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Abstract. The purpose of this paper is to present the concept of modules and
interfaces for a hybrid simulation model that forecasts demand for healthcare
services on the regional level. The interface, developed with the Visual Basic for
Application programming tools for spreadsheets, enables comprehensive plan-
ning of simulation experiment for the combined model that operates based on
two different simulation paradigms: continuous and discrete-event. This paper
presents the capabilities of the developed tools and discusses the results of the
conducted experiments. The cross-sectional age-gender specific demographic
parameters describing population of two subregions of Lower Silesia were
calculated based on historical data retrieved from Central Statistical Office
databases. We demonstrated the validity of the developed interface. The model
correctly responded to the seasonal increased intensity of patients arrivals to
healthcare system.
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1 Introduction

This paper builds up on our previous study that focuses on the use of combined
simulation methods to support healthcare demand predictions [14, 15]. The hybrid
model simulates the consequences of the demographic changes, the variability in the
incidence rates that result from the population ageing, and the seasonal fluctuations in
epidemic trends on the future demand for healthcare services. This in turn may help the
healthcare managers to adjust the resources needed to cover the future healthcare needs
expressed by the population inhabiting the region.

This is still the on-going project that aims to develop a fully operative hybrid model
that combines two simulation approaches: continuous and discrete-event. Hitherto, we
were able to solve the “drainage problem” in the aging chain demographic simulation
[18] and we proposed a method to eliminate the differences between historical data and
simulation results when projecting the population evolution within the predefined time
range. This was achieved by designing the hierarchical blocks and increasing the number
of elementary cohorts up to 210 elementary one-year male/female items. In our research
we were faced however with another challenge. Simulation experiments have revealed
that due to the very large number of results (millions of records) it was necessary to
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develop a set of analytical tools for simulation experiment planning. It was also essential
to construct the appropriate data sheets for the fast and accurate input/output data
analysis, especially when the more advanced sampling methods are applied.

The overall aim of this paper is to present the approach for credible experimental
design and output data analysis to be applied in the hybrid simulation model.

2 Theoretical Background - Premises for Hybrid Solution

Literature survey proves that simulation is widely and successfully used in healthcare
decision making [7, 10]. Simulation methods may be divided into different categories
based on various criteria, whereas practice in the area of health care applications
indicates that the most common criterion [2, 9, 12, 13, 16] is related to time perception.
According to this criterion, the simulation methods are divided into:

• Monte Carlo techniques which, generally, ignore the passage of time,
• continuous modeling that considers the cause-and-effect relationships, feedback

loops, and fixed-interval time steps,
• discrete-event modeling that registers changes caused by individual objects moving

through the system and random-interval time steps closely related to state changes
occurring in the system,

• agent-based system, the sub-method of discrete modeling with the ability to focus
on the behaviors and interactions between particular objects.

The type of the problem determines the simulation approach best fitted to model the
issue. For example, when modeling the factors affecting the epidemic health condition
[8] or the susceptibility to a given type of disease a continuous approach is preferred.
However, to model a performance of a health care facility one usually selects discrete-
event approach [7]. Factors that cannot be identified with certainty lead to stochastic
simulation techniques [3], i.e. Monte Carlo or discrete-event.

When modelling the performance of health care systems the specific concepts
appear: cohort modelling is useful to represent the flow of individuals between age-
gender groups; temporal factors such as hour of day, day of week, month, season,
calendar year are helpful to describe the patients arrival rates to facilities; geographic
characteristics such as the distance to the facility may be used to determine the reaction
time needed to effectively provide emergency service. Each of these concepts is usually
more closely connected with only one simulation approach. For example, the temporal
changes are more easily managed using discrete-event simulation, while cohort mod-
elling is more typical for continuous modelling.

Due to the heterogeneity of approaches used in the simulation of health care sys-
tems, hybrid concepts [17] have been developed to combine different methods in one
master model [1, 4, 6]. In our study we applied three approaches: Monte Carlo in the
context of repetitive experiments and sampling, continuous simulation to model
demographic evolutions, and discrete-event method to generate objects representing
patients arriving to a healthcare facility with service requests. One of the benefits of
such a solution, observed also in our study, is the ability to consider large scale
problems, i.e. many millions of patients arriving to health care facilities, [5].
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3 Description of the Hybrid Model

3.1 Basic Assumptions

The hybrid model consists of two submodels: continuous model created in accordance
with the system dynamics approach and discrete model built in accordance with the
discrete-event approach. The continuous model performs demographic simulations for
the years 2010–2030 based on historical data for the period 2010–2015 and official
governmental forecasts describing the expected population changes. The discrete
model uses demographic data from the continuous model, empirical data on hospital
admissions drawn from National Health Fund regional branch and the elaborated
parameters that describe seasonality trends occurring in patients arrivals.

3.2 Population Model

The first model (see Fig. 1) is essential for predicting population aspects: the population
size, the number of births and deaths, migration and growing up processes. The model
was built in Extendsim [11] and the detailed description of this model may be found in
[18]. In order to increase the clarity of the text the brief recapitulation is given below.

There are two gender chains, female (F) and male (M), and each chain consists of
18 major cohorts. All major cohorts, except the oldest, consist of 5 elementary cohorts
Each chain has two special-type cohorts: marginal left (F_0_4 and M_0_4) and mar-
ginal right (F_85+ and M_85+). The youngest cohort (marginal left) interacts with a
stream of births (inflow), while the oldest cohort (marginal right) contains a large
number of (20) elementary cohorts representing the entire population of the oldest
people. Each cohort also interacts with one or two streams such as a growing up stream,
a stream of deaths (outflow) and a stream of migration (balance of inflow and outflow).
All cohorts with birth, growing up and death streams are situated inside positive or
negative feedbacks loops, while migration streams are defined as the proportion of the
size of the given cohort or an independent parameter, for example the absolute values

Fig. 1. An excerpt from the first model: continuous simulation approach (young males part).
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of individuals. At the end of demographic simulation we receive multicolumn table that
contains the predictions of cohorts sizes in subsequent years (2010–2030), (see Fig. 2).

Our research is based on the situation in a Polish administrative region called the
Wrocław Region (WR). The demographic forecasts are usually prepared by the gov-
ernment scientific institutions and take into account the various combinations of
population parameters, such as fertility rate (similar to birth rate), mortality (death) rate,
life expectancy, rate or number of migrations, which are described using the qualitative
categories expressed by: very high, high, average, low, very low.

In our study, we chose Wrocław area population and one of the population forecast
option (see Table 1) developed by Polish Government Population Council for 2014–
2050 [19] called in our other publications “Scenario 3”. This option was randomly
selected for examination.

In the further part of the paper we present the elements of the model that considers
all the assumptions described above. Our main goal was to develop, implement and
validate the operation of the proposed IT solution. It is clear that such a computer tool
depends strongly on the structure of input data and during the verification/validation
process it is necessary to consider different sets of input data, also coming from our
previous research. Such an approach ensures the effectiveness of the whole scientific
process. This paper however focuses only on some specific IT solutions and does not
aim at the discussion of the results for the complete set of the population forecast
options.

Fig. 2. An excerpt from the results of the continuous simulation model.

Table 1. The description of demographic parameters. One of the official population forecast,
selected for our study.

Variant Fertility rate Mortality rate Life expectancy Migrations

“No 3” High Medium Medium Medium
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3.3 Arrival Model

The second model was built in accordance with the discrete-event approach in
Extendsim, too. It contains 36 hierarchical blocks, i.e. the same number as the number
of main cohorts. The hierarchical blocks allow us to quickly build large models because
each of their identical structure. Hierarchical blocks can be controlled by different
parameters and can also represent multiplied stream sources. All outputs of hierarchical
blocks are connected to a single output stream (see Fig. 3). In every source cohort the
specific object (i.e. service request) has been assigned an attribute value “cohort
number” that enables us to recognize the source cohort of that object. Each object may
be linked to the particular parameter of random distribution, such as the service time or
the code of the disease.

The data describing cohorts are read from the tables, for example the parameters of
random exponential distributions that define time between subsequent requests. The
simulated size of the population in a given cohort is calculated based on the intensity of
the requests (historical, monthly) and the size of the population (historical, yearly).

3.4 Integration of the Models

One of the challenges to be overcome when trying to integrate two different simulation
approaches in one master model is the issue of mutual communication between two
sub-models. The monthly intensity of patients arrivals is associated not only with
historical monthly data from 2010 but also with the sizes of population cohorts in the
end of the simulated year. Therefore, theoretically, each year should be simulated
twice. First, the number of arriving patients should be generated according to the
parameters describing every cohort and second, the simulation should be repeated
using the coefficient calculated previously.

The next challenge to be overcome when performing hybrid simulation is ensuring
the compliance between the deterministic continuous simulation and the stochastic
discrete approach. In case of deterministic simulation repetitions are unnecessary.

Fig. 3. An excerpt from the structure of the discrete-event model – “hierarchical blocks” level.
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Hence it seems that the best option is to prepare the demographic forecasts by the
continuous model and store the results in the external table which is at the same time
the “input” table for discrete model.

3.5 Spreadsheet Interface

We have developed the spreadsheet interface (MS Excel) to enable the fast and
accurate modification of the parameters necessary to define the seasonality of patients
arrivals. The user first selects a range of months for which the modified seasonality will
be applied. In the next step the cohorts for the modifications are selected. Some cohorts
may be excluded from the modification. For example, one can select months from
February to April and only men’s cohorts (see Fig. 4). It is also possible to select only
cohorts with the highest number of arrivals (see Fig. 5).

Due to the very large number of resulting output records, i.e. millions of records
that contain information about the time arrival and cohort’s number, we have also
developed an analytical tool in MS Excel spreadsheet to easily observe patients arriving
in particular months.

Fig. 4. An excerpt from the MS Excel interface. The aim is to indicate the largest stream
intensity values (the smallest mean in random an exponential distribution) then decrease its
intensity (coefficient X = 2) in months from 2 to 5 (“start; end”) for cohorts M_0_4, M_5_9 and
M_15_19.
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4 Simulation Experiment

4.1 Basic Assumptions

Simulation experiments were conducted according to the demographic scenario
described earlier (see Table 1). We decided to study the effects of changes in the values
of the seasonality indicators on the intensity of patients arriving to healthcare facilities.
It seems that the seasonality is caused by the variabilities in morbidity trends separately
for different cohorts during the year. We will conduct the research on the impact of
hypothetical changes in the seasonal morbidity trends on the intensity of simulated
arrivals to the healthcare system.

4.2 Results and Discussion

We propose coefficient C as the independent variable and the historical intensity from
2010 as the reference intensity. By multiplying the reference value by the value of
parameter C we would like to increase the number of arrivals in a specified month for a
specified cohort.

The formula for calculations is as follows (1):

Parameter of exponential random distribution time between arrivalsð Þ hours½ �
¼ 1 = historic number of arrivals in a givenmonth in a given cohortð Þ
� given cohort size in 2010 year=cohort sizeð Þ
� number of hours in this month in 2010 = number ofð
hours in a givenmonth in a given yearÞ

ð1Þ

In our experiment the coefficient C is selected as the independent variable. For each
cohort we found a month with the highest number of historical (2010) arrivals (see
Fig. 5): for both gender the month of July is described by the highest numbers of
arriving patients. This intensity is particularly often observed for the cohorts of the age

Fig. 5. An excerpt from the historical number of arrivals (2010). The months with the highest
frequencies are highlighted.
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groups from 25 to 50 years. Historical data reveal also that the highest number of
women older than 60 years registers in healthcare facilities in March. Several experi-
ments were performed in order to check the conformity of the model with the historical
data.

The coefficient C is multiplied by the number of arrivals in each of the highlighted
month. The intensity of arrivals throughout the period from 2010 to 2030 relative to
historical intensity (year 2010) was multiplied by a constant value in the range of 0.1 to
2 with step 0.1. This means that, for example, the coefficient C = 2 in the March 2010
causes that in simulated March 2010 we have 1620 arrivals in a cohort M_0_4 instead
of 903 (but on average 1806). Figure 6 shows the simulated arrivals with the increased
intensity (C = 2).

The parameters of interarrival time distributions were calculated based on the
historical number of arrivals in the year 2010, separately for each calendar month and
each age-gender cohort. The sizes of cohorts are extracted from historical data or –
beyond the range of historical data – from the demographic simulation model.

The relationship between the total number of simulated arrivals (2010–2030) and
the changing value of coefficient C is demonstrated in Fig. 7. The interesting phe-
nomenon was observed. As expected, the higher coefficient C leads to the higher
number of arrivals (in a statistical sense), however a noticeable irregularity can be seen
when the small value of coefficient C is applied, i.e. C = 0.1. Smaller values of C
reduce to almost zero the significance of the previously leading month. In Fig. 8 the
histogram of the simulated frequency distribution of interarrival times resulting from
the changes in coefficient C, is presented. The observed interarrival times are consistent
with historical data (almost 200,000 arrivals in one year), the histogram shape corre-
sponds to the exponential distribution and the basic statistics (as variance, not shown in
the paper) are very close to each other within the tested range of coefficient C values
(the experiment assumes that the Poisson process parameters change only at the turn of
the month).

Fig. 6. An excerpt from the simulated number of arrivals (2015). The value of factor C was
increased (C = 2). The months with the highest frequencies are highlighted. It should be noted
that the values in the table are affected not only by seasonality but also by changes in the
population size as a result of continuous system simulation.
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The output values generated by the model are consistent with the historical data.
The growth of C coefficient increases the intensity of the simulated arrival stream and
the overall number of simulated arrivals to healthcare facilities. It can also be observed
that a histogram of the interarrival time distribution preserves its original exponential
pattern, however the parameters follow step-wise changes according to monthly sea-
sonality and the trend of population size generated by the continuous model. The slight
differences observed in the simulated values are the result of the fact that changes were
introduced only in one month.

Fig. 7. The number of arrivals in the function of coefficient C. The almost linear relationship.

Fig. 8. The histogram of the frequency distribution of the simulated intervals in the function of
the coefficient C.
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5 Summary

Our contribution is summarized as follows. We have developed the hybrid simulation
model composed of two sub-models which were elaborated using different simulation
paradigms. Both models, i.e. the population model based on the continuous approach
and the arrivals model built with discrete-event methodology, are created on one IT
platform (Extendsim). The overall aim of the simulation was to forecast future demand
for healthcare services, taking into account the probable demographic changes. We
were faced with the challenge of overcoming a large number of data, resulting from the
experiments, when planning and conducting the simulation. The MS Excel interface (in
VBA language) was developed to overcome these difficulties.

We performed the series of experiments to check the consistency of results with the
assumption that the seasonality of incidences overlaps on population trends. We
managed to demonstrate the correct response of the model to the modifications made
on the independent variable. The modified values of the parameter C influenced the
intensity of arrivals however the seasonal character of the arrivals was maintained.
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