
Imagine That Inc. • 6830 Via Del Oro, Suite 230 • San Jose, CA 95119 USA
408.365.0305 • fax 408.629.1251 • info@extendsim.com

www.ExtendSim.com

Automated searching techniques can be used to find the best set of parameters for a simulation model. The term
most often used to describe this kind of automated searching is optimization. Optimizers have the reputation of
being hard to use and are often avoided when preparing model results. This paper shows both the use of the
ExtendSim Evolutionary Optimizer and the design path that was taken to create it. Design choices were made with
the object of reducing the learning and implementation barriers to using optimization within simulation models.

The ExtendSim Optimizer
by Bob Diamond

President, Imagine That Inc.

Brief Description of ExtendSim

The ExtendSim simulation application consists of a
library-based simulation engine, a built-in develop-
ment environment, and libraries of prebuilt blocks.
Blocks are modeling constructs that contain a repre-
sentative icon, system behavior, animation, a dialog
interface, and online help. Simulation models are cre-
ated by dropping blocks onto a worksheet, connect-
ing them, and then entering model data. New libraries
of blocks can be created by using the built-in develop-
ment environment. Since libraries are open source,
the user can easily create their own libraries by modi-
fying existing blocks.

The communication of ExtendSim with blocks, and
blocks with each other, consists of a repartee of mes-
sages. Some examples:

When a user changes a block’s dialog data, the
block is messaged that its data has changed value.
That block may, in turn, send messages to other
collaborating blocks, communicating the fact that
data has changed.
In discrete event models, a queue will try to pull in
available items. It will proceed to converse with
connected blocks to get any items available.
Blocks can act as agents by building, changing,
and running models, and by controlling external
applications.
External applications can act as agents, controlling
ExtendSim in the same way as blocks.

This message-sending architecture is extensible and is
the basis for all computational and user interface
development in ExtendSim, enabling blocks to initiate
global interapplication consequences, even over net-
works.

The ExtendSim Optimizer exploits this collaborative
architecture in its design.

What Does Optimization Mean?

Optimization describes the act of determining the
ideal parameter values which will minimize or maxi-
mize an objective function within a simulation model
in an automated way. The objective function typically
represents a profit or cost. An Optimizer will run a

model many times with different calculated parame-
ter sets to search a solution space until conditions are
satisfied that it has found a best set of parameters.

The Evolutionary Optimizer Block

The Evolutionary Optimizer block ships with all ver-
sions of ExtendSim. It can be placed in any discrete
event, discrete rate, or continuous model to add opti-
mization capability with minimum effort.

To use the Optimizer block in your model:
Drag the variables to be optimized to the block.
Enter a profit or cost equation to be optimized.
Add any local or global constraint equations.

The Optimizer Parameters tab in the Optimizer’s dia-
log has additional choices:

Buttons to set default choices for most models.
Limits for number of samples and cases to run.
The convergence percentage needed to finish.
Choices to use the Mean or Median as an ex-pect-
ed value calculator, or the best of both.
Antithetic sampling for sample reduction.
Tail truncation in very noisy models.

Most users do not need to be concerned with any-
thing except which Defaults button to use.

An Example Using the Evolutionary Optimizer

This section illustrates a very simple example model
and the use of the Evolutionary Optimizer to find the
best solution.

Problem description

Acme Egg Coloring, LLP, buys raw eggs, rapidly cooks
and colors them, and ships them out.

All finished eggs get sold to distributors.
Any raw eggs left over at the end of the day must
be destroyed according to the imaginary but
strictly enforced Egg Coloring Act of 1777.
Eggs are bought for $0.25 each and sold for $0.50
each.
Eggs get processed one at a time according to a
Lognormal distribution with a mean time of 5 min-
utes and a standard deviation of 1 minute.

1
2
3

Example
page 2

The ExtendSim Optimizer

With these conditions, it would seem that Acme
would want to buy only enough eggs to finish in one
day with as few leftover eggs as possible, since those
would have to be thrown away at a loss.

Model of Acme Egg Coloring, LLP

FIGURE 1. EXTENDSIM MODEL OF ACME EGG COLORING

The model consists of:
A Resource block labeled “Raw eggs” that holds
the raw eggs that were bought for that day.
An Activity Delay block labeled “Cook, color egg”
that pulls an egg from the Resource block and
processes it.
An Input Random Number block labeled “Mean 5
min” that calculates the processing time and is
queried by the Activity block for each egg.
An Exit block to ship the items out of the model,
labeled “Shipping.”

The model is set to run for 8 hours and then stop. The
calculation of how much profit Acme makes uses the
following equation:

Profit = (shippedEggs * 0.50) – (leftoverEggs * 0.25) (1)

Any leftover eggs will really cut into Acme’s revenue
stream, enraging the stockholders. An option would
be to run the model with different numbers of raw
eggs until the optimum solution is found; however, it
would be much easier to automate the process. Using
the Evolutionary Optimizer block, the search for the
optimum solution can occur without intervention.

Finding a solution using the Optimizer

In order for the Optimizer to search for a solution, it
needs to know:

Which variables to search.
The allowable set of values for those variables.
The objective function used to determine a good
solution.

The objective function will tell the Optimizer how to
compare cases and choose which results and corre-
sponding parameter values are better.

Adding an Optimizer block to the model

First, add an Optimizer block to the model:

FIGURE 2. ADDING AN EVOLUTIONARY OPTIMIZER BLOCK

Now add the variables to be searched for and an
objective function to the Optimizer.

Adding variables to the Optimizer

To add variables to the Optimizer, drag and drop
them using the Clone tool. The Clone tool creates hot-
linked duplicates of data when the user drags a dialog
item from a dialog onto a document. Rather than hav-
ing to open the dialog to enter the data or view
results, clones can be used to enter values and report
dialog values. By using the Clone tool to add variables
into the Optimizer block, the user does not have to
determine and enter variable names manually.

The variable to be optimized is the initial number of
eggs in the Resource block. Figure 3 shows the
Resource block’s Initial number variable as it’s being
cloned from the Resource to the Optimizer.

FIGURE 3. CLONING INITIAL NUMBER OF EGGS FROM RESOURCE TO
OPTIMIZER BLOCK

Next, open the Exit block to clone the variable repre-
senting the number of eggs shipped, so the Optimizer
can calculate the revenue from this day’s work.

When you drag each of these variables onto the Opti-
mizer block, it will highlight to indicate that the
cloning operation was successful.

The ExtendSim Optimizer

Adding Variables
page 3

FIGURE 4. DRAGGING THE NUMBER OF EGGS SHIPPED LEFTWARD

ONTO THE OPTIMIZER BLOCK

Adding the set of allowable values (ranges)

Opening the Optimizer block, you can see the Varia-
bles table (Figure 5) with the cloned parameter vari-
ables. Now enter the allowable range for the number
of raw eggs to buy for that day. In this case, choose
from 0 to 200 eggs, omitting any decimal point to
keep these variables as integers. The 0 is obvious. The
200 is a guess based on the processing time per egg
(about 5 minutes) and the time available for process-
ing all eggs (480 minutes). That guess is doubled so as
to not overly limit the range. Setting a range is how

the solution space is limited. The closer the range is
estimated, the faster it can converge to a solution.

FIGURE 5. THE VARIABLES TABLE WITH INITEGGS AND
SHIPPED VARIABLES ADDED

Adding the objective function

Now enter the objective function so the Optimizer can
determine a good solution. This equation is the same
as equation 1, but with the correct variable names:

MaxProfit = shipped*0.50 - initEggs*0.25; (2)

Results of the optimization

After you run the simulation using the Run Optimiza-
tion command, the Optimizer reports these results:

FIGURE 6. THE FINAL POPULATION OF RESULTS, BEST AT TOP

FIGURE 7. PLOT OF THE RUN SHOWING CONVERGENCE

Adding constraints

As you can see from the results, the optimum number
of eggs bought should be 97. But you have to buy
eggs by the dozen, so you need to add a constraint to
the Optimizer, forcing it to buy eggs in groups of 12.

You can enter a constraint on the Constraints tab of
the Optimizer that will take the initEggs variable and
force it to be an integral dozen of eggs:

newInitEggs = int(initEggs/12) * 12; (3)

Constrained results

The new final population of results shows the best so-
lutions with 96 eggs, equivalent to 8 dozen eggs.

FIGURE 8. CONSTRAINED RESULTS

You cannot buy 8 dozen eggs? Add a global constraint

Assume all egg vendors refuse to sell even numbered
dozens of eggs due to the even more imaginary Odd
Dozen Eggs Used in Egg Coloring Act of 1778. You
have to buy an odd number of dozens!

A Global Constraint can force the rejection of an en-
tire case depending on case values. The equation
needed on the Constraints tab of the Optimizer to
force the rejection of even numbered dozens of raw
eggs is:

// if even dozen, reject this case (4)
if (initEggs/24.0 == int(initEggs/24.0))
Reject = TRUE;

1

Final Results
page 4

The ExtendSim Optimizer

Final results

Notice how you need to buy 108 eggs or 9 dozen to
make the best profit. This makes sense, because it is
more probable that you would make a higher profit
buying 9 dozen eggs and throwing some out, than
buying 7 dozen and throwing none out.

FIGURE 9. ODD DOZEN GLOBAL CONSTRAINT ADDED

Designing the ExtendSim Optimizer

When adding features to any application, there are
always design tradeoffs. We wanted an optimizer for
the ExtendSim simulation applications, but we wanted
it to match ExtendSim’s interface design so it would
feel very familiar to a user. How should we proceed?

How to add features to ExtendSim

There are three routes that we can take to adding a
feature to ExtendSim:
Add the code and user interface elements to
ExtendSim’s C++ code base, or
Implement the feature as a new block in a library
that ships with ExtendSim, or
Interface to another application that implements
the feature.

If we hard coded an Optimizer into the application
code, the source code would be invisible to the user
and not available for clarification or possible modifica-
tion. The user would not be able to further customize
the Optimizer for a specialized application.

This would violate ExtendSim’s design culture where it
is as open source and extensible to the user as possi-
ble.

We could save much design time by using an existing
optimization application, but at the expense of ease-
of-use. We could save many user executed steps need-
ed by external applications by integrating our opti-
mization process into ExtendSim’s simulation engine,
and we would be able to keep control over the user
interface, a most critical part of our design.

If we could create an Optimizer library block with
ExtendSim’s built-in block development environment,
the Optimizer could be open source and available to

the user for modification, if needed, for a specialized
use. Additionally, any added user interface elements
would be available for use in other types of blocks. We
chose this method to add optimization capabilities to
ExtendSim.

Creating the ExtendSim Optimizer block

We discuss the internals of the Optimizer here. It is
beyond the scope of this paper to show the proce-
dures that we used to come to this design. Please note
that there are no precise analytical methods available
to justify any particular design of an optimizer.

Human Interface Considerations: Drag and Drop

In order to run cases using parameter sets, the
Optimizer needs to gather information about the loca-
tions of variables contained in the parameter set.

The easiest metaphor to use for the connection be-
tween the Optimizer block and model data is the
“drag and drop” design. This will allow a user to drag a
desired variable to the Optimizer, and the Optimizer
will then extract the data location. To facilitate this, we
added a message to ExtendSim which will be sent to a
block that has a variable dragged onto it.

The procedure to use the drag and drop interface is:
Open the dialog containing the desired variable.
Using the clone tool, drag the data to the optimiz-
er block on the model worksheet.
When the user releases the mouse, ExtendSim
sends the Optimizer a ‘DragCloneToBlock’ mes-
sage.

The Optimizer block will then execute its
‘DragCloneToBlock’ message handler, interrogating
the remote (dragged from) block, extracting the data’s
pointer information and saving it in its dialog
Variables table.

ExtendSim’s optimization algorithm

ExtendSim’s optimization algorithm is essentially a
survival of the fittest solution within a steady state
population of solutions. Good fitness is defined as a
maximum resulting profit or minimum resulting cost
of the objective function used.

The algorithm developed is based on genetic algo-
rithm concepts, but with enhancements to more
closely emulate a DNA based evolutionary process
with its larger effective number of ‘bits’ (floating point
is used) and correspondingly finer precision of muta-
tion and mating attributes. Algorithms similar to the
one we are using have historically been called evolu-

1

2

3

1
2

3

The ExtendSim Optimizer

Optimization
Algorithm
page 5

tionary algorithms to differentiate themselves from
classical bitwise genetic algorithms as developed by
John Holland in the late 1960s.

Calculating fitness of stochastic processes

Because of noise in a stochastic process, calculating
the fitness of a solution becomes complex. One
method relies on making N runs of a model and taking
the mean of the objective function results.
Alternately, the median can be substituted for the
mean in some very noisy environments.

Evolutionary Steady State algorithm summary

Here is a brief pseudo code representation of the opti-
mization algorithm developed for ExtendSim:
Generate double size population;
Throw away worst half;
While (population not converged)

{ // Main optimization loop
Tournament(2) select parent 1;
Tournament(1) select parent 2;

If (mating condition satisfied)
Mate parents to create offspring;

Else
Use parent 1;

If (mutation condition satisfied)
Mutate offspring;

Else
Don’t mutate offspring;

Replace worst member with offspring;

Calculate fitness of offspring N samples;

Sort population for fitness;

If (all population has used N samples)
Increment N samples;

}
Post final parameters to model;
Run model once to correlate results;

FIGURE 10. PSEUDO CODE OF OPTIMIZER BLOCK

Steady state population of solutions

Each member of the double size initial population is
generated by randomizing the parameter set values
using a uniform distribution, obeying limits specified
by the user, and meeting all constraint equation
requirements.

The population is then sorted according to fitness and
the worst half is thrown out by reducing the popula-
tion to the specified size.

In the main optimization loop, the algorithm then
generates an offspring and replaces only the worst
member of the population with that offspring. Some
algorithms replace the entire population of parents
with offspring, but the method used here keeps the
population size constant and gives the offspring a
chance to compete with its parents for fitness; the par-
ents could be better than the off-spring.

The main loop continues until the convergence condi-
tion is satisfied.

Tournament selection

To select a good set of parents out of the population,
Tournament Selection is used with a parameter S,
Selective Pressure, that specifies how many popula-
tion members compete for selection. If the parameter
S is 1, one member is randomly selected from the
population. If S is 2, then two members are selected
and the best one of the two is used as a parent. If S is
too high, only the best members of the population are
mated, causing premature convergence to a false local
minima or maxima.

Our algorithm specifies that one parent randomly se-
lected from the population is mated with the best one
of two other competing candidates.

Mating

Mating occurs at a specified rate. Considering that
each member solution is composed of genes that rep-
resent an independent parameter of the model in
question, mating represents a combination of the
genes of two members, using a weighting factor, to
create an offspring. The weighting factor for each sep-
arate gene is calculated as a uniformly distributed real
value between 0 and 1 that specifies what proportions
of member 1 gene and member 2 gene are linearly
combined:

offspringG = (member1G * w) + (member2G * (1-w)) (5)

Mutation

Mutation occurs at a specified rate for each gene, and
this rate depends on how many genes (parameters)
are contained in a population member.

If the mutation rate condition is satisfied for a gene,
the change to the gene value is calculated using a
Normal distribution with a specified standard devia-
tion. This weights smaller value mutations higher than
larger value mutations, but still allows radical changes
that could find a more distant minima or maxima.

Imagine That Inc. • 6830 Via Del Oro, Suite 230 • San Jose, CA 95119 USA
408.365.0305 • fax 408.629.1251 • info@extendsim.com

www.ExtendSim.com

Sample
Reduction
page 6 The ExtendSim Optimizer

Sample reduction in stochastic models

Previously, we talked about finding the fitness of a
solution in a noisy environment. However, in order to
find the best solution in the least time, we must try to
use as low of a sample rate as possible.

Our strategy is to use an incremental sample rate,
starting at 1 sample. Incremental sampling tends to
find stronger (more sensitive) parameters first, and
then as the sample rate increases, finds weaker para-
meters more easily after the stronger parameters are
found. This fundamental principle of signal processing
uses the analogue of enhancing signal-to-noise ratio
to extract weaker data.

Confidence intervals tend to overestimate the needed
number of samples because all parameters are evalu-
ated in the confidence of a fitness calculation, even
the hard to find weak ones which tend to bump up
the number of samples needed for the entire run.

Convergence

Our convergence metric is defined as the following,
with bestmeaning the fitness value of the best mem-
ber of the population and worstmeaning the fitness
value of the worst member of the population. It is the
relative distance from best to worst member:

Convergence = 1 –(2 * (best - worst) / (best + worst)) (6)

When convergence is above a threshold (e.g. 0.95 or
95%), the optimization run stops and posts its best
results to the model. It then runs the model once
more to correlate results data with that parameter set.

CONCLUSION

We have shown that setting up an optimization run in
ExtendSim can be a relatively quick process, reducing
the normal roadblocks and making optimization more
accessible to the modeler. We have also covered the
basic operation of the Optimizer and invite examina-
tion of the Evolutionary Optimizer block’s open source
code.

ACKNOWLEDGEMENTS

When you’re designing an Optimizer, it sure helps to
have a wonderful daughter who just happens to be a
geneticist working in transgenics. Thanks Jenn for
those conversations and explanations about the mys-
teries of genes, chromosomes, and DNA.

The Optimizer would never have happened without
my muse, my wife Pat who constantly inspires me and
who put up with noisy computers running simulations
at all hours of the day and night.

And thanks to the writers that wow me constantly
with all their ideas.

REFERENCES

Aarts, E., and Lenstra, J. K. et al. 1997. Local Search in
Combinatorial Optimization. West Sussex, England:
John Wiley & Sons Ltd.

Glover, Fred, and Laguna, Manuel. 1997. Tabu Search.
Norwell, MA: Kluwer Academic Publishers.

Law, A. M., and W. D. Kelton. 2000. Simulation model-
ing and analysis, 3rd ed. New York: McGraw-Hill.

Michalewicz, Zbigniew. 1999. Genetic Algorithms +
Data Structures = Evolution Programs, 3rd ed. New
York: Springer-Verlag.

Rustagi, J. S. 1994. Optimization Techniques in
Statistics. San Diego, CA: Academic Press, Inc.

AUTHOR BIOGRAPHY

BOB DIAMOND is the creator of the ExtendSim simula-
tion application (and before ExtendSim, the
DesignScope simulation application, used in signal
processing) and the founder of Imagine That, Inc.
While in school, Bob was recruited by NASA Apollo to
create the Rocket-Drop simulation of combustion
within the Saturn booster engine. As Principal
Scientist at Commodore Intl., he used simulation
extensively to validate new technology during the
birth of the personal computer. At Consolidated Video
Systems, he designed broadcast digital video signal
processing hardware using simulation and was the
recipient of a Rockefeller/Ford Foundation grant for
his work as technologist/artist-in-residence at
WNET/NY. His multimedia collaborations with Fluxus
artist Bob Watts and composer David Behrman have
been shown in the Whitney in NYC, the Smithsonian
Institution and in other venues worldwide. His email
address is <bobd@ExtendSim.com>

©
20

03
 Im

ag
ine

 T
ha
t!,
the

 Im
ag
ine

 T
ha
t! l
og
o,
an
d E

xte
nd
Sim

 ar
e r

eg
ist
er
ed
 tr
ad
em

ar
ks

of
Im
ag
ine

 T
ha
t In

co
rp
or
ate

d i
n t
he
 U
nit
ed
 S
tat
es
 an

d/o
r o

the
r c

ou
ntr
ies

.
All
 ot
he
r b

ra
nd
s o

r p
ro
du
cts

 ar
e t
ra
de
ma

rks
 or

 re
gis

ter
ed
 tr
ad
em

ar
ks
 of
 th
eir
 re

sp
ec
tiv
e o

wn
er
s.

