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Abstract 
 
Hybrid simulation models combine the high-level 
project issues of System Dynamics models along with 
the detailed process representation of discrete event 
simulation models.  Hybrid models not only capture 
the best of both of these simulation paradigms, but 
they also are able to address new issues that are 
important in managing complex real-world 
development projects that neither the System 
Dynamics nor Discrete Event simulation paradigms 
are able to address alone. 
 
In order to reap the full benefits from a simulation 
model, a structured approach for analyzing model 
results is necessary.  The recommended approach is 
a combination of the Design of Experiments (DOE) 
technique and sensitivity analysis performed in a 
specific manner.  DOE is a statistical technique that 
provides a more objective measure of how the impact 
of a given change to the model (such as a process 
change) might be dependent upon the values of other 
model parameters (such as the project environment, 
worker motivation, schedule pressure and so forth).  
Consideration of the interaction effects coupled with 
sensitivity analysis is essential for insightful 
interpretation of model results and effective decision-
making. 
 
This paper applies DOE and broad range sensitivity 
analysis to a Hybrid System Dynamics and discrete 
event simulation model of a software development 
process.  DOE is used to analyze the interaction 
effects, such as the degree to which the impact of the 
process change depends on worker motivation, 
schedule pressure and other project environmental 
variables.  The sensitivity of the model to parameter 
changes over a broad range of plausible values is 
used to analyze the nonlinear aspects of the model.  
The end result is a deeper insight into the conditions 
under which the process change will succeed and 

improved recommendations for process change design 
and implementation. 
 
Keywords:  Software Process Modeling, Software 
Process Simulation, Hybrid Simulation, Design of 
Experiments, Sensitivity Analysis 

1. INTRODUCTION 

It is well understood that managing a software 
development project is a multi-faceted problem that 
seems to transcend the complexity of normal project 
management.  Initially a manager must supply cost, 
schedule and quality estimates using incomplete 
information about requirements and resources.  The 
manager must decide the scope of the work, the project 
methodology, the schedule and the staff.  She must 
anticipate the impact of environmental factors such as 
staff experience, requirements stability, corporate 
culture and development environments.   
 
To further complicate the problem, most of these 
factors are dynamic and will change throughout the 
project.  Many of the factors interact with each other.  
Experienced managers may develop an intuition within 
the domain of their experience, but changes in 
technology, such as the move to web-based 
applications, can challenge the validity of that intuition. 
 
These complications increase the potential value of 
using computer models.  Models of the development 
process and of the development environment represent 
a concrete expression of a manager’s understanding of 
the project.  Models also provide a more complete and 
more precise description of the various assumptions 
that previously may have been only partially 
understood in an intuitive sense.  Simulation of project 
behavior over time allows the manager to examine the 
effect of policy alternatives given different assumptions 
about the parameter values. 
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In this paper, we present a hybrid simulation model 
of a software development project.  Hybrid models 
integrate the high-level project issues of System 
Dynamics models along with the detailed process 
representation of Discrete Event simulation models 
into one model.  As a result, Hybrid models are able 
to capture a number of important aspects of the 
software development environment and address how 
these factors impact the overall performance of the 
process and development effort. 
 
We examine the Hybrid model using the well-known 
Design of Experiments (DOE) methodology in 
conjunction with sensitivity analysis conducted over 
a broad range of values for the selected input 
parameters.  DOE is a statistical method that can be 
used to examine complex simulation model behavior 
in order to see how changes in parameter values lead 
to different effects depending upon how system 
components interact with each other.  Sensitivity 
analysis complements DOE by helping to reveal non-
linear effects.   As a result, one can see how a given 
process change may be beneficial to a project under 
certain project environmental conditions, while it 
would not be beneficial under others.   
 
Although showing the impact of parameter changes is 
the goal of sensitivity analysis in general, broad range 
sensitivity analysis (BRSA) reveals possible non-
linearities that may not be detected using traditional 
sensitivity analysis in which parameters are varied 
systematically by a small fixed percentage. 
 
Hybrid simulation models tend to be particularly 
complicated and non-linear, which increases the 
potential value of using DOE and BRSA to help 
uncover the implications of the complex behavior 
generated by such models. 
 
This paper opens by describing general simulation 
paradigms, and a particular hybrid simulation model 
for a software development process.  Next, we 
describe DOE and BRSA, and discuss their 
application to the analysis of hybrid simulation 
models.  Finally, we provide a case study that 
illustrates the application of DOE and BRSA to a 
hybrid model of a software development process. 
 
2. BACKGROUND AND LITERATURE 
REVIEW 
 
In this section, we review three simulation paradigms 
that have been applied to software development 
processes and identify some of the types of questions 
that can be difficult to answer using these paradigms.  

Next, we describe Hybrid models with a focus on the 
special features and characteristics that enable it to 
address questions beyond the other paradigms.  Finally, 
we provide an overview of DOE and BRSA, and 
describe how this combination can be used to help 
address important issues in software development 
simulation. 
 
2.1 Common Simulation Paradigms Used to 
Aid Software Process Management 

System Dynamics 
System dynamics models capture the dynamic behavior 
of project factors and their interactions.  Since the 
interactions may dominate the project behavior, these 
models provide a way to examine the sensitivity of the 
project to critical values in the factors.  Abdel-Hamid 
and Madnick provided a sophisticated example of a 
model of the software development process. [1] 
 
A key aspect of system dynamics (SD) models is the set 
of state variables that change dynamically over time.  
While this framework can be used to represent process 
activities (for example, the variable “Design” might 
represent the amount of code that has been designed at 
a given time), the paradigm does not directly or easily 
represent entities such as code modules.  Thus, there is 
no opportunity to attach attributes such as complexity to 
the entity. A great deal of work has been done using 
System Dynamics models in the software process 
simulation community.  Lehman and Ramil [14], 
Powell et al. [20], Wernick and Lehman [24], Madachy 
[15], Tvedt [23], among others have developed 
complex models to predict project performance issues 
ranging from software evolution to concurrent project 
performance to inspection effectiveness.  While SD 
models have been built to examine questions regarding 
process activities [16] [23], these models are inherently 
limited by the underlying mathematical engine (first-
order ordinary difference equations in time). 

State Based Models 
State based models directly represent process activities 
and model the process dynamics through state 
transitions triggered by events.  The design completion 
may trigger both the start of the coding activity and the 
start of unit test plan development.  A state based model 
easily represents parallel activities, which makes it 
attractive for examining questions about process 
bottlenecks.  Equations of these models are often 
similar to those found in discrete event simulation 
models in SW Process Applications.  Raffo used a 
state-based simulation to predict model time, cost and 
quality in a detailed applied model [21][22].  As the 
name implies, these models are based on state charts.  
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Since the model time advances only when events 
occur, updates to model dynamic project factors must 
be tied to the occurrence of events.  This limits the 
ability of the state-based models to effectively 
represent feedback loops. 
 
Discrete Event Simulation 
Discrete models represent the development process 
as a series of entities flowing through a sequence of 
activities.  Discrete models easily represent queues 
and can delay processing at an activity if resources 
are not available.  Each entity may be described by 
unique “attributes”.  Changes to the attributes by the 
activities can provide much of the value of a discrete 
model.  The effort or duration of each activity may be 
sampled from random distributions allowing the 
model to represent the uncertainty that exists in the 
process.  This allows the simulation to capture the 
effects of variation in the entities (such as size, 
complexity, number of defects, defect type and so 
forth) on each activity.  Discrete models can capture 
the interdependence that occurs between activities in 
a project.  Activities in a development process may 
be delayed when a programmer is diverted to another 
task. Testing may be delayed until a test bed is 
released.  If a model can capture these dependencies 
at a sufficiently detailed level, it may show ways to 
alter the process to reduce risk or increase efficiency. 
 
Since discrete models advance time only when an 
event occurs, continuously changing variables can 
only be updated at specific event times.  While the 
time between discrete events may be days or weeks 
in a software project, SD models containing 
continuous variables may require a time step in 
hours.  This difference can cause errors in the 
integration of the continuous variables or may create 
instability in the behavior of feedback loops if a DES 
model is used for this purpose.  A number of DES 
models have been developed in the software process 
domain.  These include Raffo et al [22], Host et al [9] 
and Donzelli and Iazeolla [5].  
 
2.2 Hybrid Models 
 
Hybrid models [17][18] employ a more complex 
simulation technique than either System Dynamics 
models or Discrete Event models in order to avoid 
the limitations described with the other modeling 
paradigms.  By combining discrete event and 
continuous simulation, hybrid models can represent 
entities with attributes being acted upon by activities 
that are influenced by continuously changing factors.  
The state changes that are directly represented in 

state-based models are implied through the action of 
entities in activities.  Parallel activities are represented 
by additional virtual entities.  Consequently, hybrid 
models enable one to examine the effects of changes in 
processing logic, within the context of a dynamic 
project environment. 
 
Since Hybrid models treat work packages and project 
resources as discrete entities, as is typically done in 
discrete event simulation (DES) models, Hybrid models 
are able to accurately reflect the actual status of an 
item: designed, awaiting rework, awaiting inspection, 
and so forth.  This allows the modeler to easily examine 
alternative policies for assigning resources to different 
classes of work: coding, testing, rework, and others 
depending on the amount of backlog present, for 
example. 
 
In Hybrid models, parameters such as error rates and 
resource productivity vary dynamically over time, 
depending on schedule pressure and other factors, just 
as they do in System Dynamics (SD) models.  Thus, it 
is possible to examine questions about staffing and 
overtime policies, and to explore different assumptions 
about worker fatigue and burnout. 
 
Obviously, not all real-world questions fall neatly into 
categories such that one would naturally use either a 
DES model or a SD model.  Many real-world questions 
would be better answered using a Hybrid model that 
combines both paradigms.  Policies for assigning 
resources to different classes of work for example are 
likely to depend upon staffing and overtime policies.  It 
is often worker fatigue and burnout that cause backlogs 
of work packages to develop.  Without a Hybrid model, 
the analyst must attempt to approximate the relevant 
effects solely within the DES or SD paradigm. 
 
While a Hybrid model can provide the most direct and 
complete representation of a software development 
project, Hybrid models also require a more 
sophisticated simulation engine.  We developed the 
needed capability by modifying a commercial 
simulation package, Extend [6].  Although the 
standard Extend software does permit the user to create 
hybrid models, it is not computationally efficient when 
used this way.  Modifications to the EXTEND 
simulation engine were needed to accurately and 
rapidly simulate combined continuous and discrete 
models.  The resultant run times were on the order of a 
minute to simulate a single replication of a two-year 
project with a time step of one day.  This level of 
performance is necessary for practical use of DOE and 
BRSA. 
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2.3 Hybrid Model Utilized for the Case 
Study 

 
• The duration of an activity depends on both the 

characteristics of the module being processed  
(size, complexity, etc), and overall system 
characteristics such as resource allocation, 
productivity and error rates.  We modeled these 
characteristics by implementing the System 
Dynamics model of Abdel-Hamid and Madnick [1] 
in Extend, and used it to generate dynamic error 
rates, productivity rates and resource levels.  The 
dynamic nature of these characteristics means that 
the time required to process a module of a given 
size can change during the project.  For more detail 
on the Hybrid model design and implementation 
see [17] or [18]. 

 
In this paper, we present a Hybrid model that 
combines the well-known System Dynamics model 
developed by Abdel-Hamid and Madnick [1] with a 
discrete model of a software process fragment that 
contains the phases of design, code and unit test.   
 
The Abdel-Hamid and Madnick (AHM) model [1] 
contains eight main sectors as follows: Human 
Resources, Manpower Allocation, Job Size 
Adjustment, Productivity, Control, Planning, Quality 
Assurance and System Test.  The AHM model 
contains parameters pertaining to staffing levels, 
worker motivation, changes in the workforce due to 
hiring, training, transfers, and attrition, dynamic 
variables based on experience, exhaustion, 
motivation, and communication losses and so forth.  
These parameters combine with others to form 
extensive feedback loops that effect overall worker 
productivity and the efficiency in a complex, non-
linear manner.  These effects impact the overall 
execution of the software process (captured by the 
discrete event portion of the model). 

 
• The original ISPW-6 example process does not 

contain a code inspection.  We based our discrete 
event process model on Raffo’s ISPW-6 state-
based model [21] which did include code 
inspections.  Furthermore we included a re-
inspection step.  The process change that we 
present in this paper deals with whether or not to 
eliminate these re-inspections from the process. 

 
As mentioned previously, the increased complexity of 
hybrid models, opens up a whole new (and necessary) 
spectrum of questions that can potentially be addressed.  
We believe that DOE coupled with BRSA makes it 
possible to fully capitalize on this potential. 

 
The ISPW-6 process fragment which is contained in 
the Discrete portion of the Hybrid model was initially 
documented by Kellner [12] as part of the 6th 
International Software Process Workshop.  This 
process fragment was developed to test software 
process modeling paradigms for their ability to 
capture real-world software process issues and has 
been used as a benchmark by numerous researchers 
in the field. 

 
Although there are notable exceptions (c.f. Hood and 
Welch [8] and Porcaro [19]), simulation studies often 
rely on ad hoc exploration of the input parameter space, 
a process that cannot be relied upon to reveal the subtle 
interactions that often exist among various components 
of a complex non-linear model.  We advocate DOE and 
BSRA to help reveal the interactions and nonlinear 
effects at work in the model, leading to a better 
understanding of the model logic and model behavior, 
and hence to a better understanding of the underlying 
system/process; ultimately resulting in better policy 
recommendations. 

 
Some of the changes we made to the ISPW-6 Process 
to make the discrete portion of the Hybrid model 
more realistic: 
 
• The original ISPW-6 example process specifies 

the activities required to implement one change 
to one module.  Our model extended the process 
to allow code creation and testing on a series of 
modules.  This enabled the model to simulate the 
effects of queuing, and allows us to examine 
system bottlenecks. In addition, each activity is 
capable of operating on several modules 
simultaneously.   This simulates the effect of (1) 
concurrent tasks within an activity (e.g. the effect 
of several modules being coded simultaneously), 
and (2) concurrent activities across development 
phases (e.g. several modules may be in coding 
some while others are in design and still others 
may be in test). 

 
 
3. DESIGN OF EXPERIMENTS (DOE) 
AND BROAD RANGE SENSITIVITY 
ANALYSIS (BRSA) 
 
3.1 Design of Experiments (DOE) 
 
DOE or experimental design is a statistical technique 
for organizing and analyzing experiments.  An excellent 
overview is provided in Law and Kelton [13].  When 
applied to computer models, each experiment can 
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require that multiple replications of the simulation 
model be run.  The factors are the parameters that are 
varied (independent variables that are under the 
experimenter’s control), while the responses are the 
dependent variables or outcome measures of interest.  
Factors might be the model parameters that would be 
modified to represent different policies for testing 
and rework under consideration for a SW project, and 
the responses might be project cost, duration, and 
escaped errors. 
 
DOE has been applied to simulation in a variety of 
different ways.  For example, in a recent article, 
Houston et al [10] used DOE to measure the relative 
contribution of factors to the variation in the response 
variables in order to behaviorally characterize four 
System Dynamics software process models. 
 
A conventional and very useful form of DOE is the 2k 
factorial design, where each of k factors is allowed to 
take on two values, a low or minus value and a high 
or plus value.  This design has been shown to be not 
only economical but also effective at revealing 
interaction effects [13, pg. 660].  Each combination 
of factors is called a design point.  The entire design 
is often summarized as a design matrix, with the 
design points arranged sequentially in the first 
column, the value of factor k (- or +) indicated in 
column 1+k.  The response is shown in the final 
column.  In the case of simulation runs, there are 
often multiple replications run at each design point in 
order to compute the response, which might be the 
mean value for, say, project duration, over N 
replications at a particular level of each factor.  
 
Since the number of replications per response is 
frequently 10 to 30, and the number of design points 
varies geometrically with k, the number of runs when 
using DOE with simulation models can be quite 
large.  Thus, one tends to keep the number of factors 
in the design small.  A 2x2 design is quite typical and 
can be quite revealing.   

 
The primary results from DOE include the amount of 
variance explained by all of the factors, the overall 
contribution each factor, and the degree of interaction 
between the factors.  The latter is of particular 
interest, because it implies that certain combinations 
of factor values may be particularly effective or 
ineffective in terms of the resulting response. 
 
3.2 Combining Broad Range Sensitivity 
Analysis (BRSA) with DOE 
Traditional sensitivity analysis typically targets small 
incremental changes around the expected value of the 

model parameter.  In BRSA, parameter values are 
varied over their entire plausible range in order to 
uncover non-linearities and specific parameter values 
that significantly impact the results.  Interestingly, this 
is often not done because of the number of runs 
involved and the challenge of organizing the runs and 
analyzing the results.  For our work, we leveraged the 
linkage between Excel and Extend in order to facilitate 
this process.  One important result of BRSA is the 
determination of whether the response varies linearly or 
at monotonically with a particular parameter or if there 
is in fact a highly non-linear effect where the response 
shifts from varying directly with the parameter to 
varying inversely with the parameter. 
 
BRSA complements DOE.  While DOE can reveal 
interaction effects, it does not show non-linear effects.  
Sensitivity analysis on the other hand, while it does not 
show interactions, can reveal non-linearities.  The 
combination improves significantly upon ad hoc 
sensitivity analysis.  Moreover, the added cost in 
simulation runs is not as great as might be experienced 
using ad hoc sensitivity analysis because of the 
systematic approach that is used to design the 
simulation experiments and the efficient manner in 
which the output information is used. 
 
As models become more complex, it becomes 
increasingly difficult to understand the subtle 
interactions and nonlinearities embedded in the logic of 
the model.  Software Process Simulation models are 
generally complex forms of SD, DES, and Hybrid 
models (in particular).   The BRSA approach provides 
valuable insights for these types of complex models. 
 
The BRSA approach is particularly helpful in data poor 
environments such as software development, since it 
can help to identify the most influential parameters and 
the most influential ranges of those parameters (often in 
subtle or non-obvious ways) that might merit additional 
data collection efforts.    
 
In a fashion similar to that suggested by Cheng and 
Lamb [4] who used VBA to link Excel and SIMUL8, 
we have linked the Extend simulation engine to both 
Excel and to a statistical analysis package (Minitab).  
This allowed us to design a set of experiments, and then 
analyze the results to uncover statistically valid 
interactions.  We were also able to use this linkage to 
efficiently conduct the BRSA to reveal non-linear 
effects in the model. 
 
Since the hybrid model presented in this paper was 
created using Extend, which allows the user to make 
significant modifications to the simulation engine, we 
were able to create simulation blocks that performed 
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multiple runs using input data stored in Excel 
workbooks.  Minitab was used to design factorial 
experiments and transfer the input data for each 
factor to Excel.  The simulations were run in Extend, 
with the output data being captured in Excel.  The 
output data was then moved back to Minitab for 
analysis.  Excel was similarly used to organize and 
conduct the runs needed for the sensitivity analysis. 
 
The remainder of the paper presents a case study of 
the application of DOE and BRSA using the Hybrid 
software development process model described in 
section 2.2.  The DOE illustration is the simplest 
possible, a 2x2 design, and yet still shows non-
obvious results.  The BSRA illustration uses the same 
underlying model, and considers five parameters.  
Again, the results are not obvious, and greatly helped 
to further the modelers’ understanding of the 
subtleties of the model logic and the process being 
modeled. 

 

4. CASE STUDY:  APPLICATION OF 
DOE AND BRSA TO STUDY THE 
IMPACT OF REMOVING 
INSPECTION STEPS ON PROJECT 
DURATION AND ESCAPED ERRORS 
 
One important decision that software project 
managers need to make is whether or not to have 
inspections.  While inspections can be very costly, 
the results of the inspections have a significant 
impact on product quality, development costs, and 
the time required to complete the remaining 
development and testing steps.  Research has shown 
that inspections can be highly effective at removing 
defects and can have significantly beneficial impacts 
to project cost and schedule [3, 7, 11].  The key 
question for a project manager is:  What will be the 
impact of adding inspection steps to my specific 
development process, given my staffing situation, 
and my particular development environment?  For 
many project environments, worker motivation, 
schedule pressure, and workforce experience all have 
significant impacts on the effectiveness of 
inspections at any given point in the project.  
Moreover, these environmental factors combine and 
interact in complex ways and the results are not 
always intuitive. 
 
It is important to understand how inspections impact 
overall project results, but the effects when these 
important project environmental factors are 
considered can be subtle and counterintuitive.  We 

will use a Hybrid simulation model that captures both 
project environment effects as well as details regarding 
the software development process to explore this 
situation.  We then use DOE and BRSA to gain insight 
into the interaction effects and nonlinearities. 
 
4.1 Overview of the Software Development 
Process Model 
 
The process used in this model was a modified version 
of the ISPW-6 software process example developed by 
Kellner et al [12] .  This process was designed to 
capture eighteen realistic process issues.  This process 
example has been used as a benchmark by numerous 
researchers and practitioners to test their software 
process modeling tools.  The original ISPW-6 process 
model was modified by Raffo and Kellner [21] as part 
of a state-based simulation modeling effort, to include a 
Fagan code inspection [7] and to utilize a data set that 
was developed by interviewing several software 
engineering professionals.  The software development 
process included in the Hybrid simulation model 
described in this paper uses this process modification 
and further changes the moderator inspection process 
step into a full code re-inspection. 
 
The contemplated process change is the removal of the 
re-inspection step.  One might anticipate that if the re-
inspections are effective, then removing them might 
actually increase overall project duration because more 
errors would escape to the testing phases and would 
therefore be detected and corrected later in the process 
when it takes more effort to correct them.  On the other 
hand, since re-inspection will detect fewer errors than a 
first-time inspection, perhaps removing them will 
shorten the project duration.  The actual result will 
depend on the specifics of the project environment, and 
will be manifested in the simulation and subsequent 
analysis as an interaction effect. 
 
In the modified ISPW-6 process, a full code inspection 
is done, the errors are fixed and then, if needed, a re-
inspection is done.  Many of the errors that escape both 
inspections are detected in Unit Test and reworked in 
the Unit Test Rework step.  Removing the re-inspection 
step is likely to cause more errors to reach unit test, 
extending the duration of that step.  On the other hand, 
not performing the re-inspection will save time and 
resources.  The duration of the re-work step that follows 
Unit Test, and the number of errors corrected in Unit 
Test rework should both increase when code re-
inspections are eliminated.  Moreover, we would expect 
that a portion of these escaped defects from the code re-
inspection would find their way into the later phases of 
Integration, Function and System test.  Since these 
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processes are beyond the scope of the ISPW-6 model, 
we treat Unit Test as a general testing step (with 
correspondingly higher costs than might be typical). 

We will examine each factor at two levels, a 2X2 
factorial design, with 10 replications per response, for a 
total of 40 runs (test runs had indicated that 10 
replication per response were sufficient).  We will 
examine the effects on two output measures, project 
duration and the number of errors detected in unit test.  
The assumption is that highly-effective re-inspections 
remove enough additional errors that if they are 
skipped, the increased errors detected and corrected in 
unit test will cause the overall duration of the project to 
increase.  We also want to know if the errors detected in 
unit test increase when the inspection step is skipped, 
and if the resulting increase in unit test time is sufficient 
to nullify the time saved by skipping the re-inspection 
step. 

 
The factors of interest are whether or not re-
inspections are performed (perform or skip) and 
inspection effectiveness (measured by the percentage 
of project effort allocated to inspection activity:  5% 
is low and 15% is high).  Table I summarizes the 
practical aspects of the experiment. 
 
 
 Skip Re-

inspections 
Perform Re-
inspections 

Effectiveness 
of Inspections 
[and re-
inspections] 
is High 
(=15%) 

Conventional 
wisdom says this 
would probably 
makes the most 
sense—do it 
right and do it 
once. 

Quality zealots 
would probably 
advocate this 
scenario—in 
order to 
minimize 
escaped errors. 

Effectiveness 
of Inspections 
[and re-
inspections] 
is Low (=5%) 

Time to market 
zealots might 
advocate this 
scenario—do it 
quickly and 
forget it. 

It is not likely 
that anyone 
would advocate 
doing 
ineffective 
inspections 
twice. 

 
4.2 DOE Results 
 
Figure 1 shows the results of an analysis of variance 
(ANOVA) on the results of the 40 simulation runs.  In 
half of the runs, the re-inspection was performed, and 
the mean project duration for these runs was 610 days.  
For the other half of the runs, re-inspection was 
skipped, and the mean project duration for these runs 
was 565 days. 
 
Half of the 40 runs (a different half) had low inspection 
effectiveness.  The right hand graph in Figure 1 shows 
that the mean project duration for these cases was just 
over 590.  The mean project duration for other half of 
the runs, those with high inspection effectiveness, was 
just over 580 days. 

 
Table I:  Practical Interpretation of the Experiment 

 

 
 

Mean 
Project 
Duration 
(days) 
 
 
 

 
 

Figure 1 -- Main effects of Re-inspection and Inspection Effectiveness on Project Duration 
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The interpretation of Figure 1 is that skipping re-
inspection has a significant beneficial impact on the 
project duration, whereas the impact of low vs. high 
inspection effectiveness is in the expected direction 
but not significant.  The interaction effect between 
inspection effort and skipping the re-inspection step 
(not shown) was also not significant. 
 
This result is contrary to what one might expect--that 
skipping the re-inspection would increase project 

duration when the inspection effectiveness is high, 
and would decrease project duration only when the 
inspection effectiveness inspections is low. 
 
To further examine the simulation results, we 
consider the number of errors detected (which is a 
quality measure that can be directly observed) in unit 
test in each of the four cases.  Figure 2 plots the main 
effects of Re-inspection and Inspection Effectiveness 
on Errors detected in Unit Test. 

 
 

 
 

Figure 2 -- Main Effects of Re-inspection and Inspection Effectivness on Unit Test Errors 
 
Here again we see that only the Re-inspection had a 
significant effect.  Once again, the results differ from 
what one might expect--that removing the Re-
inspection would cause more errors to reach Unit 
Test, and therefore cause more errors to be detected 
in Unit Test, as is frequently discussed in the 
literature.  For example, Jones [11], Fagan [7] and 
Boehm [3] describe the increased cost of fixing errors 
late in the project. 
 
However, the DOE factorial experiment shows the 
assumption not to be true in this case.  Such a 
behavioral anomaly forces the modeler to either 
correct the model if the anomaly is due to flaws in the 
model, or leads to a deeper understanding of the 
referent system. 
 
In order to reconcile this anomaly, we must examine 
the assumptions of the case.  Specifically, we need to 
examine the assumptions about the error generation 
rates for the project.  Using design error generation 
rates of 25 errors per KLOC and code error 
generation rates of 12.5 errors per KLOC over 800 
errors escape into the finished code.  If Unit Test is 

only capable of detecting between 100 to 200 errors1, 
as indicated by Figure 2, the Unit Test step will be 
able to detect approximately the same number of 
errors regardless of inspection efficiency or the 
presence or absence of a moderator inspection. 
 
Thus, it is possible that the anticipated result will 
only occur when the error generation rate is small 
enough that the number of potentially detectable 
errors that reach Unit Test is less than the detection 
capacity of Unit Test. We test this by repeating the 
previous experiment with a reduced error rate (6 
errors/KDSI for design and 3 errors/KDSI for code). 
 

                                                           
1 In Hybrid Models, defects are detected at a certain 
rate.  As a result, the number of defects detected 
largely depends upon the amount of effort (staff 
hours) allocated to that activity, although the rate 
depends upon a variety of factors.  In this model, 
given the time allocated to Unit Test, 100-200 defects 
is the limit of the Unit Test Phase’s capacity to detect 
defects. 
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The results of the ANOVA for the reduced error rate 
case indicates that the interaction effect between Re-

inspection and Inspection Effectiveness is now 
significant, as shown in Figure 3. 

 

 
 

Figure 3 -- Interaction between Inspection Efficiency and Re-Inspection on Project Duration with Low Error Rates 
 
The interpretation of Figure 3 is that with low error 
injection rates, when inspection effectiveness is 5, 
performing Re-inspections yields an average project 
duration of just over 600 days.  The duration is 
significantly lower, 550 days, when Re-inspections 
are skipped.  However, when inspection effectiveness 
is 15, project duration drops to 500 days when Re-
inspection is performed; and now, when the re-
inspection is skipped, the duration increases 
significantly to 550 days. 
 
This result is significant and suggests that Re-
inspections are advantageous when project error 
injection rates are relatively low. 
 
However, as indicated in the first set of experiments, 
when the error injection rates are high, skipping Re-
inspections will not increase project duration (see 
Figure 1) because it will not appreciably change the 
number of errors discovered and corrected in Unit 
Test.  It does, however, allow more errors to escape 
(although not shown on the figures). 
 
4.3 Broad Range Sensitivity Analysis 
Results 
 
The DOE analysis indicates that project duration is 
likely to increase when Re-inspections are eliminated 
in a low error injection environment.  Naturally, this 
result depends on several parameters that were held 
constant during the experiment.  We will illustrate the 

use of BRSA by investigating how much these 
parameters can change without changing this 
conclusion. 
We note that increases in project duration appear to 
be caused by the additional time needed to rework an 
increased number of errors in Unit Test.  By studying 
the logic of the model, we determine that rework time 
depends on the number of errors detected and the 
time to rework each error.  The time to rework each 
error depends on the error rework rate (a user 
specified function) and the relative difficulty value 
specified for unit test.  The number of errors detected 
depends on the effort (referred to as inspection 
effectiveness in the DOE analysis), the error 
generation rate, the error detection rate, and the 
error density multiplier. 
 
Because of their potential significance to the results, 
the five model parameters shown in italics above 
were selected to illustrate BRSA.  Each parameter 
was varied over a broad range of plausible values 
taken from the literature.  The details for each 
parameter are discussed below.  Ten replications 
were run for each of these values, with everything 
else held constant, for a total of 50 model runs. 
 
Figure 4 shows the mean of the 10 runs for project 
duration, as a function of the parameters as they were 
varied over a broad, but plausible range.  We discuss 
each parameter and the interaction between parameter 
following the figure. 
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Figure 4 -- Sensitivity of Project Duration to Different Parameters 

 
Effect of inspection effectiveness (Effort) 
Inspection effectiveness (effort) is modeled as the 
fraction of project resources allocated to inspection.  
At low values of inspection effectiveness (effort), 
small increases lead to increases in the overall 
duration because more errors are identified and 
corrected early in the project without reducing the 
number of errors detected and corrected later in the 
project.   
 
For example, imagine a project that injects 1000 
errors in design, and then detects 500 errors in 
inspections and 200 errors in Unit Test.  If inspection 
effectiveness (effort) is increased and the project 
detects 700 errors in inspections, it would still detect 
200 errors during Unit test.  The time to detect and 
correct the additional 200 errors found during 
inspection would simply increase project duration 
(and reduce the escaped errors). 
 
However, as we can see from Figure 4, as inspection 
effectiveness (effort) increases, eventually the 
number of errors available for detection will drop 
below the detection and correction capability of Unit 
Test.  At the higher inspection effectiveness (effort) 
values, correcting the errors in inspection leads to 
decreases the project duration (in addition to reducing 
escaped errors) because errors are detected earlier 
when the number of hours required to correct the 
errors is less. 
 
Effect of unit test rework relative difficulty (REdiff) 
Boehm claims that it is more difficult to fix an error 
when it is detected late in the development process.  
The increase in relative difficulty increases with the 
size of the project.  In small projects, the relative 
difficulty may increase by a factor of 4 from design 

to unit test.  In large projects, it may be more than 20 
times as difficult [2].  Fagan [7, pg. 270] used a 
multiplier of 10 to 100 times for the relative 
difficulty.  Figure 4 shows the effect of this relative 
difficulty on project duration.  Relative difficulty 
relates the unit test rework effort to the effort 
required to fix the same error in design.  A value of 
20 on the X-axis means that it would take 20 times 
the effort to rework an error in unit test.  Relative 
difficulty is graphed in Figure 4 as REdiff vs. 
duration. The results are highly sensitive to this 
parameter, as would be expected, and in a nearly 
linear fashion.  This is not surprising, and means that 
REdiff can safely be assumed not to confound the 
decision regarding Re-inspections because regardless 
of the value used for Rediff the direction of the 
impact will be same; only the magnitude will change. 
 
Effect of error generation rate (NERPK) 
The error generation rate directly affects the number 
of errors available for detection.  Abdel-Hamid and 
Madnick [1] described the error generation function 
as an S-shaped curve that began at 25 errors per 
KDSI and ended at 12.5 errors per KDSI (a ratio of 2 
to 1).  Several authors have discussed the ratio 
between design and coding errors.  Table 1 
(originally compiled by Abdel-Hamid and 
Madnick[1]) shows the ratios and the sources. 
 

Table 2-- Design vs. Coding Errors 

Ratio of Design Errors 
 to Coding Errors 

Reference 

3.8 to 1 Martin, 1983 
2.0 to 1 Alberts, 1976 
1.8 to 1 Jones, 1981 
1.7 to 1 Boehm, 1981 
1.6 to 1 Thayer et al, 1978 
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Using these ratios and an ending (lower) value of 
12.5 errors per KDSI, we generated a family of S-
shaped curves that creates the range of different error 
profiles suggested by Table 2.  These curves were 
entered into the model as five different values for the 
Nominal Errors per thousand lines of code function 
(NERPK).  As shown in Figure 4, duration increases 
as the error generation rate increases.  The increase in 
duration is roughly proportional to the increase in 
error generation rate, but the effect is relatively 
modest overall.  This is not surprising, and indicates 
that NERPK can also safely be assumed not to 
confound the decision regarding Re-inspections. 
 
Effect of error detection rate (NQAMPE) 
Error detection rates are also described as a function 
that describes the QA manpower (in staff-days) 
needed to detect an error.  The function is an S-
shaped curve that assumes a higher value early in the 
project, but drops later to reflect the assumption that 
coding errors are easier to detect than design errors. 
 
Using the reference originally cited by Abdel-Hamid 
and Madnick [1], we assume a range of values from 
.27 staff-hours per error to .4 staff-hours per error.  
As the QA manpower needed to detect an error 
increases, the number of detected errors drops.  The 
reduced number of detected errors reduces the 
amount of rework and thus reduces the project 
duration.  This is plotted in Figure 4 as NQAMPE.  
The effect is quite modest, and not surprising.  
NQAMPE can also safely be assumed not to 
confound the decision regarding Re-inspections. 
 
Effect of error density multiplier (MDEFED) 
Abdel-Hamid and Madnick modeled error detection 
with an error density function that increased the 
difficulty of error detection as errors were removed.  
Specifically, MDEFED increases error detection 
difficulty by as much as a factor of 50 times when 
only one error remains.  We preserve the shape of the 
function, but vary the maximum multiplier from 9 to 
50.  When the multiplier maximum is smaller, the 
difficulty of detecting an error is smaller, so that 
enough errors are detected to allow duration to 
increase slightly.  However, when the multiplier is 
large, the increased detection difficulty reduces the 
number of errors detected, and thus reduces duration 
(but at the cost of more escaped errors).  This is 
plotted in Figure 4 as MDEFED.  Product duration is 
very sensitive to this parameter, and the relationship 
is highly non-linear, reinforcing the proposition that 
increasing inspections cannot be counted on to 
improve performance in all cases. 
 
 

5. CONCLUSIONS 
 
In order to fully analyze potential SW process 
changes, one must embed SW development process 
simulation models within an experimental 
framework, and then use that framework to fully 
understand the implications of these complex 
simulation models.  This requires that simulation, 
data management, and statistical analysis tools be 
effectively linked together in order in order facilitate 
DOE analysis to reveal interaction effects and BRSA 
to better understand non-linear aspects. 
 
The example provided, the contemplated removal of 
a re-inspection step in a complex SW development 
process, shows a combination of both anticipated and 
unanticipated results, which underscores the 
importance of running a set of well designed 
experiments and analyzing the results statistically.   
Should one remove re-inspection steps to save time?  
It depends, or course, on several factors. 
 
When the error injection rate is reasonably low, DOE 
reveals an interaction effect between inspection 
effectiveness and whether or not re-inspections are 
done (Figure 3).  Skipping re-inspections when 
inspection effectiveness is high is likely to increase 
overall project duration due to the additional time 
required to correct the errors when they are detected 
later in the process.  But, if the inspection 
effectiveness is low, the capacity in Unit Test to 
detect and correct errors is overwhelmed regardless 
of the inspections, and therefore skipping re-
inspections reduces overall project duration.  
 
However, if the error injection rate is high, the 
interaction effect is no longer significant, in which 
case skipping re-inspections would reduce project 
duration regardless of whether or not the inspection 
effectiveness is high or low. 
 
BRSA further indicates that the results are highly 
sensitive in a non-linear fashion to the relative 
difficulty to correct errors, and to the inspection 
effectiveness.  The results are also highly sensitive in 
a linear fashion to the error density multiplier.  This 
suggest that additional attention should be focused on 
these particular relationships, and that the decision 
whether to skip or perform re-inspections, for 
example, depends very much on specific details of 
the software development environment. 
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