# IMPLEMENTATION OF SIMULATION FOR NETWORK SERVICE DELIVERY POINT CAPACITY ANALYSIS

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering

By

TIFFANY JILL HARPER B.S., Wright State University, 2007

> 2008 Wright State University

#### WRIGHT STATE UNIVERSITY

#### SCHOOL OF GRADUATE STUDIES

December 4, 2008

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY <u>Tiffany Jill Harper</u> ENTITLED <u>Implementation of Simulation for Network Service Delivery Point Capacity Analysis</u> BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF <u>Master of Science in Engineering</u>.

|                          | Frank Ciarallo, Ph.D. |
|--------------------------|-----------------------|
|                          | Thesis Director       |
|                          |                       |
|                          | S. Narayanan, Ph.D.   |
|                          | Department Chair      |
| Committee on             |                       |
| Final Examination        |                       |
|                          |                       |
| Frank Ciarallo, Ph.D.    |                       |
|                          |                       |
| Daymand Hill Dh D        |                       |
| Raymond Hill, Ph.D.      |                       |
|                          |                       |
| Jennie Gallimore, Ph.D.  |                       |
|                          |                       |
| Joseph F. Thomas, Jr.,   |                       |
| 303cpn 1 . 1 nomas, 31., |                       |

Ph.D. Dean, School of Graduate Studies

#### ABSTRACT

Harper, Tiffany Jill. M.S.E., Department of Biomedical and Industrial Engineering, Wright State University, 2008. Implementation of Simulation for Network Service Delivery Point Capacity Analysis.

As businesses consolidate and modernize their operations, the impact on their network and computing infrastructure is a major consideration. In this thesis, discrete event simulation is used to show how implementation of an Enterprise Resource Planning (ERP) system can impact network performance and ultimately affect end-users. More specifically, the model simulates the flow of data packets across a network, through a Service Delivery Point (SDP), which is comprised of routers, switches, and firewalls that connect a Local Area Network to a Wide Area Network.

The model was used to run to determine the affect of more network traffic and additional SDP bandwidth capacity on end-user response time, which is the time for a transaction to be processed and returned to the user. Analysis of model output concluded that a 10%, 20%, and 30% increase in network traffic results in a 98%, 209%, and 352% increase in end-user response time, relative to the current workload. Further experimentation with the model concluded that a 42.5% increase in SDP bandwidth capacity reduced the average response time by 75%. By estimating end-user response time, proper SDP capacity can be planned prior to ERP deployment, to ensure timely completion of end-user transactions that inevitably affects bottom line cost.

# **Table of Contents**

| 1  | Introduc   | etion                                                     | 1  |
|----|------------|-----------------------------------------------------------|----|
| 2  | Backgro    | ound                                                      | 4  |
|    | 2.1 Ai     | Force ERP Vision                                          | 4  |
|    | 2.2 Pro    | oblem Statement                                           | 7  |
| 3  | Literatu   | re Review                                                 | 8  |
|    | 3.1 ER     | P Implementation                                          | 8  |
|    | 3.2 Mo     | odeling and Simulation for ERPs                           | 12 |
|    | 3.2.1      | Integration of ERP Data with Simulation                   | 12 |
|    | 3.2.2      | ERP Architecture Modeling                                 | 13 |
|    | 3.2.3      | Simulation of IT Infrastructure                           | 14 |
| 4  | Model I    | Development                                               | 19 |
|    | 4.1 Dis    | screte Event Simulation                                   | 19 |
|    | 4.2 Ex     | tendSim® Software                                         | 20 |
|    | 4.3 Th     | e Model                                                   | 20 |
|    | 4.3.1      | Overview                                                  | 20 |
|    | 4.3.2      | Assumptions                                               | 22 |
|    | 4.3.3      | Input Data                                                | 24 |
|    | 4.3.4      | Output Data                                               | 27 |
|    | 4.3.5      | Verification                                              | 28 |
|    | 4.3.6      | Validation                                                | 29 |
| 5  | Analysi    | S                                                         | 30 |
| 6  | Discuss    | ion and Further Study                                     | 37 |
| Aı | ppendix A: | DoD ERP Systems                                           | 39 |
| Αį | ppendix B: | Acronym List                                              | 40 |
| Αį | ppendix C: | Averaged SDP Throughput Charts                            | 41 |
|    |            | Filler Traffic Input Data                                 |    |
| Αį | ppendix E: | Theoretical Utilization and Simulation Utilization Charts | 48 |
| Αį | ppendix F: | Single Simulation Run Response Time Output                | 52 |
| Αį | ppendix G: | Excel VBA Code                                            | 54 |
| Αį | ppendix H: | Hourly Average Response Time Charts                       | 59 |
| Αį | ppendix I: | Five Minute Average Response Time Charts                  | 67 |
| Αį | ppendix J: | Utilization vs. Response Time Charts                      | 75 |
| Re | eferences  | ·                                                         | 83 |

# **List of Figures**

| Figure 1 – Air Force As-Is Logistics Architecture (USDoD, 2005)                   | 6  |
|-----------------------------------------------------------------------------------|----|
| Figure 2 – Air Force To-Be Logistics Architecture (USDoD, 2005)                   | 6  |
| Figure 3 – Conceptual Model                                                       | 21 |
| Figure 4 – Top Hierarchical View of Model (Fitzgerald & Harper, 2008)             | 22 |
| Figure 5 – Base Y SDP Original Data (NovaTech work source)                        | 26 |
| Figure 6 – Base X SDP Original Data (NovaTech work source)                        | 26 |
| Figure 7 – Base X Averaged Incoming SDP Data                                      | 27 |
| Figure 8 – Example Theoretical Utilization and Simulation Output Utilization Plot | 29 |
| Figure 9 – Current Workload 1 Hour Average Response Times                         | 31 |
| Figure 10 – Current Workload Five Minute Average Response Times                   | 32 |
| Figure 11 – Current Workload 1 Hour Response Time Coefficient of Variance         | 32 |
| Figure 12 - Current Workload Five Minute Response Time Coefficient of Variance    | 32 |
| Figure 13 – Example Response Time vs. SDP Utilization Plot                        | 33 |

# **List of Tables**

| Table 1 – Qualitative CSFs                                            | 11 |
|-----------------------------------------------------------------------|----|
| Table 2 – Input Data for Model Delays                                 | 24 |
| Table 3 – Experiment 1 Design                                         | 30 |
| Table 4 – Experiment 2 Design                                         | 31 |
| Table 5 – Total Day Average Response Times for Workload Experiment    |    |
| Table 6 – Peak 3 Hours Average Response Times for Workload Experiment | 34 |
| Table 7 – Peak 1 Hour Average Response Times for Workload Experiment  | 34 |
| Table 8 – Maximum Response Times (sec) for Workload Experiment        | 35 |
| Table 9 – SDP Utilization Results                                     | 35 |
| Table 10 – Peak 1 Hour Average Response Times for Capacity Experiment | 36 |
| Table 11 – Maximum Response Time (sec) for Capacity Experiment        | 36 |

### 1 Introduction

The United States Air Force, in accordance with the Department of Defense's mission to modernize its processes, systems, and information flows, began an effort to replace legacy systems with two Enterprise Resource Planning (ERP) systems (USDoD, 2007a). Nova Technology Solutions (NovaTech), an Information Technology (IT) and Analytics firm, recognized the Air Force's need for a repeatable, reliable, tool to aid decision-making during the planning, installation, and sustainment of these ERP systems, thus proposing the use of modeling and simulation. Since it is also costly and time consuming to experiment with real world systems, modeling and simulation provides a risk free and relatively cheap tool for what-if analyses. To demonstrate how modeling and simulation could be utilized, a simple simulation model was built to analyze the impact of ERP increased workload on network performance, specifically at the Air Force Service Delivery Points (SDPs). Many of the concepts and work in this thesis come from work completed with NovaTech and a subsequent paper published in the 2008 Winter Simulation Conference (Fitzgerald & Harper, 2008).

A Service Delivery Point (SDP) is defined as "the physical, electrical and service interface between the contractor's network and the government premise equipment, off premises switching and transmission equipment, and other facilities (AT&T, 2008)."

More specifically, an SDP is a combination of routers, switches, and firewalls that resides

at each USAF base to securely connect the bases' Local Area Network (LAN) to the Wide Area Network (WAN). Each SDP is configured for a maximum of 100 MBps bandwidth capacity, but due to budgeting the SDPs are setup as needed. Many bases currently face saturation at 95% during peak hours causing a bottleneck in the communication network. The implementation of the AF ERP systems is expected to cause an increase in traffic through the SDPs. Thus, it is necessary to analyze the capability of each SDP to determine how the increased traffic will affect Air Force (AF) end-users. (Fitzgerald & Harper, 2008)

To analyze the impact of increased ERP workload on SDP performance and enduser response time, a discrete event simulation model was used to simulate the flow of data packets across the AF communications network. Conceptually, an end-user working on a base will generate a transaction that must be processed by a server stationed at another base. Therefore, the end-user's response time is determined by the time it takes for all of the transaction's data packets to travel through the AF communications network to the server and return to the end-user's computer. While the original NovaTech model assumes each SDP has a single resource servicing the combined inbound and outbound traffic, the model used for this thesis assumes there are two resources, one for inbound traffic and one for outbound traffic. Results from the original model show that a 15% increase in current workload, or current network traffic, will cause a 250% increase in end-user response time (Fitzgerald & Harper, 2008), while the model used for this thesis showed a 98%, 209%, and 352% increase in response time when the current workload is increased by 10%, 20%, and 30%, respectively. In an experiment investigating the impact of capacity expansion in the model with the double resource SDP, it was determined that

for a 30% increased workload a 42.5% increase in SDP bandwidth capacity at the base hosting the application server resulted in a 75% decrease in average end-user response time during the peak traffic hour.

The remainder of this document is organized as follows: Chapter 2 has background information relevant to the project objective. Chapter 3 has a literature review. Chapter 4 describes the model details and development. Chapter 5 details the analysis and experiment results. Conclusions and potential future work is summarized in Chapter 6.

# 2 Background

#### 2.1 Air Force ERP Vision

The United States Department of Defense (DoD) initiated the Enterprise Transition Plan (ETP) in September 2005 to modernize the processes, systems, and information flows within the DoD to support 21<sup>st</sup> Century national security requirements (USDoD, 2007a). Part of the ETP is the implementation of 12 Enterprise Resource Planning (ERP) systems throughout the DoD (refer to Appendix A). Although these ERP systems only make up 12 out of 102 initiatives in the ETP, they account for more than 50% of the Department's annual investment in business systems modernization. Of the 12 ERP systems, the Air Force will be implementing the Expeditionary Combat Support System (ECSS) and the Defense Enterprise Accounting and Management System (DEAMS) (USDoD, 2007a).

ERP systems are a suite of integrated business modules that utilize a common database to execute end-to-end processes (USDoD, 2007a). These systems integrate application programs in accounting, sales, manufacturing, and the other functions in a firm, by utilizing a database shared by all the application programs (Jacobs et al., 2008). Along with providing enterprise-wide visibility, ERP systems enable standardization in reporting capability and data access.

ECSS is the supply chain ERP that will replace over 400 legacy systems, while still enabling product support and engineering, supply chain management, expeditionary logistics Command and Control, acquisition and procurement, and maintenance, repair, and overhaul (Dunn, 2007). Replacing the disparate legacy systems with one ERP enables asset visibility yielding on-time request. That is, implementation of ECSS will reduce transaction time between order and delivery providing logistics support to the Warfighter. Furthermore, the ERP will synchronize operational and logistics planning and execution enabling dynamic supply chain re-planning. Implementation of this ERP began in 2007 and is projected to be Fully Operational Capable (FOC) by 2013 with the last legacy system to sunset in 2020 (USDoD, 2007a).

Currently, DoD financial management is noncompliant with directives from the USAF, United States Transportation Command (USTC), Defense Finance and Accounting Service (DFAS), DoD, and Legislation (Gustafson, 2007). Furthermore, the financial management has multiple point-to-point interfaces, long processing times, and old technology, some of which is over 20 years old and requires systemic and manual workarounds (Gustafson, 2007). DEAMS, the Air Force financial ERP, is therefore being implemented to ensure the Warfighter has timely, accurate and reliable financial information. Implementation began in 2007 with projected FOC by 2010 and the sunset of the last legacy system the same year (USDoD, 2007a).

Both ECSS and DEAMS will each use a single instance Oracle® solution, which is a commercial-off-the-shelf (COTS) tool, along with industry best business practices (USDoD, 2007a). Interfaces between the two systems will facilitate tracking of department funds and assets. As seen in Figure 1, the current logistics architecture

requires multiple interactions with separate departments and data storage, whereas the future architecture depicted in Figure 2 will have fewer interactions because the necessary data will be centrally located within the ERP system. Every interaction between departments can take days to respond to a request. Thus, eliminating interactions will enable the Warfighter to get what they need sooner. Because the entire Air Force will be affected by the two ERP systems, the successful implementation of the systems is vital. A review of ERP implementation is presented in the following section.

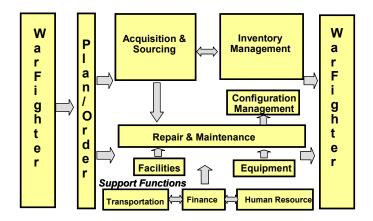



Figure 1 – Air Force As-Is Logistics Architecture (USDoD, 2005)

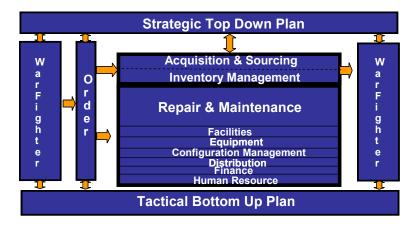



Figure 2 – Air Force To-Be Logistics Architecture (USDoD, 2005)

### 2.2 Problem Statement

The combination of new processes, software, and enterprise architecture is expected to increase individual network workload thus causing increased traffic at the SDPs, which are bottlenecks in the AF communications network (Fitzgerald & Harper, 2008). As mentioned in (Ishii, 2006) it may be too costly to supply sufficient bandwidth for peak traffic, therefore it is of interest how the increased workload will affect network performance and how additional SDP bandwidth capacity will affect network performance.

#### 3 Literature Review

### 3.1 ERP Implementation

Today's ERP systems began as simple computer applications in the late 1960s, and evolved as hardware and software improved and the need for integrated enterprise functions became necessary for companies to survive in a competitive manufacturing environment (Jacobs & Weston, 2007). ERP systems have become popular because of the overwhelming financial and operational benefits resulting from successful implementation. These benefits include the reduction in data redundancy and errors across the enterprise, reduction in time to complete business processes, and increasing interaction between normally disconnected software applications and disparate departments (Bergdolt, 2007). Furthermore, facilitation of reengineering business processes, global operations, and competitive agility are some business benefits of ERPs, while the facilitation of more flexible and scalable architectures is a benefit from a technical perspective (Scott & Vessey, 2000).

The DoD and many industry case studies discuss the success and failure of ERP implementation within their respective organizations. The US Navy Air Systems

Command obtained a cost savings between \$10 million and \$15 million per year by replacing 52 legacy systems with an ERP, which reduced the approval time for aircraft engineering change proposals from 87 days to 25 days (Bergdolt, 2007). Nestle USA was able to save \$325 million with the implementation of an ERP in its supply chain

management (Bergdolt, 2007). Failed attempts at ERP implementation have resulted in a sales decrease of 12.4% and an earnings decrease of 18.6% at Hershey Inc. from 1999 to 2000, the cancellation of Dell's ERP system after 2 years because it could not support the required processes, and perhaps the most notorious ERP failure, the bankruptcy claim of FoxMeyer Drug Corporation (Scott & Vessey, 2000). From these case studies, and similar studies, recommendations and strategies have been proposed to stifle the long record of ERP failures. The remainder of this section reviews previous research in ERP implementation to explore potential applications of modeling and simulation for ensuring success of the Air Force ERPs.

From past implementation of smaller ERP systems, the DoD has learned that ERP systems require a comprehensive data structure, it is better to use the implementation strategies and tools provided by commercial-off-the-shelf (COTS) vendors, and it is necessary to re-engineer business processes to conform to industry best practices (Owens, 2007). Furthermore, from experience the Air Force has listed the top ten reasons ERP implementations fail as:

- 1) Governance
- 2) Scope
- 3) Change Management
- 4) Skills
- 5) Decision Making
- 6) Communications
- 7) Custom Development
- 8) Training

9) Culture; and

10) Leadership.

Overall, there is lack of ownership, dedication and buy-in, communication, and strategic methodology for ERP implementation (Owens, 2007).

Much industry research on ERP implementation has focused on Critical Success Factors (CSFs), which are defined by (Sherry & Corbett, 2007) as "those conditions that must be met in order for the implementation process to occur successfully." Most of the CSFs tend to be qualitative and business oriented, such as seen in Table 1. According to the sources listed in the table, if these factors are considered carefully then the ERP will succeed. Some CSFs are more analytical and technical. That is, better planning and analysis around these factors will increase the likelihood of successful ERP implementation. These factors include resource planning (Han, 2004) (Kim et al., 2005), IT infrastructure and hardware planning (Babey, 2006) (Ehie & Madsen, 2005) (Finney & Corbett, 2007), empower decision makers (Finney & Corbett, 2007), transition planning and data conversion (Berchet & Habchi, 2005) (Finney & Corbett, 2007), ERP system integration with other information systems (Berchet & Habchi, 2005), troubleshooting and crisis management (Finney & Corbett, 2007), and system testing (Finney & Corbett, 2007).

Table 1 – Qualitative CSFs

|                                          | (Berchet & Habchi, 2005) (Bergdolt, 2007) (Ehie & |
|------------------------------------------|---------------------------------------------------|
| support from senior management           | Madsen, 2005) (Finney & Corbett, 2007)            |
|                                          | (Berchet & Habchi, 2005) (Bergdolt, 2007) (Ehie & |
| reengineering business practices         | Madsen, 2005) (Finney & Corbett, 2007)            |
| scope                                    | (Al-Mashari & Al-Mudimigh, 2003)                  |
| ownership and transference of            | (Al-Mashari & Al-Mudimigh, 2003) (Finney &        |
| knowledge                                | Corbett, 2007)                                    |
|                                          | (Al-Mashari & Al-Mudimigh, 2003) (Finney &        |
| change management                        | Corbett, 2007) (Kim et al., 2005)                 |
|                                          | (Al-Mashari & Al-Mudimigh, 2003) (Finney &        |
| communication                            | Corbett, 2007)                                    |
| sufficient performance measurement       | (Al-Mashari & Al-Mudimigh, 2003)                  |
|                                          | (Al-Mashari & Al-Mudimigh, 2003) (Huang et al.,   |
| integration of IT and business affairs   | 2004)                                             |
|                                          | (Berchet & Habchi, 2005) (Finney & Corbett, 2007) |
| investment and user training             | (Huang et al., 2004)                              |
| standardization (lack of customization)  | (Berchet & Habchi, 2005) (Huang et al., 2004)     |
|                                          | (Berchet & Habchi, 2005) (Finney & Corbett, 2007) |
| careful selection of software and vendor | (Kim et al., 2005)                                |
| cross-functional coordination            | (Huang et al., 2004) (Kim et al., 2005)           |
| employee morale                          | (Finney & Corbett, 2007) (Kim et al., 2005)       |
| data conversion and integrity            | (Bergdolt, 2007) (Finney & Corbett, 2007)         |

Implementing the AF ERPs will be challenging because over 400 legacy systems will be collapsed and the need for change management, reengineering business processes, and adopting industry best practices (Bergdolt, 2007). It was stated by (Han, 2004) that research on ERP implementation found that the expectations of ERPs will not be fully realized unless a holistic approach is taken in planning, acquiring, implementing, and exploiting. Thus, modeling and simulation should be utilized throughout Air Force ERP implementation to ensure the ERPs will operate as expected. More specifically, simulation could be used to analyze and ensure proper implementation of the analytical CSFs discussed above. By modeling the IT infrastructure, decision makers can base their resource decisions on statistical output from simulation runs rather than speculative predictions. Furthermore, simulation could be used to perform system testing and plan the

transition from legacy systems to ERP systems and integration with other information systems.

### 3.2 Modeling and Simulation for ERPs

Modeling and simulation for ERP systems commonly refers to the modeling of ERP requirements and architecture or the use of ERP data as input for a simulation. However, Nova Technology Solutions proposed the use of simulation to analyze the effects of ERP implementation on an existing IT network, leading to the focus of this paper, which is the use of simulation for IT infrastructure at the AF SDPs (Fitzgerald & Harper, 2008). The following subsections review the research in integration of ERP data with simulation, ERP architecture modeling, and simulation of IT infrastructure.

### 3.2.1 Integration of ERP Data with Simulation

Because ERP systems store mass amounts of data, it is an ideal source of input data for simulation models. An example where ERP data has been integrated with a simulation model is a printing company who used ERP data, such as inventory, demand, and due dates, in a simulation model to determine the required level of process detail in a printing process (Musselman, 2001). Another example is a health care facility that used a simulation model to evaluate different schedules produced by an ERP system. That is, discrete event simulation was used to determine the daily workload for different scheduling strategies in a cardiology department (Groothuis et al., 2002). Another case study describes a simulation model that used ERP data, such as setup times, process times, and routing data, to model a realistic lead time (Moon & Phatak, 2005). This lead time was used by the ERP system in planning shift schedules, preventative maintenance,

and labor capacity. The above case studies demonstrate the benefits of ERP data for simulation, but the application of ERP data as input is only valid once the ERP has been successfully implemented. As the Air Force ERPs are not fully operational, it is desired to use modeling and simulation in the planning and implementation of ERPs (Fitzgerald & Harper, 2008).

### 3.2.2 ERP Architecture Modeling

For all Air Force missions and initiatives extensive architecture modeling is done to ensure compliance, effective decision making, and organizational change. Architecture is defined as the structure of components, their relationships, and the principles and guidelines governing their design and evolution over time (USDoD, 2007b). The Department of Defense Architecture Framework (DoDAF) is composed of three primary views. The Operational View (OV) captures the processes, data types, and data flow necessary to accomplish DoD missions, while the Systems/Services View (SV) models the systems and interconnection functionality between systems that support the operational activities and the Technical Standards View (TV) defines the rules governing the arrangement, interaction, and interdependence of system parts or elements (USDoD, 2007b).

Similar modeling methodologies are implemented in industry, such as the Architecture of Integrated Information Systems (ARIS) and Dynamic Enterprise Modeling (DEM) (Soffer, 2003). The ARIS method is comprised of five views. The functional view provides a hierarchy of activities, the business process view lays out the work flows with event-driven process chains, the resource view depicts which organizational units and other resources perform the operational activities, the data view

defines the types of data used in all the systems, and the output view defines the physical inputs and outputs of the system (Soffer et al., 2003). The DEM modeling methodology contains a business control view, which represents business functions and their structure and interactions, an organizational structure view, an enterprise structure view, and a business process view.

As depicted in (Fitzgerald & Harper, 2008), modeling methodologies provide the basic information and structure necessary for simulation models. Such simulations can be used to gain insight to the dynamics and uncertainty of systems, which can aid in architecture decision-making. For the Air Force ERP implementation problem, OV and SV information could be translated into a simulation model to determine the optimal IT infrastructure.

#### 3.2.3 Simulation of IT Infrastructure

IT infrastructure is a set of shared IT resources, such as hardware, software, networks, and applications, which is a foundation for both communication across the organization and the implementation of present/future business applications (Chanopas et al., 2006). The following literature review covers case studies that implemented simulation of IT infrastructure. In particular, simulation of computer networks and hardware components are reviewed.

A queue simulation was used to analyze the bandwidth performance of a router in (Ishii, 2006). Bandwidth requirement is the minimum bandwidth needed between two nodes to satisfy a quality standard, or allowable quality deterioration. Quality deterioration is packet queuing delay and packet loss that occurs when traffic along a link is greater than the bandwidth. Because it might be too costly to supply sufficient

bandwidth for peak traffic, a simulation was used to determine the bandwidth that will reduce the maximum queuing delay to within the reference value, and determine the bandwidth needed to reduce the x% value of the queuing delay to within the reference value. The simulation tool was comprised of a packet monitor, queue simulator, and bandwidth requirement estimator. The packet monitor captures packet size and arrival time of each packet from a real Ethernet and sends the information to the queue simulator. With the packet data, the queue simulator placed virtual packets into a queue from which the queuing delay and packet loss rate of each packet are estimated. The estimations are used by the bandwidth requirement estimator to calculate the bandwidth requirement, which is then used by the queue simulator to modify the queue service rate. Experimentation with video traffic showed that the designed simulation tool was generally inadequate for estimating bandwidth requirement for highly bursty traffic.

A simplified Ethernet algorithm was implemented in (Fukuda, 2000) to simulate packet flow between two nodes. The purpose of the paper was to analyze the competition between nodes sending packets along a shared media, and analyze the exponential backoff algorithm in collision detection. The inputs for the discrete simulation algorithm are rate of packet creation for each node, maximum output queue size, and the back-off counter limit. Packet creation, or arrival, rates were generated from real data captured from a university Ethernet network. From packet sizes and frequency of arrival it was found that there are two basic periods of congestion and transmission of packets. Sparse periods have a mean flow density of 150 Kbytes/s, while congested periods have 850 Kbytes/s. In the simulation algorithm packets are generated and placed in the node queue until it can be transmitted to the next node. At fixed intervals each node attempts to send

a packet, but if there will be a collision then the back-off counter sets a wait time until the node attempts to resend the packet. If a packet arrives at a node and there is no room in the queue, then the packet is simply dropped. The output data from the algorithm includes packet dropping rate, which is the number of packets overflowing at either node over the total number of input packets. During experimentation different variations of packet transmission rate, arrival rate, queue length, and back-off maximums are tested to gain insight to how the Ethernet network behaves. When outputs from the algorithm were compared to real Ethernet data, it was found that the algorithm successfully simulates the traffic behaviors of the real system. That is, a low traffic flow rate results in few packet collisions.

Behavior of file servers, or web servers, is simulated in (Field, 2004) for network traffic in a university department. A modified single server simulation was used to model a file server that removes blocks of work from the queue to simulate Ethernet frames, and then waits after each frame to simulate the inter-frame gap. Packets arrive at the server in clusters, like transactions, but packets leaving the server are separate and are emitted according to the network speed. From experimentation it was found that the simulation produces the correct distribution of both web server and file server response sizes, in terms of the number of Ethernet packets required to transmit them.

A network simulation was developed at University of Louisville as a teaching aid for computer science classes (McCoy, 1981). The model simulates traffic between devices, and between devices and processors, with user think-times as inter-arrival time for transactions and computer response time as service times. Along with identifying bottlenecks, the simulation was used to determine the maximum number of terminating

devices and processors that the terminal interface processor can handle given various hardware and software response times, and to determine what queue sizes should be implemented to efficiently handle I/O requests.

The above case studies discuss problems that are similar to the USAF network problem in that they simulate packet flow and network components to evaluate network performance, but they do not have the complexity and large scope of the USAF problem. The USAF network is extremely complex and spans the entire nation; it is of interest if the network can even be modeled with enough validity to get meaningful results. Some insight to this problem can be obtained from research presented in (Floyd, 2001), which discusses the difficulties of internet simulation. Two primary issues in simulating the internet's complexity are network heterogeneity and rapid change. Although rapid change may not be as prevalent in the USAF network as in the global internet, the issue must be considered. Heterogeneity refers to the variation and differences in protocols, applications used at sites, levels of congestion seen on different links, topology and link properties, as well as many other factors. Protocols can differ when different communities implement protocols, often with different features and bugs. Traffic generation is complicated for large networks because there are many traffic sources entering the networks from different locations and with different packet characteristics. Dynamic routing and different types of links, such as slow modems versus fiber optics, form further model complexity. The two strategies discussed for developing valid simulations are searching for invariants, and judiciously exploring the simulation parameter space. As stated in (Floyd, 2001) "an invariant is some facet of behavior which has been empirically shown to hold in a very wide range of environments." Invariants

helpful in simulating the internet include self-similarity, Poisson session arrivals, Lognormal connection sizes, and heavy-tailed distributions. By exploring a parameter space it can be determined how sensitive the simulation output is to changes in the input parameters, thus enabling parameter relaxation, which is the allowance of a range of values for a parameter, to cope with network change and heterogeneity (Floyd, 2001).

# 4 Model Development

#### 4.1 Discrete Event Simulation

To analyze SDP capacity, a discrete event simulation was used to simulate network traffic (Fitzgerald & Harper, 2008). Discrete event simulation passes entities between blocks based on events that mimic real-world activities. Instead of advancing continuously, the simulation clock advances according to the next scheduled event (Kelton et al., 2004). The steps for completing a simulation project are as follows:

- 1) Understand the system
- 2) Be clear about your goals
- 3) Formulate the model representation
- 4) Translate into modeling software
- 5) Verification of the model
- 6) Validation of the model
- 7) Design the experiments
- 8) Run the experiments
- 9) Analyze the results
- 10) Get insight; and
- 11) Document what you've done (Kelton et al., 2004)

This simulation methodology was used in completing the NovaTech project and the thesis project outlined below.

#### 4.2 ExtendSim® Software

The discrete event simulation model was built with ExtendSim® software version 7, which is a process-oriented simulation tool by Imagine That Incorporated. Used throughout DoD, ExtendSim® has also been utilized by industry leaders such as NASA, Caterpillar Inc., Boeing, and IBM Global Services (Imagine, 2008a). Although only used for discrete event simulation for this project, ExtendSim® is a multi-domain environment capable of modeling continuous, discrete rate, agent-based, linear, non-linear, and mixed-mode systems as well. This powerful, leading edge simulation tool implements an easy-to-use graphical interface consisting of unlimited hierarchical decomposition and a set of building blocks that enables rapid production of process simulations (Imagine, 2008b). Rapid and in depth data analysis is enabled by ExtendSim's customizable reports and plotters, the capability to pass values, arrays, and structures composed of arrays, and full connectivity and interactivity with other programs and platforms (Imagine, 2008b).

#### 4.3 The Model

#### 4.3.1 Overview

The basic concept of the model is the flow of data packets across the Air Force IT infrastructure, or communications network. Like the simulation discussed above for (McCoy, 1981) transactions are generated by an end-user which travel between devices, and between devices and processors. In the AF model, an end-user located at Base X generates a transaction, e.g. a DEAMS user wants to generate a finance report, which must be processed at an application server located at Base Y, refer to Figure 3. The transaction splits into packets that travel across the LAN and SDP at Base X, the WAN.

and the SDP and LAN at Base Y. After the packets have been processed by the application server they travel back through the network to the end-user. A single transaction is considered complete when the last packet returns to the end-user's computer. Refer to Figure 4 for a top level view of the model in ExtendSim®.

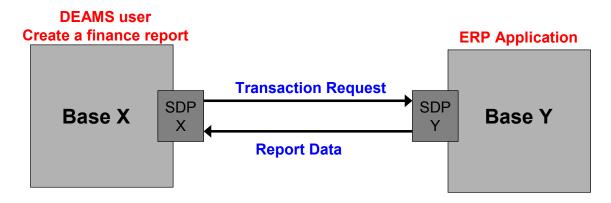



Figure 3 – Conceptual Model

As any discrete event simulation the AF IT model consists of entities, resources, and activities. Like the simulations discussed in section 3.2.3, the entities flowing through the model represent packets, either end-user transaction packets or filler traffic packets. Filler traffic packets are created to simulate traffic generated by other AF users on the network, and these packets are discarded once they flow through the SDP. There are four create blocks that generate filler traffic packets, which correspond to Base X inbound traffic, Base X outbound traffic, Base Y inbound traffic, and Base Y outbound traffic. End-user packets are generated to track and collect the response time for a single end-user transaction. That is, end-user packets are not meant to add contention to the SDP queue, but simply create a trigger for a transaction arrival and completion. Each SDP is modeled as a parallel combination of 2 single server single queue systems, where one resource strictly processes inbound traffic while the other strictly processes outbound traffic. Thus there are four resources in the model: Base X SDP Incoming: Base X SDP

Outgoing; Base Y SDP Incoming; and Base Y SDP Outgoing. Because the IT infrastructure at each base is unique and could change frequently, the model detail was maintained at a basic level in which the activities in the model represent the delay encountered by part of the AF IT infrastructure. These activities include LANs, SDPs, the WAN, and an application server.

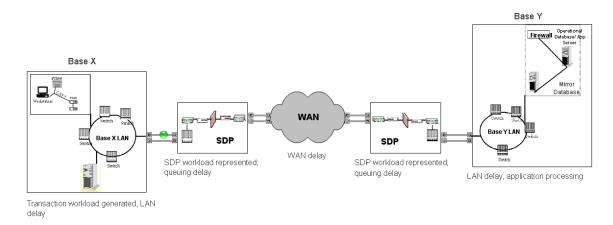



Figure 4 – Top Hierarchical View of Model (Fitzgerald & Harper, 2008)

### 4.3.2 Assumptions

Due to restrictions for available data and time, assumptions were made about the model, the input data, and the real system.

Individual network components were not modeled because each SDP has a unique architecture and that specific data was unavailable. Therefore, unlike the study done by (Ishii, 2006), the model does not go to the level of detail of routers, switches, firewalls, etc., but rather models them as a combined delay for the LAN, WAN, and SDP. Furthermore, unlike the studies done by (Fukuda, 2006) and (McCoy, 1981) network characteristics such as CPU, I/O, internet protocols, and links between hardware (i.e. fiber optics, coax, etc.) were not simulated because these network characteristics were beyond project scope along with packet loss and packet retry. Packet loss occurs when

there is insufficient space in a hardware buffer for a packet, which triggers a message to resend the packet. Because packet retry can potentially overload a system it was considered beyond project scope, therefore it was assumed that queues could have unlimited length.

Data packets usually range from around 500 Bytes to a maximum of 1500 Bytes (Microsoft, 2007), so it was assumed that all packets in the model are 1 KB in size. Leading IT companies such as Lexis Nexis use 5 seconds as web response time standard (Fitzgerald, 2008), while some research determined that user perceived response tolerance is around 8 to 10 seconds (Bouch et al., 2000). For the model, the standard response time was assumed to be between 5 and 10 seconds. As discussed above, the simulation of a file server by (Field, 2004) included logic to account for packet gap, but the model built for the AF problem combined packet gap and other overhead requirements into the SDP bandwidth capacity. That is, to account for overhead requirements, such as packet gap, packet structure and preamble, 20% of SDP bandwidth capacity was modeled as unavailable to entities. In the model this was done by calculating the SDP process time according to Equation 1. After the end-users transaction has been processed by the application server the returning report is assumed to be larger than the incoming request. For this reason it was assumed that the number of packets returning from the application server would be double the number sent by the user. An unbatch block was used in the Extend model to duplicate the entities, resulting in twice the number of packets returning to the end-user.

SDP Process Time = 
$$\frac{1}{0.8*Capacity}$$

Equation 1

#### 4.3.3 Input Data

Because the NovaTech project and extended work of the thesis were not completed under a government contract, access to real data was limited. Therefore, model data is based mainly on NovaTech and DSD Laboratories internal SMEs' knowledge and typical IT observations. The input data needed for the model consists of delays for the LANs, WAN, and application server, SDP bandwidth capacity, end-user transaction size, and filler traffic throughput for the SDPs.

As done for the simulation in (McCoy, 1981) computer response times were used as service times, but due to the lack of actual data a Precise distribution could not be fitted to actual data. For this reason uniform distributions were used for the LAN, WAN, and application server service times. Through SME interviews the service times for these delays were set as provided in Table 2.

Table 2 – Input Data for Model Delays

| Model Delay        | Distribution      | Units             |
|--------------------|-------------------|-------------------|
| WAN                | Uniform(40, 120)  | sec / 100 packets |
| LAN                | Uniform(30, 60)   | sec / 100 packets |
| Application Server | Uniform(100, 150) | sec / 100 packets |
| SDP Base X         | Constant(0.0167)  | sec / 100 packets |
| SDP Base Y         | Constant(0.0185)  | sec / 100 packets |

It is assumed a typical transaction for a DEAMS user is approximately 300 KB in size with time between transactions in units of minutes or hours. Because the traffic from a single end-user is typically small relative to the total traffic on the network it does not by itself affect queuing extensively. Changes in end-user transaction size will increase the response time with a trend because the packets will encounter the same queuing delays but the time for more packets to be processed and returned will be larger. In the experiments the return of end-user transaction packets served as triggers to signal when a

transaction is complete and caused output statistics to be collected in the model.

Transactions were created with a time between transactions that was exponential with a mean of 10 seconds.

As stated before, each SDP is configured for a maximum of 100 MBps, but is leased according to requirements and affordability, thus Base Y currently has 54 Mbps while Base X has 60 Mbps. Because packets are measured in KB these capacity values were converted to KBps, then reduced by 20% for overhead requirements (packet gap, packet preamble, etc.), and finally translated into process times for the SDP input data. (Fitzgerald & Harper, 2008)

Filler traffic inter-arrival rates were determined by a process similar to the packet creation rates in (Fukuda, 2000), but as the real data was unavailable notional IT throughput data typical of IT traffic was substituted. Typical IT traffic is characterized by peaks during the morning and afternoon hours and peak daily traffic on Tuesdays (Fitzgerald, 2008). Data representative of typical end-user sites is represented in Figure 5 and Figure 6. To extract the data values from string format, an Excel VBA macro was coded and used (refer to Appendix G). Because the data points were averages over 5 minute periods and were not independent because bits are sent out in batches, the variance and precise distribution of the data could not be obtained. Therefore, exponential distributions were implemented for inter-arrival times and varying loads throughout the day were obtained by averaging consecutive points with similar throughput values, leading to smoothed stepped averages as seen by the red lines in Figure 7. Using the formula below these stepped averages were converted into inter-arrival times for the filler

traffic that were used as input to the model. Refer to Appendix D for the filler traffic inter-arrival times.

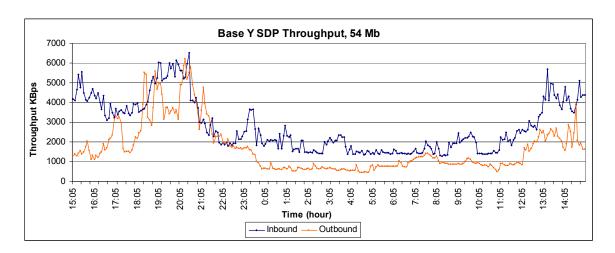



Figure 5 – Base Y SDP Original Data (NovaTech work source)

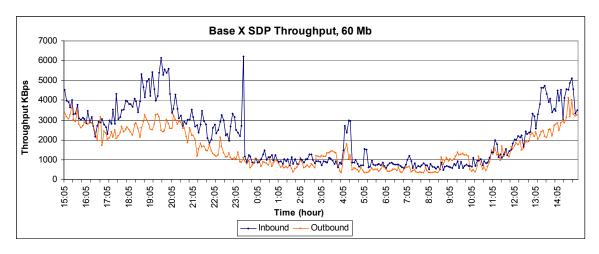



Figure 6 – Base X SDP Original Data (NovaTech work source)

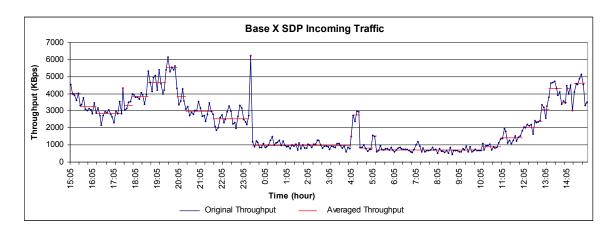



Figure 7 – Base X Averaged Incoming SDP Data

In order to start a simulation model in a "representative" state, it is good practice to run the simulation through a "warm up" period. To warm-up the model, filler traffic data from 5:00 to 15:00, where there is consistently low traffic, was duplicated and added in front of the 15:05-15:00 data. This resulted in a simulation run length of approximately 34 hours. After running a few initial test runs, it became apparent that runtime for the simulation with each entity representing a 1 KB packet would extend over 24 hours real time. This was a result of the extremely large number of entities that must be processed by the model in this case. Therefore, the model was changed to enable each entity to represent 100 packets. By doing this all delays, inter-arrival times, and the end-user transaction sizes were changed accordingly, as seen in Table 2. The resulting runtime ranged between 30 and 50 minutes, which was acceptable.

# 4.3.4 Output Data

The performance measures, or output data, from the simulation model are end-user response time and Base Y SDP utilization. Response time is the time from transaction creation to the time the last packet returns to the end-user, therefore this performance measure was collected when a transaction was completed. Base Y SDP utilization data

was collected within an ExtendSim® "statistics" block that used the batch means statistical method to collect observations every 5 minutes of simulation time.

Observations were chosen to be collected every 5 minutes because this is the smallest increment of time between changes in the filler traffic input data. At the end of the simulation runs the data collected during the simulation was exported to an Excel spreadsheet.

Exporting the output data to Excel facilitated the use of Excel VBA macros for rapid data formatting and analysis. Five macros were coded to automate the functions of clearing data from the worksheets, formatting response times and utilization data, and calculating hourly and five-minute averages. Refer to Appendix G for the VBA code.

#### 4.3.5 Verification

Verifying that the ExtendSim® model was running as expected was done by observing model animation and collecting data from various deterministic runs and stochastic runs. Running a deterministic model verified that entities were being routed correctly and that the calculated response time was as expected. Data collected during stochastic simulation runs, via plotter blocks, was analyzed within the JMP statistical software to verify that the create blocks and activity blocks were providing valid distribution output. Of particular interest was ensuring the changes in inter-arrival rates according to a lookup table were being properly implemented in the model. Another step in verifying the model was comparing the theoretical SDP utilization, which is the filler traffic throughput (KBps) divided by the SDP capacity (KBps), to the actual utilization output from the model. As seen in Figure 8 and Appendix E, the utilization from the simulation closely follows the

theoretical utilization except when the theoretical utilization exceeds 100%. From this plot it was verified that the simulation was producing filler traffic as expected.

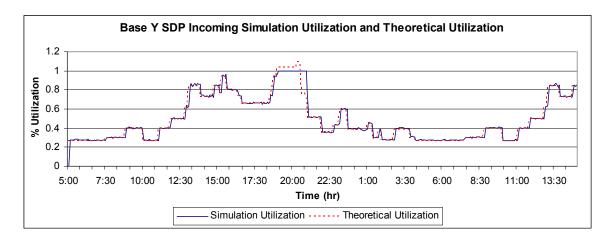



Figure 8 – Example Theoretical Utilization and Simulation Output Utilization Plot

#### 4.3.6 Validation

The validation procedure relied mainly on NovaTech SME knowledge of the real system and general IT standards. Stepping through the model logic with these internal SMEs with expertise in simulation, IT, and AF SDP architecture led to what is believed to be a valid model. Furthermore, reviewing and comparing simulation output to SME expectations and industry standards confirmed that the model is representative of the AF IT network system. Thus, the model is claimed sufficient for use in analyzing the AF ERP challenge.

# 5 Analysis

Using response time as the performance measure, statistical experiments were run to analyze the impact of increased workload and the effect of increased SDP bandwidth capacity. The statistical experiment for increased workload was designed with four levels of filler traffic to simulate increase network traffic due to larger transactions from ERP use, refer to Table 3. Five simulation replications were run for each of the four levels, which were current workload and 10%, 20%, and 30% workload increase from the current throughput (refer to Appendix D for filler traffic inter-arrival times). Similar workload increase experimentation was done with the NovaTech model, specifically a 15% increased workload (Fitzgerald & Harper, 2008).

Table 3 – Experiment 1 Design

| Filler Traffic   | Base X<br>bandwidth<br>(Mbps) | Base Y<br>bandwidth<br>(Mbps) |
|------------------|-------------------------------|-------------------------------|
| current workload | 60                            | 54                            |
| 10% increase     | 60                            | 54                            |
| 20% increase     | 60                            | 54                            |
| 30% increase     | 60                            | 54                            |

To analyze the effect of adding bandwidth to the SDPs, an experiment was designed with the current SDP capacity level and an increased capacity level that would cover the maximum SDP throughput of the 30% workload increase filler rates. That is, the capacity was set at a level that would ensure theoretical utilization would never

exceed 100%, refer to Table 4. As in the first experiment, five replications were run for each of the two levels.

Table 4 – Experiment 2 Design

| Filler Traffic | Base X<br>bandwidth<br>(Mbps) | Base Y<br>bandwidth<br>(Mbps) |
|----------------|-------------------------------|-------------------------------|
| 30% increase   | 60                            | 54                            |
| 30% increase   | 60                            | 76.93                         |

For a single simulation run at each workload level, the output response times were plotted over time, see Appendix F. These plots show a pattern of about five seconds response time until the peak traffic hours. At these peak times noticeable queuing begins to occur around 95% SDP utilization.

For each workload level, hourly and five minute average response times were calculated, along with variance, standard deviation, and coefficient of variance. From the plots of the calculation results, refer to Figure 11, Figure 12, Appendix H, and Appendix I, it can be seen that variation increases as average response time increases and the five minute averages have larger variation than the hourly averages.

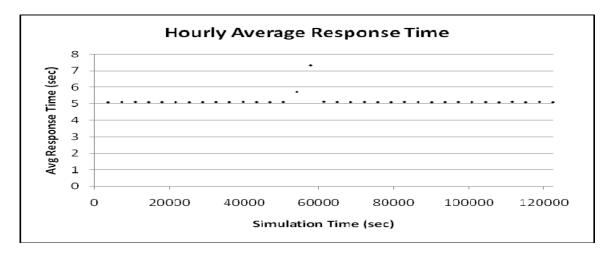



Figure 9 – Current Workload 1 Hour Average Response Times

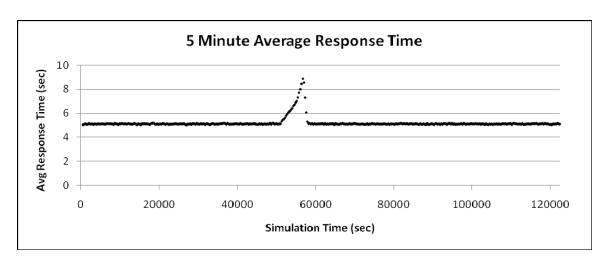



Figure 10 - Current Workload Five Minute Average Response Times

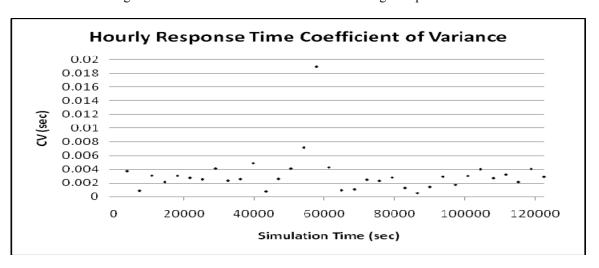



Figure 11 - Current Workload 1 Hour Response Time Coefficient of Variance

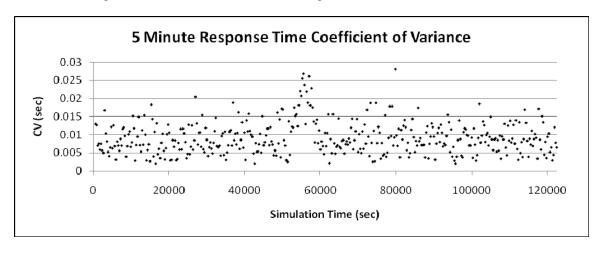



Figure 12 – Current Workload Five Minute Response Time Coefficient of Variance

By plotting end-user response times during peak hours against SDP utilization for each workload level (refer to Figure 13 and Appendix J) an exponential trend line was fitted to each plot resulting in equations to predict the response time given an SDP utilization value. Notice that response time increases as SDP utilization increases. Also, the response time variability increases and response time becomes less predictable as the SDP utilization increases. Using the fitted curve, for a given workload increase, or traffic increase, the end-user response time during peak hours can be estimated using the equation. Decision makers can use these response time estimates to determine if additional SDP bandwidth is required.

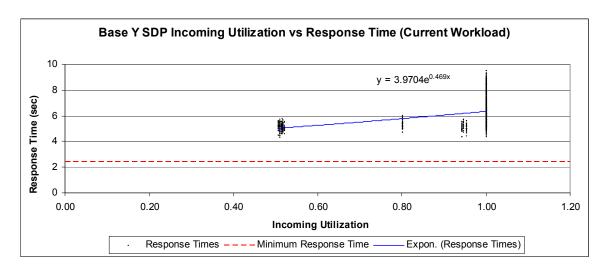



Figure 13 – Example Response Time vs. SDP Utilization Plot

The total day averages with 95% and 99% confidence intervals are provided in Table 5. As the confidence intervals do not overlap, the response time for each level of traffic is deemed significantly different than the other response times and the 30% increased traffic level has the largest average response time. Similarly, average response times were calculated for the peak 3 hours, and the peak single hour. From the confidence intervals for these averages, Table 6 and Table 7, it was determined that the average

response times are significantly different from each other and the 30% increased traffic level has the largest average peak 3 hours and peak single hour response time. Relative to the average response time for current workload, a 10%, 20%, and 30% increases in workload resulted in a 51.82%, 121.52%, and 191.43% increase in average response time during peak 3 hours, and a 98.05%, 208.91%, and 352.07% increase in average response time during the peak single hour, respectively. Furthermore, the tables show that the peak single hour has a larger average response time than the peak 3 hours and the total day. The maximum response time any single end-user experienced in each run is provided in Table 8.

Table 5 – Total Day Average Response Times for Workload Experiment

| Traffic Level    | Average (sec) | ± 95% CI<br>(sec) | ± 99% CI<br>(sec) |
|------------------|---------------|-------------------|-------------------|
| current Workload | 5.1814        | ± 0.0036          | ± 0.0059          |
| 10% Increase     | 5.4981        | ± 0.0074          | ± 0.0123          |
| 20% Increase     | 6.0950        | ± 0.0266          | ± 0.0442          |
| 30% Increase     | 7.4090        | ± 0.0821          | ± 0.1362          |

Table 6 – Peak 3 Hours Average Response Times for Workload Experiment

| Traffic Level    | Average | ± 95% CI | ± 99% CI |
|------------------|---------|----------|----------|
| current Workload | 6.5782  | ± 0.0998 | ± 0.1656 |
| 10% Increase     | 9.9871  | ± 0.1348 | ± 0.2238 |
| 20% Increase     | 14.5718 | ± 0.1619 | ± 0.2687 |
| 30% Increase     | 19.1691 | ± 0.3468 | ± 0.5754 |

Table 7 – Peak 1 Hour Average Response Times for Workload Experiment

|                  | Average | ± 95% CI | ± 99% CI |
|------------------|---------|----------|----------|
| Traffic Level    | (sec)   | (sec)    | (sec)    |
| current Workload | 6.9881  | ± 0.0869 | ± 0.1443 |
| 10% Increase     | 13.8401 | ± 0.1421 | ± 0.2358 |
| 20% Increase     | 21.5868 | ± 0.1481 | ± 0.2457 |
| 30% Increase     | 31.5909 | ± 0.2403 | ± 0.3988 |

Table 8 – Maximum Response Times (sec) for Workload Experiment

| Traffic Level    | Run 1   | Run 2   | Run 3   | Run 4   | Run 5   | Average |
|------------------|---------|---------|---------|---------|---------|---------|
| Current Workload | 9.5477  | 9.1573  | 9.6361  | 9.6058  | 9.1965  | 9.4287  |
| 10% Increase     | 16.4018 | 17.1890 | 16.7804 | 16.9989 | 16.9118 | 16.8564 |
| 20% Increase     | 24.8134 | 25.0394 | 25.0119 | 24.9728 | 24.8727 | 24.9420 |
| 30% Increase     | 34.6001 | 34.5666 | 34.4841 | 34.4829 | 34.8535 | 34.5975 |

For the SDP hosting the application server the percent of time, out of the 34 hour simulation run, the utilization was at or above 100% was calculated, refer to Table 9. From these calculations it was determined that the percent of time at or above 100% for theoretical utilization of the Inbound SDP resource increased by 2.3% from current workload level to 30% increased workload level, while the simulation results show a 4.3% increase in utilization. Similarly, for the Outbound SDP resource the percent of time at or above 100% utilization for theoretical utilization only increased by 1.6% from current workload level to 30% increased workload level, while the simulation results showed a 3.4% increase, respectively.

Table 9 – SDP Utilization Results

|                  | % of Time SDP at or Above 100% Utilization |            |             |            |
|------------------|--------------------------------------------|------------|-------------|------------|
|                  | Inbo                                       | und        | Outbo       | ound       |
|                  | Theoretical                                | Simulation | Theoretical | Simulation |
| Current Workload | 4.66                                       | 5.64       | 1.72        | 1.96       |
| 10% Increase     | 6.37                                       | 8.82       | 2.70        | 3.68       |
| 20% Increase     | 12.99                                      | 18.38      | 3.43        | 6.13       |
| 30% Increase     | 15.20                                      | 30.15      | 4.41        | 8.58       |

Depending on AF standards for response times, the resulting response times may be unacceptable requiring additional bandwidth capacity at the SDPs. In a second statistical experiment, the filler traffic was kept at the 30% increased workload level and two scenarios were run to determine how adding bandwidth capacity to a SDP affects response time. The first scenario was run with the current Base Y SDP capacity of 54 Mbps, while the second scenario was run with 76.93 Mbps, which is the level of capacity

needed to keep the theoretical utilization from exceeding 100%. From results of the second experiment, as seen in Table 10 and Table 11, it was determined that with the 30% increased workload level and the 42.47% increase in Base Y SDP capacity resulted in a 75.30% decrease in average end-user response time during the peak single hour and a 70.97% decrease in average maximum response time.

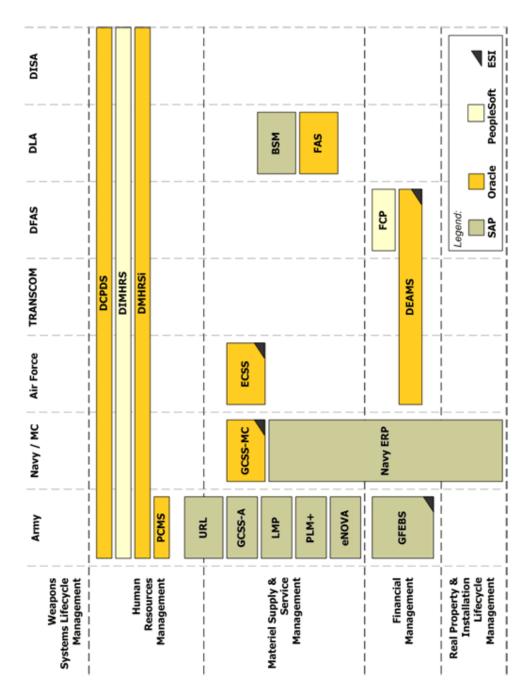
Table 10 – Peak 1 Hour Average Response Times for Capacity Experiment

| Base Y SDP<br>Bandwidth<br>Capacity | Average (sec) | ± 95% CI<br>(sec) | ± 99% CI<br>(sec) |
|-------------------------------------|---------------|-------------------|-------------------|
| 54 Mbps                             | 31.5909       | ± 0.2403          | ± 0.3988          |
| 76.93 Mbps                          | 7.8036        | ± 0.0790          | ± 0.1310          |

Table 11 – Maximum Response Time (sec) for Capacity Experiment

| Base Y SDP<br>Bandwidth |         |         |         |         |         |         |
|-------------------------|---------|---------|---------|---------|---------|---------|
| Capacity                | Run 1   | Run 2   | Run 3   | Run 4   | Run 5   | Average |
| 54 Mbps                 | 34.6001 | 34.5666 | 34.4841 | 34.4829 | 34.8535 | 34.5975 |
| 76.93 Mbps              | 9.8723  | 9.9857  | 10.1438 | 10.0831 | 10.1316 | 10.0433 |

### 6 Discussion and Further Study


Through the work done with Nova Technology Solutions, a discrete event model was built in ExtendSim® to simulate packet traffic on a generic network representative of the USAF computer network. The model provides a tool for resource planning and IT infrastructure and hardware planning, proposed by NovaTech to augment decision making during the DoD Enterprise Transition Plan effort. This was demonstrated by the use of the network model to estimate the impact of ERP implementation on SDP capacity and end-users. Experimental results led to the conclusion that predicted workload increases of 10%, 20%, and 30% would significantly increase the end-user response time. With a 30% increase in workload the average response time was estimated to be 31.6  $\pm$  0.4 seconds, at 99% confidence, during the peak hour of traffic. Further experimentation resulted in the determination that adding 42.5% more bandwidth capacity to the SDP of the base hosting the application server would decrease average response time by 75%.

With the current model, further experiments could be run to determine how increased workload affects the response time for various types of end-user transactions. Scenarios for such a study could include batch transactions that are large in size and infrequent, or small frequent transactions. Also, more experiments could be run to determine how adding different levels of bandwidth capacity affect response time at different levels of increased network traffic. The results from these experiments and the original experiments can be used to generate a response surface with bandwidth capacity,

response time and workload axis. This response surface provides a means for determining what SDP bandwidth capacity is needed to achieve a desired response time at a certain workload level. Cost of end-user work can be used to determine how an increase in response time affects overall AF cost. As response time increases, the end-user executes fewer transactions per day resulting in greater cost of operating. Other excursions could be run to analyze the recovery time during excessive queuing. That is, determine how long it takes for queuing to decrease to a certain point after the peak queue length is reached.

Enhancement to the model could be done by simulating packet loss and packet retry, which will magnify the response time by flooding the network with extraneous retry requests (Fitzgerald & Harper, 2008). This additional model logic and more detail can enable analysis of IT architecture specifics, such as server sizing, application efficiency, virtual load testing, ERP module management, configuration management, and data retrieval and reporting strategies.

## **Appendix A: DoD ERP Systems**



(USDoD, 2007a)

#### **Appendix B: Acronym List**

Acronym Stands for AF Air Force

ARIS Architecture of Integrated Information Systems

COTS Commercial-Off-the-Shelf CSFs Critical Success Factors

DCPDS Defense Civilian Personnel Data System

DEAMS Defense Enterprise Accounting Management System

DEM Dynamic Enterprise Modeling

DFAS Defense Finance and Accounting Service

DIMHRS Defense Integrated Military Human Resources System
DMHRSi Defense Military Human Resources System - internet

DoD Department of Defense

DoDAF Department of Defense Architecture Framework

ECSS Expeditionary Combat Support system

ERP Enterprise Resource Planning
ETP Enterprise Transition Plan
FOC Fully Operation Capable

GCSS Global Combat Support System

GCSS-AF ESB Global Combat Support System - Air Force Enterprise Service Bus

GFEBS General Fund Enterprise Business System

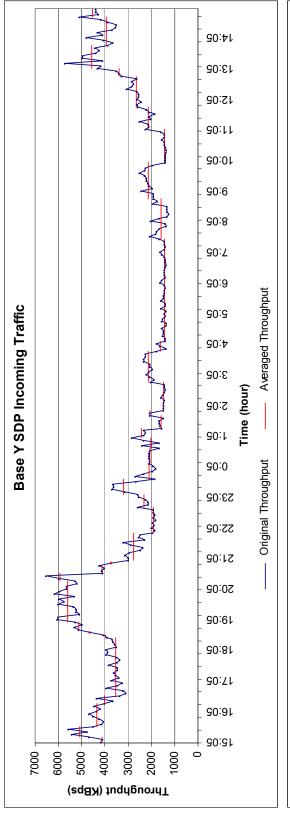
IT Information Technology
KBps Kilobytes per second
LAN Local Area Network

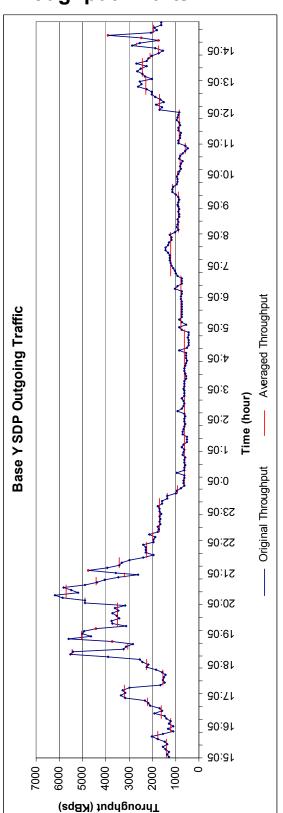
LMP Logistics Modernization Program

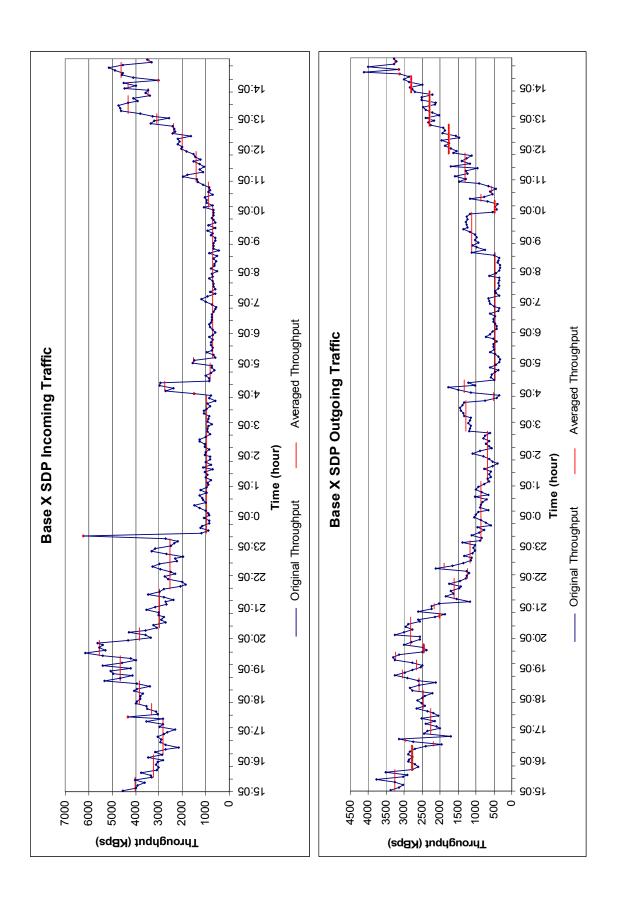
Mbps Megabits per second
MBps Megabytes per second
OV Operational View

PCMS Personnel Claims Management System
PLM+ Product Lifecycle Management Plus

SDP Service Delivery Point SV Systems/Services View


TRANSCOM (USTC) Unites States Transportation Command


TV Technical Standards View


USAMA's (Army Medical Research and Material Command)

URL Revolution in Logistics
WAN Wide Area Network

## **Appendix C: Averaged SDP Throughput Charts**







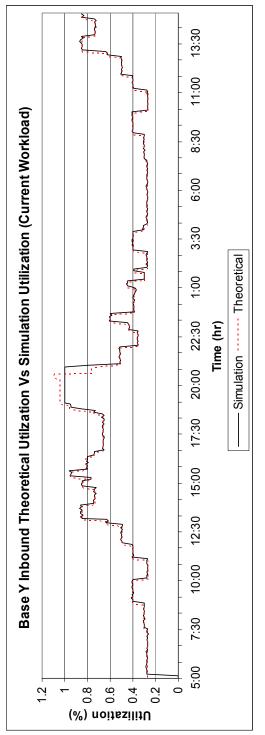
## **Appendix D: Filler Traffic Input Data**

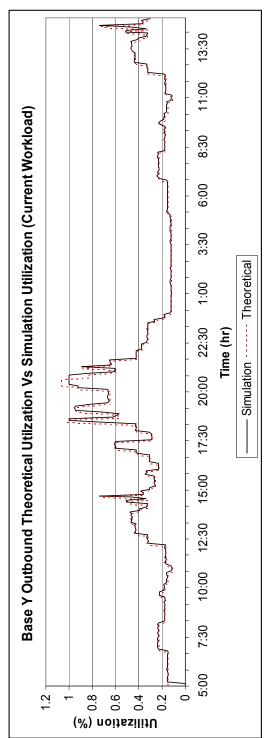
| Base \ | Y Incoming Filler To |              |              |              |
|--------|----------------------|--------------|--------------|--------------|
|        |                      | 10%          | 20%          | 30%          |
|        | Current              | increase     | increase     | increase     |
| Time   | workload             | interarrival | interarrival | interarrival |
| (sec)  | interarrival (ms)    | rate (ms)    | rate (ms)    | rate (ms)    |
| 0      | 68.7908              | 62.5371      | 57.3257      | 52.9160      |
| 9000   | 62.4759              | 56.7963      | 52.0633      | 48.0584      |
| 13800  | 46.5503              | 42.3184      | 38.7919      | 35.8079      |
| 18000  | 69.8779              | 63.5254      | 58.2316      | 53.7523      |
| 21900  | 46.6251              | 42.3865      | 38.8543      | 35.8655      |
| 24600  | 37.4663              | 34.0603      | 31.2219      | 28.8202      |
| 28200  | 29.6326              | 26.9387      | 24.6938      | 22.7943      |
| 29100  | 21.8740              | 19.8855      | 18.2283      | 16.8262      |
| 31800  | 25.2834              | 22.9849      | 21.0695      | 19.4488      |
| 35100  | 22.0457              | 20.0416      | 18.3714      | 16.9582      |
| 36300  | 24.1669              | 21.9699      | 20.1391      | 18.5899      |
| 36900  | 19.6074              | 17.8249      | 16.3395      | 15.0826      |
| 38100  | 23.0359              | 20.9418      | 19.1966      | 17.7200      |
| 40800  | 25.0040              | 22.7309      | 20.8366      | 19.2338      |
| 41700  | 28.1371              | 25.5792      | 23.4476      | 21.6439      |
| 48600  | 25.1637              | 22.8761      | 20.9697      | 19.3567      |
| 49200  | 21.6005              | 19.6369      | 18.0004      | 16.6158      |
| 49500  | 19.4898              | 17.7180      | 16.2415      | 14.9921      |
| 50400  | 17.8279              | 16.2072      | 14.8566      | 13.7138      |
| 55200  | 16.8994              | 15.3631      | 14.0828      | 12.9996      |
| 56100  | 24.3276              | 22.1160      | 20.2730      | 18.7135      |
| 57300  | 26.7871              | 24.3519      | 22.3226      | 20.6055      |
| 57600  | 36.2880              | 32.9891      | 30.2400      | 27.9138      |
| 60900  | 52.5378              | 47.7617      | 43.7815      | 40.4137      |
| 63900  | 42.8650              | 38.9682      | 35.7209      | 32.9731      |
| 65400  | 31.1339              | 28.3036      | 25.9449      | 23.9492      |
| 67200  | 47.8901              | 43.5365      | 39.9084      | 36.8386      |
| 69000  | 48.0847              | 43.7134      | 40.0706      | 36.9882      |
| 70800  | 49.6120              | 45.1018      | 41.3433      | 38.1630      |
| 72000  | 41.1091              | 37.3719      | 34.2576      | 31.6224      |
| 73200  | 62.9221              | 57.2019      | 52.4351      | 48.4016      |
| 74700  | 48.1242              | 43.7492      | 40.1035      | 37.0186      |
| 75300  | 68.0969              | 61.9063      | 56.7474      | 52.3822      |
| 78600  | 47.1006              | 42.8187      | 39.2505      | 36.2312      |
| 82200  | 60.9970              | 55.4518      | 50.8308      | 46.9208      |
| 83400  | 68.7631              | 62.5119      | 57.3026      | 52.8947      |
| 95400  | 62.4759              | 56.7963      | 52.0633      | 48.0584      |
| 100200 | 46.5503              | 42.3184      | 38.7919      | 35.8079      |
| 104400 | 69.8779              | 63.5254      | 58.2316      | 53.7523      |
| 108300 | 46.6251              | 42.3865      | 38.8543      | 35.8655      |

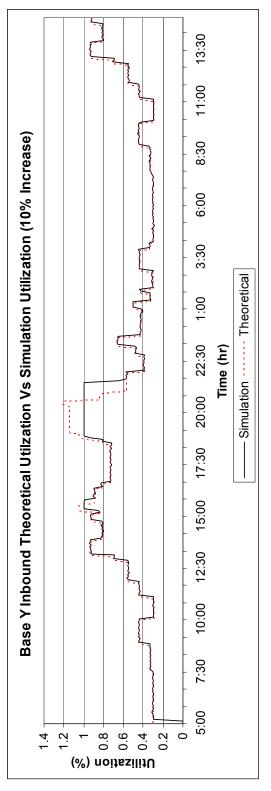
| 111000 | 37.4663 | 34.0603 | 31.2219 | 28.8202 |
|--------|---------|---------|---------|---------|
| 114600 | 29.6326 | 26.9387 | 24.6938 | 22.7943 |
| 115500 | 21.8740 | 19.8855 | 18.2283 | 16.8262 |
| 118200 | 25.2834 | 22.9849 | 21.0695 | 19.4488 |
| 121500 | 22.0457 | 20.0416 | 18.3714 | 16.9582 |
| 122400 | 22.0457 | 20.0416 | 18.3714 | 16.9582 |

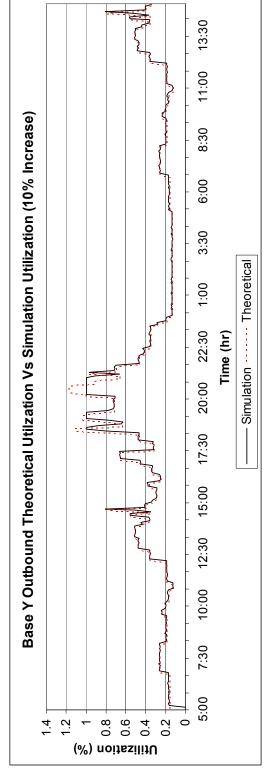
|       |                   | 10%          | 20%          |              |
|-------|-------------------|--------------|--------------|--------------|
|       |                   |              | 20%          | 30%          |
|       | Current           | increase     | increase     | increase     |
| Time  | workload          | interarrival | interarrival | interarrival |
| · ' ' | interarrival (ms) | rate (ms)    | rate (ms)    | rate (ms)    |
| 0     | 129.8860          | 118.0782     | 108.2384     | 99.9123      |
| 6300  | 82.4084           | 74.9168      | 68.6737      | 63.3911      |
| 11400 | 110.8641          | 100.7855     | 92.3867      | 85.2801      |
| 16200 | 88.7501           | 80.6819      | 73.9584      | 68.2693      |
| 17100 | 107.4746          | 97.7042      | 89.5622      | 82.6728      |
| 18600 | 124.9245          | 113.5677     | 104.1038     | 96.0958      |
| 20700 | 172.6167          | 156.9243     | 143.8472     | 132.7821     |
| 21900 | 116.0560          | 105.5055     | 96.7134      | 89.2739      |
| 25800 | 58.8885           | 53.5350      | 49.0738      | 45.2989      |
| 27600 | 43.8694           | 39.8812      | 36.5578      | 33.7457      |
| 29700 | 40.8754           | 37.1594      | 34.0628      | 31.4426      |
| 31800 | 47.7912           | 43.4465      | 39.8260      | 36.7625      |
| 32400 | 57.7599           | 52.5090      | 48.1333      | 44.4307      |
| 33300 | 37.0936           | 33.7215      | 30.9114      | 28.5336      |
| 33900 | 57.7511           | 52.5010      | 48.1259      | 44.4239      |
| 34200 | 40.6991           | 36.9992      | 33.9160      | 31.3070      |
| 34500 | 25.6500           | 23.3182      | 21.3750      | 19.7308      |
| 34800 | 51.6363           | 46.9421      | 43.0303      | 39.7203      |
| 35700 | 62.1399           | 56.4908      | 51.7833      | 47.7999      |
| 36300 | 72.0303           | 65.4821      | 60.0253      | 55.4079      |
| 38400 | 56.1764           | 51.0694      | 46.8136      | 43.2126      |
| 39300 | 82.8462           | 75.3148      | 69.0385      | 63.7279      |
| 40800 | 61.9364           | 56.3058      | 51.6137      | 47.6434      |
| 42300 | 45.5014           | 41.3649      | 37.9178      | 35.0011      |
| 43200 | 31.2722           | 28.4293      | 26.0602      | 24.0555      |
| 44700 | 65.0966           | 59.1788      | 54.2472      | 50.0743      |
| 46500 | 44.3813           | 40.3466      | 36.9844      | 34.1395      |
| 48000 | 25.6140           | 23.2855      | 21.3450      | 19.7031      |
| 48300 | 18.2988           | 16.6353      | 15.2490      | 14.0760      |
| 48900 | 32.6523           | 29.6839      | 27.2102      | 25.1171      |
| 49800 | 26.7787           | 24.3443      | 22.3156      | 20.5990      |
| 50100 | 19.8052           | 18.0047      | 16.5043      | 15.2348      |
| 51300 | 22.6153           | 20.5594      | 18.8461      | 17.3964      |
| 51600 | 28.5560           | 25.9600      | 23.7967      | 21.9662      |
| 54300 | 20.4108           | 18.5553      | 17.0090      | 15.7006      |
| 54900 | 17.4973           | 15.9067      | 14.5811      | 13.4595      |
| 56400 | 22.5386           | 20.4897      | 18.7822      | 17.3374      |

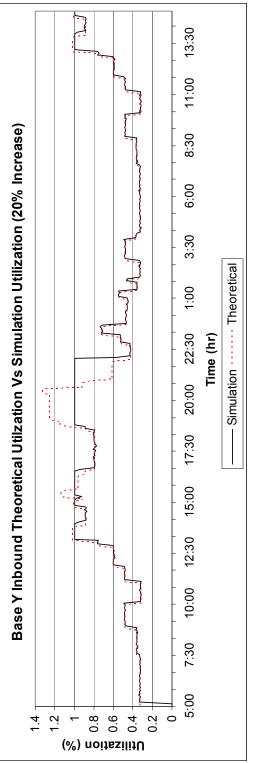
| 57300  | 31.1066  | 28.2788  | 25.9222  | 23.9282  |
|--------|----------|----------|----------|----------|
| 58200  | 20.9970  | 19.0882  | 17.4975  | 16.1515  |
| 58500  | 29.3155  | 26.6505  | 24.4296  | 22.5504  |
| 59700  | 44.2684  | 40.2440  | 36.8904  | 34.0526  |
| 61500  | 50.3496  | 45.7723  | 41.9580  | 38.7304  |
| 62700  | 59.1045  | 53.7313  | 49.2537  | 45.4650  |
| 66600  | 73.7513  | 67.0466  | 61.4594  | 56.7318  |
| 67200  | 110.7679 | 100.6981 | 92.3066  | 85.2061  |
| 68100  | 161.8898 | 147.1725 | 134.9081 | 124.5306 |
| 86400  | 129.8860 | 118.0782 | 108.2384 | 99.9123  |
| 92700  | 82.4084  | 74.9168  | 68.6737  | 63.3911  |
| 97800  | 110.8641 | 100.7855 | 92.3867  | 85.2801  |
| 102600 | 88.7501  | 80.6819  | 73.9584  | 68.2693  |
| 103500 | 107.4746 | 97.7042  | 89.5622  | 82.6728  |
| 105000 | 124.9245 | 113.5677 | 104.1038 | 96.0958  |
| 107100 | 172.6167 | 156.9243 | 143.8472 | 132.7821 |
| 108300 | 116.0560 | 105.5055 | 96.7134  | 89.2739  |
| 112200 | 58.8885  | 53.5350  | 49.0738  | 45.2989  |
| 114000 | 43.8694  | 39.8812  | 36.5578  | 33.7457  |
| 116100 | 40.8754  | 37.1594  | 34.0628  | 31.4426  |
| 118200 | 47.7912  | 43.4465  | 39.8260  | 36.7625  |
| 118800 | 57.7599  | 52.5090  | 48.1333  | 44.4307  |
| 119700 | 37.0936  | 33.7215  | 30.9114  | 28.5336  |
| 120300 | 57.7511  | 52.5010  | 48.1259  | 44.4239  |
| 120600 | 40.6991  | 36.9992  | 33.9160  | 31.3070  |
| 120900 | 25.6500  | 23.3182  | 21.3750  | 19.7308  |
| 121200 | 51.6363  | 46.9421  | 43.0303  | 39.7203  |
| 122100 | 62.1399  | 56.4908  | 51.7833  | 47.7999  |
| 122400 | 62.1399  | 56.4908  | 51.7832  | 47.7999  |

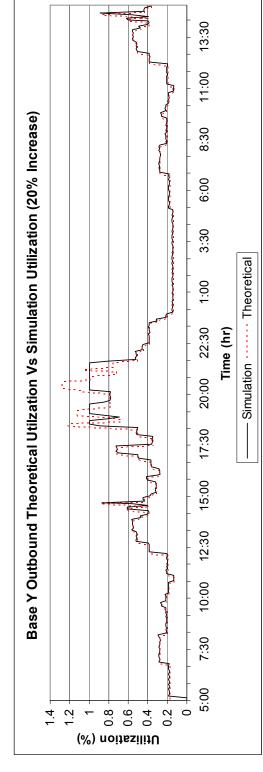

| Base X Incoming Filler Traffic Input Data (1 entity = 100 packets) |                                          |                                     |                                     |                                              |
|--------------------------------------------------------------------|------------------------------------------|-------------------------------------|-------------------------------------|----------------------------------------------|
| Time<br>(sec)                                                      | Current<br>workload<br>interarrival (ms) | 10% increase interarrival rate (ms) | 20% increase interarrival rate (ms) | 30%<br>increase<br>interarrival<br>rate (ms) |
| 0                                                                  | 124.8862                                 | 113.5329                            | 104.0718                            | 96.0663                                      |
| 300                                                                | 65.5855                                  | 59.6232                             | 54.6546                             | 50.4504                                      |
| 900                                                                | 138.8649                                 | 126.2408                            | 115.7207                            | 106.8192                                     |
| 18600                                                              | 109.6455                                 | 99.6777                             | 91.3712                             | 84.3427                                      |
| 21600                                                              | 70.6900                                  | 64.2636                             | 58.9083                             | 54.3769                                      |
| 25200                                                              | 49.9334                                  | 45.3940                             | 41.6111                             | 38.4103                                      |
| 27300                                                              | 42.1356                                  | 38.3051                             | 35.1130                             | 32.4120                                      |
| 28500                                                              | 32.3002                                  | 29.3638                             | 26.9168                             | 24.8463                                      |
| 29700                                                              | 23.2486                                  | 21.1351                             | 19.3739                             | 17.8836                                      |
| 31800                                                              | 28.8102                                  | 26.1911                             | 24.0085                             | 22.1617                                      |
| 32700                                                              | 23.0945                                  | 20.9950                             | 19.2454                             | 17.7650                                      |
| 33600                                                              | 33.1624                                  | 30.1476                             | 27.6353                             | 25.5095                                      |
| 33900                                                              | 21.6042                                  | 19.6402                             | 18.0035                             | 16.6186                                      |
| 35700                                                              | 29.3019                                  | 26.6381                             | 24.4183                             | 22.5399                                      |

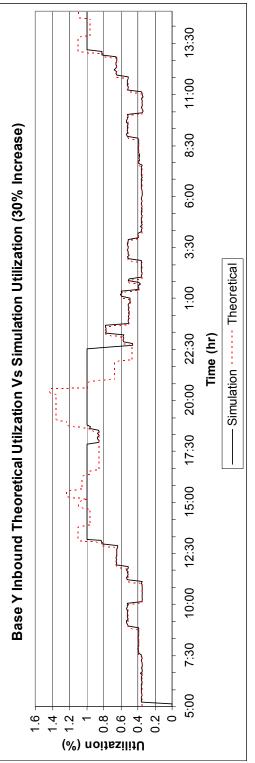

| 36300  | 24.9141  | 22.6492  | 20.7618  | 19.1647  |
|--------|----------|----------|----------|----------|
| 37800  | 31.0110  | 28.1918  | 25.8425  | 23.8546  |
| 40500  | 35.3880  | 32.1709  | 29.4900  | 27.2216  |
| 45000  | 23.1356  | 21.0324  | 19.2797  | 17.7966  |
| 45300  | 30.2425  | 27.4932  | 25.2021  | 23.2634  |
| 46500  | 26.0648  | 23.6952  | 21.7206  | 20.0498  |
| 49200  | 21.4804  | 19.5276  | 17.9003  | 16.5234  |
| 52200  | 17.9818  | 16.3471  | 14.9848  | 13.8322  |
| 54000  | 26.1922  | 23.8111  | 21.8268  | 20.1478  |
| 55500  | 33.7152  | 30.6502  | 28.0960  | 25.9348  |
| 60000  | 39.2082  | 35.6438  | 32.6735  | 30.1602  |
| 66300  | 16.0723  | 14.6111  | 13.3936  | 12.3633  |
| 66600  | 102.1160 | 92.8327  | 85.0967  | 78.5508  |
| 83100  | 67.8407  | 61.6734  | 56.5340  | 52.1852  |
| 83400  | 36.3454  | 33.0413  | 30.2879  | 27.9580  |
| 84600  | 124.8862 | 113.5329 | 104.0718 | 96.0663  |
| 86700  | 65.5855  | 59.6232  | 54.6546  | 50.4504  |
| 87300  | 138.8649 | 126.2408 | 115.7207 | 106.8192 |
| 105000 | 109.6455 | 99.6777  | 91.3712  | 84.3427  |
| 108000 | 70.6900  | 64.2636  | 58.9083  | 54.3769  |
| 111600 | 49.9334  | 45.3940  | 41.6111  | 38.4103  |
| 113700 | 42.1356  | 38.3051  | 35.1130  | 32.4120  |
| 114900 | 32.3002  | 29.3638  | 26.9168  | 24.8463  |
| 116100 | 23.2486  | 21.1351  | 19.3739  | 17.8836  |
| 118200 | 28.8102  | 26.1911  | 24.0085  | 22.1617  |
| 119100 | 23.0945  | 20.9950  | 19.2454  | 17.7650  |
| 120000 | 33.1624  | 30.1476  | 27.6353  | 25.5095  |
| 120300 | 21.6042  | 19.6402  | 18.0035  | 16.6186  |
| 122100 | 29.3019  | 26.6381  | 24.4183  | 22.5399  |
| 122400 | 29.3019  | 26.6381  | 24.4183  | 22.5399  |

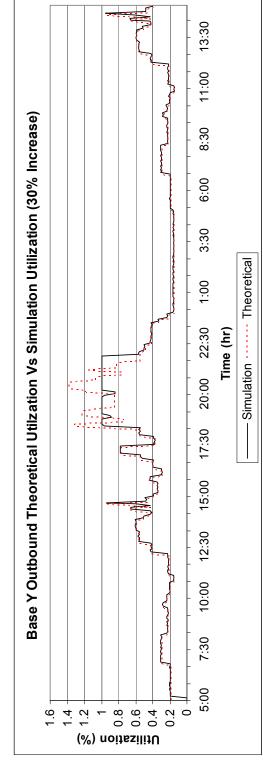

| Base X Outgoing Filler Traffic Input Data (1 entity = 100 packets) |                                          |                                              |                                     |                                     |
|--------------------------------------------------------------------|------------------------------------------|----------------------------------------------|-------------------------------------|-------------------------------------|
| Time<br>(sec)                                                      | Current<br>workload<br>interarrival (ms) | 10%<br>increase<br>interarrival<br>rate (ms) | 20% increase interarrival rate (ms) | 30% increase interarrival rate (ms) |
| 0                                                                  | 215.6976                                 | 196.0887                                     | 179.7480                            | 165.9212                            |
| 13200                                                              | 89.5097                                  | 81.3724                                      | 74.5914                             | 68.8536                             |
| 18000                                                              | 219.1972                                 | 199.2702                                     | 182.6643                            | 168.6132                            |
| 19200                                                              | 114.9440                                 | 104.4946                                     | 95.7867                             | 88.4185                             |
| 20100                                                              | 178.7957                                 | 162.5416                                     | 148.9965                            | 137.5352                            |
| 21300                                                              | 110.2584                                 | 100.2349                                     | 91.8820                             | 84.8142                             |
| 21600                                                              | 75.9185                                  | 69.0169                                      | 63.2655                             | 58.3989                             |
| 24900                                                              | 57.3108                                  | 52.1007                                      | 47.7590                             | 44.0852                             |
| 28200                                                              | 43.5927                                  | 39.6297                                      | 36.3272                             | 33.5328                             |
| 32100                                                              | 35.8579                                  | 32.5981                                      | 29.8816                             | 27.5830                             |
| 34200                                                              | 31.9291                                  | 29.0264                                      | 26.6075                             | 24.5608                             |
| 34500                                                              | 24.1958                                  | 21.9962                                      | 20.1632                             | 18.6121                             |
| 34800                                                              | 31.7594                                  | 28.8721                                      | 26.4661                             | 24.4303                             |


| 1 1    | i        | i i      | 1        | 1        |
|--------|----------|----------|----------|----------|
| 35100  | 24.9568  | 22.6880  | 20.7973  | 19.1975  |
| 35400  | 30.6962  | 27.9057  | 25.5802  | 23.6125  |
| 36300  | 30.6534  | 27.8667  | 25.5445  | 23.5795  |
| 38700  | 35.9089  | 32.6444  | 29.9241  | 27.6222  |
| 41400  | 45.7327  | 41.5752  | 38.1106  | 35.1790  |
| 42000  | 33.8828  | 30.8025  | 28.2357  | 26.0637  |
| 42600  | 58.6536  | 53.3215  | 48.8780  | 45.1182  |
| 42900  | 44.2956  | 40.2688  | 36.9130  | 34.0736  |
| 45900  | 40.2881  | 36.6256  | 33.5734  | 30.9909  |
| 48000  | 38.6485  | 35.1350  | 32.2071  | 29.7296  |
| 49500  | 32.6885  | 29.7169  | 27.2405  | 25.1450  |
| 50400  | 37.6995  | 34.2722  | 31.4162  | 28.9996  |
| 51600  | 30.9082  | 28.0983  | 25.7568  | 23.7755  |
| 52500  | 40.8440  | 37.1309  | 34.0367  | 31.4185  |
| 53400  | 35.4708  | 32.2462  | 29.5590  | 27.2852  |
| 56700  | 49.8025  | 45.2750  | 41.5021  | 38.3096  |
| 57300  | 38.2192  | 34.7448  | 31.8494  | 29.3994  |
| 57600  | 46.3292  | 42.1174  | 38.6076  | 35.6378  |
| 58500  | 85.2345  | 77.4859  | 71.0287  | 65.5650  |
| 58800  | 62.5326  | 56.8479  | 52.1105  | 48.1020  |
| 61200  | 80.5824  | 73.2568  | 67.1520  | 61.9865  |
| 62400  | 53.1481  | 48.3165  | 44.2901  | 40.8832  |
| 63000  | 85.2379  | 77.4890  | 71.0315  | 65.5676  |
| 65700  | 116.3751 | 105.7956 | 96.9793  | 89.5193  |
| 72600  | 148.6639 | 135.1490 | 123.8866 | 114.3569 |
| 78600  | 78.4471  | 71.3155  | 65.3725  | 60.3439  |
| 82200  | 195.5886 | 177.8079 | 162.9905 | 150.4528 |
| 83100  | 75.0577  | 68.2343  | 62.5481  | 57.7367  |
| 84600  | 215.6976 | 196.0887 | 179.7480 | 165.9212 |
| 99600  | 89.5097  | 81.3724  | 74.5914  | 68.8536  |
| 104400 | 219.1972 | 199.2702 | 182.6643 | 168.6132 |
| 105600 | 114.9440 | 104.4946 | 95.7867  | 88.4185  |
| 106500 | 178.7957 | 162.5416 | 148.9965 | 137.5352 |
| 107700 | 110.2584 | 100.2349 | 91.8820  | 84.8142  |
| 108000 | 75.9185  | 69.0169  | 63.2655  | 58.3989  |
| 111300 | 57.3108  | 52.1007  | 47.7590  | 44.0852  |
| 114600 | 43.5927  | 39.6297  | 36.3272  | 33.5328  |
| 118500 | 35.8579  | 32.5981  | 29.8816  | 27.5830  |
| 120600 | 31.9291  | 29.0264  | 26.6075  | 24.5608  |
| 120900 | 24.1958  | 21.9962  | 20.1632  | 18.6121  |
| 121200 | 31.7594  | 28.8721  | 26.4661  | 24.4303  |
| 121500 | 24.9568  | 22.6880  | 20.7973  | 19.1975  |
| 121800 | 30.6962  | 27.9057  | 25.5802  | 23.6125  |
| 122400 | 30.6962  | 27.9057  | 25.5802  | 23.6125  |

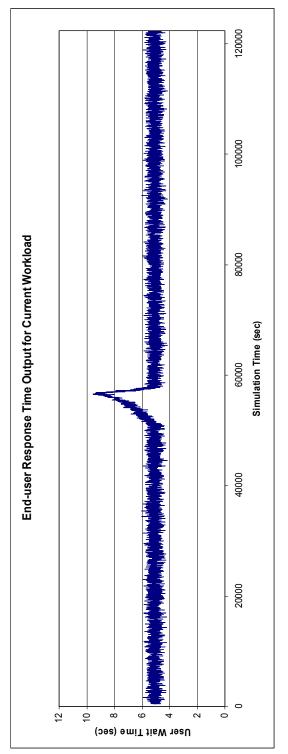

# **Appendix E: Theoretical Utilization and Simulation Utilization Charts**

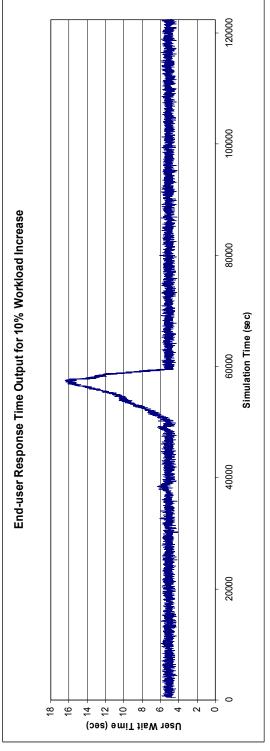


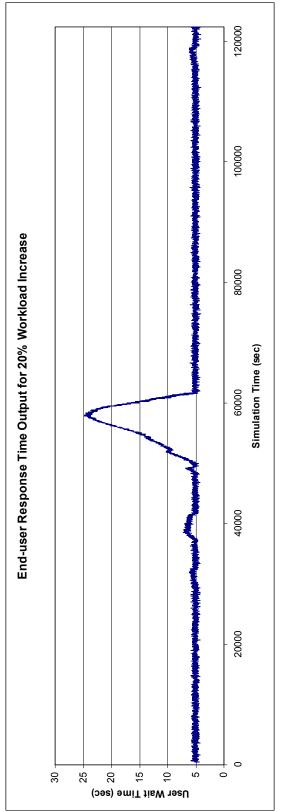



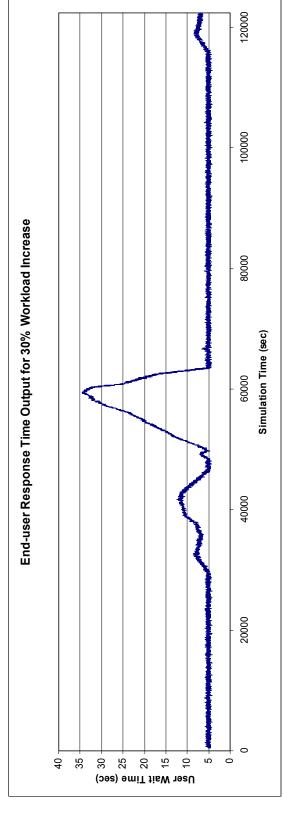






# **Appendix F: Single Simulation Run Response Time Output**









### **Appendix G: Excel VBA Code**

```
Sub FormatInputData()
```

```
' This macro extracts the data value from a string and changes the format from scientific
```

```
Dim i, j As Integer
Dim str, str2, str3 As String

'Loop through every line of data in the worksheet
For i = 0 To 300
str = Range("A14").Offset(i, 0).Text
j = Len(str)

'Extract the inbound value and write to the worksheet
str2 = Left(str, 37)
str3 = Right(str2, 16)
Range("I14").Offset(i, 0).Value = str3

'Extract the outbound value and write to the worksheet
str2 = Right(str, 17)
str3 = Left(str2, 16)
Range("M14").Offset(i, 0).Value = str3
```

'Change the worksheet value format from scientific notation to standard number Range("I14:I314").NumberFormat = "0" Range("M14:M314").NumberFormat = "0"

End Sub

Next

Sub ClearSheets()

- 'This macro clears all cells in all worksheets
- ' After all cells are cleared the macro re-enters the column headers Dim i As Integer

Sheets("WaitTime").Select Cells.Select Selection.ClearContents

Range("A1").Select Selection.Value = "Run 0"

<sup>&#</sup>x27;notation to standard number format. The inbound and outbound traffic values were

<sup>&#</sup>x27; provided in the following format:

<sup>&#</sup>x27;Date and Time, "inbound throughput", "outbound throughput"

Selection.Offset(1, 0).Value = "Sim Time" Selection.Offset(1, 1).Value = "Wait Time"

Sheets("Base Y Queue"). Select

Cells.Select

Selection.ClearContents

Range("A1").Select

ActiveCell.FormulaR1C1 = "Block"

Range("B1").Select

ActiveCell.FormulaR1C1 = "Block Name"

Range("C1").Select

ActiveCell.FormulaR1C1 = "Ave Length"

Range("D1").Select

ActiveCell.FormulaR1C1 = "Max Length"

Range("E1").Select

ActiveCell.FormulaR1C1 = "Ave Wait"

Range("F1").Select

ActiveCell.FormulaR1C1 = "Max Wait"

Range("G1").Select

ActiveCell.FormulaR1C1 = "Queue Length"

Range("H1").Select

ActiveCell.FormulaR1C1 = "Arrivals"

Range("I1").Select

ActiveCell.FormulaR1C1 = "Departures"

Range("J1").Select

ActiveCell.FormulaR1C1 = "Reneges"

Range("K1").Select

ActiveCell.FormulaR1C1 = "Utilization"

Range("L1").Select

ActiveCell.FormulaR1C1 = "Time (sec)"

Range("M1").Select

Sheets("Base X Queue").Select

Cells.Select

Selection.ClearContents

Range("A1").Select

ActiveCell.FormulaR1C1 = "Block"

Range("B1").Select

ActiveCell.FormulaR1C1 = "Block Name"

Range("C1").Select

ActiveCell.FormulaR1C1 = "Ave Length"

Range("D1").Select

ActiveCell.FormulaR1C1 = "Max Length"

Range("E1").Select

ActiveCell.FormulaR1C1 = "Ave Wait"

Range("F1").Select

ActiveCell.FormulaR1C1 = "Max Wait"

Range("G1").Select

ActiveCell.FormulaR1C1 = "Queue Length"

Range("H1").Select

ActiveCell.FormulaR1C1 = "Arrivals"

Range("I1").Select

ActiveCell.FormulaR1C1 = "Departures"

Range("J1").Select

ActiveCell.FormulaR1C1 = "Reneges"

Range("K1").Select

ActiveCell.FormulaR1C1 = "Utilization"

Range("L1").Select

ActiveCell.FormulaR1C1 = "Time (sec)"

Range("M1").Select

#### Sheets("Resource").Select

Cells.Select

Selection.ClearContents

Range("A1").Select

ActiveCell.FormulaR1C1 = "Block"

Range("B1").Select

ActiveCell.FormulaR1C1 = "Block Name"

Range("C1").Select

ActiveCell.FormulaR1C1 = "Utilization"

Range("D1").Select

ActiveCell.FormulaR1C1 = "Departures"

Range("E1").Select

ActiveCell.FormulaR1C1 = "In Use"

Range("F1").Select

ActiveCell.FormulaR1C1 = "Items Waiting"

Range("G1").Select

ActiveCell.FormulaR1C1 = "Ave Items Waiting"

Range("H1").Select

ActiveCell.FormulaR1C1 = "Ave Wait Time"

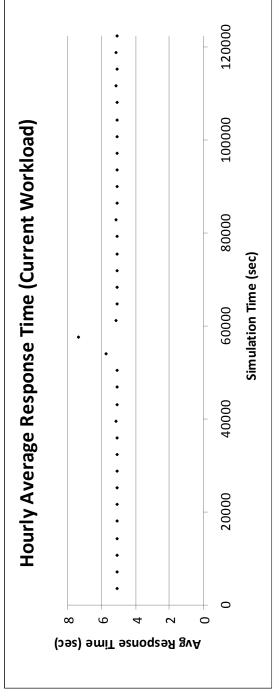
Range("I1").Select

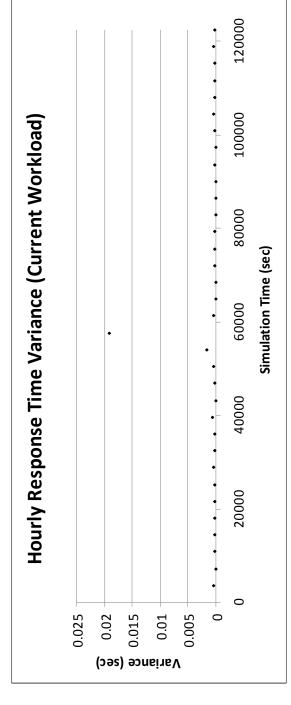
ActiveCell.FormulaR1C1 = "Time (sec)"

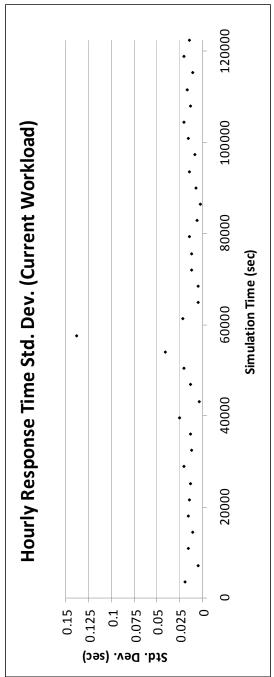
Range("J1").Select

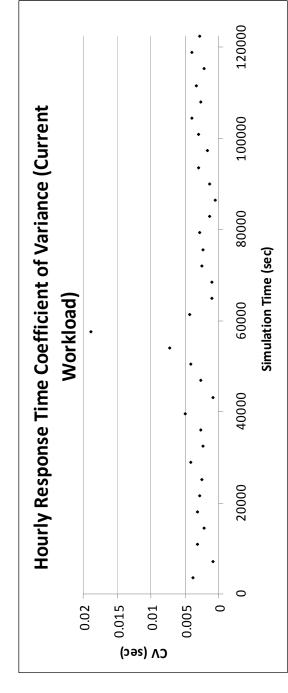
#### End Sub

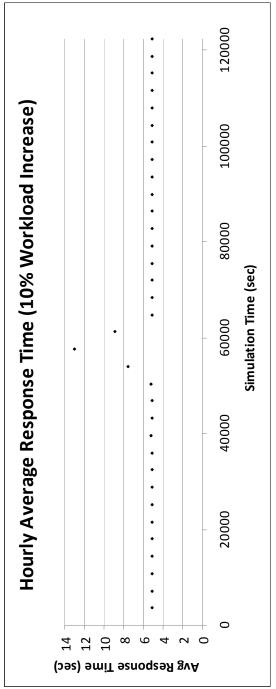
#### Sub FormatResponseTimes()

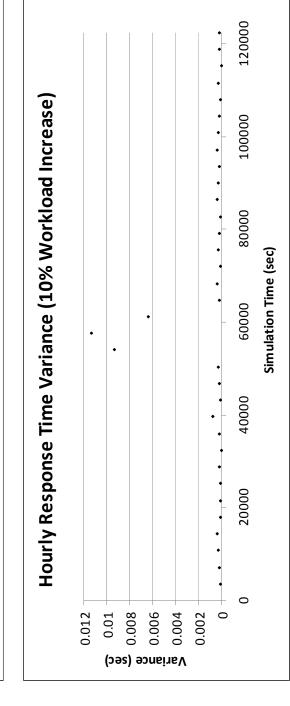

- 'This macro calculates the response time by dividing the output by 100.
- 'This is done because the delay times correspond to an entity of 100 packets, thus the
- ' data provided by the simulation is response time per 100 packets

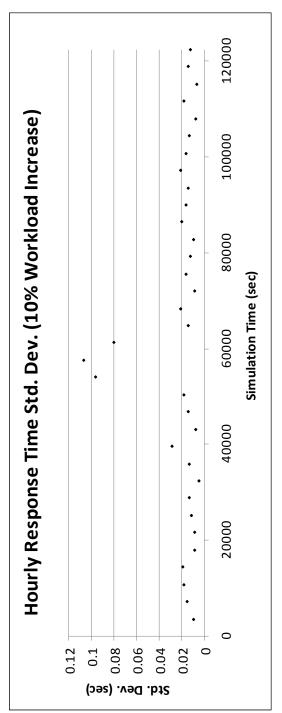

#### Dim str, str2 As String

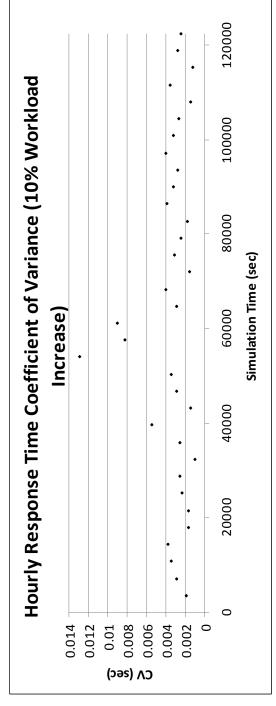

```
Dim rows As Integer
Range("B3").Select
rows = Range(Selection, Selection.End(xlDown)).Count + 2
Range("C3").Select
ActiveCell.FormulaR1C1 = "=RC[-1]/100"
str2 = "C3:C" & rows
Range("C3").Select
Selection.AutoFill Destination:=Range(str2), Type:=FillDefault
Range(str2).Select
End Sub
Sub calculateAverages()
This macro fills the active worksheet with the hourly and 5-minute response time sums
'number of observations per category. This data is used by the formulas in the worksheet
'calculate the hourly and 5-minute averages
Dim i, j, rows, sum, numPoints As Integer
Dim simTime, responseTime As Double
Range("A3").Select
rows = Range(Selection, Selection.End(xlDown)).Count
'loop through all the response times
For i = 1 To rows
  simTime = Range("A2").Offset(i, 0).Value
  responseTime = Range("B2").Offset(i, 0).Value
  'loop through all the hour categories
  For j = 0 To 33
    If simTime \geq j * 3600 And simTime \leq (j + 1) * 3600 Then
       'add the response time to the correct hour category
       Range("E3").Offset(j, 0).Value = Range("E3").Offset(j, 0).Value + responseTime
       'incrament the number of observations in the corresponding hour category
       Range("E3").Offset(j, 1).Value = Range("E3").Offset(j, 1).Value + 1
    End If
  Next
  'loop through all the 5-minute categories
```

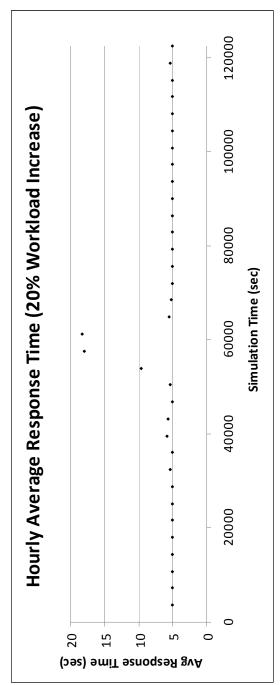

```
For j = 0 To 407
     If simTime \geq j * 300 And simTime \leq (j + 1) * 300 Then
       'add the response time to the correct 5-minute category
       Range("J3").Offset(j, 0).Value = Range("J3").Offset(j, 0).Value + responseTime
       'incrament the number of observations in the corresponding 5-minute category
       Range("J3").Offset(j, 1).Value = Range("J3").Offset(j, 1).Value + 1
     End If
  Next
Next
End Sub
Sub FormatOutgoingUtilizationData()
'This macro deletes the rows of data for the incoming SDP resource, leaving only the
'utilizations for the outgoing SDP resource
Dim i As Integer
Dim str As String
For i = 3 To 409
       str = i & ":" & i
       rows(str).Select
       Selection.Delete shift:=xlUp
Next
End Sub
Sub FormatIncomingUtilizationData()
'This macro deletes the rows of data for the outgoing SDP resource, leaving only the
'utilizations for the incoming SDP resource
Dim i As Integer
Dim str As String
rows("2:2").Select
Selection.Delete shift:=xlUp
For i = 3 To 409
  str = i & ":" & i
  rows(str).Select
  Selection.Delete shift:=xlUp
Next
End Sub
```

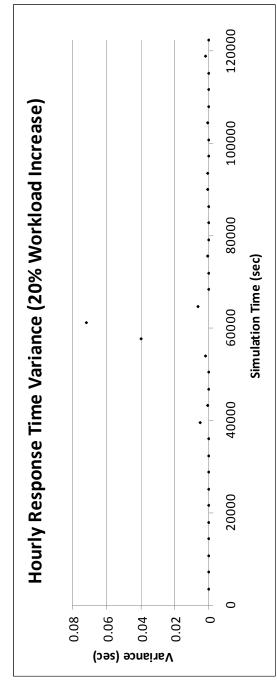

## **Appendix H: Hourly Average Response Time Charts**



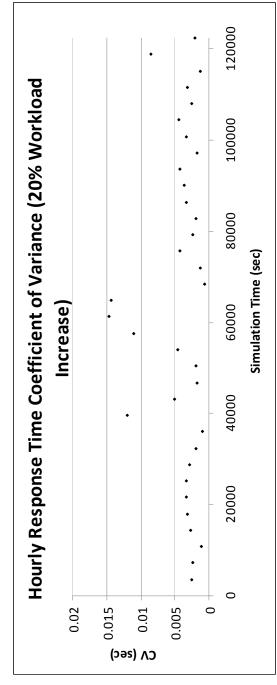



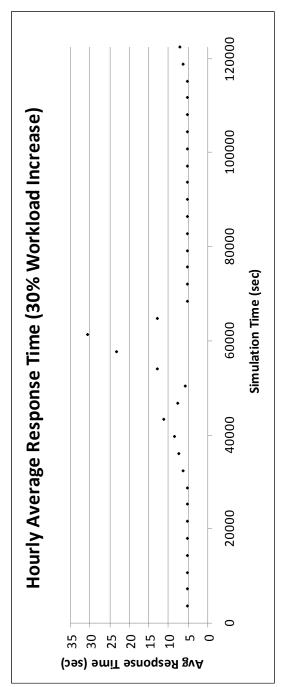



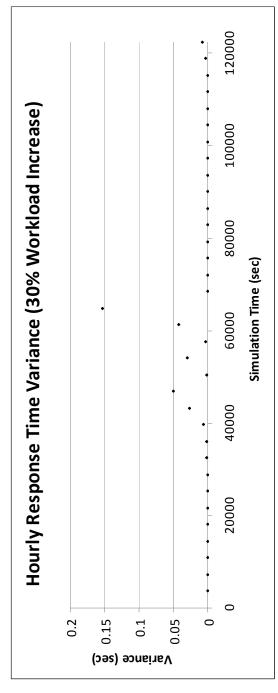



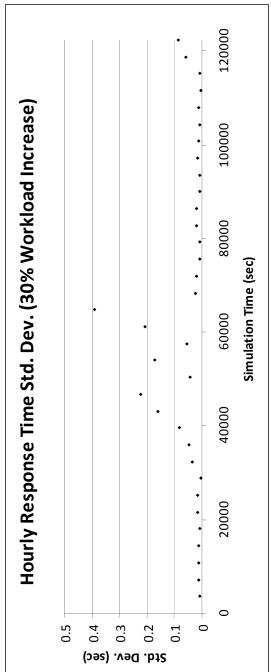



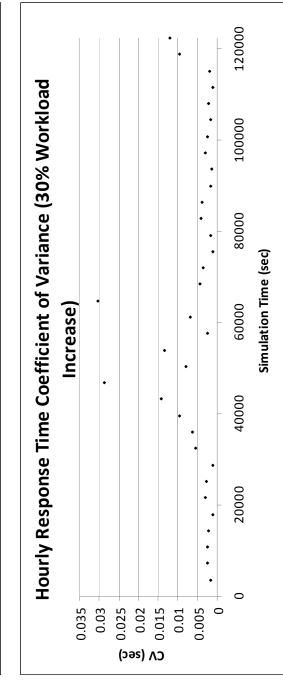


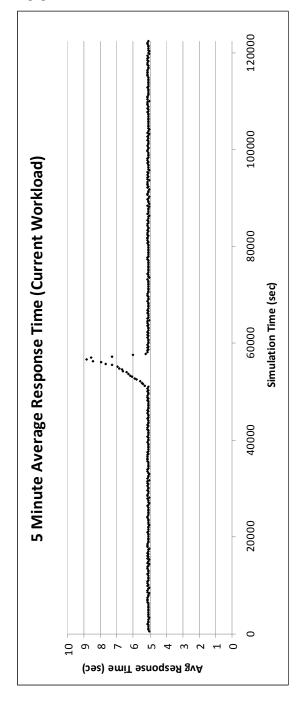



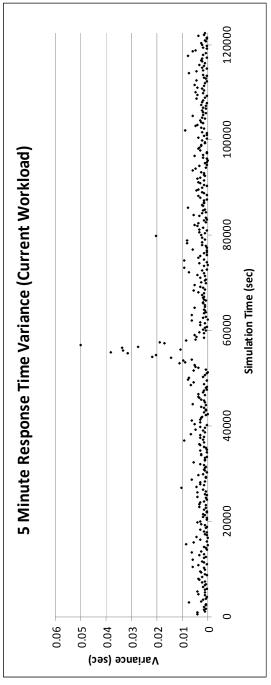



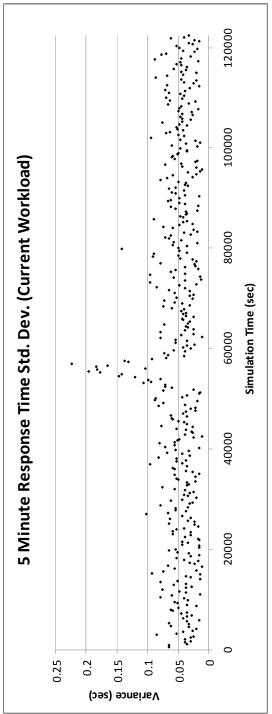



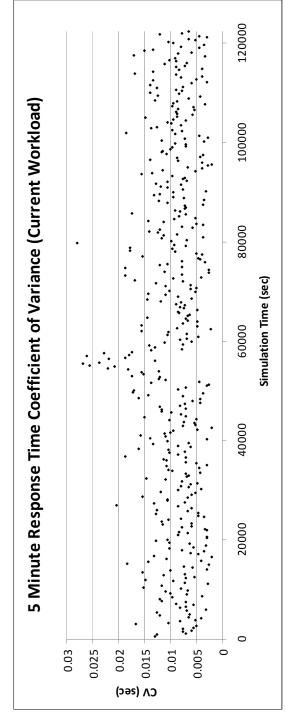



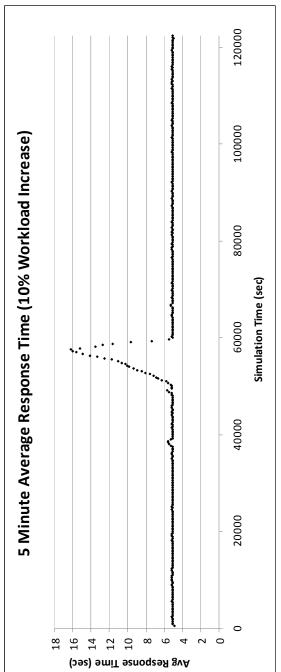


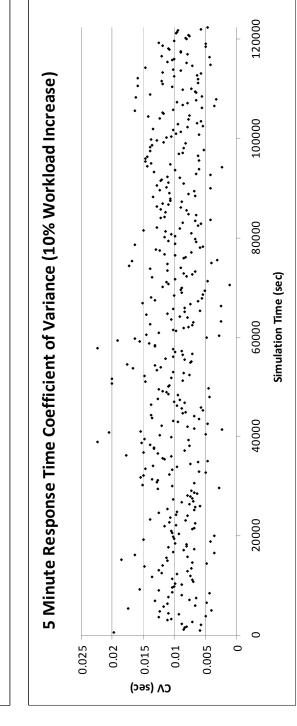



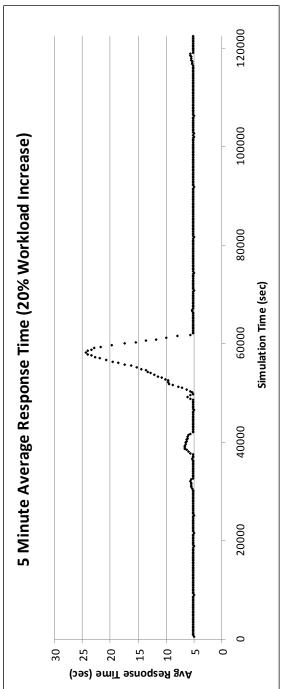



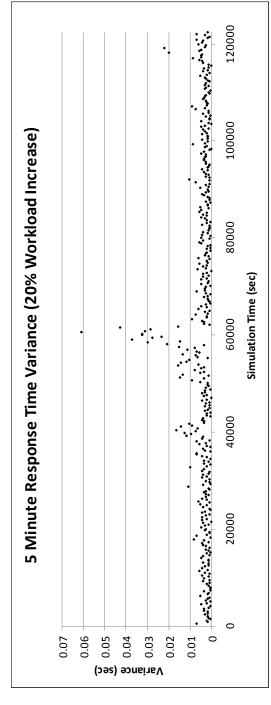


## **Appendix I: Five Minute Average Response Time Charts**

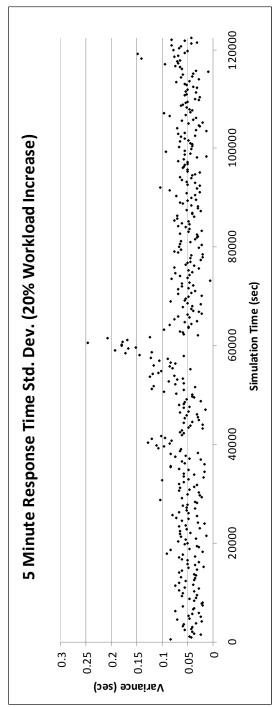


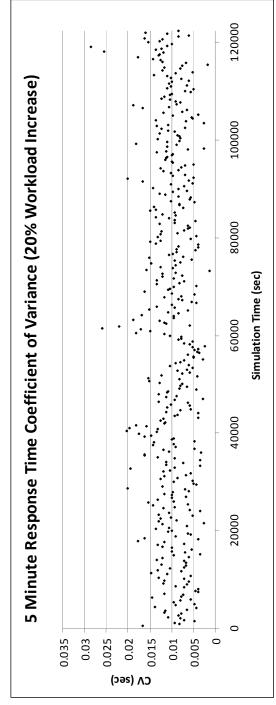


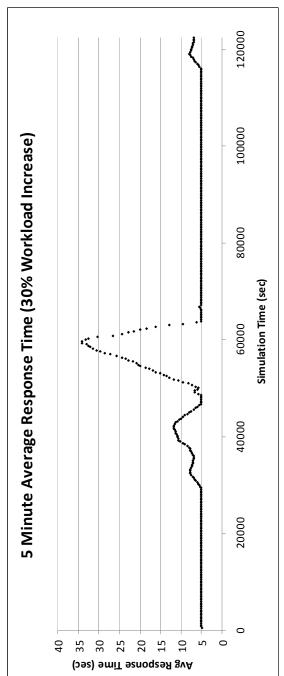



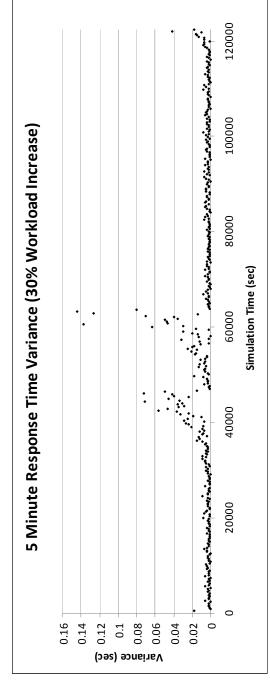



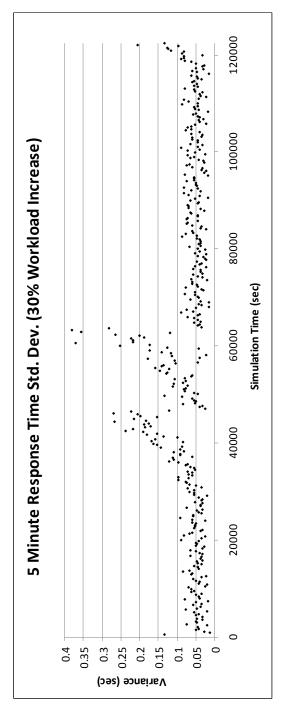



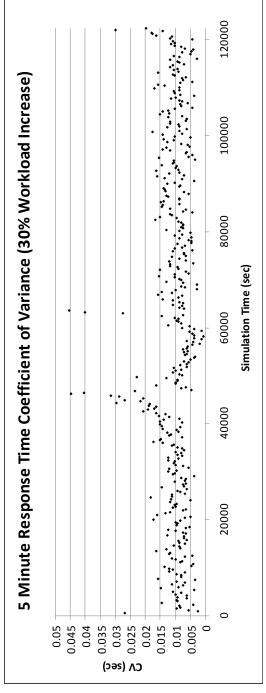



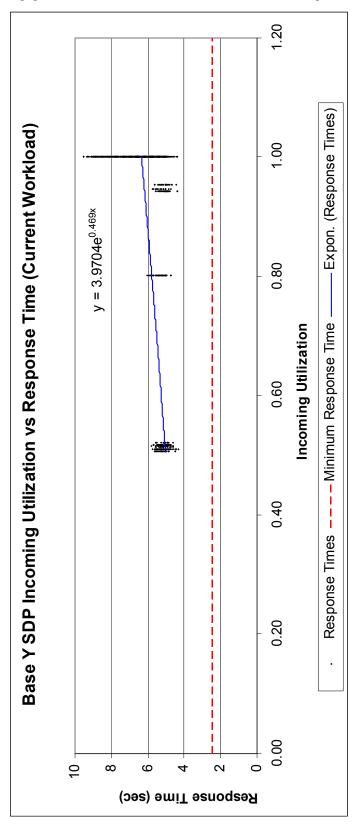



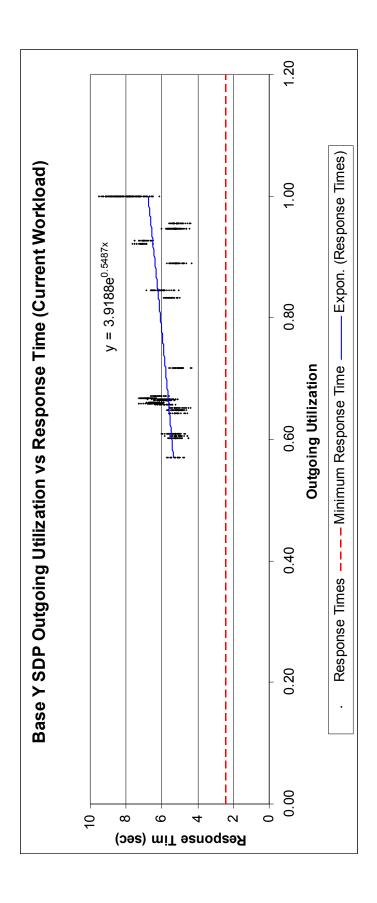



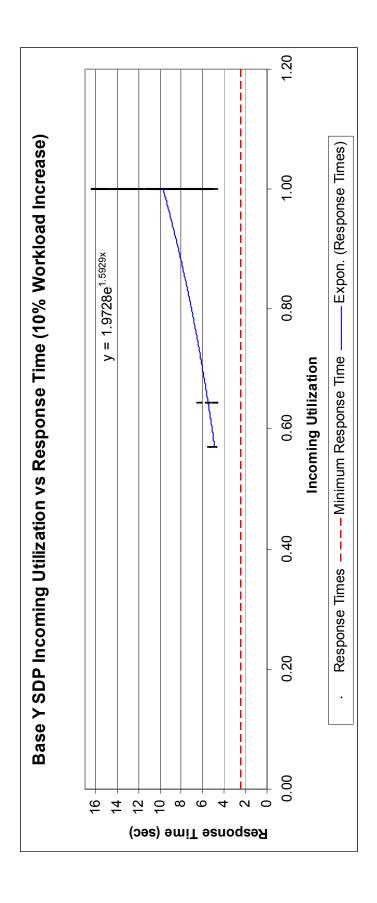



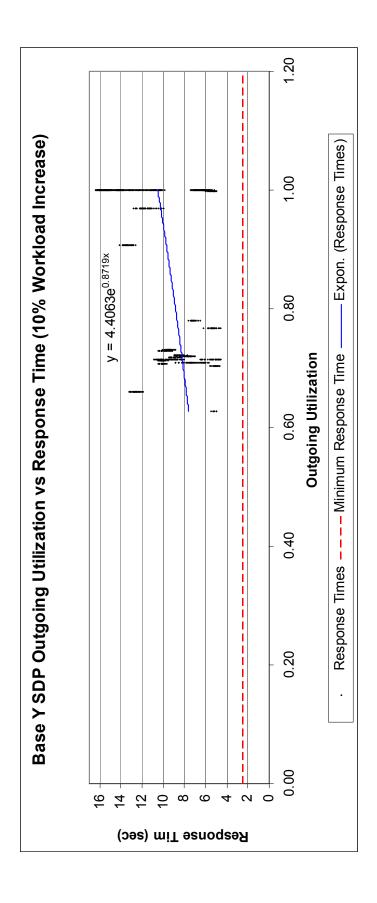



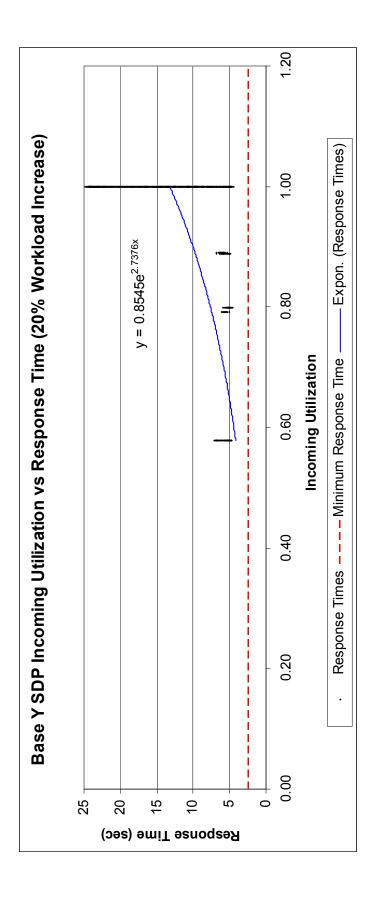


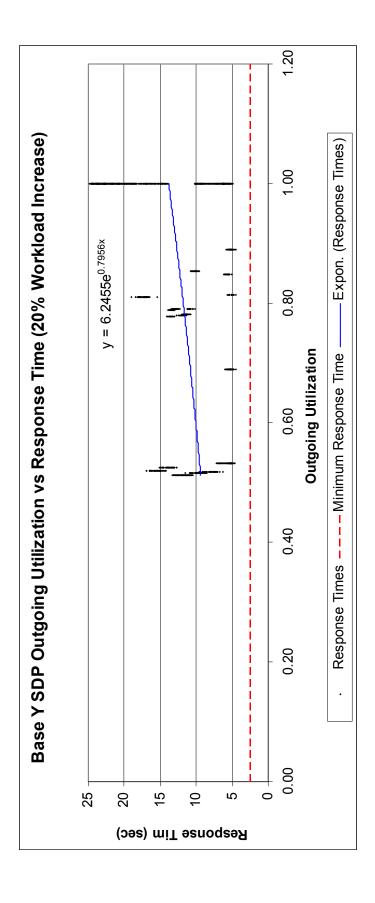



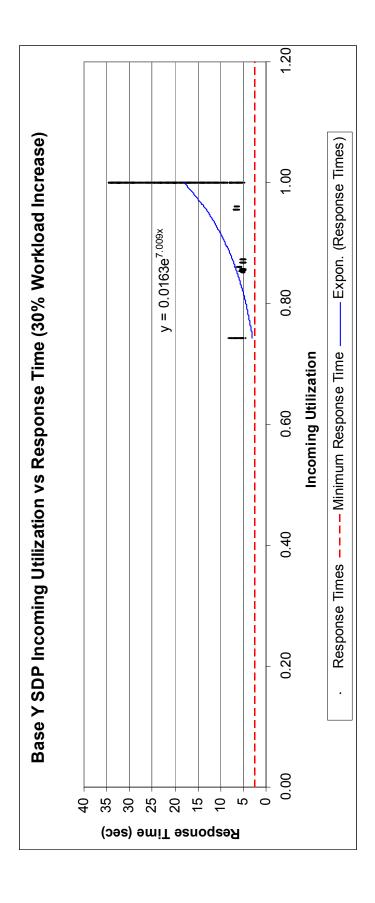



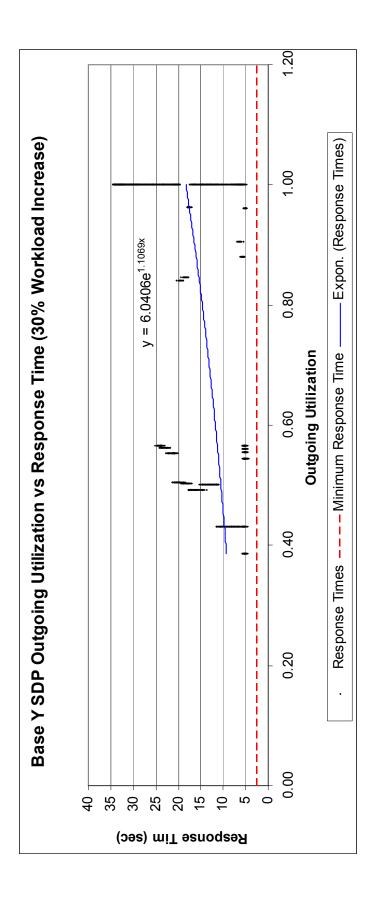





**Appendix J: Utilization vs. Response Time Charts** 














## References

- Al-Mashari, M. and A. Al-Mudimigh. 2003. "ERP implementation: lessons from a case study," *Information Technology & People*, Vol. 16, No. 1, pp. 21-33.
- AT&T. 2008. AT&T Government Markets: MAAs Service Delivery Point Definitions.

  Available via < http://www.corp.att.com/gov/contracts/maas/services/

  maas services sdp.html>
- Babey, E.R. 2006. "Costs of Enterprise Resource Planning System Implementation and Then Some," *New Directions For Higher Education*, No. 136, pp. 21-33.
- Berchet, C. and G. Habchi. 2005. "The implementation and deployment of an ERP system: An industrial case study," *Computers In Industry*, Vol. 56, pp. 588-605.
- Bergdolt, J.C. 2007. "Enterprise Resource Planning," *Air Force Journal of Logistics*, Vol. 31, No. 2, pp. 48-52.
- Bouch, A., A. Kuchinsky, and N. Bhatti. 2000. "Quality is in the Eye of the Beholder:

  Meeting Users' Requirements for Internet Quality of Service," In *Proceedings of the 2000 CHI Conference on Human Factors in Computing Systems Conference*, pp. 297-304. The Hague, The Netherlands: Special Interest Group on Computer-Human Interactions (SIGCHI).
- Chanopas, A., D. Krairit, and D.B. Khang. 2006. "Managing information technology infrastructure: a new flexibility framework," *Management Research News*, Vol. 29, No. 10, pp. 632-651.
- Dunn, G. 2007. "A New Global Vision for Transforming Logistics Combat Support Transformation," *Air Force Journal of Logistics*, Vol. 31, No. 2, pp. 1-4.

- Ehie, I.C. and M. Madsen. 2005. "Identifying critical issues in enterprise resource planning (ERP) implementation," *Computers In Industry*, Vol. 56, pp. 545-557.
- Field, Tony. 2004. "Network traffic behavior in switched Ethernet systems," *Performance Evaluation*, Vol. 58, pp. 243-260.
- Finney, S. and M. Corbett. 2007. "ERP implementation: a compilation and analysis of critical success factors," *Business Process Management Journal*, Vol. 13, No. 3, pp. 329-347.
- Fitzgerald, L.M. 2008. Personal Interview. 21 July 2008.
- Fitzgerald, L.M, and T.J. Harper. 2008. "Application of Simulation Modeling for Air Force Enterprise IT Transformation Initiatives," In *Proceedings of the 2008 Winter Simulation Conference*. FL: Institute of Electrical and Electronics Engineers.
- Floyd, Sally. 2001. "Difficulties in Simulating the Internet," *IEEE/ACM Transactions on Networking*, Vol. 9, No. 4, pp. 392-403.
- Fukuda, Kensuke. 2000. "Origin of critical behavior in Ethernet traffic," *Physica A*, Vol. 287, pp. 289-301.
- Groothuis, S., G.G. van Merode, A. Hasman, and C. Blokzijl. 2002. "Enterprise Resource Planning in Health Care: The Role of Simulation," In *Proceedings of the 2002 Health Sciences Simulation Conference*. San Antonio, TX: Society for Modeling and Simulation International (SCS).
- Gustafson, G. 2007. Presentation. Defense Enterprise Accounting and Management System.

- Han, S.W. 2004. "ERP Enterprise Resource Planning: A Cost-Based Business Case and Implementation Assessment," *Human Factors and Ergonomics in Manufacturing*, Vol. 14, No. 3, pp. 239-256.
- Huang, S., I. Change, S. Li, and M. Lin. 2004. "Assessing risk in ERP projects: identify and prioritize the factors," *Industrial Management & Data Systems*, Vol. 104, No. 8, pp. 681-688.
- Imagine Inc. ExtendSim® Customer List. 2008a. Avaialable via <a href="http://www.extendsim.com/downloads/users/Companies.pdf">http://www.extendsim.com/downloads/users/Companies.pdf</a>
- Imagine Inc. Products: ExtendSim® Overview. 2008b. Available via <a href="http://www.extendsim.com/prods">http://www.extendsim.com/prods</a> overview.html>
- Ishii, Daisuke. 2006. "Real-time bandwidth-requirement estimation using a queue simulation function," *Electronics and Communications in Japan*, Vol. 89, Issue 12, pp 75-87.
- Jacobs, F.R., R.B. Chase, and N.J. Aquilano. 2008. "Operations and Supply Management," 12<sup>th</sup> ed., New York: McGraw-Hill/Irwin, pp. 455-465.
- Jacobs, R.F. and F.C. Weston. 2007. "Enterprise resource planning (ERP) A brief history," *Journal of Operations Management*, Vol. 25, pp. 357-363.
- Kelton, W.D., R.P. Sadowski, and D.T. Sturrock. 2004. "Simulation with Arena," 3<sup>rd</sup> ed. New York: McGraw-Hill, p. 9, 42-43.
- Kim, Y., Z. Lee, and S. Gosain. 2005. "Impediments to successful ERP implementation process," *Business Process Management Journal*, Vol. 11, No. 2, pp. 158-170.
- McCoy, John M. 1981. "A Local Computer Network Simulation," *ACM SIGCSE Bulletin*, Vol. 13, pp. 263-267.

- Microsoft Help and Support. 2007. Description of the Internet Protocol Packet Size Setting. Available via <a href="http://support.microsoft.com/kb/183437">http://support.microsoft.com/kb/183437</a>
- Moon, Y.B. and D. Phatak. 2005. "Ehancing ERP system's functionality with discrete event simulation," *Industrial Management & Data Systems*, Vol. 105, No. 9, pp. 1206-1224.
- Musselman, K.J. 2001. "Complex scheduling of a printing process," *Computers & Industrial Engineering*, Vol. 39, pp. 273-291.
- Owens, D. 2007. Presentation. Expeditionary Combat Support System (ECSS).
- Scott, J.E. and I. Vessey. 2000. "Implementating Enterprise Resource Planning Systems:

  The Role of Learning from Failure," *Information Systems Frontiers*, Vol. 2, No. 2, pp 213-232.
- Sherry, F. and M. Corbett. 2007. "ERP implementation: a compilation and analysis of critical success factors," *Business Process Management Journal*, Vol. 13, No. 3, pp. 329-347.
- Soffer, P., B. Golany, and D. Dori. 2003. "ERP modeling: a comprehensive approach," *Information Systems*, Vol. 28, pp. 673-690.
- United States Department of Defense (USDoD). 2005. Expeditionary Logistics for the 21st Century (eLog21) Awareness Event Briefing. Available via <a href="https://acc.dau.mil/GetAttachment.aspx?id=32773&pname=file&lang=en-US&aid=6230%20">https://acc.dau.mil/GetAttachment.aspx?id=32773&pname=file&lang=en-US&aid=6230%20</a>
- United States Department of Defense (USDoD).2007a. Enterprise Transition Plan.

  Available via <a href="http://www.defenselink.mil/dbt/products/2007\_BEA\_ETP/">http://www.defenselink.mil/dbt/products/2007\_BEA\_ETP/</a>

## etp/Data/September\_2007\_ETP.pdf>

United States Department of Defense (USDoD). 2007b. DoD Architecture Framework

Version 1.5 Volume I: Definitions and Guidelines. Available via

<a href="http://www.defenselink.mil/cio-nii/docs/DoDAF\_Volume\_I.pdf">http://www.defenselink.mil/cio-nii/docs/DoDAF\_Volume\_I.pdf</a>