in Fig. 5.

. Properties of the reduced set Sk
B

In the above section, SM represents the failure modes considered
n the master problem, while Sk

B was defined as a set of scenar-
os that include all the relevant failure mode combinations for a

xed network topology k. The main idea behind the decomposition
pproach presented in this paper is to solve the Benders subprob-
em in the reduced space of Sk

B. For instance, let the superstructure
f an integrated site have two units. Each unit has one failure mode,
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Unit 1

Fig. 6. Scenarios and their partitio
Fig. 7. Reduced scenarios in Sk
B

and their probabilities pk
s for fixed unit 1.

so L = {� 1, � 2}. Each vector ys = {y�1
s , y�2

s } describes a scenario s ∈ S
where S = {{1,1},{1,0},{0,1},{0,0}}. Recall that a 0 in the vector ys

denotes the occurrence of a failure in scenario s. Assuming the prob-
ability of failure is small, the Benders algorithm is set up so that
SM = {{1,1}}  and its complement SC

M = {{1, 0}, {0, 1}, {0, 0}}. If in a
given iteration the flowsheet obtained from the solution of the mas-
ter problem includes only one unit, we would define the reduced
set L̄k = {�1}, so that Sk

B = {{1}, {0}}. In this case scenario {1} in Sk
B is

the projection of {1,0} from S onto Sk
B. Scenario {0} is the projection

of {0,1},{0,0}.
An important property that we require of Sk

B is that the sum
of the probabilities of the scenarios in the reduced set must be
equal to the summation of the probabilities in the original set, i.e.,∑

s ∈ Sk
B
pk

s =
∑

s ∈ SC
M

ps. We  illustrate how to compute the probabili-

ties ps, ∀s ∈ Sk
B in order to satisfy this condition using the example

of a two-unit superstructure. There is one failure mode per unit in
each of the two units, where prob�1 = 0.02 and prob�2 = 0.03. Fig. 6
shows the combinations of failure modes for scenarios in S and their
corresponding probabilities. It also shows the partitioning of S into
SM and SC

M .
Once more, assume that at a given iteration of the Benders algo-

rithm only unit 1 is chosen from the superstructure, and we wish
to solve the subproblem in the projected space Sk

B. There are two
states in Sk

B: {1} and {0} corresponding to the functional and failed
states of unit 1. The first of these, {1}, is the projection of {1,0}; the
second, {0}, is the projection of {0,1},{0,0}. The probabilities of the
reduced states {1} and {0} are equal to the sum of the probabilities
of the projected states {1,0} and {0,1},{0,0}. The probability of the
state {1} is equal to the probability of {1,0}, and the probability of
{0} is the sum of the probabilities of {0,1},{0,0}. Fig. 7 shows the

reduced scenarios and their corresponding probabilities for fixed
unit 1. It can be verified that each of the probabilities in the sce-
narios in Fig. 7 correspond to the addition of probabilities of the
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rst and second column of Fig. 6(a), considering only the states in
C
M . We  label the probability in the reduced space as pk

s . In general,
k
s′ =
∑

s ∈ Aps, where A = {s : y�
s = y�

s′ ∀l ∈ L̄, s ∈ SC
M}.

.1. Proposed algorithm

Step 1
Define a maximum number of iterations Kmax and the tolerance

f the problem ε. Set the counter K = 1, and the initial value for the
ower bound LB = −∞.

Select SM as the set of scenarios with largest probability ps (i.e.
s ≥ � , where � is threshold value).

Step 2
Solve the master problem (M)  as defined below:

ax  Constant + ε� (M1)

s.t.

 ≤
∑
s ∈ SM

psc
T
s xs +

∑
s ∈ S̄k

B

(uk
1s(c

1 − B1k

s d) + uk
2sdiag(B2k

s d(e − ys)
T ))

+ vk(h − Gd −
∑
s ∈ SM

Fsxs) +
∑
s ∈ Sk

B

∑
s′:s′ ∈ SM, (s,s′) ∈ FNk∩NA

wk
s,s′ xs′ ,

K /= 1, k = 1, . . . , K − 1 (M2)

 ≥ LB + ε (M3)

 ≤
∑
s ∈ SM

psc
T
s xs +

∑
s/∈SM

psc
T
s xUB

s (M4)

1
s xs + B1

s d ≤ c1 ∀s ∈ SM (M5)

2
s xs ≤ diag(B2

s d(e − ys)
T ) ∀s ∈ SM (M6)∑

 ∈ SM

Fsxs + Gd ≤ h −
∑
s ∈ SM

Fsx
L0
s (M7)

3d ≤ Capital (M8)

s ≤ xs′ + M˛s,s′ (d) ∀s ∈ SM, s′ ∈ SM, s′ < s, (s, s′) ∈ NA (M9)

s ≥ xs′ − M˛s,s′ (d) ∀s ∈ SM, s′ ∈ SM, s′ < s, (s, s′) ∈ NA (M10)

d ∈ D, xs ∈ �q
+, sl ∈ �+ where D = {d|di = 0, 1 ,

i = 1, . . . , p, di ∈ �r , i = p + 1, . . . , r}
˛s,s′ = 0, 1 ∀(s, s′) ∈ S × S

(M11)

here uk
1s, uk

2s, vk, and wk
s are dual variables arising in the

ubproblems defined in Step 4.
The master problem (M)  is the bottleneck of the decomposition

lgorithm. To speed up the convergence of (M), we have set it up as
 feasibility problem instead of a rigorous optimization problem.
he value of the constant term in the objective function (M1) is
f the same order of magnitude as the optimal solution to the full
pace problem. This value is easy to calculate since it is possible to
now the productivity if no failures were present in the integrated
ite. Then we solve (M)  using a loose tolerance in the MILP solver.
he tolerance that we refer to here is the gap between the upper
nd lower bounds of the branch and bound method used to solve
he MILP. It is not to be confused with the tolerance defined for the
enders decomposition algorithm. For instance, if the tolerance of
he Benders decomposition, which is ε in the nomenclature of this

aper, is set to 2%, we can allow a gap of 5% for the branch and
ound method. In (M1) the term Constant is much larger than the
erm ε�,  so that (M)  will converge once a feasible solution is found.
lthough, as we have just said “the term ε� is comparatively small”,
emical Engineering 37 (2012) 89– 103

keeping it is important since it improves the quality of the feasible
solution found. Eqs. (M2) and (M3) constrain the variable � to be
less than the dominant Benders cut but greater than a valid lower
bound plus the convergence tolerance ε. Constraint (M4) has been
added to enforce a valid upper bound on the objective function
of the master problem. Note that the cardinalities of the sets of
constraints (M9) and (M10) are much smaller than the cardinalities
of (1f) and (1g). The solution to this problem yields the optimal
values of the decision variables of the master problem at iteration
k: d̂k and x̂k

s ∀s ∈ SM .
Termination criterion: Constraints (M5)–(M11) can always be

trivially satisfied by not installing any unit from the superstructure
and setting to zero the internal flows within the integrated site.
The only possibility for (M)  to be infeasible is if � cannot satisfy
constraints (M2)–(M4).  This is the case only if the upper bounds
for � set by constraints (M2) and (M4) are lower than the lower
bound set by constraint (M3). Therefore, the algorithm is terminated
as soon as (M) is infeasible, which in turn guarantees that the lower
bound LB is within ε-tolerance of the optimal solution to the full
space problem.

Step 3
Select the sets L̄k and Sk

B as defined above. Use the function FNk

to compute the coefficients in the reduced space of Sk
B:

pk
s =

∑
s′:s′ ∈ SC

M
, (s′,s) ∈ FNk

ps′ ∀s ∈ Sk
B

The calculation of this coefficient has been explained in the pre-
vious section.Step 4

Solve the subproblem (B) of the Benders decomposition using
the reduced scenario set Sk

B.

Max
∑
s ∈ Sk

B

pk
s cT

s xk
s +
∑
s ∈ SM

psc
T
s x̂k

s − penT sl (B1)

s.t.

A1
s xs ≤ c1 − B1

s d̂k ∀s ∈ Sk
B (B2)

A2
s xs ≤ diag(B2

s d̂k(e − ys)
T ) ∀s ∈ Sk

B (B3)∑
s ∈ Sk

B

Fsxs − sl ≤ h − Gd̂k −
∑
s ∈ SM

Fsx̂
k
s (B4)

xs = x̂k
s′ ∀s ∈ Sk

B, s′ ∈ SM, (s, s′) ∈ FNk ∩ NA (B5)

xs ∈ �q
+, sl ∈ �+

q (B6)

The non-negative slack variables sl in (B4) ensure feasibility of
the subproblem. A special note must be made regarding constraint
(B5). The reduced set Sk

B is introduced in order to eliminate the need
for non-anticipativity constraints (1f) and (1g) among the scenarios
in SC

M , but there are still indistinguishable pairs of scenarios (s,s′)
where s belongs to SC

M and s′ to SM. The claim is that the set of
constraints in (B5) is of significantly smaller cardinality than (1f)
and (1g).

After solving subproblem (B), we construct the Benders cut using
the objective function of the dual of (B):

� ≤
∑
s ∈ SM

psc
T
s xs +

∑
s ∈ S̄k

B

(uk
1s(e − B1k

s d) + uk
2sdiag(B2k

s dyT
s ))

+ vk

(
h − Gd −

∑
Fsxs

)
+
∑ ∑

wk
s,s′ xs′
s ∈ SM s ∈ Sk
B

s′:s′ ∈ SM, (s,s′) ∈ FNk∩NA

where uk
1s, uk

2s, vk, and wk are the optimal dual multipliers of
constraints (B2)–(B5) at iteration k.
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Fig. 8. Simulation logi

The value of the lower bound (LB) is updated if the optimal value
f (B) is greater than the incumbent LB.

If  K = Kmax, the algorithm stops. Otherwise, set K = K + 1, and go
o Step 2.

. Discrete rate simulation model

The simulation begins with the generation of discrete items,
ach representing a unique failure mode. Each plant in the inte-
rated site has one or more failure modes. For each failure mode,
e look up which plant is impacted by the failure. We  then look
p the number of parallel units for that plant and the produc-
ion rate per unit. These parameters are assigned to the failure

ode as attributes so the look-up is necessary only once at the
eginning. Each item is unbatched to N items, where N = number
f parallel units. The underlying assumption is that if multiple
arallel units exist in a plant, these units fail independently of
ach other. For each failure mode, its time between failure (TBF)
nd time to repair (TTR) are calculated from distributions devel-
ped from available data. All failure modes wait for failure start,
or the duration corresponding to their respective TBF. Then they
ait in a queue, and each is released only when the affected
nit/train is running (no ongoing failure or turnaround). When

 failure mode is released from this queue, the rate and sta-
us of the affected unit is updated. All failure modes wait for
epair to finish, for the duration corresponding to their respec-
ive TTR or less (only if the repair is pre-empted by a simulation
ogic that synchronizes certain maintenance activities). After the
epair is finished for a given failure mode, the rate and sta-
us of the affected unit/train are restored. The TBF and TTR are
ecalculated, and the process is repeated. Fig. 8 summarizes the
imulation logic for modeling unplanned downtimes resulting from
ailures.

A failure mode can result in the rate of zero for a complete shut-
own or between zero and maximum unit capacity for rate loss. If
here is an ongoing failure at a unit such that the current rate is zero,
he above mentioned queue prevents any further failure modes for
hat unit to be activated, the assumption being that a down plant
annot fail any more. If there is an ongoing failure at a unit such
hat the current rate is not zero, then additional failure is possible.
uring the simulation, multiple failure modes can be in progress at

he same time. The lowest rate of all failure modes in progress is
hosen as the rate of a particular unit. The existence of more than

ne parallel unit per plant is accounted for in the updating of this
ate input, depending on the status of all units. For example, if one
nit is up and the other is down, then the rate input would be half
he plant capacity.
Fig. 9. Integrated Site for the production of C from A.

9. Application to the design of integrated sites (IS)

9.1. Illustrative example

We use the small example shown in Fig. 9 that was  presented
in our previous work (Terrazas-Moreno et al., 2010) to illustrate
the proposed algorithm. The model and process data required to
solve this example are available in Appendix A. We solve the full
space version of the problem and then decompose it using the pro-
posed algorithm for different values of capital investment in order
to obtain a set of Pareto-optimal solutions. All results were obtained
using the MILP solver CPLEX version 12.1, running on GAMS 23.3,
with a 2.8 GHz Intel Pentium 4 processor and 2.5 GB RAM.

The Pareto-optimal solutions are shown in Fig. 10.  Two specific
network structures are shown for the Pareto-optimal points A and
B in Fig. 11.

The network in Fig. 11(a) is designed to operate relying on pro-
cess 3 and a large storage tank. In fact, 2.25 tons is the upper bound
we set for the volume of the storage tank after plant 3. The network
configuration that corresponds to point B in Fig. 10 belongs to a sec-
tion of the optimal Pareto set where only marginal improvements in
average production rate are achieved at the expense of large addi-
tional investment. Thus, the large spare capacities, the redundant
units, and the relatively large storage tank in Fig. 11(b).

Tables 1 and 2 contain the problem sizes and the results that cor-
respond to the full space model and to the decomposition strategy.
Fig. 12 shows the convergence of the decomposition algorithm in
14 iterations for one value of capital investment (Capital = $60 MM).

The lower bound before iteration 4 is a large negative number as
a result of the slack variable in the objective function and Eq. (B4)
having a large value. Without the slack variable the subproblem
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Fig. 10. Pareto-set of optimal solutions for Example 1. (a) Configuration A. (b) Con-
figuration B.

Table 1
Statistics of illustrative example.

Discrete variables Cont. variables Constraints

Full space 4 1557 1670
Master problema 4 502 370
Subproblemb 0 265 177

a Master problem at iteration 1.
b Subproblem at iteration 1 for 13 MM USD of capital investment.

Table 2
Results of illustrative example.

Capital investment (MM  USD) Optimal solution (ton/day)

Full space Sub problem (2% tolerance)

13 2.61 2.59
15 4.35 4.33
20 6.10 5.99
30 6.10 6.09
40 6.25 6.25
50 6.76 6.71
60 6.77 6.77
70 6.92 6.92
80 6.92 6.92
90 6.92 6.92
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Fig. 11. Network configurations for 
Fig. 12. Iterations of master problem and sub problem in the illustrative example
for $60 MM of investment.

would have been infeasible. It is interesting to notice that, even for
this small example made up of 4 processing units, the number of
constraints in the full space model is significantly larger than the
sum of the constraints in the master problem and subproblem (see
Table 1). This is a consequence of the reduction in the number of
non-anticipativity constraints in (1f) and (1g), and in the number
of scenarios in the subproblem. Table 2 shows the results obtained
by the full space and Benders decomposition methods for different
values of capacity investments. The example is so small that each
Pareto-optimal solution can be obtained in a fraction of a second
of CPU time either using the decomposition algorithm or directly
solving the full space model.

9.1.1. Sensitivity analysis
The Pareto-optimal solution that corresponds to point A in

Fig. 10 represents an inflection point in the Pareto-optimal front.
Due to the fact that further marginal increments in average pro-

duction rate require large sums of extra capital investment, an
industrial design team would be interested in understanding the
factors that limit the performance of this design. For example,
it could be more cost effective trying to improve the reliability

two  Pareto-optimal solutions.
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Table 3
Sensitivity analysis of design corresponding to $20 MM.a

∂(APR)/∂(v∗
3,C

) ∼0
∂(APR)/∂(pc∗) ∼0
S. Terrazas-Moreno et al. / Computers a

haracteristics of key components in the design, rather than adding
arallel production trains or increasing the capacity of existing
nes. It could also be the case that small changes in the volume
f storage tanks or capacity of production units can yield signif-
cant improvements in average production rate. This information
an be very useful with the optimization–simulation approach pro-
osed in this paper. These teams could use it to search efficiently
he design space around one or more Pareto-optimal solutions with
iscrete-rate simulation. The sensitivity analysis described below
as the objective of providing this type of information to such a
esign team, so that it can be used as a guideline to fine-tune the
esign in a cost-effective way.

The first step to carry out the sensitivity analysis is to fix the
election of units in the superstructure to that in the Pareto-optimal
oint of interest. We  then construct the set of scenarios relevant
o this selection in the same manner as when setting up the sub-
roblem in the decomposition algorithm. Using this collection of
cenarios as set S, and with a fixed selection of units (fixed zm),
e solve the full space problem described in Appendix A (Eqs.

A1)–(A22)) with the following two additional constraints.

c∗
m ≤ pcm ≤ pc∗

m ∀m ∈ M (S1)

∗
j,n ≤ vj,n ≤ v∗

j,n ∀j ∈ J, n ∈ N (S2)

here pc∗
m and v∗

j,n
are the capacity of unit m and the volume of the

ank for product n after plant j in the Pareto-optimal design being
nalyzed. Any solver for LP problems, such as CPLEX, provides the
educed costs at the optimal solution. The reduced costs, which are
he dual variables at the active bounds, correspond to the deriva-
ives of the objective function with respect to perturbations on the
ight-hand sides of each of the constraints in the optimization for-
ulation (Chvatal, 1983). By reading reduced costs of constraints

S1) and (S2), we obtain the values of the following derivatives:

∂(Average Production Rate)
∂(pc∗

m)
∀m ∈ M (S3)

nd

∂(Average Production Rate)
∂(v∗

j,n
)

∀j ∈ J, n ∈ N (S4)

These derivatives show the sensitivity of the optimal solution
or marginal increments in the design variables. In this way, the
elative magnitudes of the sensitivities can be used as guidelines
or fine-tuning the design using simulation tools.

Next, we are interested in finding the derivatives of the objective
unction with respect to the probabilities of each failure mode, that
s,

∂(Average Production Rate)
∂(p�)

∀� ∈ L (S5)

This information can be used to determine key failure modes and
ook for ways to improve the reliability characteristics of the corre-
ponding components in the design. The probabilities of being in an
perational state with respect to failure �, p�, do not appear explic-
tly in the MILP model defined by Eqs. (A1)–(A22).  However, the
robability of each failures scenario (discrete state), probs, which is

 function of the probabilities of independent failure modes, does
ppear in constraints (A1), (A12) and (A13). Note that we assume
hat vrtsfrs = probs in constraint (A13),  which is true when failures
ollow exponential distributions but an approximation in any other
ase. Knowing this, we carry out the following computations where

PR stands for average production rate:

∂(APR)
∂(p�)

=
∑
s ∈ S

∂(APR)
∂(probs)

∂(probs)
∂(p�)

, (S6)
3
∂(APR)/∂(p3) 6.98

a This design only includes unit 3 from the superstructure.

where

∂(APR)
∂(probs)

=
∑
j ∈ J

∑
n ∈ N

[
∂(APR)

∂(A12j,n)
∂(A12j,n)
∂(probs)

+ ∂(APR)
∂(A13j,n)

∂(A13j,n)
∂(probs)

]

+ ∂(A1)
∂(probs)

(S7)

and

∂(probs)
∂(p�)

=
∏

�′:{ys
�
=1}, �′ /=  �

p�′
∏

�′:{ys
�
=0}

(1 − p�′ ) if ys
� = 1 (S8)

or

∂(probs)
∂(p�)

=
∏

�′:{ys
�
=1}

p�′
∏

�′:{ys
�
=0}, �′ /= �

(1 − p�′ ) if ys
� = 0 (S9)

In Eq. (S7), A12 and A13 stand for the right-hand sides of Eqs.
(A12) and (A13) in Appendix A, and A1 corresponds to the objective
function. The values (∂(APR)/(∂(A12j,n)) and (∂(APR)/(∂(A13j,n)) are
the dual variables of the corresponding constraints, and they are
obtained from the output of an LP solver. The partial derivatives
(∂(A12j,n)/(∂(probs)), (∂(A13j,n)/(∂(probs)) and (∂(A1)/(∂(probs)) are
obtained analytically from constraints (A12) and (A13) and the
objective function (A1). Finally, Eqs. (S8) and (S9) are the result of
differentiating the function probs =

∏
�:{ys

�
=1}p�′

∏
�:{ys

�
=0}(1 − p�′ )

that determines the probability of each failure state as a combi-
nation of the probabilities of the independent failure modes.

Table 3 contains the results of the sensitivity analysis of the
design labeled as A in Fig. 10.  Note: Design A only involves plant
3.

The results in Table 3 indicate that marginal changes in the
design variables around their optimal values have little effect on
the objective function. In fact, this is consistent with the small
slope after point A in Fig. 10.  In contrast, increasing the probabil-
ity of being in an operational state of plant 3 has a large potential
impact on the average production rate. To give the value of the
derivative (∂(APR)/(∂(p3)) a more tangible meaning, we can cal-
culate the effect of a 5% increase in the ratio of MTBF over MTTR
for plant 3. After some algebraic manipulation of the expression
p3 = (MTBF3/(MTBF3 + MTTR3)) we  get:

�APR (5% increase in MTTF/MTTR)

=
[

1.05
1 + 0.05p�

− 1
]

∂(APR)
∂(p3)

= 0.044

Thus, an increase of 5% on the mentioned availability could
result in the design corresponding to $20 MM going from
6.095 mass/h to 6.139 mass/h. This option would be preferred over
increasing the capital investment from $20 MM to over $30 MM.

10. Large-scale example

This section describes the computational results of the proposed
algorithm for solving an industrial-sized process network. Fig. 13

shows the 9 processing plants that constitute this network. Each
of the plants in this integrated site represents the production of a
chemical that can be shipped to external markets or used as raw
material in a downstream process. In the latter case, the integrated
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Fig. 13. Industrial integrated site in large-scale example.

ite could be part of a very large chemical production site made up of
everal “smaller” integrated sites. In this example we use a concave
ost function (the common six-tenths rule (Biegler, Grossmann, &

esterberg, 1997) for capturing the effect of different processing
apacities on the capital investment required by processing units.

e  use a piece-wise linear approximation in order to keep the
inearity of the model.

Each of the 9 plants that constitute the integrated site is modeled
s a continuous process with one or several inputs and one output.
e postulate a superstructure with two parallel production units in

ach plant and a storage tank after each plant except after plants 5
nd 9, where the corresponding product cannot be stored. Each unit
n the superstructure is subjected to different partial (decreased
apacity) and total random failure modes. The distribution of the
ailure times is exponential, while the repair times follow a normal
istribution. The total number of failures in the superstructure is
98.

Solving this industrial case study with the formulation in
ppendix A using the decomposition framework presents two main
hallenges. One of them is the dimensionality: the resulting space
or the units in the superstructure consists of 2198 discrete states
scenarios). Even with the decomposition algorithm, we are not
ble to handle this problem size. The second challenge is that the
ormal distribution of the repair times causes the variance of the
esidence time in each state to be different than that calculated
ssuming an exponential distribution. As indicated in our previ-
us work (Terrazas-Moreno et al., 2010), the asymptotic values of
he probabilities of the states and the mean residence time can be
btained analytically for any type of distribution as long as we have
he mean failure and repair times. Unfortunately, this is not the case
or the variance of the residence times. We  overcome these two
hallenges by building a discrete event simulation model that we
an use to collect a sample of scenarios. This technique is basically

 Monte Carlo sampling procedure.

0.1. Sampling of scenarios and validation of designs using the
iscrete event simulation model

One use of the simulation model is to build a sample of sce-
arios for our problem. As the simulation runs, it generates a list of

tems (failures) and their attributes (time between failures and time
o repair). It also registers a generation time for each of the items
failures). Scenarios (states) in the problem at hand are described
y a set of failures occurring simultaneously in the integrated site.

rom the list of items mentioned above, we can construct a list of
cenarios or states and their durations. Appendix B contains the
etails of the methodology to construct the list of scenarios from
he list of failure items created in discrete event simulation. Since
emical Engineering 37 (2012) 89– 103

the scenarios are generated randomly, we can consider the method
as a Monte Carlo sampling. The number of scenarios is finite, and a
few of them are highly more likely than the rest, so we  can expect
many repetitions of the same scenario as we  sample. The sampling
method allows us to calculate probabilities as well as mean and
variance of residence time in each scenario. The size of the sample
can be determined by the desired level of accuracy in the solution
to our two-stage stochastic programming problem. The variance
estimator of the solution to a stochastic programming problem is
given by Shapiro and Homem-de-Mello (2000):

S(n) =
√∑n

s=1(E[obj] − objs)
2

n − 1
(2)

where n is the number of scenarios and obj is the objective value.
Let z˛/2 be the normal standard deviate (corresponding to a normal
distribution with zero-mean and unitary standard deviation) for
a confidence interval of 1 − ˛. In other words, Pr(z ≤ z˛/2) = 1 − ˛/2,
for z ∼ N(0, 1). For a confidence interval of 95%, z˛/2 = 1.96. To obtain
the exact number of scenarios we  follow the steps in You, Wassick,
and Grossmann (2009):

(1) Obtain a sample for one year of operation to approximate S(n).
(2) Define z˛/2 and a desired interval H so that the solution to

the stochastic programming problem is within an interval of
[objsample − H, objsample + H] with confidence of 1 − ˛.

(3) Determine the size of the sample as:

N =
[

z˛/2S(n)

H

]2

(3)

For H = 2.5 mass/h (recall that the objective function is the
expected throughput of the integrated site) and a confidence
level of 95% we  need a sample size of 2878 scenarios. We  found
that by simulating 10 years of plant operation we can construct
this sample. Intuitively, one would expect that excluding sce-
narios that are not relevant after 10 years of plant has a minimal
effect on the optimal design of the integrated site.

10.2. Numerical result

We simulated 10 year of operation of the integrated site and
obtained a sample of 2973 scenarios. The statistics corresponding to
the 10 most frequently encountered scenarios are shown in Table 4.

Table 4 contains some valuable information. For instance, from
the first row we know that the integrated site will operate without
any active failure mode around 23% of the time and that a failure
will occur approximately every 28 h. Another important piece of
information is that 4 out of the remaining 9 most common failure
scenarios are due to some failure mode in plant 8.

After obtaining the sample of failure scenarios, we  attempted to
solve the problem in full space of 2973 scenarios (without decom-
position) and using the proposed decomposition algorithm in a
workstation with a 2.40 GHz Intel Core2 Quad CPU processor and
8 GB RAM. The results were obtained with the MILP solver CPLEX
12.1.0 running in GAMS 23.3.

The set of Pareto-optimal solutions in Fig. 14 was  obtained first
by solving the full space model which required 31 h. In contrast,
using the decomposition algorithm with a 2% convergence toler-
ance, the Pareto curve can be obtained in 9 h. Table 5 shows the
comparison in terms of CPU times for both approaches. An impor-
tant note is that the solution times in the table do not include the

time GAMS required to generate the model, which was nearly as
long as the solution time for the full space model and not more than
a few minutes with the decomposition algorithm. Table 6 shows
the problem sizes of the decomposed and full space formulations.
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Table  4
Statistics of most probable failure scenarios.

Scenario Probability Mean residence time (h) Frequency of visits (1/(h × 103)) Plants in failure mode

1 0.231 28 8.0 None
2 0.022  23 0.9 Plant 8
3 0.020  20 1.0 Plant 8
4  0.020 25 0.8 Plant 8
5  0.019 27 0.7 Plant 2
6  0.013 18 0.7 Plant 2
7  0.012 21 0.6 Plant 5
8 0.010  25 0.4 Pant 9
9 0.009  21 0.4 Plant 8

10 0.008  28 0.3 Plant 9

Table 5
Performances of decomposition algorithm and full space solution using sample of scenarios.

Capital investment (k USD) Full space Decomposition algorithm

Solution (mass/h) CPU time (s) Upper bound (mass/h) Lower bound (mass/h) CPU time (s)

$100,000 5.20 1,052 5.26 5.16 1,324
$150,000 46.83 4,980 47.28 46.35 6,431
$200,000 62.12 15,376 62.52 61.29 3,817
$220,000 68.30 23,271 69.27 67.91 3,813
$240,000 70.77 12,645 71.66 70.26 4,277
$260,000 72.31 21,611 72.97 71.54 3,308
$280,000 73.27 18,082 72.95 71.52 5,109

74.92 73.46 3,080
Total 8.66 h

F
n

1

s
E
i
t

Table 6
Problem size corresponding to industrial case study.

Discrete variables Cont. variables Constraints

Full space 144 4,753,154 1,864,942
Master problema 144 599,136 203,574
Subproblem 0 4,183,206 877,194

T
O

$300,000 73.97 15,245 

Total  31.18 h 

inally, Table 7 shows the details of three of the Pareto optimal
etwork configurations in Fig. 14.

0.3. Sensitivity analysis

We carry out a sensitivity analysis around the design corre-

ponding to $220 MM,  following the same procedure outlined in
xample 1. The analysis predicts that there is no marginal benefit
n increasing the size of the storage tanks and that the design fine-
uning should focus on small increases on the capacity of plants 1

able  7
ptimal designs for different capital investments using a random sample of scenarios.

Plant 200 MM USD
Average Production Rate
61.29 mass/h

Production units Capacity per unit (ton/h) Storage size (ton) 

1 1 74.8 – 

2  1 77.1 – 

3  1 58.7 – 

4  1 37.5 – 

5  1 121.7 – 

6  1 105.23 – 

7  1 86.0 – 

8  1 28.4 – 

9  1 44.1 – 

Plant  260 MM USD
Average Production Rate
71.62 mass/h

Production units Capacity 

1 2 73.9 

2  1 96.9 

3 1  76.3 

4  1 42.8 

5  1 135.91 

6 1  137.7 

7  1 111.0 

8 1  42.4 

9 2  52.0 
a Master problem at iteration 1.

220 MM USD
Average Production Rate
67.91 mass/h

Production units Capacity per unit (ton/h) Storage size (ton)

1 88.2 –
1 87.8 –
1 64.4 3750
1 42.8 –
1 126.4 –
1 154.1 –
1 117.6 446
1 42.4 9
1 67.6 –

per unit (ton/h) Storage size (ton)

–
–

3750.0
3210.0

–
–

7770.0
93

–



102 S. Terrazas-Moreno et al. / Computers and Ch

0

10

20

30

40

50

60

70

80

$300,000$250,000$200,000$150,000$100,000$50,000$0
k$

m
as

s/
ho

ur

Fig. 14. Pareto-optimal solutions for Example 2 using a random sample of 2973
scenarios.
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ig. 15. Comparison of simulation results vs. optimization results for some Pareto-
ptimal designs.

nd 9. The sensitivity analysis with respect to probabilities in failure
odes revealed that improving by 5% the ratio of MTBF over MTTR

f one of the failure modes in either plant 2 or plant 8 could increase
he average production rate from 68 ton/h to close to 70 ton/h. This
s consistent with the data in Table 4 where it can be seen that the

ost frequent failure modes occur in plant 8 and plant 2.

0.4. Simulation of the Pareto-optimal designs

We  use the same simulation model previously used for obtain-
ng the sample of failure modes to evaluate the performance of the
areto-optimal designs from the MILP optimization model. As we
ave indicated before, the simulation model is able to reproduce
he real system to a greater extent than the optimization model,
iven the simplifications that have to be assumed to develop the
ILP model. Therefore, simulating the design obtained in the opti-
ization step allows us to observe the average production rate

objective function of the optimization model) of the integrated
ite under more realistic assumptions than those incorporated in
he constraints of the MILP model. Since we perform three simula-
ions per configuration, we report average and standard deviation
or each metric. Fig. 15 shows the Pareto-optimal curve obtained

hrough optimization and the corresponding performance fixing
he network configuration and capacities in simulation runs. The
rror bars above and below the points that correspond to simu-
ation are set to one standard deviation obtained when running
emical Engineering 37 (2012) 89– 103

each point three times. As can be seen, the agreement between the
optimization and simulation models is very good.

11. Conclusions

In this paper, we  have addressed the problem of integrated site
design under uncertainty as a two-stage MILP stochastic program-
ming with endogenous uncertainties. In order to overcome the
exponential growth in the number of scenarios required for mod-
eling uncertainty, we proposed a decomposition algorithm based
on Benders decomposition. Our main contribution is to exploit the
problem structure in a way  that allows the solution of Benders
subproblems in a reduced space. The result is that the number of
scenarios required is much smaller than with the full space prob-
lem. One of the main advantages of the proposed method is that the
decomposed model requires significantly fewer non-anticipativity
constraints.

The solution approach was tested in two  case studies, one of
them being an industrial processing network in which Monte Carlo
Sampling was  used to reduce the number of states. In the second
case study, the decomposition algorithm reduces the solution time
for the complete Pareto-set from 31 to 9 h. The integration with
discrete rate simulation for validating/refining results increases
the likelihood that the algorithmic method presented here will be
accepted as a computational tool in an industrial setting.
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